

June 25, 2018

Todd Caffoe New York State Department of Environmental Conservation Region 8 Division of Environmental Remediation 6274 East Avon-Lima Road Avon, New York 14414

Subject:

Orchard-Whitney Site (#E828123) 415 Orchard Street & 354 Whitney Street, Rochester, NY Periodic Review Report (March 17, 2017- May 31, 2018)

Dear Mr. Caffoe,

Please find the attached Periodic Review Report for the reporting period of March 17, 2017 to May 31, 2018.

We look forward to your review and approval of this document. Please call or email with any questions you may have that might facilitate this process.

Respectfully,

Gregory L. Andrus, P.G., CHMM

Group Leader, Investigation/Remediation

Enclosures as noted

Cc:

Anne Spaulding – City of Rochester
Joseph Biondolillo – City of Rochester
Jane Forbes – City of Rochester
Dennis Peck – City of Rochester
Bernette Schilling – NYSDEC
Laura Gregor – Lu Engineers

Periodic Review Report March 17, 2017- May 31, 2018

Environmental Restoration Program
Orchard Whitney Site #E828123
415 Orchard Street and 354 Whitney Street
Monroe County
Rochester, New York

City of Rochester City Hall, Room 300B 30 Church Street Rochester, New York 14614

Prepared by:

Rochester, New York 14604

June 2018

Table of Contents

	<u>Page</u>
Executive Summary	2
1.0 Periodic Review Report	3
2.0 Site Overview	3
3.0 Remedy Performance, Effectiveness, and Protectiveness	5
4.0 Institutional Controls/Engineering Control Plan Compliance	6
5.0 Monitoring Plan Compliance Report	8
6.0 Operation and Maintenance Plan Compliance Report	10
7.0 Conclusions and Recommendations	11
Tables	
Table 1 – Groundwater TCL VOCs Results	
Table 2 – Groundwater RCRA Metals Results	
<u>Figures</u>	
Figure 1 – Site Location Map	
Figure 2 – Site Plan	
Figure 3 – Groundwater Contour and Analytical Results – October 2016	
Figure 4 – Groundwater Contour and Analytical Results – November 2017	
Figure 5 – Groundwater Contour and Analytical Results – March 2018	

<u>Attachments</u>

Attachment A – Site Inspection Form

Attachment B – Groundwater Sampling Logs

Attachment C – Laboratory Analytical Data

Attachment D – Institutional and Engineering Controls Certification Form

Figure 6 – Groundwater Contour and Analytical Results – May 2018

Executive Summary

The Orchard Whitney Site #E828123 (hereinafter referred to as the "Site"), located at 415 Orchard Street and 354 Whitney Street in the City of Rochester, Monroe County, New York is a 4.073-acre parcel (Figure 1). Delco Appliance Division of General Motors occupied the Site from 1930 to 1967. Historical activities included the manufacture of electrical equipment, various metal finishing operations, coal storage, boiler operation, power generation, petroleum storage, as well as industrial wastewater treatment. The City of Rochester acquired ownership of the Orchard and Whitney parcels through tax foreclosure proceedings in 2000 and 2005, respectively.

Previous environmental assessments and two (2) phases of a subsurface investigation conducted by Lu Engineers indicated the presence of impacted soil and groundwater at the Site. A comprehensive description of investigation findings is provided in the Site Investigation/Remedial Alternatives Report (Lu Engineers, January 2014). The Site Investigation (SI) identified the following contaminants of concern (COC): chromium, lead, petroleum products, trichloroethene (TCE), and cadmium.

The selected remedy included the following: 1) Interim Remedial Measure (IRM) removals; 2) Institutional Controls; 3) Engineering Controls; and 4) Groundwater monitoring.

A summary of completed IRM removals is provided in the Final Engineering Report (Lu Engineers, January 2014). The Supplemental Site Investigation (SSI) and subsequent IRMs conducted at the Site in July, August, and October 2015 are included in the Interim Remedial Measures Construction Completion Report (Lu Engineers, November 2015). The effectiveness of the remedial program, as outlined in the Site Management Plan (SMP), is monitored through quarterly groundwater sampling and an annual Site-wide inspection. Post-remedial groundwater samples collected during this reporting period indicate low-level and stable detections of volatile organic compounds (VOCs) and RCRA metals.

The implemented remedies to manage residual contamination are effective, protective and are progressing towards the remedial action objectives (RAOs). The Institutional Controls (ICs) and Engineering Controls (ECs) outlined in the Monitoring and Sampling Plan were fully in place and effective during this reporting period. These ICs/ECs include land use restriction, groundwater use restriction, SMP, and a soil cover system (cap). No deficiencies were present and therefore, no corrective measures are recommended. The cap was in good condition as indicated on the Site Inspection Form during this reporting period (Attachment A). Following inspection, repairs were made to the curb boxes for wells MW-16, MW-22, and MW-23.

No structures have been constructed on the Site and no change of use has occurred on the Site.

Lu Engineers recommends decommissioning monitoring wells still present on the Site that are not sampled as part of the SMP and are not anticipated to be used in the future.

The required IC/EC certification has been completed as a component of this PRR report and a copy is included as Attachment D.

1.0 Periodic Review Report

This Periodic Review Report (PRR) was prepared by Lu Engineers, on behalf of the City of Rochester, in accordance with the requirements set forth in the New York State Department of Environmental Conservation (NYSDEC) Division of Environmental Remediation (DER)-10 Technical Guidance for Site Investigation and Remediation, dated May 2010, and the guidelines provided by the NYSDEC. The reporting period for this PRR is from March 17, 2017 to May 31, 2018. The following items are included in this PRR:

- Identification, assessment, and certification of all ICs/ECs required by the remedy for the Site;
- Results of the Site inspection and sampling events including applicable inspection forms and other records generated for the Site during the reporting period;
- A summary of any discharge monitoring data and/or information generated during the reporting period with comments and conclusions;
- Data summary tables of groundwater contaminants of concern by media;
- Laboratory analysis results and the required laboratory data deliverables for each sample collected during the reporting period have been and will continue to be submitted electronically in a NYSDEC-approved EQuIS format; and
- A Site evaluation, which includes the following:
 - I. The compliance of the remedy with the requirements of the Site-specific Record of Decision (ROD) including ICs/ECs;
 - II. The operation and the effectiveness of each treatment unit, including identification of any needed repairs or modifications;
- III. Any new conclusions or observations regarding Site contamination based on inspection or lab data generated during the monitoring events;
- IV. Recommendations regarding any necessary changes to the remedy and/or SMP; and
- V. The overall performance and effectiveness of the remedy to date.

2.0 Site Overview

The Site is located in the City of Rochester, Monroe County, New York and is identified as Sections 105.66-3-24 (354 Whitney Street) and 105.66-3-23 (415 Orchard Street) on the City of Rochester Tax Map. The Site is approximately 4.073-acres and is bounded by mixed residential and commercial/industrial uses (refer to Figure 2 – Site Plan). The Site is currently a vacant lot covered primarily with concrete slabs, crushed masonry, and recycled concrete. A wall remains along the southern portion of the property line of 415 Orchard Street and is covered with a sloped berm consisting of crushed masonry and recycled concrete.

The North East Electric Company occupied the Site from 1915 to 1922 which was subsequently used as a plant for the Delco Appliance Division of General Motors (1930-1967).

The plant closed in 1967 and the Site became a location for metal finishing, synthetic foam production, printing, plastics, electronic manufacturing, and warehousing until 1990. Commercial use of the Site ceased in 1990. After a series of fires and vandalism incidents, the City of Rochester acquired ownership of the Orchard and Whitney parcels via tax foreclosure in 2000 and 2005, respectively.

The SI and IRMs were completed in a phased process which prioritized the investigation of probable contaminant source areas to facilitate the development of effective IRMs as the RI process progressed. The contaminants of concern (COC) identified at the Site include cadmium, chromium, lead, petroleum products, and trichloroethene (TCE). IRMs included the following:

- 354 Whitney Street Demolition (October 2010)
- Underground Storage Tank (UST) and Soil Removal (June 2011)
- Soil Removal and In-situ Groundwater Treatment (March 2012)
- 415 Orchard Street "High Rise" Building Demolition (March 2015)
- Soil Removal and Asbestos Abatement (October 2015)

IRM activities are summarized in the Final Engineering Report (FER) (Lu Engineers, January 2014) and Interim Remedial Measures Construction Completion Report (Lu Engineers, November 2015). Selected Site Soil Cleanup Objectives (SCOs) are Commercial Use, therefore, IRM confirmatory results were compared to 6 NYCRR Part 375-6.8(a) Unrestricted Use and Part 375-6.8(b) Commercial Use. Cleanup objectives for groundwater are 6 NYCRR Part 703.5 Class GA Ambient Groundwater Quality Standards. These regulatory criteria are considered to be Site-specific for cleanup goals/objectives for this project.

The factors considered during the selection of the remedy are those listed in 6 NYCRR Part 375-1.8. No Further Action (NFA) with IC/ECs was selected as the remedy for the Site as stated in the Record of Decision (March 2016). ICs/ECs include an environmental easement, cover system (cap), groundwater monitoring, and SMP.

ICs are required in the form of an environmental easement that entails a) limiting the use and development of the Site to commercial or industrial use; b) compliance with the approved SMP; c) restriction on the use of groundwater as a source of potable water, without necessary water quality treatment as determined by the New York State Department of Health (NYSDOH); and d) the Site owner or remedial party to complete and submit an annual certification of ICs/ECs.

Long-term management of the residual impacts, as required by the ROD, includes the following plans for ECs:

- Monitoring;
- Operation and Maintenance; and
- Reporting.

The specific ECs implemented at the Site include:

- Annual groundwater sampling of monitoring wells MW-16, MW-22, MW-23, MW-26, MW-27, MW-28, and MW-29 for VOCs by EPA Method 8260 and RCRA Metals by EPA Method 6010 and
- Management and inspection of the existing soil cover system. No changes to the remedy have occurred since remedy selection.

It is recommended that monitoring wells not part of the SMP and not anticipated to be used in the future be decommissioned.

3.0 Remedy Performance, Effectiveness, and Protectiveness

Post-remedial groundwater sampling indicates that low-level residual groundwater contamination persists at the Site since completion of the IRM. Four (4) post-remedial quarterly sampling events were conducted in accordance with and as outlined in the SMP on:

- October 2017
- November 2017
- March 2018
- May 2018

Tables 1 and 2 illustrate concentrations of VOCs and RCRA metals since initiation of the groundwater monitoring program. Figures 3-6 show analytical exceedances and the groundwater contour for each quarterly sampling event in this reporting period. Concentrations in groundwater samples were compared to the applicable 6 NYCRR Part 703.5 Class GA Ambient Groundwater Quality Standards. Analytical reports are provided in Attachment C.

Constituents were generally detected at low (below applicable groundwater standards) and stable concentrations. The following summarizes the analytical findings:

VOCs

- Benzene concentrations at MW-16 slightly increased in October and November 2017 and then declined to levels below the standard of 1.0 μg/L by March 2018 and May 2018.
- Low concentrations of chlorinated solvents, including acetone, chloroform, and TCE, were observed at MW-23, MW-26, MW-28, and MW-29 at concentrations below applicable groundwater standards.
- No additional groundwater VOC exceedances were detected during this reporting period.
- Other than the exceedance of benzene noted above, VOC concentrations were generally low (below applicable groundwater standards) and stable.

RCRA Metals

 Low-level concentration exceedances occurred in selenium and cadmium at MW-16, MW-22, MW-23, MW-26, MW-27, and MW-29 during this reporting period. Other than the exceedances for selenium and cadmium noted above, concentrations of metals were generally low (below applicable groundwater standards) and stable.

Based on the compiled data, the remedy is effective in achieving the Site RAOs. Though stable and low-level contamination exists in soil and groundwater, the ICs and ECs reduce the potential for human exposure. The ICs and ECs established for the Site are in compliance with the SMP.

4.0 Institutional Controls/Engineering Control Plan Compliance

Since remaining impacted soil and groundwater exists beneath the Site, ICs/ECs are required to protect human health and the environment.

Institutional Controls (ICs)

A series of ICs is required by the Record of Decision (ROD) to: (1) implement, maintain and monitor Engineering Control systems; (2) prevent future exposure to remaining contamination by controlling disturbances of the subsurface contamination; and, (3) limit the use and development of the Site to commercial and industrial uses only. Adherence to these Institutional Controls is required by the Environmental Easement and are implemented under the SMP.

These Institutional Controls are:

- The property may be used for: commercial or light industrial use;
- City permit restriction flag in accordance with Building Information System (BIS);
- All ECs must be operated and maintained as specified in the SMP;
- All ECs must be inspected at a frequency and in a manner defined in the SMP;
- The use of groundwater underlying the property is prohibited the City of Rochester Ordnance without necessary water quality treatment as determined by the New York State Department of Health (NYSDOH) or the Monroe County Department of Health to render if safe for use as drinking water or for industrial purposes, and the user must first notify and obtain written approval to do so from the Department;
- Groundwater and other environment or public health monitoring must be performed as defined in the SMP;
- Data and information pertinent to the Site management must be reported at the frequency and in a manner as defined in the SMP;
- All future activities that will disturb remaining contaminated material must be conducted in accordance with the SMP;
- Monitoring to assess the performance and effectiveness of the remedy must be performed as defined the SMP;
- Operation, maintenance, monitoring, inspections, and reporting of any mechanical or physical component of the remedy shall be performed as defined in the SMP;

- Access to the Site must be provided to agents, employees or other representatives of the State of New York with reasonable prior notice to the property owner to assure compliance with the restrictions identified by the Environment Easement;
- The potential for vapor intrusion must be evaluated for any buildings developed in the area within the IC boundaries and any potential impacts that are identified must be monitoring or mitigated; and
- Vegetable gardens and farming on the Site are prohibited.

Institutional Controls identified in the Environmental Easement may not be discontinued without an amendment to or extinguishment of the Environmental Easement.

The performance of the ICs is measured through changes to the Site that occur during the reporting period. The Site was not used or disturbed during the reporting period. No permits or unauthorized uses were issued to the Site during this reporting period.

Engineering Controls (ECs)

<u>Cover (Cap)</u> – Exposure to remaining contamination in subsurface soil/fill at the Site is prevented by a soil cover system placed over the Site (the "Cap"). This cover system is comprised of a minimum of one (1) foot recycled brick and concrete. One (1) area of an exposed tunnel void space has been covered with a steel plate bolted to the concrete pad and subsequently covered with a one (1) foot layer of recycled brick and concrete.

The Site cover system is inspected annually as a requirement to the SMP. The cover system is a permanent control and the quality and integrity of this system (performance measure) is inspected at defined intervals pursuant to the SMP.

The Excavation Work Plan (EWP), provided in Appendix B of the SMP, outlines procedures required to be implemented in the event that the cover system is breached, penetrated or temporarily removed and underlying remaining impacts are disturbed. Procedures for the inspection of this cover are provided in the Monitoring and Sampling Plan including in Section 4.0 of the SMP. Work conducted in accordance to the EWP must also be conducted in accordance with the procedures defined in the Site-specific Health and Safety Plan (HASP) and associated Community Air Monitoring Plan (CAMP), included as Appendix H and I of the SMP, respectively.

The performance of Site controls were evaluated during the Site inspection on November 29, 2017. The Site inspection assesses the following performance measures:

- Compliance with all ICs, including Site usage;
- An evaluation of the condition and continued effectiveness of ECs;
- General Site conditions at the time of the inspection;
- The Site management activities being conducting including, where appropriate, confirmation sampling and a health and safety inspection; and
- Confirm that Site records are up to date.

ECs/ICs were fully in place and effective. No deficiencies were present and therefore, no corrective measures are recommended. The Cap was in good condition as indicated on the Site Inspection Form during this reporting period (Attachment A). It is noted that the need for monitoring well curb box repairs at MW-16, MW-22, and MW-23 was identified during the November 2017 Site inspection; the monitoring wells were repaired following inspection.

No structures had been constructed on Site and no change of use has occurred on Site (Attachment A).

The required IC/EC certification has been completed as a component of this report and a copy is included as Attachment D.

5.0 Monitoring Plan Compliance Report

The Monitoring Plan describes the measures for evaluating the performance and effectiveness of the remedy to reduce or mitigate contamination at the Site; the soil cover system; and all affected Site media identified in the table below.

Monitoring/Inspection Schedule

Monitoring Program	Frequency*	Matrix	Analysis
Groundwater Monitoring	Quarterly	Groundwater	VOCs by EPA Method 8260 VOCs RCRA Metals by EPA Method 6010
Site-Wide Inspection	Annual	Cover System	Visual Inspection; determine whether maintenance is required

^{*} The frequency of events will be conducted as specified until otherwise approved by NYSDEC

Monitoring activities completed during this reporting period included the following:

- In accordance with the SMP, quarterly groundwater sampling of the following Site wells: MW-16, MW-22, MW-23, MW-26, MW-27, MW-28, and MW-29. Refer to Tables 1 and 2 and Attachments B and C.
- Site-wide inspection, including annual inspection of the Cover System (Cap). Refer to Attachment A, Site Inspection Form.

Groundwater Sampling

The following table summarizes the details of the groundwater sampling program to be completed during each quarterly sampling event.

Media Sampling and Analysis Summary

Sample Type	Sample Location	Analytical	Frequency	QA/QC	Total
		Parameters			
Groundwater	MW-16, MW-22,	TCL VOCs by	Quarterly	MS/MSD	10
	MW-23, MW-26,	EPA Method		Field Duplicate	
	MW-27, MW-28,	8260			
	and MW-29	RCRA Metals by			
		EPA Method			
		6010			

^{*}The frequency of events will be conducted as specified until otherwise approved by NYSDEC

Site wells were sampled October 2, 2017, November 29, 2017, March 21, 2018, and May 4, 2018 by low flow sampling methods per the procedures outlined in the SMP. Wells were initially developed and sampled as a part of the Supplemental Site Investigation (SSI) in July 2015.

Groundwater quality measurements, including temperature, turbidity, pH, conductivity, dissolved oxygen (DO), and oxidation reduction potential (ORP), were collected during the purging process at each well. Purge water from each well was released to the ground surface near the well. At each well, samples were collected for Target Compound List (TCL) VOCs list compounds by EPA Method 8260 and RCRA Metals by EPA Method 6010. Groundwater sampling logs are included as Attachment B of this report.

Samples were analyzed at Paradigm Environmental Services, Inc., a New York State Department of Health Environmental Laboratory Approval Program- certified laboratory (ELAP) located in Rochester, New York. Sampling methods and QA/QC measures were adhered to as outlined in the approved SMP.

Results of the groundwater sampling conducted during this period are summarized in Tables 1 and 2 and in Figures 3-6. Tables 1 and 2 present analytical results of VOCs and RCRA Metals detected in groundwater during this period in comparison to applicable 6 NYCRR Part 703.5 standards. Figures 3-6 illustrate detected analytical exceedances from each sampling event during this reporting period. Each figure also presents groundwater contours based on water level measurements collected at each monitoring well. It is noted that MW-27 was omitted from the data used for groundwater contour map development due to its low elevation representative of deeper flow conditions; bedrock at MW-27, located at the south end of the former petroleum storage/plating area(s), is substantially deeper than other areas of the Site.

As indicated on Figures 3-6, groundwater elevations are highest on the southwestern portion of the property and lowest along the northeastern portion, resulting in a general northeastward groundwater flow direction.

The following sections summarize the analytical results for each year within this reporting.

October 2017 (per SMP)

Low-level concentrations of TCE, below the NYSDEC standard of 5 μ g/L, were detected at MW-23 and MW-28. One (1) VOC exceedance of benzene occurred at MW-16. Acetone, a common laboratory contaminant, was also detected below the applicable regulatory standard of 50 μ g/L at MW-16.

Reductions in RCRA metals, including arsenic, cadmium, chromium, lead, and mercury occurred in monitoring wells MW-16, MW-27, and MW-28. Exceedances in selenium, slightly above the groundwater standard of 0.01 mg/L, were detected at MW-16, MW-22, MW-23, MW-26, and MW-27.

November 2017 (per SMP)

A slight exceedance (1.06 μ g/L) in the concentration of benzene occurred at MW-16. No other VOC exceedances were detected, as indicated on Table 1. Detections of acetone, TCE, and chloroform were also found at MW-16, MW-23, MW-26, MW-28, and MW-29; below applicable groundwater standards.

One (1) RCRA metal exceedance of cadmium occurred at MW-29. Additional low-level inorganic detections were observed at the other monitoring wells.

March 2018 (per SMP)

Concentrations below applicable standards of acetone, chloroform, and TCE were detected during this event. No VOC analytical exceedances occurred.

Slight exceedances occurred in cadmium and selenium were detected at MW-16 and MW-22, respectively. No additional inorganic exceedances were detected in March 2018.

May 2018 (per SMP)

Concentrations of acetone and benzene were detected at MW-16 at concentrations below applicable NYSDEC groundwater standards. No additional VOC detections occurred during this reporting period.

Slight exceedances to regulatory limits of selenium were detected at MW-23, MW-26, MW-27 in May 2018. No other inorganic exceedances were detected.

Groundwater monitoring fully complied with the monitoring plan and no changes and/or corrective measures to the plan are recommended.

6.0 Operation and Maintenance Plan Compliance Report

The Site remedy does not rely on any mechanical systems, such as groundwater treatment systems, sub-slab depressurization systems or air sparge/soil vapor extraction systems to protect public health and the environment. Therefore, this section is not applicable.

7.0 Conclusions and Recommendations

IC/EC Compliance

The requirements and regulations set forth in the SMP for ICs were adhered to during this reporting period. This includes the following:

<u>Land Use Restriction</u> – The Site is currently vacant and has met the requirements of this restriction in this reporting period.

<u>Groundwater Use Restriction</u> – The Site is currently vacant and does not use the Site groundwater in any capacity, therefore meeting the requirements of this restriction in this reporting period.

<u>Site Management Plan (SMP)</u> – The Site is currently in compliance with all components of the Site-specific SMP and all requirements have been met during this reporting period.

The requirements set forth in the SMP for all ECs were met during this reporting period. This includes the following:

<u>Soil Cover System (Cap)</u> – The Site Cap was undisturbed during this reporting period. The Site Inspection Form is included in Attachment A.

Based upon initial groundwater sampling as part of the SSI/IRM in July 2015, overall reductions in constituent concentrations have occurred. In general, low-level VOCs and RCRA metals were detected at concentrations near or below applicable groundwater standards. Constituent concentrations were stable during this reporting period. The Site-specific ICs and ECs continue to meet the remedial objectives while maintaining protection of public health and the environment.

The continued effectiveness of the ICs/ECs has allowed the remedial objectives at the Site to be met for this reporting period. Lu Engineers recommends decommissioning monitoring wells not currently used as part of the SMP and not anticipated to be used in the future.

Tables

Orchard-Whitney Site (#E828123)

Groundwater Monitoring Results

Periodic Review Report (March 17, 2017- May 31, 2018)

Table 1: Groundwater TCL VOCs Results

			MV	V-16		MW-22			
Analyzed Parameters ¹	NYS Groundwater Standard Class GA ²	10/2/2017	11/29/2017	3/21/2018	5/4/2018	10/2/2017	11/29/2017	3/21/2018	5/4/2018
EPA 8260 - Volatile Organics									
1,1,1-Trichloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND
I,4-Dioxane	-	ND	ND	ND	ND	ND	ND	ND	ND
!-Butanone	50*	ND	ND	ND	ND	ND	ND	ND	ND
Acetone	50*	28.3	11.2	8.57 J	11.3	ND	ND	ND	ND
Benzene	1	1.28	1.06	0.847 J	0.991 J	ND	ND	ND	ND
Chloroform	7	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND
Cyclohexane	-	ND	ND	ND	ND	ND	ND	ND	ND
Methyl tert-butyl Ether	-	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND
oluene	5	ND	ND	ND	ND	ND	ND	ND	ND
rans-1,2-Dichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND
richloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND
ylenes (total)	-	ND	ND	ND	ND	ND	ND	ND	ND
/inyl Chloride	2	ND	ND	ND	ND	ND	ND	ND	ND

- 1 All values presented in micrograms per kilogram (µg/L).
- 2 NYS Ambient Groundwater Standard (6 NYCRR Part 703.5)

Value Exceeds NYS Ambient Groundwater Standards

ND - not detected above method detection limit

- * NYSDEC Guidance Value (TOGS 1.1.1)
- J compound detected below the laboratory quantitation limit
- B compound detected in associated method blank

Orchard-Whitney Site (#E828123)

Groundwater Monitoring Results

Periodic Review Report (March 17, 2017- May 31, 2018)

Table 1: Groundwater TCL VOCs Results

			MV	V-23			MV	V-26			MV	N-27	
Analyzed Parameters ¹	NYS Groundwater Standard Class GA ²	10/2/2017	11/29/2017	3/21/2018	5/4/2018	10/2/2017	11/29/2017	3/21/2018	5/4/2018	10/2/2017	11/29/2017	3/21/2018	5/4/2018
EPA 8260 - Volatile Organics													
1,1,1-Trichloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dioxane	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Butanone	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetone	50*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzene	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroform	7	ND	ND	ND	ND	1.62 J	1.43 J	1.18 J	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cyclohexane	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl tert-butyl Ether	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	5	1.97 J	ND	ND	ND	ND	ND	1.13 J	ND	ND	ND	ND	ND
Xylenes (total)	-	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl Chloride	2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

- 1 All values presented in micrograms per kilogram (µg/L).
- 2 NYS Ambient Groundwater Standard (6 NYCRR Part 703.5)

Value Exceeds NYS Ambient Groundwater Standards

- ND not detected above method detection limit
- * NYSDEC Guidance Value (TOGS 1.1.1)
- J compound detected below the laboratory quantitation limit
- B compound detected in associated method blank

Orchard-Whitney Site (#E828123)

Groundwater Monitoring Results

Periodic Review Report (March 17, 2017- May 31, 2018)

Table 1: Groundwater TCL VOCs Results

			MV	N-28		MW-29			
Analyzed Parameters ¹	NYS Groundwater Standard Class GA ²	10/2/2017	11/29/2017	3/21/2018	5/4/2018	10/2/2017	11/29/2017	3/21/2018	5/4/2018
EPA 8260 - Volatile Organics									
1,1,1-Trichloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dioxane	-	ND	ND	ND	ND	ND	ND	ND	ND
2-Butanone	50*	ND	ND	ND	ND	ND	ND	ND	ND
Acetone	50*	ND	ND	ND	ND	5.76 J	ND	ND	ND
Benzene	1	ND	ND	ND	ND	ND	ND	ND	ND
Chloroform	7	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND
Cyclohexane	-	ND	ND	ND	ND	ND	ND	ND	ND
Methyl tert-butyl Ether	-	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	5	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	5	1.55 J	1.08 J	1.70 J	ND	ND	ND	1.32 J	ND
Xylenes (total)	-	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl Chloride	2	ND	ND	ND	ND	ND	ND	ND	ND

- 1 All values presented in micrograms per kilogram (µg/L).
- 2 NYS Ambient Groundwater Standard (6 NYCRR Part 703.5)

Value Exceeds NYS Ambient Groundwater Standards

ND - not detected above method detection limit

- * NYSDEC Guidance Value (TOGS 1.1.1)
- $\ensuremath{\mathrm{J}}$ compound detected below the laboratory quantitation limit
- B compound detected in associated method blank

Orchard-Whitney Site (#E828123)

Groundwater Monitoring Results

Periodic Review Report (March 17, 2017- May 31, 2018)

Table 2: Groundwater RCRA Metals Results

		MV	V-16		MW-22						
Analyzed Parameters ¹	NYS Groundwater Standard Class GA ²	10/2/2017	11/29/2017	3/21/2018	5/4/2018	10/2/2017	11/29/2017	3/21/2018	5/4/2018		
EPA 6010-Metals			•								
Arsenic	0.025	0.0113	0.014	0.0074 J	0.0106	<0.0100	<0.0100	0.00946 J	<0.0100		
Barium	1	<0.100	<0.100	0.0566 J	<0.100	0.0806 J	0.0833 J	0.0735 J	0.0645 J		
Cadmium	0.005	0.00488 J	0.00359 J	0.00672	<0.00500	<0.00500 J	<0.00500	<0.00500	<0.00500		
Chromium	0.05	0.00564 J	0.00576 J	0.0115	0.00654 J	0.00504 J	0.00568 J	0.00541 J	0.0119		
Lead	0.025	<0.0100	<0.0100	0.00872 J	<0.0100	<0.0100	< 0.0100	<0.0100	<0.0100		
Mercury	0.0007	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<.000200		
Selenium	0.01	0.0165 J	<0.0200	<0.0200	<0.0200	0.0126 J	<0.0200	0.0157 J	<0.0200		
Silver	0.05	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100		

- 1 All values presented in micrograms per kilogram (mg/L).
- 2 NYS Ambient Groundwater Standard (6 NYCRR Part 703.5)

Value Exceeds NYS Ambient Groundwater Standards

ND - not detected above method detection limit

NA - not analyzed

- * NYSDEC Guidance Value (TOGS 1.1.1)
- J compound detected below the laboratory quantitation limit
- B compound detected in associated method blank

Orchard-Whitney Site (#E828123)

Groundwater Monitoring Results

Periodic Review Report (March 17, 2017- May 31, 2018)

Table 2: Groundwater RCRA Metals Results

					MW-23			MW-26				MW-27			
Analyzed Parameters ¹	NYS Groundwater Standard Class GA ²	10/2/2017	11/29/2017	3/21/2018	5/4/2018	10/2/2017	11/29/2017	3/21/2018	5/4/2018	10/2/2017	11/29/2017	3/21/2018	5/4/2018		
EPA 6010-Metals											-				
Arsenic	0.025	< 0.0100	0.00540 J	< 0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	0.00513 J	<0.0100	<0.0100	<0.0100		
Barium	1	0.126	0.112	0.114	0.105	0.0791 J	0.0721 J	0.0645 J	0.0576 J	<0.100	<0.100	<0.100	<0.100		
Cadmium	0.005	<0.00500	< 0.00500	<0.00500	<0.00500	<0.00500	<0.00500	<0.00500	<0.00500	0.0038 J	<0.00500	<0.00500	<0.00500		
Chromium	0.05	<0.0100	<0.0100	<0.0100	<0.0100	0.00759 J	0.0068 J	<0.0100	0.00997 J	< 0.0100	<0.0100	<0.0100	<0.0100		
Lead	0.025	0.00507 J	0.00626 J	0.00805 J	0.00586 J	< 0.0100	<0.0100	<0.0100	<0.0100	< 0.0100	<0.0100	<0.0100	<0.0100		
Mercury	0.0007	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200		
Selenium	0.01	0.0113 J	<0.0200	<0.0200	0.0113 J	0.017 J	<0.0200	<0.0200	0.0158 J	0.02013	<0.0200	<0.0200	0.0137 J		
Silver	0.05	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100		

1 - All values presented in micrograms per kilogram (mg/L).

2 - NYS Ambient Groundwater Standard (6 NYCRR Part 703.5)

Value Exceeds NYS Ambient Groundwater Standards

ND - not detected above method detection limit

NA - not analyzed

* - NYSDEC Guidance Value (TOGS 1.1.1)

J - compound detected below the laboratory quantitation limit

B - compound detected in associated method blank

Orchard-Whitney Site (#E828123)

Groundwater Monitoring Results

Periodic Review Report (March 17, 2017- May 31, 2018)

Table 2: Groundwater RCRA Metals Results

						MW-29			
Analyzed Parameters ¹	NYS Groundwater Standard Class GA ²	10/2/2017	11/29/2017	3/21/2018	5/4/2018	10/2/2017	11/29/2017	3/21/2018	5/4/2018
EPA 6010-Metals	•		•						•
Arsenic	0.025	< 0.0100	<0.0100	< 0.0100	<0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100
Barium	1	0.0562 J	0.0553 J	<0.100	0.0648 J	<0.100	<0.100	0.0571 J	<0.100
Cadmium	0.005	<0.00500	<0.00500	<0.00500	<0.00500	0.00615	0.00553	0.00386 J	<0.00500
Chromium	0.05	<0.0100	<0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100
Lead	0.025	<0.0100	<0.0100	<0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100	< 0.0100
Mercury	0.0007	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200	<0.000200
Selenium	0.01	<0.0200	<0.0200	<0.0200	<0.0200	<0.0200	<0.0200	<0.0200	<0.0200
Silver	0.05	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100

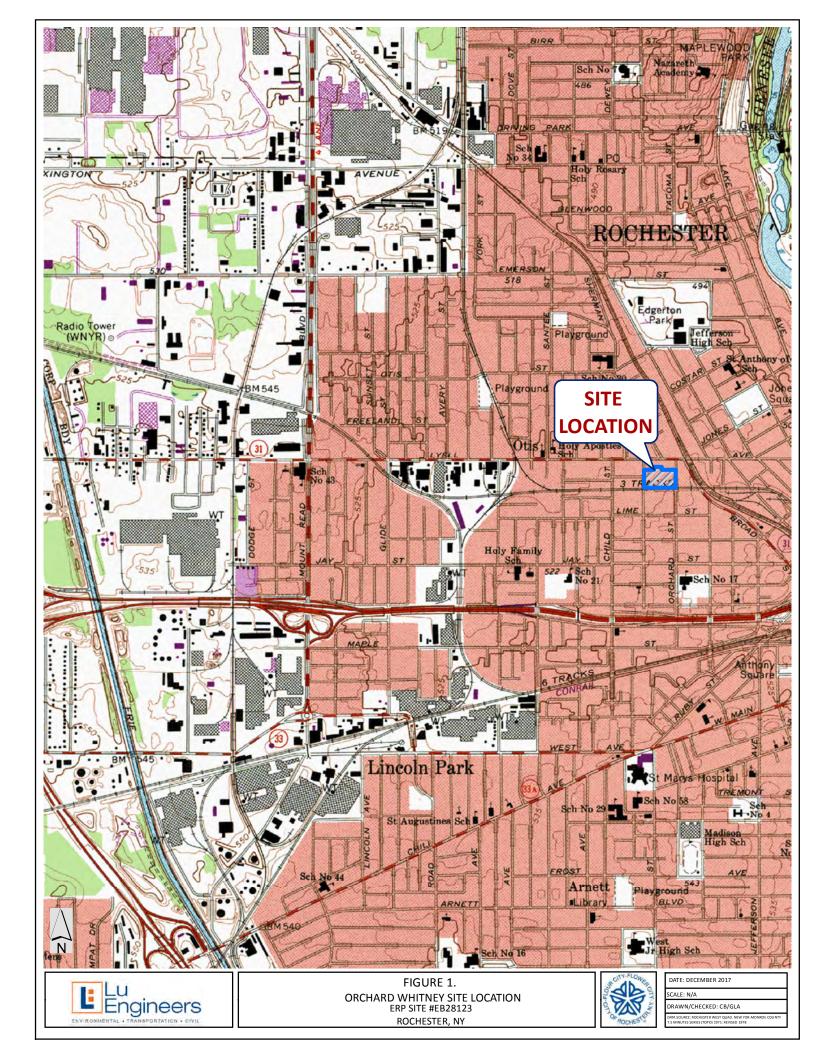
1 - All values presented in micrograms per kilogram (mg/L).

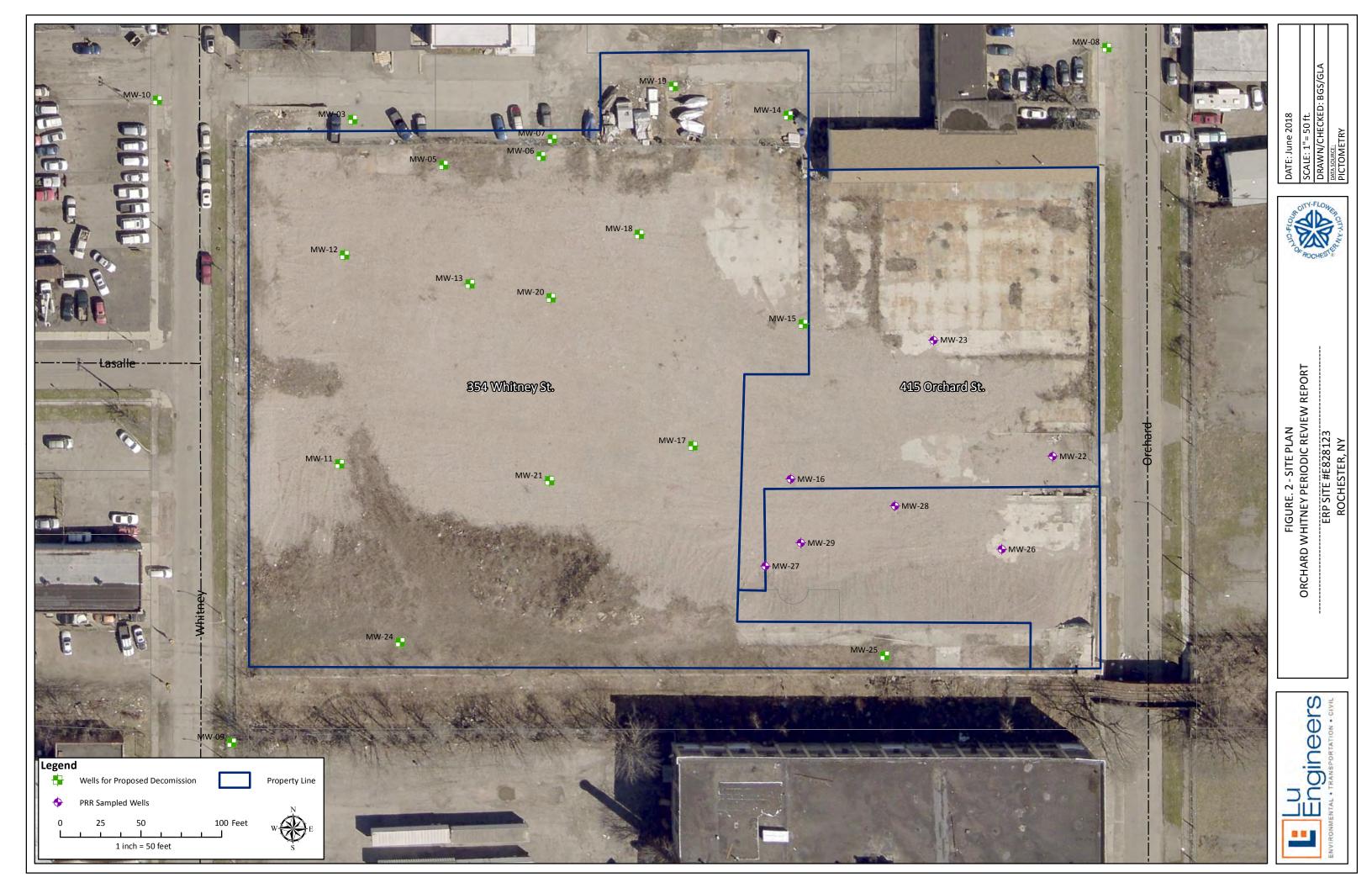
2 - NYS Ambient Groundwater Standard (6 NYCRR Part 703.5)

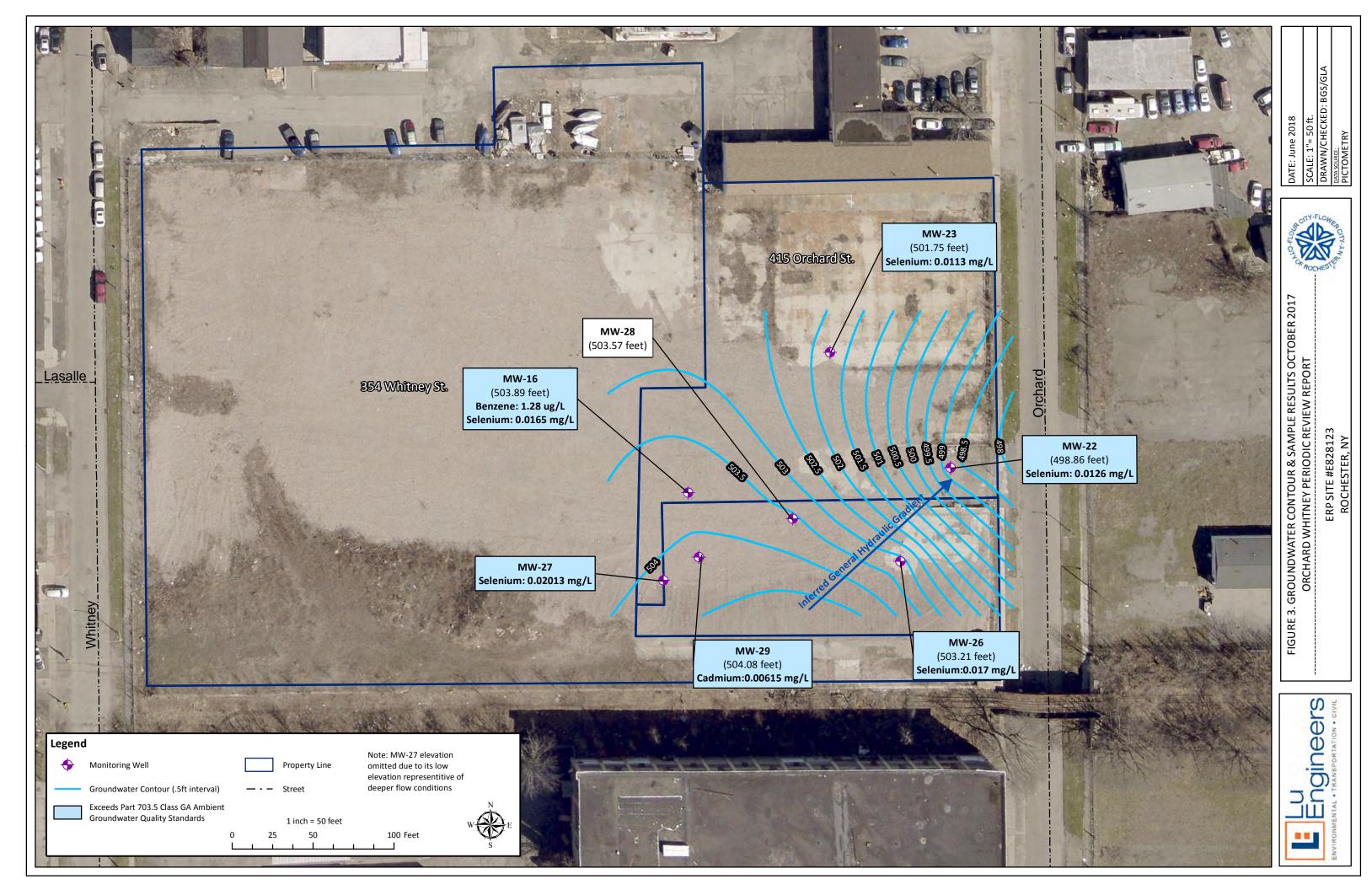
Value Exceeds NYS Ambient Groundwater Standards

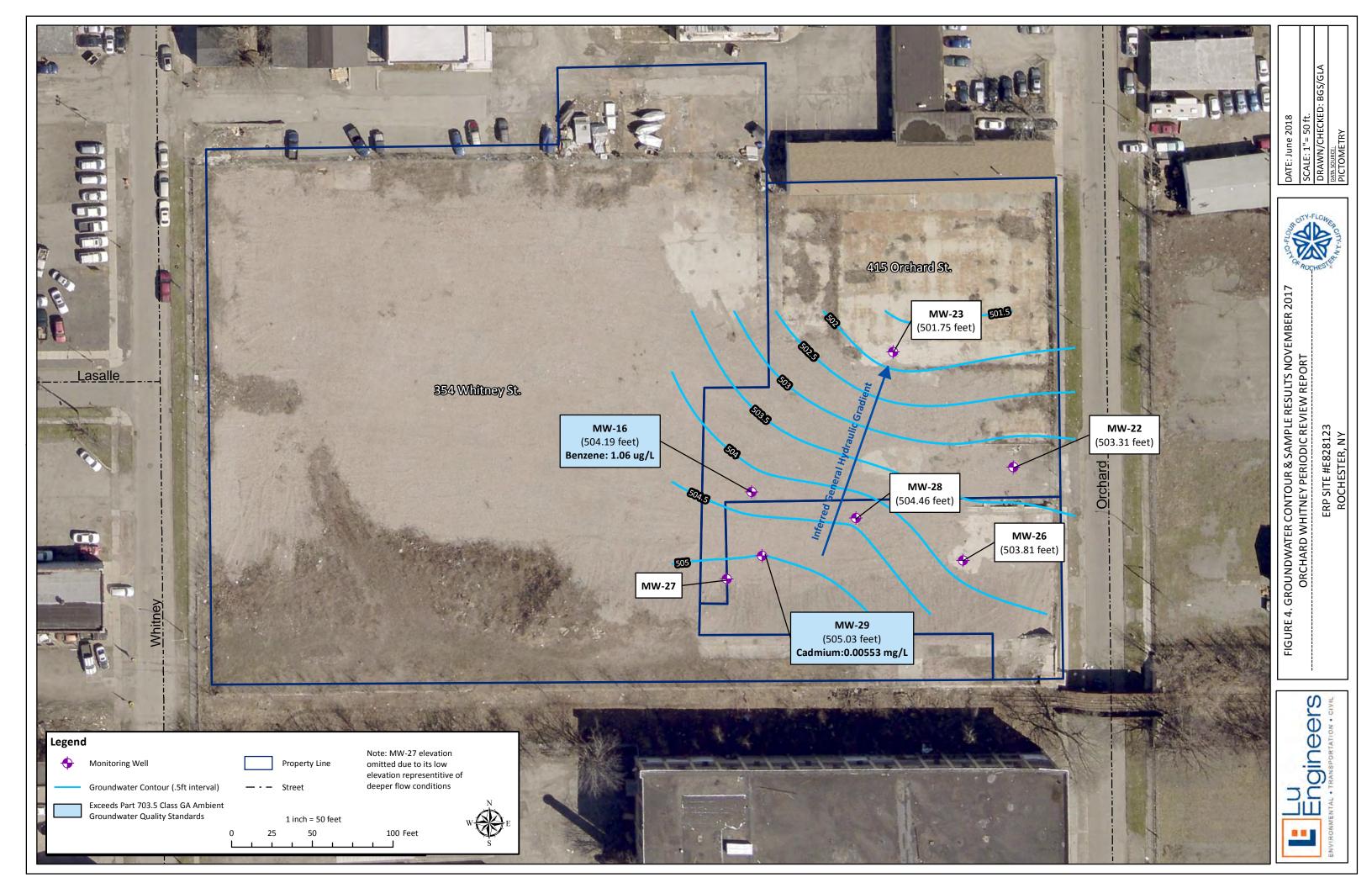
ND - not detected above method detection limit

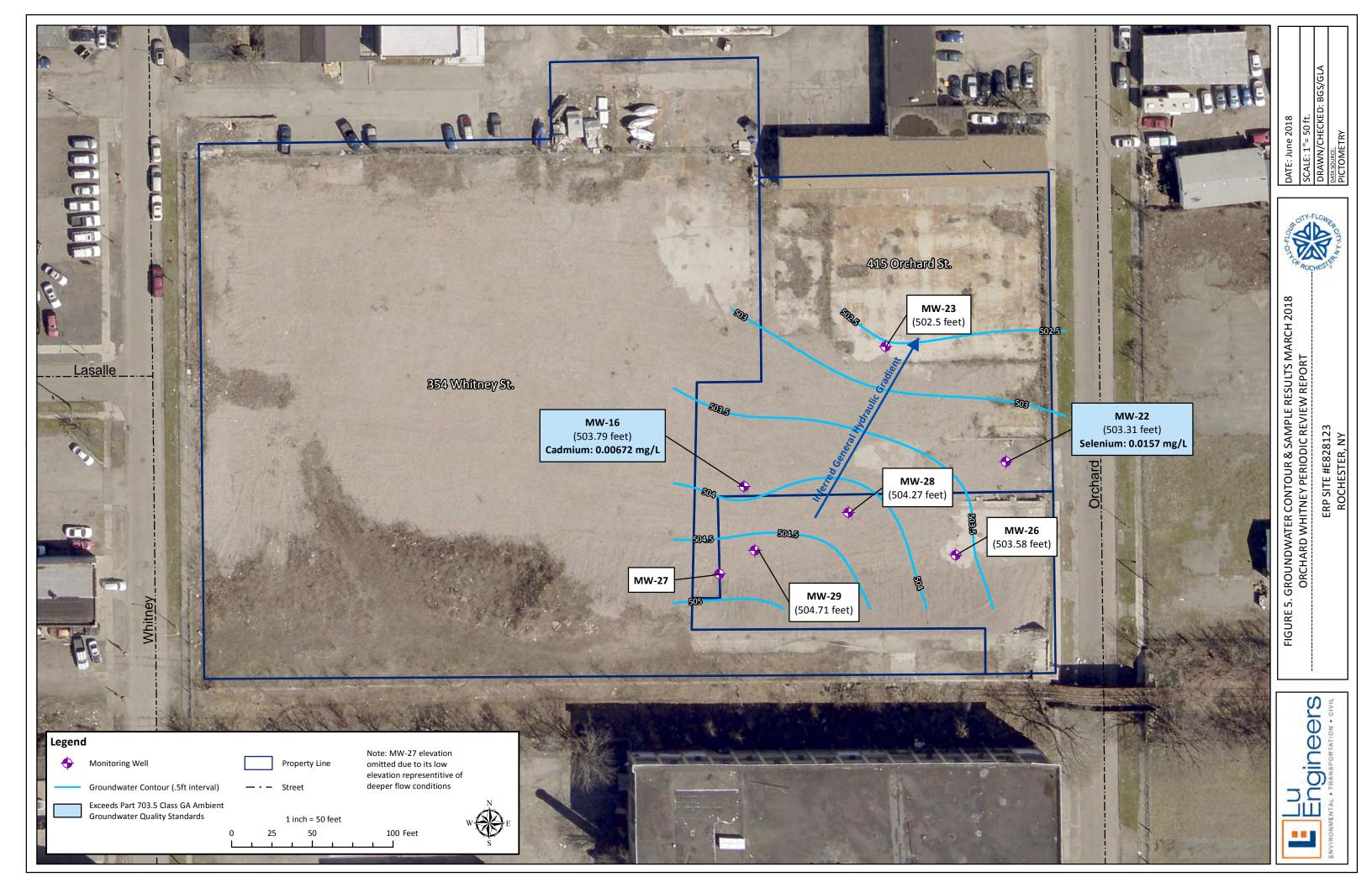
NA - not analyzed

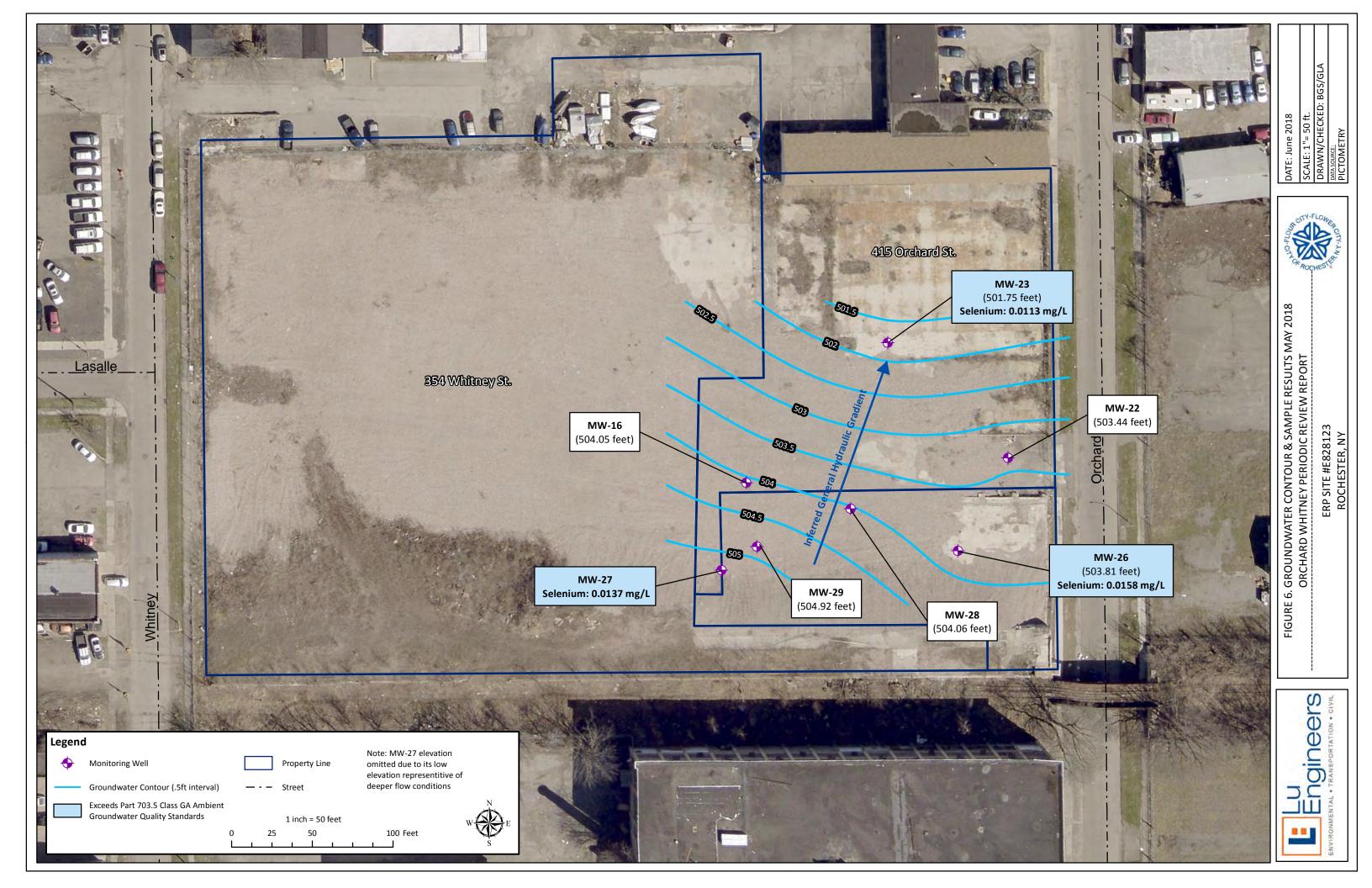

* - NYSDEC Guidance Value (TOGS 1.1.1)


J - compound detected below the laboratory quantitation limit


B - compound detected in associated method blank







Attachment A

SITE-WIDE INSPECTION FORM

Orchard-Whitney #E828123 City of Rochester, Monroe County

NAME OF INSPECTOR: LAWER GREGOT
COMPANY OF INSPECTOR: La Engineers
DATE OF INSPECTION:
CURRENT USE OF SITE: <u>vacant</u> lot
HAS A CHANGE OF USE OCCURRED SINCE THE LAST CERTIFICATION? YESNO IF YES, THEN EXPLAIN:
GENERAL DESCRIPTION OF SITE CONTROLS: Site cover system (cap) consisting of demolition debris (crushed brick & stone I. An exposite funde vaid is convered with a steel plate + holted. Site use is limited to commercial + industrial uses. Refer to SMP Sections 3.2 + 3.3
HAS THE SITE COVER (CAP) BEEN COMPROMISED?YESNO IF YES, THEN EXPLAIN:
HAVE ANY STRUCTURES BEEN CONSTRUCTED ON THE SITE SINCE THE LAST INSPECTION? YESNOT F YES, THEN EXPLAIN:(This is the 1 structure as part of the PRR)
HAVE COVER CONDITIONS CHANGED SINCE THE LAST INSPECTION? YES NO F YES, THEN EXPLAIN: This is the 1st inspection as part of the PRR.

IS ANY MAINTENANCE OF THE YES NO	SITE CONTROLS REQUIRED?
IF YES, THEN EXPLAIN:	
ADDITIONAL OBSERVATIONS.	CONCLUSIONS OR RECCOMMENDATIONS: of curb boxes
The following HON MW-23, 15	conclusions or reccommendations: n of curb boxes intoring wells required repairs MW-16, MW-22, 25460 Wells were repaired following
NOTE: It is recon	spection. minded that unused monitoring wells (Not anticipated to twee) be decommissioned.
he used in the fany changes to the site or	Fure) be decommissioned. REQUIRED MAINTENANCE SHOULD BE
MARKED IN THE CORRESPOND	ING LOCATION ON THE ATTACHED MAP

Attachment B

Activity	Name <u>//r/</u> n ID Time	kard-Wk MW-16 9:40 ES	stney	Field Samp	Sample II ble Time _	10:20	1-16_1006	217 S	ob #_42/6-08 ampling Event # rate10/02/17
Initial D Final De Screen I Total Vo [purge volu	epth to Wa epth to Wa Length olume Purg ime (milliliter Water in casi	ater	feel feel feel feel feel feel feel feel	t Well t Pump lons PID V	Depth Depth Depth = Depth =	illiliter]	fee	<u>et</u> W	Vell Diameter 2" Vell Integrity: Cap Casing Locked Collar
	Depth to	Purge Rate	Temp.	pН	Dissolved	Turbidity	Cond.	ORP	
Time	Water (ft)	(ml/min)	(deg. C)	(units)	O2 (mg/L)	(NTU)	(mS/cm)	(mV)	Comments
9:45	8.43		13.7	10.19	1.01	15.7	1.05	-5.2	
9.30	8.52		13.9	10.23	0.06	10.42	1.05	-76.7	
9:59	8.56		14.3	10.24	-	12.70	1.06	-107.2	
10:04	8.56		14.5	10.10	-	23.50	1.04	-103.3	
11:10	8.36		14.7	10.05	10	16.0	1.04	-FF.1	
10.15	8.36		14.8	10.14	-	11.3	1.05	-81.0	
PEQUIPM Type of I Type of Y	Purge Water Pump:	4' HDPE dity Meter: RAMETER	rized:/ FION Horiba U-	√ <i>0</i> 22; LaMo		LOC	CATION N	nted:	

Project Nar	me Ore	hard-Wh	Hey					Jol	b# 4216
Project Name <u>Orchard-Whitney</u> Location ID <u>Mw-22</u> Activity Time <u>1045</u>					Sample II	DW-MW-2	Sa	Sampling Event #	
Activity Time/0 45					ole Time _	DOW-14-2	Da	Date	
SAMPLING									
Initial Dept Final Depth	th to Wa	ater 10, 7	25 fee	Meas	urement P	ointTO	R	W	ell Diameter 2"
Final Depth	h to Wat	ter	fee	Well	Depth		fee	et W	ell Integrity:
Screen Len	igth		feet	Pump	Intake De	epth			Cap
Total Volum	me Purg	ged	gall	ons PID	Well Head				Casing
[purge volume	(milliliters	s per minute) x	time duration	(minutes) x (0.00026 gal/m	illiliter]			Locked
Volume of Wat	ter in casir	ng – 2" diamete	er = 0.163 gall	ons per foot o	of depth, 4" di	ameter = 0.65	3 gallons per	foot of depth	Collar
PURGE DA		/							
	6.7								
	Depth to later (ft)	Purge Rate (ml/min)	Temp, (deg. C)	pH (units)	Dissolved	Turbidity	Cond.	ORP	
	alci (II)	(1111/111111)	/ //-	7.74	02 (mg/L)	(NTU)	(mS/cm)	(mV)	Comments
1055	3.4		177		7.24		1,01	190.7	
			1172	7.23		4.8	1.01	148, 2	
1115			17.2	7.23	33,7.	3,39	1,01	149.0	
1125	2.4		17.7	7.62	3.74	40	1.02	147.5	
1/30	,4		17.2	7.22	3,77	4.3	1.01	1475	
							4 1		
					11 == 50				
7 24 (1									
					1 7				
									1
									-
Puro	re Ohsei	rvations:	clian						
		r Container							
	se mate.	Container	ized. TYD						
EQUIPMEN	NT DOC	UMENTA	TION						
	7)							
Type of Pur	mp:(§	reapumo							
Type of Tub	bing: 1/2	"HDPE							
Type of Wa	ter Qua	lity Meter:	Horiba U-	22; LaMo	tte 2020		Calibra	ated:	8 8
33									
ANALYTIC	CAL PAI	RAMETER	S			LOC	CATION N	OTES	
Parameter	Volu	imes S	Sample Ço	llected		11.7	Well	head n	elde remir
VOCs	23'x 4	0 ml	1//	- C					injecti -
BCRA N	retals		V						
					3				
Signature: _					5				
Checked By	/:				20				

Project Name <u>Archard-Wh</u> Location ID <u>MW-23</u> Activity Time <u>10.05</u>		Field Sam	l Sample II ple Time _	OW-F	(W) - 23_1 05	Job Sar Dat	# 42/6-08 mpling Event # te _ 10/2/17
Initial Depth to Water Final Depth to Water Screen Length Total Volume Purged Ipurge volume (milliliters per minute) x Volume of Water in casing – 2" diameter PURGE DATA	05 feet feet 3.0 gall time duration	Well Pum ons PID (minutes) x	0.00026 gal/m	epth	fee	<u>et</u> We	ell Diameter 2" ell Integrity: Cap Casing Casing Cocked Collar
Depth to Purge Rate	Temp.	рН	Dissolved	Turbidity	Cond.	ORP	
Time Water (ft) (ml/min)	(deg. C)	(units)	O2 (mg/L)	(NTU)	(mS/cm)	(mV)	Comments
10:15 114 150	15.2	7.46	1.03	45.7	0.81	01/1,7	
1625 11:2	14,9	7.45	0,88	71.0	0.85	-106.6	
1035 11.45	14.8	7.47	0.84	27.5	0.90	-990	
10:40 11,43	14.7	7.49	0,90	196	0.91	-96.5	
10.45 11.43	15.3	7.52	0.42	199.8	0.86	-930	
10°52 16.05	16.3	7.52	0.71	14.3	0.90	-84.0	
11.00 H.05	163	7.50	0.73	13.	0.94	-81.5	
Purge Observations:	Clear;	NO ocl	0(
Purge Water Container EQUIPMENT DOCUMENTA Type of Pump: //exas // Type of Tubing: 1/4" HDPE Type of Water Quality Meter: ANALYTICAL PARAMETER	rized:	(d) 22; LaMo		LO	Calibra CATION N	nted: 1985	
VOCs 3 x 40 ml RCRA Metals Signature: Laura H & Checked By:	Lugar						

Project Location	Name On ID M	12-26 12	-White	Field Sam	l Sample II ple Time _	1240	-26-100	Joh 27 Sar Da	n# <u>42/6-08</u> mpling Event # te/ <u>0/2/</u> 17
	ING NOT				127 25220				124 - 1
Initial De Final De Screen I Total Vo [purge volu	Pepth to Water to Water to Water to Water in casi	ged	feet gall time duration	ons PID (minutes) x	0.00026 gal/m	illiliter]		-	ell Diameter 7'' ell Integrity: Cap Casing Locked Collar
	Depth to	Purge Rate	Temp.	рН	Dissolved	Turbidity	Cond.	ORP	
Time	Water (ft)	(ml/min)	(deg. C)	(units)	02 (mg/L)	(NTU)	(mS/cm)	(mV)	Comments
1715	8.7		14.00	7.3	1,28	7.97	(.3J	143.6	
1225	9		14.6	7.71	119	2,6	1.77	123.7	
1235			14.6	7.31	1,71	1.95	1.31	175,0	
								947	
7				140-14	17 11				
		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \							
-									
F	Purge Wate	ervations: _ er Containe CUMENTA	rized: _ No)	^				
Type of	Pump: Tubing:!	Geopuny							
		ality Meter:	Horiba U-	22; LaMo	otte 2020		Calibra	ated: US	
								0	
		RAMETER		iid		LOC	CATION N	NOTES	
Paramete VOCs		umes 40 ml	Sample Co	Hected		-			
2 24	metals	TO IIII	1		3				
					_	-			
					_	-			
Signatur Checked		2,00 4	Honor		-	-			

Project I Location Activity	Name <u>O(</u> n ID <u>M</u> Time	(nal) - w-27	whitwe	Field Samp	Sample II ole Time _	1400	W-27100	<u>0</u> 217 S	ob #
	ING NOT								
Screen I Total Vo [purge volu	Length olume Purg ime (milliliter Water in casi	ged	feet gall time duration	Pumpons PID V (minutes) x	0.00026 gal/m	pth	fee	<u>t</u> V	Well Diameter # 2" Well Integrity: Cap Casing Locked Collar
Time	Depth to Water (ft)	Purge Rate (ml/min)	Temp. (deg. C)	pH (units)	Dissolved O2 (mg/L)	Turbidity	Cond,	ORP	Comments
110	18.0	(1111/11111)	/7,3	7,4	0,70	(NTU)	(mS/cm)	(mV)	Comments
120	18.85		12,2	7.39	0.67	33,1	1.48	-71.7	
130	18.3		13.7	7,38	7.70		1,47	-75,8	
140	18.7		14.2	7.36	2.9	71.3	1.43	-78	- 1
145	18.3		11.6	7.56	A.	67.8	1.46	-37.5	
P	Purge Obse	ervations:					1		
EQUIPM Type of Type of	IENT DOO Pump: Tubing:!	er Container CUMENTA A" HDPE ality Meter:	TION		tte 2020		Calibra	nted:	² S
Paramete VOCs	er Vol	RAMETER umes 40 ml	Sample Co	llected		<u>LOC</u>	CATION N	OTES	
Signature Checked	e: By:	xura K	Hier or			=			

Lu Engineers ENVIRONMENTAL . TRANSPORTATION . CIVIL

		Chard W MW-28 11:52		Field Sam	l Sample II ple Time _	12:35	W-28_10	9217 San	# <u>4216-08</u> mpling Event # se <u>10/02/17</u>
SAMPLI	ING NOT	<u>ES</u>							
Final De Screen L Total Vo Ipurge volu	pth to Wa ength llume Purg me (milliliter Water in casi	ged x per minute) x ng – 2" diamete	fee fee fee gal time duration	t Well t Pum lons PID (minutes) x	Depth p Intake De Well Head 0.00026 gal/m	pth	fee	t We	Il Diameter2" Il Integrity: Cap Casing Locked Collar
Time	Depth to Water (ft)	Purge Rate (ml/min)	Temp. (deg. C)	pH (units)	Dissolved O2 (mg/L)	Turbidity (NTU)	Cond. (mS/cm)	ORP (mV)	Comments
11:57	8.55	(1111/1111)	14.2	8.10	0.24	5.58	0.77	26.4	Comments
12:02	9.05		14.6	7.66	0.64	14.7	0.75	0.1	
12:08	9.40		14.7	7.43	0.60	23,4	0.75	-73	
12:14	9.56		14.8	7.36	0.48	25.9	0.95	~11.9	
12:19	9.90		14.8	7.28	0.34	27.1	1.35	-12.7	
12:24	10.30		14.7	7.30	0.23	10.12	1.35	-19.0	
12:30	10.40		14.8	7.30	0.24	11.12	1.33	-19.0	
EQUIPM Type of F Type of T Type of V ANALYT Parameter VOCs ACRA P	ENT DOC Pump:	RAMETER umes S 40 ml	ized: FION Horiba U-	<i>no</i> 22; LaMo		LOC	CATION N		cover needs (see photographs

Activity	Time/		Vhitrey		l Sample II ple Time _	0W-M1 13:50	N-29_100	217	Job #_4216-08 Sampling Event # Date _/0/02 //7
Initial D Final De Screen L Total Vo [purge volu	epth to Water to Water to Water in casi	ater	98 fee fee 4.5 gal	t Well t Pum lons PID (minutes) x	0.00026 gal/m	pth) fee	<u>et</u> -	Well Diameter 2" Well Integrity: Cap Casing Locked Collar
	Depth to	Purge Rate	Temp.	pН	Dissolved	Turbidity	Cond.	ORP	
Time	Water (ft)	(ml/min)	(deg. C)	(units)	O2 (mg/L)	(NTU)	(mS/cm)	(mV)	Comments
12:36	8.30		14.2	7.40	0.17	8.78	0.17	4.7	
13:02	8.64		14.6	7.25	0.16	5.61	0.94	10.1	
13:08	8.75		15.2	7.34	0.37	30.0	0.94	10.5	
13:15	8.82		15.2	7.30	0.29	36.7	0.92	-16	
13.20	8.90		15.3	7.36	0.24	32.6	0.90	5.5	
13.26	8.90		15.2	7.38	0.22	26.6	0.89	9.6	
13:35	8.95		15.3	7.35	0.33	19.1	0.90	11.6	
13:42	8.98		15.3	7.35	0.39	25.4	0.90	11.3	
D	01	rvations: _	011	1		,			
COUIPM Type of F Type of T	ENT DOC Pump: 60 Fubing: 15 Water Qua	CUMENTA COPUMP 4" HDPE lity Meter: RAMETER Imes	rized:/ FION Horiba U-	ΥØ 22; LaMo			Calibra	ted:g	00 <i>S</i>
RCRA A	netals : Law	ro K	Lugar						

Lu Engineers ENVIRONMENTAL . TRANSPORTATION . CIVIL

nitial De nal De creen L otal Vo urge volu	ength lume Purg ime (milliliters Water in casir	ed	feet Pugal gal c time duration er = 0.163 gall	lons PID V n (minutes) x	Vell Head _ 0.00026 gal/n	nilliliter]		_Well Diame et Wel Cap	ter <u>2"</u> I Integrity: Casing Locked Collar
	Depth to	Purge Rate	Temp.	рН	Dissolved	Turbidity	Cond.		
Time	Water (ft)	(ml/min)	(deg. C)	(units)	O2 (mg/L)	(NTU)	(mS/cm)	ORP (mV)	Comments
1015	7.6		12.9	11.03	016	10017.6	1.23	-215,6	
020	8		12.8	11,00	.08	26.3	1.23	-175.9	
1025	8		13.0	11.01	.08	24.9	1.22	-196.4	
1030	8		13	10,94	.15	33.9	1.20	-190,7	
103.5	8		13	10.88	018	30.7	1.19	-180,4	
1040	8		13	10.89	.17	25.7	1.19	-1743	
045	8		12.9	10,40	.18	26.2	1.20	-1745	
1050	8		12.9	10.93	۰13	12.2	1.20	-169.4	
1055	8		12.9	10.95	s 12	11.5	1.20	=168.1	
QUIPME of Figure of Figure 1	enrge Water DOCUM Pump: 90	er Containe MENTATION COPCUMB "HDPE	elear,	NO.		loss	Calibra	ted: <u>if</u> lS	
ALYTIC ramet	CAL PARAM er Volu	ETERS	Sample Co			Cou	CONCICTE	Caseins O	r metal

Lu Engineers ENVIRONMENTAL . TRANSPORTATION . CIVIL

th to Wat	iter <u>5. 6</u>							ate 11-29-17
th to Wat	ter_ 5.6							
ne (milliliters	ed	feet Pu gall x time duration er = 0.163 gall	<u>t</u> Well mp Intake lons PID V n (minutes) x	Depth <u>/</u> 5 Depth Well Head 0.00026 gal/n	nilliliter]	fee	<u>t</u> V C	meter 2" Vell Integrity: Casing Locked Collar
TA							Toot of depth	Collar
Water (ft)	(ml/min)	(deg. C)	(units)	O2 (mg/L)	(NTU)	(mS/cm)	ORP (mV)	Comments
5.6		12.2	7026					
5.4		12.1	7.23	2,79	47.2	.42	-	
5.6		12.1	7.23		41.8			
5.6		11.9	7.31	3.04				
5.6		120	7.21	2.98		.43		
5.6		11.9	7.20					
5,6		11.9	7,21					
5.6		11.9	7.21					
5.6		11-4	7,21	2,74	4.79	.42	293	Sumple Collected
IT DOCUM Imp: 1/2 Ibing: 1/2 Iater Qua	r Containe MENTATION (COLLAND) "HDPE lity Meter:	erized: ! ! : Horiba U-:	<i>ΝΟ</i> 22; LaMot	te 2020	-0.4	OTES	J	es Il needs repair
I S L L L L L L L L L L L L L L L L L L	Depth to Vater (ft) Suppose to the	Purge Rate (ml/min) Substitute (ft) Purge Rate (ml/min) Substitute (m	Depth to Vater (ft) Purge Rate (ml/min) (deg. C) Sign 12, 2 Sign 12, 1 Sign 1	Depth to Vater (ft) Purge Rate (ml/min) (deg. C) (units) S. 6	Depth to Purge Rate Temp. pH Dissolved O2 (mg/L) S. 6 I2.2 7.26 3.84 I2.1 7.23 2.82 I2.1 7.23 2.82 I2.4 7.21 3.04 I3.6 I1.4 7.21 2.98 I1.4 7.21 2.84 I1.4 7.21 2.74 7.21	Depth to Purge Rate Temp. pH Dissolved Turbidity (deg. C) (units) O2 (mg/L) (NTU) S. 6 I2. 2 7.26 2.84 34.6 S. 6 I2. 1 7.23 2.74 47.2 3.6 I2. 1 7.23 2.82 41.8 S. 6 I1.4 7.21 2.98 14.7 7.20 2.88 7.24 7.20 3.88 7.24 7.20 3.84 4.35 7.24 7.21 2.84 7.21 2.84 7.21 3.84 4.35 7.24 7.21 2.74 4.74 7.21 2.74 4.74 7.21 2.74 4.74 7.21 2.74 4.74 7.21 2.74 4.74 7.21 2.74 4.74 7.21 2.74 4.74 7.21 2.74 4.74 7.21 2.74 4.74 7.21 2.74 4.74 7.21 2.74 4.74 7.21 2.74 4.74 7.21 2.74 4.74 7.21 2.74 4.74 7.21 2.74 4.74 7.21 2.74 4.74 7.21 2.74 4.74 7.2	Depth to Purge Rate Temp. pH Dissolved Turbidity Cond. (MS/cm) (Ja. 2) 7.26 2.89 34.6 9.73 3.6 12.1 7.23 2.79 47.2 42.5 42.5 12.1 7.23 2.79 47.2 42.5 42.5 12.1 7.23 2.82 41.8 9.72 5.6 12.1 7.23 2.88 7.24 3.93 5.6 11.9 7.20 2.88 7.24 3.93 5.6 11.9 7.21 2.89 7.24 3.93 4.35 4.35 5.6 11.9 7.21 2.89 4.35 4.35 4.35 5.6 11.9 7.21 2.79 4.79	Depth to Purge Rate Temp. pH Dissolved Turbidity Cond. (mS/cm) ORP (mV)

amplin nitial De inal De creen L otal Vo	epth to War pth to War ength lume Purg ume (milliliters Water in casin	eter/ ter/ ged s per minute) >	Meter level store fee feet Pu gall	t Meas t Well mp Intake lons PID V	Depth Vell Head _ 0.00026 gal/m	nilliliter]	fee	_Well Diame <u>t</u> Wel Cap	eter 2 " I Integrity: Casing Locked Collar
	Depth to	Purge Rate	Temp.	рН	Dissolved	Turbidity	Cond.		
Time	Water (ft)	(ml/min)	(deg. C)	(units)	O2 (mg/L)	(NTU)	(mS/cm)	ORP (mV)	Comments
12:2	-	7 - 1	13.7	7.77	0.35	25.5	0.73	-116.0	
1230	-		13.5	9.65	.22	21.5	.77	-148.2	
1235	-		13.5	8,68	,23	22,2	.78	-149,7	
1240	_		13.5	8,80	.19	20.4	.83	-155.1	
245	-		13.5	9.02	.18	12.7	. 85	-152.1	
350			13.5	8.82	,26	7.26	,86	-132	
255	2		13.6	8.84	.14	6.17	. 86	-134.8	
1300	AD		18.6	8.84	0.15	4.52	0.87	-131.3	
pe of pe of	Purge Wate ENT DOCUM Pump:	ality Meter METERS umes 40 ml	erized	22; LaMot		OCATION N	Calibra OTES Welf /	ted: 155	s to be

Location Activity	n ID Time	HW-26 11:20	Lithery Fig	eld Sampl Sam	e ID <u>ØW~/</u> ple Time _	12:08	907	Jol Sampling Da	b # <u>4216-08</u> Event # <u>0,1</u> te <u>///29/17</u>
Total Vo purge volu	lume Purg ime (milliliter: Water in casir	ater ter ged ged s per minute) x ng - 2" diamete	gall	lons PID V	Well Head	a:0:0:1		_Well Diam et We Cap _ foot of depth	eter 2" ell Integrity: Casing Locked Collar
Times	Depth to	Purge Rate	Temp.	рН	Dissolved	Turbidity	Cond.		
Time	Water (ft)	(ml/min)	(deg. C)	(units)	O2 (mg/L)	(NTU)	(mS/cm)	ORP (mV)	Comments
100	8.52		12.7	7.25	4.59	5.78	1.00	263	- Indiana
11:20	8.62		12.8	7.25	5.37	6.62	1.09	26.4	
11:39	8.74		12.8	7.32	8.99	4.17	1.14	21.3	
			12.8	7.41	8,45	2.54	1.17	10.3	
	8.75		12.8	7.47	7.79	2.82	1.18	8.9	
14.00	0.75		128	7.68	7.56	2.47	1.18	3.1	
Pu	Irge Obsor	vations:		,					
UIPMEN	NT DOCUM	Container ENTATION	ized:^	NO ALL	4				
pe of Pu		eopump							
e of Tu	bing: 1/4"	HDPE '							
e of W	ater Quali	ty Meter: <u>H</u>	loriba U-22	; LaMotte	2020		Calibrat	ed: <u>US</u>	
	L PARAME	TERS nes Sa	mple Colle			CATION NO		eu. <u>403</u>	
RAL	le tals		7						

AMPLIN nitial Depicreen Lotal Volumes	ID G NOTES The to Water to Water to Water in casin	nard~Whith MW-26 10.15 ater	Fie 71 feet 68 feet Fie Fie	Meas Well I mp Intake ons PID W	urement P Depth Depth /ell Head _ 0.00026 gal/m	illiliter]	fee	Sampling E _ Dat _Well Diame <u>t</u> We Cap	e <u>11/29/17</u>
	Depth to	Purge Rate	Temp.	рН	Dissolved	Turbidity	Cond.		
Time	Water (ft)	(ml/min)	(deg. C)	(units)	02 (mg/L)	(NTU)	(mS/cm)	ORP (mV)	Comments
10.25	7.54		12.2	7.53	1.92	25.8	1.20	-1.4	
10.3	7.59		12.5	7.85	0.34	12.1	1.13	-17.9	
10:30	7.68		12.6	8.00	0.43	11.6	1.09	-21.2	
10:40			12.5	7.95	1.73	12.6	1.05	-7.0	
10.50			12.3	7.96	1.58	7.52	1.07	-6.1	
10.5			11.7	7.92	1.92		1.09	-4.8	
11:01	7.52		11.4	7.93	1.18	5.71	1.12	-5.8	
		ervations: _ er Containe			11				
ype of F ype of N ype of N NALYTIC aramet	Oump: Fubing:_ <u>½</u> Water Qua CAL PARAN er <u>Vol</u>	ality Meter: <u>METERS</u> <u>umes</u> 40 ml				OCATION N		ited: <u>425</u>	

Activity SAMPLII Initial D Final De	n ID Time NG NOTES epth to Webth to Was	ater 6		Sam et Mea	e ID <u>ØW-</u> Peple Time surement F Depth & Depth Well Head _	9:50	R	Samplin I Well Dia	Job # <u>42/6-08</u> Ing Event # <u>12</u> Date <u>11-29-17</u> Indicate <u>2"</u> Well Integrity: Cap
[purge volu	ume (milliliter Water in casi	s per minute):	x time duratio	n (minutes) x	Vell Head _ 0.00026 gal/m of depth, 4" di	illiliter			Casing/_ Locked/ h Collar/
	Depth to	Purge Rate	Temp.	рН	Dissolved	Turbidity	Cond.		1
Time	Water (ft)	(ml/min)	(deg. C)	(units)	O2 (mg/L)	(NTU)	(mS/cm)	ORP (mV)	Comments
0915	6.7		12.9	7.38	1574	2.89	.94	-115	
0920	6.7		13	7.27	»53	2.38	1.00	-98.1	
0025	7,7		13	7.27	.65	5.21	1.01	-77.9	
0930	7.7		12.4	7.30	. 85	15.1	1.01	-32,4	
0935	7,)		12.4	7.28	. 82	16.2	1.02	-19.1	
0940	8.1		12.9	7,27	,79	-26	1.01	-11.5	
0945			12.9	7.27	.76	17.6	1.02	-10.1	
0950	8.1		12.9	7.66	.)/	13,0	1.02	-6.9	Sample Collected
EQUIPME Type of P Type of T Type of V	urge Water Oump: Tubing: Vater Qua CAL PARAM EY Volu	lity Meter:	rized:	NO 22; LaMott	e 2020	CATION N	· ·	rige of	s te collected
								7 1910	7 0 1

Project N	NameC	orchard-Wh	itney						lob # <u>4216-08</u>
Location	ID	MU1-16		Field	Sample ID	au-MW-	16.03211	8 9	Sampling Event #
Activity 7	Γime	10:00		Samp	le Time _	10:45		Date3	3/21/2018
Initial De Final Dep Screen L Total Vol (purge volu	oth to Wa ength lume Purg me (milliliter Water in casi	ged	fee fee gall time duration er = 0.163 gall	t Meas t Well t Pump lons PID V n (minutes) x ons per foot o	Surement F Depth o Intake De Vell Head _ 0.00026 gal/n of depth, 4" di	epth	fee	et \\ foot of dept	Well Diameter 2 M Well Integrity: Cap Casing Locked th Collar
	Depth to	Purge Rate	Temp.	pH	Dissolved	Turbidity	Cond.		
Time	Water (ft)	(ml/min)	(deg. C)	(units)	O2 (mg/L)	(NTU)	(mS/cm)	ORP (mV)	Comments
10:15	8.80		7.3	10.88		8.49	1.14	-84.8	
10:20			7.1	10.88	0.43	8.67	1.16	-83.8	
10:25			7.0	10.93	0.39	8.62	1.13	-85,5	
10.31			6.5	10.89	0.43	17.1	1.12	83.5	
10:36			6.4	10.89	0.54	18.0	1.//	-83,7	
10:40			6.2	10.89	0.68	20.9	1.10	-85.1	
EQUIPME Type of F Type of T Type of V ANALYTIC Paramet VOCs	er Vol	ality Meter: METERS	rized: <u>Ńo</u>	us Quatro	LaMotte		Calibra EATION NOT Field Well 1	ated:\	
RCRA Me		TO IIII	J			Ē	- WW 1	aca)	a part

Location Activity SAMPLI Initial Descreen Total Vo	on ID y Time NG NOTES Depth to Wa epth to Wa Length olume Purg lume (milliliter f Water in casi	orchard-When well atter 5.61 ged	neds fe fe fe fe time duratio	et Mea et Wel et Pum llons PID	surement Depth p Intake D Well Head	Point TO	PR fe		Vell Diameter <u>プ</u> " Vell Integrity: Cap <u>reeds</u>
Times	Depth to	Purge Rate	Temp.	рН	Dissolved	Turbidity	Cond.		
Time	Water (ft)	(ml/min)	(deg. C)	(units)	O2 (mg/L)	(NTU)	(mS/cm)	ORP (mV)	Comments
1:10	5.64		7.7	6.93	7.20	12.4	0.86	64.7	
	5:64		7.3	6.80	15.44	10.07	0.86	66.7	
	5.64		7.2	6.76	7.15	5.28	0.86	67.7	
The second second	5.64		7.2	6.73	6.85	7.58	28.0	66.0	
P	Purge Ohse	rvations:						65.4	
EQUIPME Type of F Type of 1 Type of \	Pump: Geot Fubing: ½" Water Qual CAL PARAMI er Volui 2 x 4	r Container IENTATION Eech Geopu HDPE ity Meter: \(\) ETERS mes \(\)	ized: <u>No</u> mp	s Quatro;			Calibrat	ted: <u>Yes</u>	

EQUIPMENT DOCUMENTATION

Type of Pump: Geotech Geopump

	vamec	rchard-Wh	nitney						b # <u>4216-08</u>
cation	ID M	W-23		Field	Sample ID	OW-MW-	23,03211	8 Sa	mpling Event #
ctivity	Time	8:44		Samp	Sample ID ole Time	9:35	_	Date3/	21/2018
MPLIN	IG NOTES								
itial De	epth to Wa	ater	7.50 feet		surement P	oint <u>TOR</u>		_ w	ell Diameter 🔏
			1.26 feet		Depth				ell Integrity:
reen L	ength		feet 2.5 gall	L Pum	Intake De	pth			Cap NO
tal Vo	lume Purg	ed	2.5 gall	ons PID V	Vell Head _			_	Casing 🗸
			x time duration						Locked NO
lume of	Water in casir	ng – 2" diamet	er = 0.163 gallo	ons per foot	of depth, 4" dia	ameter = 0.65	3 gallons per	foot of depth	Collar _ No
JRGE D	ΛΤΛ								2
	AIA								nexols rep
	Depth to	Purge Rate (ml/min)	Temp.	pH (units)	Dissolved O2 (mg/L)	Turbidity (NTU)	Cond. (mS/cm)	ORP (mV)	Comments
Time	Depth to Water (ft)	Purge Rate (ml/min)	(deg. C)	(units)	O2 (mg/L)	(NTU)	(mS/cm)	ORP (mV)	
Time	Depth to Water (ft)		(deg. C)	(units)		(NTU)	(mS/cm)	81.1	
Time 9 :70 9:05	Depth to Water (ft)		(deg. C)	(units)	02 (mg/L)	(NTU)	(mS/cm)	841	
Time 9 :70 9:05 9:10	Depth to Water (ft)		(deg. C) 9, 4 9, 7	(units) 7.04 6.96	02 (mg/L) 2. \$3 1. 95	(NTU) 15.1 12.6 13.5	(mS/cm) 0, 90 0.89	81.1	
Time 9:0 0 9:05 9:10	Depth to Water (ft) 10.0 10.35 10:70 10:67		(deg. C) 9. 4 9. 7 9. 4 9. 9	(units) 7.04 6.96 6.96	02 (mg/L) 2. \$3 1. 95 1.52	(NTU) 15.1 12.6	(mS/cm) 0,90 0.89 0.89	81.1 76.8 72	
Time 9:70 9:05 9:10 1:14	Depth to Water (ft) 10.0 10.55 10.70 10.67		(deg. C) 9. 4 9. 7 9. 4	(units) 7.04 6.96 6.96 6.92	02 (mg/L) 2. \$3 1.95 1.52 0.86	(NTU) 15.1 12.6 13.5 23.2	(mS/cm) 0, 90 0,89 0,90	81.1 76.8 72 2.9	
Time 9:70 9:05 9:10 1:14	Depth to Water (ft) 10.0 10.55 10.70 10.67		(deg. C) 9. 4 9. 7 9. 4 9. 9	(units) 7.04 6.96 6.96 6.92 7.03	02 (mg/L) 2. 83 1. 95 1.52 0.86 0.92	(NTU) 15.1 12.6 13.5 23.2 11.8	(mS/cm) 0.50 0.89 0.89 0.90 0.91	\$1.1 76.8 72 2.9 17.8	Comments
Time 9:70 9:05 9:10 1:14	Depth to Water (ft) 10.0 10.55 10.70 10.67		(deg. C) 9. 4 9. 7 9. 4 9. 9	(units) 7.04 6.96 6.96 6.92 7.03	02 (mg/L) 2. 83 1. 95 1.52 0.86 0.92	(NTU) 15.1 12.6 13.5 23.2 11.8	(mS/cm) 0.50 0.89 0.89 0.90 0.91	\$1.1 76.8 72 2.9 17.8	Comments
Time 9:70 9:05 9:10 1:14 1:25	Depth to Water (ft) 10.0 10.55 10.70 10.67		(deg. C) 9. 4 9. 7 9. 4 9. 9	(units) 7.04 6.96 6.96 6.92 7.03	02 (mg/L) 2. 83 1. 95 1.52 0.86 0.92	(NTU) 15.1 12.6 13.5 23.2 11.8	(mS/cm) 0.50 0.89 0.89 0.90 0.91	\$1.1 76.8 72 2.9 17.8	Comments
Time 9:90 9:05 9:10 9:14 7:25	Depth to Water (ft) 10.0 10.55 10.70 10.67		(deg. C) 9. 4 9. 7 9. 4 9. 9	(units) 7.04 6.96 6.96 6.92 7.03	02 (mg/L) 2. 83 1. 95 1.52 0.86 0.92	(NTU) 15.1 12.6 13.5 23.2 11.8	(mS/cm) 0.50 0.89 0.89 0.90 0.91	\$1.1 76.8 72 2.9 17.8	Comments
Time	Depth to Water (ft) 10.0 10.55 10.70 10.67		(deg. C) 9. 4 9. 7 9. 4 9. 9	(units) 7.04 6.96 6.96 6.92 7.03	02 (mg/L) 2. 83 1. 95 1.52 0.86 0.92	(NTU) 15.1 12.6 13.5 23.2 11.8	(mS/cm) 0.50 0.89 0.89 0.90 0.91	\$1.1 76.8 72 2.9 17.8	Comments

Activi	טו ווטו.	Orchard- Mw- 26 12:24		Fie Sa	eld Sample mple Time	ID OW-M	W-26.03	32/18 Date_	Job # <u>4216-08</u> Sampling Event # 3/21/2018
Total V	Olume Pur Dlume (millilite of Water in cas DATA	ing – 2" diame	25 g	<u>eet</u> Pur allons PID	easurement ell Depth np Intake D Well Head × 0.00026 gal/ t of depth, 4" o	16,7 Depth	f	<u>eet</u>	Well Diameter Well Integrity: Cap Casing Locked Collar
Time	Depth to Water (ft)	Purge Rate (ml/min)	Temp.	рН	Dissolved	Turbidity		1	
12:17	8.91	(****)	(deg. C)	(units)	O2 (mg/L)	(NTU)	Cond. (mS/cm)	OPD /	
	8.96		9.2	7.34	7,06	11,4	0.94	ORP (mV)	Comments
12.27	9.01		9.1	7.47	4.62	3,53	1.00	379.6	
12.32	4.05		9.2	7,48	4.04	1.91	1.04	378.5	
			11.2	7.50	3,74	1.83	1,07	377,8	
								-7716	
							- 1		
Pu	rge Observ	rations:	-		1				
Pu	rge Water	Containeriz	rod: No	NO ooli	or				
		- J. Italii Ci 12	zeu. <u>No</u>						
JIPMEN	T DOCUME	NTATION							
o of D									
e of Tul	mp: <u>Geote</u>	ch Geopum	q						
e of Wa	oing: <u>¼" H</u>	DPE							
c or vva	ter Quality	Meter: YS	l Pro Plus	Quatro: La	Motte 202	0	560000000000		
LYTICAL	PARAMETE				Wiotte 202	0_	Calibrated	d:Yes	
meter	Volume					LOCATI			
S	Volume		ple Collec	ted		LOCATI	ON NOTES		
Metal	2 x 40 m	<u>11 v</u>	/			_			
· · · · · · · · · · · · · · · · · · ·		V				-			
						-			

Project NameC Location ID Activity Time SAMPLING NOTES Initial Depth to Wascreen Length Total Volume Pural [purge volume (milliliter Volume of Water in cast PURGE DATA Depth to	9:45 ater 16.3 ter 16.56 ged 2.5 s per minute) x	fee fee gal	Sam et Mea et Well et Pum lons PID V n (minutes) x ons per foot	surement F Depth3 p Intake De Well Head _ 0.00026 gal/m	Point <u>TO</u> 33.52 epth	R fee	Date 3	Nell Diameter
Activity Time	ater 16.3 ter 16.50 ged 2.5 s per minute) x ng – 2" diameter	fee fee gal time duration er = 0.163 gall	Sam et Mea et Well et Pum lons PID V n (minutes) x ons per foot	surement F Depth3 p Intake De Well Head _ 0.00026 gal/m	Point <u>TO</u> 33.52 epth	R fee	Date <u>3</u> _	8/21/2018 ジス Well Diameter <u>2</u> * Well Integrity: /
Initial Depth to W Final Depth to Wa Screen Length Total Volume Purg [purge volume (milliliter Volume of Water in casi PURGE DATA Depth to Water (ft) 10:04 16:49 10:09 16:50	ater	gal time duration er = 0.163 gall	et Mea et Well et Pum lons PID V n (minutes) x ons per foot	surement F Depth3 p Intake De Well Head _ 0.00026 gal/m	Point <u>TO</u> 33.52 epth	R fee	V et V	Vell Diameter <u>2</u> Vell Integrity: /
Final Depth to Wascreen Length	ged -2.5 s per minute) x ng - 2" diamete	gal time duration er = 0.163 gall	et Well et Pum lons PID V n (minutes) x ons per foot	Depth3 p Intake De Well Head _ 0.00026 gal/m	epth	fee	<u>et</u> V 	Well Integrity: /
Time Depth to Water (ft) 10:07 10:04 16:49 10:09 16:50			l pu					
Time Water (ft) 10:04 16:49 10:09 16:50				Dissolved	Turbidity	Cond.	1	
10:04 16:49 10:09 16:50		(deg. c)	pH (units)	O2 (mg/L)	(NTU)	(mS/cm)	ORP (mV)	Comments
10:04 16:49 10:09 16:50		10.5	7,60	403		1.25		
		11,2	7,25	1.39	2.92	1,23	-35.6	
		11.2	6.64	0.60	4.40	1.43	-118.0	
10:14 16:50		11.2	6.69	0,44	1.56	1.47	120.7	
10:20 16.52	-	11,3	6.67	0.25	1.49	1.46	-124.8	
10:25 16.53		11.4	6,73	0.23	2.49	1,47	-130.4	
Purge Wat EQUIPMENT DOCUL Type of Pump: Geo Type of Tubing: ½ Type of Water Qua ENALYTICAL PARAM Parameter Vol	otech Geopu 4" HDPE ality Meter:	ump	us Quatro	; LaMotte 2		Calibra	ted: Ye	es

SAMPLIN Initial De Final De Screen L Total Vo	n ID Time NG NOTES epth to War pth to War ength Jume Purg ume (milliliters water in casir	orchard-Wh MW-29 11:10 ater	fee fee gall time duration	t Mea t Well t Pum lons PID V	0.00026 gal/n	Point <u>TOI</u> 18.0 epth	R fee	Date	Well Diameter
	Depth to	Purge Rate	Temp.	рН	Dissolved	Turbidity	Cond.		MISSING bold
Time	Water (ft)	(ml/min)	(deg. C)	(units)	O2 (mg/L)	(NTU)	(mS/cm)	ORP (mV)	Comments
11:20	7.78		8.9	7.63	0.29	4.87	1.06	350.5	
11:25	7.96		9.0	7.66	0.22	5.88	1.08	348-1	
11:30	8.00		900	267	0.27	4.80	1.11	346.5	
11135	₹. 6 €		9.1	7.68	0.32	5.29	1,12	344 . 8	
P	urge Obse	rvations:	clear	NO add					
Type of I	Pump: Geo Tubing: ½ Water Qua CAL PARAM er Volu 2 x 4	lity Meter:	ump	ıs Quatro	LaMotte 2	-	Calibra	ted: <u>Y</u>	es

SAMPLI Initial De Screen Total Vo	on ID y Time NG NOTES Depth to Wallength Dlume Purgume (milliliter	ater	102 fe 112 fe 3.5 ga	eet Mea	osurement Depth p Intake D Well Head	Point <u>TC</u> <i>16.65</i> epth	DR fe	Date \	Vell Diameter 2" Vell Integrity: Cap Casing/
Time	Depth to	Purge Rate	Temp.	рН	Dissolved	Turbidity	Cond.		AND
10:00	Water (ft)	(ml/min)	(deg. C)	(units)	O2 (mg/L)	(NTU)	(mS/cm)	ORP (mV)	Comments
10:05	7.80		8.8	7.81	1.32	4.47	0.77	365.8	comments
10:10	7.95	-	8.5	7.64	1.12	5.95	0.721	361.3	
10.20	7.90		8.5	7.62	1.13	4.77	0.704	359.0	
10:25	8.10		8.8	7.59	1.52	9.25	0.687	354.9	
10:30	8.12		8.8	7.54	1.87	12.7	0.697	356.0	
10:35	8.12		8.6	7.36	1.30	11.69	0.700	353.8	
10:42	8.12		8.6	7.56	1.17	12.60	0.701	352.1	
10:46	8-12		8.6	7.57	0.59	24.80	0.700	350.2	
		A	8.6	7.57	0.70	26.90	0.699	349.6	
Pu Pu	rge Obser	vations:		il, NU DO	lox				
QUIPMEN pe of Pu pe of Tu	IT DOCUMI	ENTATION ech Geopui	mp	Ough		220			-
	L PARAME Volum 2 x 40	res Sa	ample Coll		aMotte 20		Calibrate	ed: <u>Yes</u>	

Project I	Name <u>Ord</u>	hard Wh	threy					Job # 42	16-08	
Location	ID M	N-16		Field	Sample ID	OW MW	-16-050419	Sampling E	Event #	
Activity	Time 14	1120		Sam	ple Time	14:42		Date 65	Date <u>65/64/18</u>	
Initial De		ater		-	surement f Depth				ell Diameter 2"	
					p Intake De				Can ~	
Total Vo [purge volu	lume Purg ime (milliliter: Water in casir	s per minute) x ng – 2" diamete	time duration	lons PID \ n (minutes) x	Well Head _ 0.00026 gal/m	nilliliter]		_	Cap Casing Locked Collar	
	Depth to	Purge Rate	Temp.	рН	Dissolved	Turbidity	Cond.	M. H. H.		
Time	Water (ft)	(ml/min)	(deg. C)	(units)	O2 (mg/L)	(NTU)	(mS/cm)	ORP (mV)	Comments	
14:25	7.78		11.33	11.68	0.28	11.50	0.133	58.0		
14:30			10.79	11.68	0.18	7.62	0.132	53.0		
14:35			10.60	11.69	0.06	7.63	0.134	521		
Р	urge Wate	ervations: _ er Containe	rized: No		odor /sl	nen				
		tech Geop	ump		_					
	Tubing: 1/4									
Type of \	Water Qua	ality Meter:	YSI Pro Plu	us Quatro	; LaMotte 2	2020	Calibra	ated: Yes		
ANALYTI	CAL PARAM	METERS				LO	CATION NOT	ΓES		
Paramet			Sample Co	llected					*	
VOCs		40 ml	Yes						a Taran	
RCRA Me	etals		Yes							
PCBs		ALUKIU I								
Pesticide	es					ų <u>u</u>				

Project I		hard Wh	itney	Field	d Sample ID			Job # 4216 - 58 Sampling Event #		
	Time 16				ple Time				704/18	
	IG NOTES									
Initial De	epth to Wa	ater 5.4	fee	<u>t</u> Mea	surement P	oint <u>TO</u>	R	_ We	ell Diameter 2"	
		ter <u>5.5</u>		_	Depth				ell Integrity:	
					p Intake De				Cap News ne	
		ed ~ \			Well Head _			_	Casing	
					0.00026 gal/m		F2	fort of double	Locked	
PURGE D		ng – 2" diamet	er = 0.163 gail	ons per toot	of depth, 4" dia	imeter = 0.6	53 galions per	foot of depth	Collar	
Time	Depth to Water (ft)	Purge Rate (ml/min)	Temp. (deg. C)	pH (units)	Dissolved O2 (mg/L)	Turbidity (NTU)	Cond. (mS/cm)	ORP (mV)	Comments	
16:15	vvater (it)	(my mm)	9.41	7.39	6.63	4.65	6.183	103.6	Comments	
16:20			9.38	7.40	6.53	5.04	0.220	104.9		
16:25			9.32	7.40	6.55	3.30	0.481	107.0		
16:30		Sample	taken	carly	du to	ann		-		
				-						
							201201			
	Obse		0.9	L				1		
		er Containe			odor /	Shen				
r	uige wate	er Containe	rized: <u>No</u>	1				S		
EQUIPME	ENT DOCUM	MENTATION	-							
		tech Geop	ump							
	Tubing: 1/4									
Type of \	Water Qua	lity Meter:	YSI Pro Pl	us Quatro	; LaMotte 2	020	Calibra	ated: Yes		
ANALYTI	CAL DADAN	ACTEDS				100	ATION NOTA	rec		
Paramet	CAL PARAN		Sample Co	locted		LOC	ATION NOT	IF2		
VOCs		40 ml	Sample Co	mecteu						
RCRA Me		101111	Ves							
PCBs										
Pesticide	es									

Location Activity SAMPLIN Initial De Final De	Time 15 NG NOTES epth to Wa	hard Wh 1- 23 : 20 eter 10.2 ter 10.35	feet feet	Samı Mea:	Sample ID ple Time surement F Depth p Intake De Well Head _	70int TO 21.1	R fee	Date os	Event # F/o4/18 ell Diameter2'' ell Integrity:
	Water in casi	s per minute) x ng – 2" diamete Purge Rate					53 gallons per	foot of depth	Locked No
Time	Water (ft)	(ml/min)	(deg. C)	(units)	O2 (mg/L)	(NTU)	(mS/cm)	ORP (mV)	Comments
15:20	10.25		11.60	7.86	0.84	20.14	0.156	79.7	
15:25			11.53	7.86	0.87	13.46	0.153	77.0	
15:30	10.30	- 4	11.57	7.86	0.90	11.28	0.164	79.2	
15:35	10.33		11.56	7.83	0.60	11.13	0.158	69.8	
EQUIPM Type of Type of	Purge Water Pump: Gec Tubing: 1/2 Water Qua CAL PARAM LET Volu 2 x 4	ality Meter:	rized: <u>No</u> ump	ıs Quatro		2020_	Calibra	ted: Ye	S
Pesticide	es					_			

Location Activity	Name On Manual Name IS:	therd Wh N-26 50	trup		Sample ID ple Time	Job #_ <u>4216 - 68</u> Sampling Event # Date <u>65/64/18</u>			
Final De Screen L Total Vo [purge volu	pth to Wa ength lume Purg ime (milliliter: Water in casin		fee fee fee gall time duration	t Well t Pum ons PID V (minutes) x	surement F Depth p Intake De Vell Head _ 0.00026 gal/m of depth, 4" di	pthilliliter)	p fee	<u>et</u> We	Il Diameter 2" Il Integrity: Cap Casing Locked Collar
Time	Depth to	Purge Rate	Temp.	pH (unita)	Dissolved	Turbidity	Cond.	000///	
15:50 15:55	Water (ft)	(ml/min)	(deg. C)	7.40 7.39	02 (mg/L) 6.16 5.85	(NTU) 5,20 2,80	(mS/cm) 0.118 0.121	ORP (mV) 81.8 85.5	Comments
16:05 16:00	8.60		10.25	7.34	5.61	2.79	0.119	91.6	
		ervations: _er Containe			or/she				
Type of I Type of I Type of I	Pump: <u>Geo</u> Fubing: <u>¼</u> Water Qua CAL PARAM er <u>Volu</u> 2 x 4	llity Meter:	ump		; LaMotte 2		Calibra	nted: <u>Yes</u>	

Project	Name <u>Or</u>	chard W	nitrung					Job # <u>42</u>	16-08
Location	n ID M	W-27		Field	Sample ID	OW-MW	-27_0504 IS	Sampling 6	vent #
Activity	Time 12	:45		Samı	ple Time	13:12		Date os	104/18
SAMPLIN	NG NOTES								
Final De Screen I Total Vo (purge volu	epth to Wa Length Dlume Purg ume (milliliter Water in casi		fee fee gal ctime duration	t Well t Pum lons PID V	surement F Depth p Intake De Well Head _ 0.00026 gal/m of depth, 4" di	33. ST) fee	<u>et</u> W∈ —	ell Diameter 2" ell Integrity: Cap Casing Locked Collar
	Depth to	Purge Rate	Temp.	рН	Dissolved	Turbidity	Cond.		
Time	Water (ft)	(ml/min)	(deg. C)	(units)	02 (mg/L)	(NTU)	(mS/cm)	ORP (mV)	Comments
12:55			12.82	7.56	3,83	16.60	0.767	16.2	
13:00			12.75	7.41	0.45	12.80	0.629	-13.2	
13:05		11 X 1 2 11 11	12.58	7.40	0.17	7.06	0.626	-17.9	
13:10	16.34		12.44	7.40	0.12	6.87	0.710	-20.0	
		ervations: _ er Containe			lors/sh	40			
		MENTATION							
		otech Geop	ump		_				
	Tubing: 1/4		VCI Dec Di	is Ountra	· LaNdatta	2020	Calibas	tod. V	
type of	water Qua	anty weter	131 PTO PI	us Quatro	; LaMotte 2	2020	Calibra	ited: Yes	
ANALYTI Paramet	CAL PARAN	METERS umes	Sample Co	llected		LOC	CATION NOT	<u>res</u>	
VOCs		40 ml	Yes.	necteu		T			
RCRA M			Yes					N .	
PCBs	1.6					-			
Pesticide	es				G				
									····

SAMPLIN Initial De Final De Screen L Total Vo	Time 14 IG NOTES epth to War pth to War ength lume Purg ume (milliliters water in casin	ater 7. sed ~ 3	61 fee 72 fee fee 2 gal x time duratio	Samp et Mea et Well et Pum llons PID V	Sample ID ple Time surement F Depth p Intake De Well Head _ 0.00026 gal/n of depth, 4" di	Point TOF	R fee	Date <u>vs/</u> Wel	vent #
Time	Depth to	Purge Rate	Temp.	pH (veita)	Dissolved	Turbidity	Cond.	ORD ()()	Comments
Time	Water (ft)	(ml/min)	(deg. C)	(units)	02 (mg/L)	(NTU)	(mS/cm)	ORP (mV)	Comments
14:55	7.61		10.86	8.61	0.34	15.50	0.122	71.4	
15:05	7.71		10.33	8.04	0.11	51.60	0.124	72.8	
15: 10	7.72		10.28	7.89	0.17	53,80	0.115	73.9	
15:15	7.72		10.26	7.84	0.20	53.63	0,123	74.0	
Type of Type of	Purge Water Pump: Geo Tubing: ½ Water Qua CAL PARAM er Volu 2 x 4	er Containe MENTATION otech Geop " HDPE ality Meter	erized: <u>No</u>	us Quatro	; LaMotte	2020_	Calibra	ted: Yes	

Location Activity	Name <u>Or</u> n ID <u>MA</u> Time <u>13</u>		huy		Sample ID ole Time			Job # 42 Sampling E Date os/	vent #
Final De Screen I Total Vo [purge vol	epth to Wa Length Dlume Purg ume (milliliter Water in casi	geds per minute) >	feet feet 2 gall time duration	Well Pum ons PID V (minutes) x	surement P Depth p Intake De Vell Head _ 0.00026 gal/m of depth, 4" dia	pthilliliter)	fee	<u>t</u> We _ _	Il Diameter 2 " Il Integrity: Cap Casing Locked Collar
Time	Depth to	Purge Rate	Temp.	pH	Dissolved	Turbidity	Cond.	OBD (m)()	Comments
13:40	Water (ft)	(ml/min)	(deg. C)	(units)	O2 (mg/L)	(NTU)	(mS/cm)	ORP (mV)	Comments
13:45	7.41		11.64	7.48	0.21	3.19	0.397	37.8	
13:50	7.50		11.24	7.46	0.44	4.26	0.437	54.5	
13:55	7.50		11.31	7.47	0.46	5.72	0.354	57.6	- 17
14:00	7.50		11.23	7.48	0.40	6.18	0,342	61.8	
14:10	7.45								
				ht She	in in	bucket			
EQUIPM Type of Type of	ENT DOCUM Pump: <u>Gec</u> Tubing:½		ump	ıs Quatro	; LaMotte 2	2020	Calibra	ited: <u>Yes</u>	
Paramet VOCs RCRA M PCBs Pesticide	2 x etals		Sample Co Yes Yes	llected		<u>LOC</u>	ATION NOT	ES	

Attachment C

Client: <u>Lu Engineers, Inc.</u>

Project Reference: 4216-08 Orchard-Whitney

Sample Identifier: OW-MW-16_100217

Lab Sample ID:174404-01Date Sampled:10/2/2017Matrix:GroundwaterDate Received:10/2/2017

<u>Mercury</u>

 Analyte
 Result
 Units
 Qualifier
 Date Analyzed

 Mercury
 < 0.000200</td>
 mg/L
 10/3/2017
 13:56

Method Reference(s):EPA 7470APreparation Date:10/3/2017Data File:Hg171003A

Client: <u>Lu Engineers, Inc.</u>

Project Reference: 4216-08 Orchard-Whitney

Sample Identifier: OW-MW-16_100217

Lab Sample ID:174404-01Date Sampled:10/2/2017Matrix:GroundwaterDate Received:10/2/2017

RCRA Metals (ICP)

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
Arsenic	0.0113	mg/L		10/5/2017 17:11
Barium	< 0.100	mg/L		10/4/2017 22:41
Cadmium	0.00488	mg/L	J	10/4/2017 22:41
Chromium	0.00564	mg/L	J	10/4/2017 22:41
Lead	< 0.0100	mg/L		10/4/2017 22:41
Selenium	0.0165	mg/L	J	10/4/2017 22:41
Silver	< 0.0100	mg/L		10/5/2017 17:11

Method Reference(s): EPA 6010C

EPA 3005A

 Preparation Date:
 10/3/2017

 Data File:
 171005B

Client: <u>Lu Engineers, Inc.</u>

Project Reference: 4216-08 Orchard-Whitney

Sample Identifier: OW-MW-16_100217

Lab Sample ID:174404-01Date Sampled:10/2/2017Matrix:GroundwaterDate Received:10/2/2017

Volatile Organics

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 2.00	ug/L		10/3/2017 14:23
1,1,2,2-Tetrachloroethane	< 2.00	ug/L		10/3/2017 14:23
1,1,2-Trichloroethane	< 2.00	ug/L		10/3/2017 14:23
1,1-Dichloroethane	< 2.00	ug/L		10/3/2017 14:23
1,1-Dichloroethene	< 2.00	ug/L		10/3/2017 14:23
1,2,3-Trichlorobenzene	< 5.00	ug/L		10/3/2017 14:23
1,2,4-Trichlorobenzene	< 5.00	ug/L		10/3/2017 14:23
1,2-Dibromo-3-Chloropropane	< 10.0	ug/L		10/3/2017 14:23
1,2-Dibromoethane	< 2.00	ug/L		10/3/2017 14:23
1,2-Dichlorobenzene	< 2.00	ug/L		10/3/2017 14:23
1,2-Dichloroethane	< 2.00	ug/L		10/3/2017 14:23
1,2-Dichloropropane	< 2.00	ug/L		10/3/2017 14:23
1,3-Dichlorobenzene	< 2.00	ug/L		10/3/2017 14:23
1,4-Dichlorobenzene	< 2.00	ug/L		10/3/2017 14:23
1,4-dioxane	< 20.0	ug/L		10/3/2017 14:23
2-Butanone	< 10.0	ug/L		10/3/2017 14:23
2-Hexanone	< 5.00	ug/L		10/3/2017 14:23
4-Methyl-2-pentanone	< 5.00	ug/L		10/3/2017 14:23
Acetone	28.3	ug/L		10/3/2017 14:23
Benzene	1.28	ug/L		10/3/2017 14:23
Bromochloromethane	< 5.00	ug/L		10/3/2017 14:23
Bromodichloromethane	< 2.00	ug/L		10/3/2017 14:23
Bromoform	< 5.00	ug/L		10/3/2017 14:23
Bromomethane	< 2.00	ug/L		10/3/2017 14:23
Carbon disulfide	< 2.00	ug/L		10/3/2017 14:23
Carbon Tetrachloride	< 2.00	ug/L		10/3/2017 14:23
Chlorobenzene	< 2.00	ug/L		10/3/2017 14:23

Client: <u>Lu Engineers, Inc.</u>

Project Reference: 4216-08 Orchard-Whitney

C 1 11 .'C'	OM MIN 16 100017				
Sample Identifier:	OW-MW-16_100217				
Lab Sample ID:	174404-01		Date Sampled:	10/2/2017	
Matrix:	Groundwater		Date Received:	10/2/2017	
Chloroethane	< 2.00	ug/L		10/3/2017	14:23
Chloroform	< 2.00	ug/L		10/3/2017	14:23
Chloromethane	< 2.00	ug/L		10/3/2017	14:23
cis-1,2-Dichloroethene	< 2.00	ug/L		10/3/2017	14:23
cis-1,3-Dichloropropene	< 2.00	ug/L		10/3/2017	14:23
Cyclohexane	< 10.0	ug/L		10/3/2017	14:23
Dibromochloromethane	< 2.00	ug/L		10/3/2017	14:23
Dichlorodifluoromethan	e < 2.00	ug/L		10/3/2017	14:23
Ethylbenzene	< 2.00	ug/L		10/3/2017	14:23
Freon 113	< 2.00	ug/L		10/3/2017	14:23
Isopropylbenzene	< 2.00	ug/L		10/3/2017	14:23
m,p-Xylene	< 2.00	ug/L		10/3/2017	14:23
Methyl acetate	< 2.00	ug/L		10/3/2017	14:23
Methyl tert-butyl Ether	< 2.00	ug/L		10/3/2017	14:23
Methylcyclohexane	< 2.00	ug/L		10/3/2017	14:23
Methylene chloride	< 5.00	ug/L		10/3/2017	14:23
o-Xylene	< 2.00	ug/L		10/3/2017	14:23
Styrene	< 5.00	ug/L		10/3/2017	14:23
Tetrachloroethene	< 2.00	ug/L		10/3/2017	14:23
Toluene	< 2.00	ug/L		10/3/2017	14:23
trans-1,2-Dichloroethen	e < 2.00	ug/L		10/3/2017	14:23
trans-1,3-Dichloroprope	ene < 2.00	ug/L		10/3/2017	14:23
Trichloroethene	< 2.00	ug/L		10/3/2017	14:23
Trichlorofluoromethane	< 2.00	ug/L		10/3/2017	14:23
Vinyl chloride	< 2.00	ug/L		10/3/2017	14:23

Client: <u>Lu Engineers, Inc.</u>

Project Reference: 4216-08 Orchard-Whitney

Sample Identifier: OW-MW-16_100217

Lab Sample ID:174404-01Date Sampled:10/2/2017Matrix:GroundwaterDate Received:10/2/2017

Surrogate	Percent Recovery	<u>Limits</u>	its <u>Outliers</u>		Date Analyzed	
1,2-Dichloroethane-d4	97.2	85.9 - 118		10/3/2017	14:23	
4-Bromofluorobenzene	85.9	69.4 - 123		10/3/2017	14:23	
Pentafluorobenzene	94.1	81.6 - 114		10/3/2017	14:23	
Toluene-D8	92.4	82.7 - 112		10/3/2017	14:23	

Method Reference(s): EPA 8260C

EPA 5030C

Data File: x45636.D

Client: <u>Lu Engineers, Inc.</u>

Project Reference: 4216-08 Orchard-Whitney

Sample Identifier: OW-MW-29_100217

Lab Sample ID:174404-02Date Sampled:10/2/2017Matrix:GroundwaterDate Received:10/2/2017

Mercury

 Analyte
 Result
 Units
 Qualifier
 Date Analyzed

 Mercury
 < 0.000200</td>
 mg/L
 10/3/2017
 13:59

Method Reference(s):EPA 7470APreparation Date:10/3/2017Data File:Hg171003A

Client: <u>Lu Engineers, Inc.</u>

Project Reference: 4216-08 Orchard-Whitney

Sample Identifier: OW-MW-29_100217

Lab Sample ID:174404-02Date Sampled:10/2/2017Matrix:GroundwaterDate Received:10/2/2017

RCRA Metals (ICP)

Analyte	Result	<u>Units</u>	Qualifier	Date Analyzed
Arsenic	< 0.0100	mg/L		10/4/2017 22:45
Barium	< 0.100	mg/L		10/4/2017 22:45
Cadmium	0.00615	mg/L		10/4/2017 22:45
Chromium	< 0.0100	mg/L		10/4/2017 22:45
Lead	< 0.0100	mg/L		10/4/2017 22:45
Selenium	< 0.0200	mg/L		10/4/2017 22:45
Silver	< 0.0100	mg/L		10/5/2017 17:15

Method Reference(s): EPA 6010C

EPA 3005A

 Preparation Date:
 10/3/2017

 Data File:
 171004E

Client: <u>Lu Engineers, Inc.</u>

Project Reference: 4216-08 Orchard-Whitney

Sample Identifier: OW-MW-29_100217

Lab Sample ID:174404-02Date Sampled:10/2/2017Matrix:GroundwaterDate Received:10/2/2017

Volatile Organics

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 2.00	ug/L		10/3/2017 14:47
1,1,2,2-Tetrachloroethane	< 2.00	ug/L		10/3/2017 14:47
1,1,2-Trichloroethane	< 2.00	ug/L		10/3/2017 14:47
1,1-Dichloroethane	< 2.00	ug/L		10/3/2017 14:47
1,1-Dichloroethene	< 2.00	ug/L		10/3/2017 14:47
1,2,3-Trichlorobenzene	< 5.00	ug/L		10/3/2017 14:47
1,2,4-Trichlorobenzene	< 5.00	ug/L		10/3/2017 14:47
1,2-Dibromo-3-Chloropropane	< 10.0	ug/L		10/3/2017 14:47
1,2-Dibromoethane	< 2.00	ug/L		10/3/2017 14:47
1,2-Dichlorobenzene	< 2.00	ug/L		10/3/2017 14:47
1,2-Dichloroethane	< 2.00	ug/L		10/3/2017 14:47
1,2-Dichloropropane	< 2.00	ug/L		10/3/2017 14:47
1,3-Dichlorobenzene	< 2.00	ug/L		10/3/2017 14:47
1,4-Dichlorobenzene	< 2.00	ug/L		10/3/2017 14:47
1,4-dioxane	< 20.0	ug/L		10/3/2017 14:47
2-Butanone	< 10.0	ug/L		10/3/2017 14:47
2-Hexanone	< 5.00	ug/L		10/3/2017 14:47
4-Methyl-2-pentanone	< 5.00	ug/L		10/3/2017 14:47
Acetone	5.76	ug/L	J	10/3/2017 14:47
Benzene	< 1.00	ug/L		10/3/2017 14:47
Bromochloromethane	< 5.00	ug/L		10/3/2017 14:47
Bromodichloromethane	< 2.00	ug/L		10/3/2017 14:47
Bromoform	< 5.00	ug/L		10/3/2017 14:47
Bromomethane	< 2.00	ug/L		10/3/2017 14:47
Carbon disulfide	< 2.00	ug/L		10/3/2017 14:47
Carbon Tetrachloride	< 2.00	ug/L		10/3/2017 14:47
Chlorobenzene	< 2.00	ug/L		10/3/2017 14:47

10/3/2017 14:47

Client: <u>Lu Engineers, Inc.</u>

Project Reference: 4216-08 Orchard-Whitney

Toject Reference.	1210 00 orenard wintency			
Sample Identifier:	OW-MW-29_100217			
Lab Sample ID:	174404-02		Date Sampled:	10/2/2017
Matrix:	Groundwater		Date Received:	10/2/2017
Chloroethane	< 2.00	ug/L		10/3/2017 14:4
Chloroform	< 2.00	ug/L		10/3/2017 14:4
Chloromethane	< 2.00	ug/L		10/3/2017 14:4
cis-1,2-Dichloroethene	< 2.00	ug/L		10/3/2017 14:4
cis-1,3-Dichloropropene	< 2.00	ug/L		10/3/2017 14:4
Cyclohexane	< 10.0	ug/L		10/3/2017 14:4
Dibromochloromethane	< 2.00	ug/L		10/3/2017 14:4
Dichlorodifluoromethan	e < 2.00	ug/L		10/3/2017 14:4
Ethylbenzene	< 2.00	ug/L		10/3/2017 14:4
Freon 113	< 2.00	ug/L		10/3/2017 14:4
Isopropylbenzene	< 2.00	ug/L		10/3/2017 14:4
m,p-Xylene	< 2.00	ug/L		10/3/2017 14:4
Methyl acetate	< 2.00	ug/L		10/3/2017 14:4
Methyl tert-butyl Ether	< 2.00	ug/L		10/3/2017 14:4
Methylcyclohexane	< 2.00	ug/L		10/3/2017 14:4
Methylene chloride	< 5.00	ug/L		10/3/2017 14:4
o-Xylene	< 2.00	ug/L		10/3/2017 14:4
Styrene	< 5.00	ug/L		10/3/2017 14:4
Tetrachloroethene	< 2.00	ug/L		10/3/2017 14:4
Toluene	< 2.00	ug/L		10/3/2017 14:4
trans-1,2-Dichloroethen	e < 2.00	ug/L		10/3/2017 14:4
trans-1,3-Dichloroprope	ene < 2.00	ug/L		10/3/2017 14:4
Trichloroethene	< 2.00	ug/L		10/3/2017 14:4
Trichlorofluoromethane	< 2.00	ug/L		10/3/2017 14:4

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

ug/L

< 2.00

Vinyl chloride

Client: <u>Lu Engineers, Inc.</u>

Project Reference: 4216-08 Orchard-Whitney

Sample Identifier: OW-MW-29_100217

Lab Sample ID:174404-02Date Sampled:10/2/2017Matrix:GroundwaterDate Received:10/2/2017

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	<u>Outliers</u> <u>Date</u>		Analyzed	
1,2-Dichloroethane-d4	95.1	85.9 - 118		10/3/2017	14:47	
4-Bromofluorobenzene	85.4	69.4 - 123		10/3/2017	14:47	
Pentafluorobenzene	95.5	81.6 - 114		10/3/2017	14:47	
Toluene-D8	92.9	82.7 - 112		10/3/2017	14:47	

Method Reference(s): EPA 8260C

EPA 5030C

Data File: x45637.D

Client: <u>Lu Engineers, Inc.</u>

Project Reference: 4216-08 Orchard-Whitney

Sample Identifier: OW-MW-28_100217

Lab Sample ID:174404-03Date Sampled:10/2/2017Matrix:GroundwaterDate Received:10/2/2017

<u>Mercury</u>

 Analyte
 Result
 Units
 Qualifier
 Date Analyzed

 Mercury
 < 0.000200</td>
 mg/L
 10/3/2017
 14:01

Method Reference(s):EPA 7470APreparation Date:10/3/2017Data File:Hg171003A

Client: <u>Lu Engineers, Inc.</u>

Project Reference: 4216-08 Orchard-Whitney

Sample Identifier: OW-MW-28_100217

Lab Sample ID:174404-03Date Sampled:10/2/2017Matrix:GroundwaterDate Received:10/2/2017

RCRA Metals (ICP)

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
Arsenic	< 0.0100	mg/L		10/4/2017 22:49
Barium	0.0562	mg/L	J	10/4/2017 22:49
Cadmium	< 0.00500	mg/L		10/4/2017 22:49
Chromium	< 0.0100	mg/L		10/4/2017 22:49
Lead	< 0.0100	mg/L		10/4/2017 22:49
Selenium	< 0.0200	mg/L		10/4/2017 22:49
Silver	< 0.0100	mg/L		10/5/2017 17:19

Method Reference(s): EPA 6010C

EPA 3005A

 Preparation Date:
 10/3/2017

 Data File:
 171004E

Client: <u>Lu Engineers, Inc.</u>

Project Reference: 4216-08 Orchard-Whitney

Sample Identifier: OW-MW-28_100217

Lab Sample ID:174404-03Date Sampled:10/2/2017Matrix:GroundwaterDate Received:10/2/2017

Volatile Organics

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 2.00	ug/L		10/3/2017 15:11
1,1,2,2-Tetrachloroethane	< 2.00	ug/L		10/3/2017 15:11
1,1,2-Trichloroethane	< 2.00	ug/L		10/3/2017 15:11
1,1-Dichloroethane	< 2.00	ug/L		10/3/2017 15:11
1,1-Dichloroethene	< 2.00	ug/L		10/3/2017 15:11
1,2,3-Trichlorobenzene	< 5.00	ug/L		10/3/2017 15:11
1,2,4-Trichlorobenzene	< 5.00	ug/L		10/3/2017 15:11
1,2-Dibromo-3-Chloropropane	< 10.0	ug/L		10/3/2017 15:11
1,2-Dibromoethane	< 2.00	ug/L		10/3/2017 15:11
1,2-Dichlorobenzene	< 2.00	ug/L		10/3/2017 15:11
1,2-Dichloroethane	< 2.00	ug/L		10/3/2017 15:11
1,2-Dichloropropane	< 2.00	ug/L		10/3/2017 15:11
1,3-Dichlorobenzene	< 2.00	ug/L		10/3/2017 15:11
1,4-Dichlorobenzene	< 2.00	ug/L		10/3/2017 15:11
1,4-dioxane	< 20.0	ug/L		10/3/2017 15:11
2-Butanone	< 10.0	ug/L		10/3/2017 15:11
2-Hexanone	< 5.00	ug/L		10/3/2017 15:11
4-Methyl-2-pentanone	< 5.00	ug/L		10/3/2017 15:11
Acetone	< 10.0	ug/L		10/3/2017 15:11
Benzene	< 1.00	ug/L		10/3/2017 15:11
Bromochloromethane	< 5.00	ug/L		10/3/2017 15:11
Bromodichloromethane	< 2.00	ug/L		10/3/2017 15:11
Bromoform	< 5.00	ug/L		10/3/2017 15:11
Bromomethane	< 2.00	ug/L		10/3/2017 15:11
Carbon disulfide	< 2.00	ug/L		10/3/2017 15:11
Carbon Tetrachloride	< 2.00	ug/L		10/3/2017 15:11
Chlorobenzene	< 2.00	ug/L		10/3/2017 15:11

10/3/2017 15:11

Client: <u>Lu Engineers, Inc.</u>

Project Reference: 4216-08 Orchard-Whitney

Sample Identifier:	OW-MW-28_10	00217			
Lab Sample ID:	174404-03			Date Sampled:	10/2/2017
Matrix:	Groundwater			Date Received:	10/2/2017
Chloroethane		< 2.00	ug/L		10/3/2017 15:
Chloroform		< 2.00	ug/L		10/3/2017 15:
Chloromethane		< 2.00	ug/L		10/3/2017 15:
cis-1,2-Dichloroethene		< 2.00	ug/L		10/3/2017 15:
cis-1,3-Dichloropropene		< 2.00	ug/L		10/3/2017 15:
Cyclohexane		< 10.0	ug/L		10/3/2017 15:
Dibromochloromethane		< 2.00	ug/L		10/3/2017 15:
Dichlorodifluoromethan	e	< 2.00	ug/L		10/3/2017 15:
Ethylbenzene		< 2.00	ug/L		10/3/2017 15:
Freon 113		< 2.00	ug/L		10/3/2017 15:
Isopropylbenzene		< 2.00	ug/L		10/3/2017 15:
m,p-Xylene		< 2.00	ug/L		10/3/2017 15:
Methyl acetate		< 2.00	ug/L		10/3/2017 15:
Methyl tert-butyl Ether		< 2.00	ug/L		10/3/2017 15:
Methylcyclohexane		< 2.00	ug/L		10/3/2017 15:
Methylene chloride		< 5.00	ug/L		10/3/2017 15:
o-Xylene		< 2.00	ug/L		10/3/2017 15:
Styrene		< 5.00	ug/L		10/3/2017 15:
Tetrachloroethene		< 2.00	ug/L		10/3/2017 15:
Toluene		< 2.00	ug/L		10/3/2017 15:
trans-1,2-Dichloroethene	e	< 2.00	ug/L		10/3/2017 15:
trans-1,3-Dichloroprope	ne	< 2.00	ug/L		10/3/2017 15:
Trichloroethene		1.55	ug/L	J	10/3/2017 15:
Trichlorofluoromethane		< 2.00	ug/L		10/3/2017 15:

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

ug/L

< 2.00

Vinyl chloride

Client: <u>Lu Engineers, Inc.</u>

Project Reference: 4216-08 Orchard-Whitney

Sample Identifier: OW-MW-28_100217

Lab Sample ID:174404-03Date Sampled:10/2/2017Matrix:GroundwaterDate Received:10/2/2017

Surrogate	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	zed
1,2-Dichloroethane-d4	94.0	85.9 - 118		10/3/2017	15:11
4-Bromofluorobenzene	83.2	69.4 - 123		10/3/2017	15:11
Pentafluorobenzene	96.7	81.6 - 114		10/3/2017	15:11
Toluene-D8	92.7	82.7 - 112		10/3/2017	15:11

Method Reference(s): EPA 8260C

EPA 5030C

Data File: x45638.D

Client: <u>Lu Engineers, Inc.</u>

Project Reference: 4216-08 Orchard-Whitney

Sample Identifier: OW-MW-23_100217

Lab Sample ID:174404-04Date Sampled:10/2/2017Matrix:GroundwaterDate Received:10/2/2017

<u>Mercury</u>

 Analyte
 Result
 Units
 Qualifier
 Date Analyzed

 Mercury
 < 0.000200</td>
 mg/L
 10/3/2017
 14:04

Method Reference(s):EPA 7470APreparation Date:10/3/2017Data File:Hg171003A

Client: <u>Lu Engineers, Inc.</u>

Project Reference: 4216-08 Orchard-Whitney

Sample Identifier: OW-MW-23_100217

Lab Sample ID:174404-04Date Sampled:10/2/2017Matrix:GroundwaterDate Received:10/2/2017

RCRA Metals (ICP)

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analyzed
Arsenic	< 0.0100	mg/L		10/4/2017 22:54
Barium	0.126	mg/L		10/4/2017 22:54
Cadmium	< 0.00500	mg/L		10/4/2017 22:54
Chromium	< 0.0100	mg/L		10/4/2017 22:54
Lead	0.00507	mg/L	J	10/4/2017 22:54
Selenium	0.0113	mg/L	J	10/4/2017 22:54
Silver	< 0.0100	mg/L		10/5/2017 17:23

Method Reference(s): EPA 6010C

EPA 3005A

 Preparation Date:
 10/3/2017

 Data File:
 171004E

Client: <u>Lu Engineers, Inc.</u>

Project Reference: 4216-08 Orchard-Whitney

Sample Identifier: OW-MW-23_100217

Lab Sample ID:174404-04Date Sampled:10/2/2017Matrix:GroundwaterDate Received:10/2/2017

Volatile Organics

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 2.00	ug/L		10/3/2017 17:09
1,1,2,2-Tetrachloroethane	< 2.00	ug/L		10/3/2017 17:09
1,1,2-Trichloroethane	< 2.00	ug/L		10/3/2017 17:09
1,1-Dichloroethane	< 2.00	ug/L		10/3/2017 17:09
1,1-Dichloroethene	< 2.00	ug/L	M	10/3/2017 17:09
1,2,3-Trichlorobenzene	< 5.00	ug/L		10/3/2017 17:09
1,2,4-Trichlorobenzene	< 5.00	ug/L		10/3/2017 17:09
1,2-Dibromo-3-Chloropropane	< 10.0	ug/L		10/3/2017 17:09
1,2-Dibromoethane	< 2.00	ug/L		10/3/2017 17:09
1,2-Dichlorobenzene	< 2.00	ug/L		10/3/2017 17:09
1,2-Dichloroethane	< 2.00	ug/L		10/3/2017 17:09
1,2-Dichloropropane	< 2.00	ug/L		10/3/2017 17:09
1,3-Dichlorobenzene	< 2.00	ug/L		10/3/2017 17:09
1,4-Dichlorobenzene	< 2.00	ug/L		10/3/2017 17:09
1,4-dioxane	< 20.0	ug/L		10/3/2017 17:09
2-Butanone	< 10.0	ug/L		10/3/2017 17:09
2-Hexanone	< 5.00	ug/L		10/3/2017 17:09
4-Methyl-2-pentanone	< 5.00	ug/L		10/3/2017 17:09
Acetone	< 10.0	ug/L		10/3/2017 17:09
Benzene	< 1.00	ug/L		10/3/2017 17:09
Bromochloromethane	< 5.00	ug/L		10/3/2017 17:09
Bromodichloromethane	< 2.00	ug/L		10/3/2017 17:09
Bromoform	< 5.00	ug/L		10/3/2017 17:09
Bromomethane	< 2.00	ug/L		10/3/2017 17:09
Carbon disulfide	< 2.00	ug/L		10/3/2017 17:09
Carbon Tetrachloride	< 2.00	ug/L		10/3/2017 17:09
Chlorobenzene	< 2.00	ug/L		10/3/2017 17:09

Client: <u>Lu Engineers, Inc.</u>

Project Reference: 4216-08 Orchard-Whitney

Sample Identifier:	OW-MW-23_10	00217				
Lab Sample ID:	174404-04			Date Sampled:	10/2/2017	
Matrix:	Groundwater			Date Received:	10/2/2017	
Chloroethane		< 2.00	ug/L	M	10/3/2017 17:	
Chloroform		< 2.00	ug/L		10/3/2017 17:	
Chloromethane		< 2.00	ug/L		10/3/2017 17:	
cis-1,2-Dichloroethene		< 2.00	ug/L		10/3/2017 17:	
cis-1,3-Dichloropropene		< 2.00	ug/L		10/3/2017 17:	
Cyclohexane		< 10.0	ug/L		10/3/2017 17:	
Dibromochloromethane		< 2.00	ug/L		10/3/2017 17:	
Dichlorodifluoromethan	e	< 2.00	ug/L		10/3/2017 17:	
Ethylbenzene		< 2.00	ug/L		10/3/2017 17:	
Freon 113		< 2.00	ug/L		10/3/2017 17:	
Isopropylbenzene		< 2.00	ug/L		10/3/2017 17:	
m,p-Xylene		< 2.00	ug/L		10/3/2017 17:	
Methyl acetate		< 2.00	ug/L		10/3/2017 17:	
Methyl tert-butyl Ether		< 2.00	ug/L		10/3/2017 17:	
Methylcyclohexane		< 2.00	ug/L		10/3/2017 17:	
Methylene chloride		< 5.00	ug/L		10/3/2017 17:	
o-Xylene		< 2.00	ug/L		10/3/2017 17:	
Styrene		< 5.00	ug/L		10/3/2017 17:	
Tetrachloroethene		< 2.00	ug/L		10/3/2017 17:	
Toluene		< 2.00	ug/L		10/3/2017 17:	
trans-1,2-Dichloroethen	e	< 2.00	ug/L		10/3/2017 17:	
trans-1,3-Dichloroprope	ne	< 2.00	ug/L		10/3/2017 17:	
Trichloroethene		1.97	ug/L	J	10/3/2017 17:	
Trichlorofluoromethane		< 2.00	ug/L		10/3/2017 17:	
Vinyl chloride		< 2.00	ug/L	M	10/3/2017 17:	

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

Client: <u>Lu Engineers, Inc.</u>

Project Reference: 4216-08 Orchard-Whitney

Sample Identifier: OW-MW-23_100217

Lab Sample ID:174404-04Date Sampled:10/2/2017Matrix:GroundwaterDate Received:10/2/2017

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	zed
1,2-Dichloroethane-d4	93.6	85.9 - 118		10/3/2017	17:09
4-Bromofluorobenzene	79.0	69.4 - 123		10/3/2017	17:09
Pentafluorobenzene	91.5	81.6 - 114		10/3/2017	17:09
Toluene-D8	91.5	82.7 - 112		10/3/2017	17:09

Method Reference(s): EPA 8260C

EPA 5030C

Data File: x45643.D

Client: <u>Lu Engineers, Inc.</u>

Project Reference: 4216-08 Orchard-Whitney

Sample Identifier: OW-MW-27_100217

Lab Sample ID:174404-05Date Sampled:10/2/2017Matrix:GroundwaterDate Received:10/2/2017

Mercury

 Analyte
 Result
 Units
 Qualifier
 Date Analyzed

 Mercury
 < 0.000200</td>
 mg/L
 10/3/2017
 14:18

Method Reference(s):EPA 7470APreparation Date:10/3/2017Data File:Hg171003A

Client: <u>Lu Engineers, Inc.</u>

Project Reference: 4216-08 Orchard-Whitney

Sample Identifier: OW-MW-27_100217

Lab Sample ID:174404-05Date Sampled:10/2/2017Matrix:GroundwaterDate Received:10/2/2017

RCRA Metals (ICP)

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
Arsenic	0.00513	mg/L	J	10/4/2017 23:07
Barium	< 0.100	mg/L		10/4/2017 23:07
Cadmium	0.00380	mg/L	J	10/4/2017 23:07
Chromium	< 0.0100	mg/L		10/4/2017 23:07
Lead	< 0.0100	mg/L		10/4/2017 23:07
Selenium	0.0213	mg/L		10/4/2017 23:07
Silver	< 0.0100	mg/L		10/5/2017 17:36

Method Reference(s): EPA 6010C

EPA 3005A

 Preparation Date:
 10/3/2017

 Data File:
 171004E

Client: <u>Lu Engineers, Inc.</u>

Project Reference: 4216-08 Orchard-Whitney

Sample Identifier: OW-MW-27_100217

Lab Sample ID:174404-05Date Sampled:10/2/2017Matrix:GroundwaterDate Received:10/2/2017

Volatile Organics

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 2.00	ug/L		10/3/2017 15:34
1,1,2,2-Tetrachloroethane	< 2.00	ug/L		10/3/2017 15:34
1,1,2-Trichloroethane	< 2.00	ug/L		10/3/2017 15:34
1,1-Dichloroethane	< 2.00	ug/L		10/3/2017 15:34
1,1-Dichloroethene	< 2.00	ug/L		10/3/2017 15:34
1,2,3-Trichlorobenzene	< 5.00	ug/L		10/3/2017 15:34
1,2,4-Trichlorobenzene	< 5.00	ug/L		10/3/2017 15:34
1,2-Dibromo-3-Chloropropane	< 10.0	ug/L		10/3/2017 15:34
1,2-Dibromoethane	< 2.00	ug/L		10/3/2017 15:34
1,2-Dichlorobenzene	< 2.00	ug/L		10/3/2017 15:34
1,2-Dichloroethane	< 2.00	ug/L		10/3/2017 15:34
1,2-Dichloropropane	< 2.00	ug/L		10/3/2017 15:34
1,3-Dichlorobenzene	< 2.00	ug/L		10/3/2017 15:34
1,4-Dichlorobenzene	< 2.00	ug/L		10/3/2017 15:34
1,4-dioxane	< 20.0	ug/L		10/3/2017 15:34
2-Butanone	< 10.0	ug/L		10/3/2017 15:34
2-Hexanone	< 5.00	ug/L		10/3/2017 15:34
4-Methyl-2-pentanone	< 5.00	ug/L		10/3/2017 15:34
Acetone	< 10.0	ug/L		10/3/2017 15:34
Benzene	< 1.00	ug/L		10/3/2017 15:34
Bromochloromethane	< 5.00	ug/L		10/3/2017 15:34
Bromodichloromethane	< 2.00	ug/L		10/3/2017 15:34
Bromoform	< 5.00	ug/L		10/3/2017 15:34
Bromomethane	< 2.00	ug/L		10/3/2017 15:34
Carbon disulfide	< 2.00	ug/L		10/3/2017 15:34
Carbon Tetrachloride	< 2.00	ug/L		10/3/2017 15:34
Chlorobenzene	< 2.00	ug/L		10/3/2017 15:34

Client: <u>Lu Engineers, Inc.</u>

Project Reference: 4216-08 Orchard-Whitney

Sample Identifier:	OW-MW-27_100217				
-			Data Camula J	10/2/2017	
Lab Sample ID:	174404-05		Date Sampled:	10/2/2017	
Matrix:	Groundwater		Date Received:	10/2/2017	
Chloroethane	< 2.00	ug/L		10/3/2017 15	5:34
Chloroform	< 2.00	ug/L		10/3/2017 15	5:34
Chloromethane	< 2.00	ug/L		10/3/2017 15	5:34
cis-1,2-Dichloroethene	< 2.00	ug/L		10/3/2017 15	5:34
cis-1,3-Dichloropropene	e < 2.00	ug/L		10/3/2017 15	5:34
Cyclohexane	< 10.0	ug/L		10/3/2017 15	5:34
Dibromochloromethane	< 2.00	ug/L		10/3/2017 15	5:34
Dichlorodifluoromethar	ne < 2.00	ug/L		10/3/2017 15	5:34
Ethylbenzene	< 2.00	ug/L		10/3/2017 15	5:34
Freon 113	< 2.00	ug/L		10/3/2017 15	5:34
Isopropylbenzene	< 2.00	ug/L		10/3/2017 15	5:34
m,p-Xylene	< 2.00	ug/L		10/3/2017 15	5:34
Methyl acetate	< 2.00	ug/L		10/3/2017 15	5:34
Methyl tert-butyl Ether	< 2.00	ug/L		10/3/2017 15	5:34
Methylcyclohexane	< 2.00	ug/L		10/3/2017 15	5:34
Methylene chloride	< 5.00	ug/L		10/3/2017 15	5:34
o-Xylene	< 2.00	ug/L		10/3/2017 15	5:34
Styrene	< 5.00	ug/L		10/3/2017 15	5:34
Tetrachloroethene	< 2.00	ug/L		10/3/2017 15	5:34
Toluene	< 2.00	ug/L		10/3/2017 15	5:34
trans-1,2-Dichloroether	e < 2.00	ug/L		10/3/2017 15	5:34
trans-1,3-Dichloroprope	ene < 2.00	ug/L		10/3/2017 15	5:34
Trichloroethene	< 2.00	ug/L		10/3/2017 15	5:34
Trichlorofluoromethane	e < 2.00	ug/L		10/3/2017 15	5:34
Vinyl chloride	< 2.00	ug/L		10/3/2017 15	5:34

Client: <u>Lu Engineers, Inc.</u>

Project Reference: 4216-08 Orchard-Whitney

Sample Identifier: OW-MW-27_100217

Lab Sample ID:174404-05Date Sampled:10/2/2017Matrix:GroundwaterDate Received:10/2/2017

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	zed
1,2-Dichloroethane-d4	92.6	85.9 - 118		10/3/2017	15:34
4-Bromofluorobenzene	85.0	69.4 - 123		10/3/2017	15:34
Pentafluorobenzene	93.8	81.6 - 114		10/3/2017	15:34
Toluene-D8	92.4	82.7 - 112		10/3/2017	15:34

Method Reference(s): EPA 8260C

EPA 5030C

Data File: x45639.D

Client: <u>Lu Engineers, Inc.</u>

Project Reference: 4216-08 Orchard-Whitney

Sample Identifier: OW-MW-26_100217

Lab Sample ID:174404-06Date Sampled:10/2/2017Matrix:GroundwaterDate Received:10/2/2017

<u>Mercury</u>

AnalyteResultUnitsQualifierDate AnalyzedMercury< 0.000200</td>mg/L10/3/201714:21

Method Reference(s):EPA 7470APreparation Date:10/3/2017Data File:Hg171003A

Client: <u>Lu Engineers, Inc.</u>

Project Reference: 4216-08 Orchard-Whitney

Sample Identifier: OW-MW-26_100217

Lab Sample ID:174404-06Date Sampled:10/2/2017Matrix:GroundwaterDate Received:10/2/2017

RCRA Metals (ICP)

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analyzed
Arsenic	< 0.0100	mg/L		10/4/2017 23:20
Barium	0.0791	mg/L	J	10/4/2017 23:20
Cadmium	< 0.00500	mg/L		10/4/2017 23:20
Chromium	0.00759	mg/L	J	10/4/2017 23:20
Lead	< 0.0100	mg/L		10/4/2017 23:20
Selenium	0.0170	mg/L	J	10/4/2017 23:20
Silver	< 0.0100	mg/L		10/5/2017 17:49

Method Reference(s): EPA 6010C

EPA 3005A

 Preparation Date:
 10/3/2017

 Data File:
 171004E

Client: <u>Lu Engineers, Inc.</u>

Project Reference: 4216-08 Orchard-Whitney

Sample Identifier: OW-MW-26_100217

Lab Sample ID:174404-06Date Sampled:10/2/2017Matrix:GroundwaterDate Received:10/2/2017

Volatile Organics

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 2.00	ug/L		10/3/2017 15:58
1,1,2,2-Tetrachloroethane	< 2.00	ug/L		10/3/2017 15:58
1,1,2-Trichloroethane	< 2.00	ug/L		10/3/2017 15:58
1,1-Dichloroethane	< 2.00	ug/L		10/3/2017 15:58
1,1-Dichloroethene	< 2.00	ug/L		10/3/2017 15:58
1,2,3-Trichlorobenzene	< 5.00	ug/L		10/3/2017 15:58
1,2,4-Trichlorobenzene	< 5.00	ug/L		10/3/2017 15:58
1,2-Dibromo-3-Chloropropane	< 10.0	ug/L		10/3/2017 15:58
1,2-Dibromoethane	< 2.00	ug/L		10/3/2017 15:58
1,2-Dichlorobenzene	< 2.00	ug/L		10/3/2017 15:58
1,2-Dichloroethane	< 2.00	ug/L		10/3/2017 15:58
1,2-Dichloropropane	< 2.00	ug/L		10/3/2017 15:58
1,3-Dichlorobenzene	< 2.00	ug/L		10/3/2017 15:58
1,4-Dichlorobenzene	< 2.00	ug/L		10/3/2017 15:58
1,4-dioxane	< 20.0	ug/L		10/3/2017 15:58
2-Butanone	< 10.0	ug/L		10/3/2017 15:58
2-Hexanone	< 5.00	ug/L		10/3/2017 15:58
4-Methyl-2-pentanone	< 5.00	ug/L		10/3/2017 15:58
Acetone	< 10.0	ug/L		10/3/2017 15:58
Benzene	< 1.00	ug/L		10/3/2017 15:58
Bromochloromethane	< 5.00	ug/L		10/3/2017 15:58
Bromodichloromethane	< 2.00	ug/L		10/3/2017 15:58
Bromoform	< 5.00	ug/L		10/3/2017 15:58
Bromomethane	< 2.00	ug/L		10/3/2017 15:58
Carbon disulfide	< 2.00	ug/L		10/3/2017 15:58
Carbon Tetrachloride	< 2.00	ug/L		10/3/2017 15:58
Chlorobenzene	< 2.00	ug/L		10/3/2017 15:58

10/3/2017 15:58

Client: <u>Lu Engineers, Inc.</u>

Project Reference: 4216-08 Orchard-Whitney

			-,,		
Sample Identifier:	OW-MW-26_10	00217			
Lab Sample ID:	174404-06			Date Sampled:	10/2/2017
Matrix:	Groundwater			Date Received:	10/2/2017
Chloroethane		< 2.00	ug/L		10/3/2017 15:58
Chloroform		1.62	ug/L	J	10/3/2017 15:58
Chloromethane		< 2.00	ug/L		10/3/2017 15:58
cis-1,2-Dichloroethene		< 2.00	ug/L		10/3/2017 15:58
cis-1,3-Dichloropropene	ę	< 2.00	ug/L		10/3/2017 15:58
Cyclohexane		< 10.0	ug/L		10/3/2017 15:58
Dibromochloromethane		< 2.00	ug/L		10/3/2017 15:58
Dichlorodifluoromethan	ie	< 2.00	ug/L		10/3/2017 15:58
Ethylbenzene		< 2.00	ug/L		10/3/2017 15:58
Freon 113		< 2.00	ug/L		10/3/2017 15:58
Isopropylbenzene		< 2.00	ug/L		10/3/2017 15:58
m,p-Xylene		< 2.00	ug/L		10/3/2017 15:58
Methyl acetate		< 2.00	ug/L		10/3/2017 15:58
Methyl tert-butyl Ether		< 2.00	ug/L		10/3/2017 15:58
Methylcyclohexane		< 2.00	ug/L		10/3/2017 15:58
Methylene chloride		< 5.00	ug/L		10/3/2017 15:58
o-Xylene		< 2.00	ug/L		10/3/2017 15:58
Styrene		< 5.00	ug/L		10/3/2017 15:58
Tetrachloroethene		< 2.00	ug/L		10/3/2017 15:58
Toluene		< 2.00	ug/L		10/3/2017 15:58
trans-1,2-Dichloroethen	ie	< 2.00	ug/L		10/3/2017 15:58
trans-1,3-Dichloroprope	ene	< 2.00	ug/L		10/3/2017 15:58
Trichloroethene		< 2.00	ug/L		10/3/2017 15:58
Trichlorofluoromethane	2	< 2.00	ug/L		10/3/2017 15:58
			_		

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

ug/L

< 2.00

Vinyl chloride

Client: <u>Lu Engineers, Inc.</u>

Project Reference: 4216-08 Orchard-Whitney

Sample Identifier: OW-MW-26_100217

Lab Sample ID:174404-06Date Sampled:10/2/2017Matrix:GroundwaterDate Received:10/2/2017

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	zed
1,2-Dichloroethane-d4	92.6	85.9 - 118		10/3/2017	15:58
4-Bromofluorobenzene	82.8	69.4 - 123		10/3/2017	15:58
Pentafluorobenzene	95.6	81.6 - 114		10/3/2017	15:58
Toluene-D8	91.9	82.7 - 112		10/3/2017	15:58

Method Reference(s): EPA 8260C

EPA 5030C

Data File: x45640.D

Client: <u>Lu Engineers, Inc.</u>

Project Reference: 4216-08 Orchard-Whitney

Sample Identifier: OW-MW-22_100217

Lab Sample ID:174404-07Date Sampled:10/2/2017Matrix:GroundwaterDate Received:10/2/2017

<u>Mercury</u>

 Analyte
 Result
 Units
 Qualifier
 Date Analyzed

 Mercury
 < 0.000200</td>
 mg/L
 10/3/2017
 14:24

Method Reference(s):EPA 7470APreparation Date:10/3/2017Data File:Hg171003A

Client: <u>Lu Engineers, Inc.</u>

Project Reference: 4216-08 Orchard-Whitney

Sample Identifier: OW-MW-22_100217

Lab Sample ID:174404-07Date Sampled:10/2/2017Matrix:GroundwaterDate Received:10/2/2017

RCRA Metals (ICP)

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analyzed
Arsenic	< 0.0100	mg/L		10/4/2017 23:24
Barium	0.0806	mg/L	J	10/4/2017 23:24
Cadmium	< 0.00500	mg/L		10/4/2017 23:24
Chromium	0.00504	mg/L	J	10/4/2017 23:24
Lead	< 0.0100	mg/L		10/4/2017 23:24
Selenium	0.0126	mg/L	J	10/4/2017 23:24
Silver	< 0.0100	mg/L		10/5/2017 17:53

Method Reference(s): EPA 6010C

EPA 3005A

 Preparation Date:
 10/3/2017

 Data File:
 171004E

Client: <u>Lu Engineers, Inc.</u>

Project Reference: 4216-08 Orchard-Whitney

Sample Identifier: OW-MW-22_100217

Lab Sample ID:174404-07Date Sampled:10/2/2017Matrix:GroundwaterDate Received:10/2/2017

Volatile Organics

Analyte	Result	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 2.00	ug/L		10/3/2017 16:22
1,1,2,2-Tetrachloroethane	< 2.00	ug/L		10/3/2017 16:22
1,1,2-Trichloroethane	< 2.00	ug/L		10/3/2017 16:22
1,1-Dichloroethane	< 2.00	ug/L		10/3/2017 16:22
1,1-Dichloroethene	< 2.00	ug/L		10/3/2017 16:22
1,2,3-Trichlorobenzene	< 5.00	ug/L		10/3/2017 16:22
1,2,4-Trichlorobenzene	< 5.00	ug/L		10/3/2017 16:22
1,2-Dibromo-3-Chloropropane	< 10.0	ug/L		10/3/2017 16:22
1,2-Dibromoethane	< 2.00	ug/L		10/3/2017 16:22
1,2-Dichlorobenzene	< 2.00	ug/L		10/3/2017 16:22
1,2-Dichloroethane	< 2.00	ug/L		10/3/2017 16:22
1,2-Dichloropropane	< 2.00	ug/L		10/3/2017 16:22
1,3-Dichlorobenzene	< 2.00	ug/L		10/3/2017 16:22
1,4-Dichlorobenzene	< 2.00	ug/L		10/3/2017 16:22
1,4-dioxane	< 20.0	ug/L		10/3/2017 16:22
2-Butanone	< 10.0	ug/L		10/3/2017 16:22
2-Hexanone	< 5.00	ug/L		10/3/2017 16:22
4-Methyl-2-pentanone	< 5.00	ug/L		10/3/2017 16:22
Acetone	< 10.0	ug/L		10/3/2017 16:22
Benzene	< 1.00	ug/L		10/3/2017 16:22
Bromochloromethane	< 5.00	ug/L		10/3/2017 16:22
Bromodichloromethane	< 2.00	ug/L		10/3/2017 16:22
Bromoform	< 5.00	ug/L		10/3/2017 16:22
Bromomethane	< 2.00	ug/L		10/3/2017 16:22
Carbon disulfide	< 2.00	ug/L		10/3/2017 16:22
Carbon Tetrachloride	< 2.00	ug/L		10/3/2017 16:22
Chlorobenzene	< 2.00	ug/L		10/3/2017 16:22

Client: <u>Lu Engineers, Inc.</u>

Project Reference: 4216-08 Orchard-Whitney

·					=
Sample Identifier:	OW-MW-22_100217				
Lab Sample ID:	174404-07		Date Sampled:	10/2/2017	
Matrix:	Groundwater		Date Received:	10/2/2017	
Chloroethane	< 2.00	ug/L		10/3/2017 16:3	22
Chloroform	< 2.00	ug/L		10/3/2017 16:3	22
Chloromethane	< 2.00	ug/L		10/3/2017 16:	22
cis-1,2-Dichloroethene	< 2.00	ug/L		10/3/2017 16:3	22
cis-1,3-Dichloropropen	e < 2.00	ug/L		10/3/2017 16:	22
Cyclohexane	< 10.0	ug/L		10/3/2017 16:3	22
Dibromochloromethane	e < 2.00	ug/L		10/3/2017 16:3	22
Dichlorodifluorometha	ne < 2.00	ug/L		10/3/2017 16:3	22
Ethylbenzene	< 2.00	ug/L		10/3/2017 16:	22
Freon 113	< 2.00	ug/L		10/3/2017 16:	22
Isopropylbenzene	< 2.00	ug/L		10/3/2017 16:	22
m,p-Xylene	< 2.00	ug/L		10/3/2017 16:	22
Methyl acetate	< 2.00	ug/L		10/3/2017 16:	22
Methyl tert-butyl Ether	< 2.00	ug/L		10/3/2017 16:	22
Methylcyclohexane	< 2.00	ug/L		10/3/2017 16:	22
Methylene chloride	< 5.00	ug/L		10/3/2017 16:	22
o-Xylene	< 2.00	ug/L		10/3/2017 16:	22
Styrene	< 5.00	ug/L		10/3/2017 16:	22
Tetrachloroethene	< 2.00	ug/L		10/3/2017 16:	22
Toluene	< 2.00	ug/L		10/3/2017 16:	22
trans-1,2-Dichloroether	ne < 2.00	ug/L		10/3/2017 16:	22
trans-1,3-Dichloroprop	ene < 2.00	ug/L		10/3/2017 16:	22
Trichloroethene	< 2.00	ug/L		10/3/2017 16:	22
Trichlorofluoromethan	e < 2.00	ug/L		10/3/2017 16:	22
Vinyl chloride	< 2.00	ug/L		10/3/2017 16:3	22

Client: <u>Lu Engineers, Inc.</u>

Project Reference: 4216-08 Orchard-Whitney

Sample Identifier: OW-MW-22_100217

Lab Sample ID:174404-07Date Sampled:10/2/2017Matrix:GroundwaterDate Received:10/2/2017

Surrogate	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	zed
1,2-Dichloroethane-d4	94.3	85.9 - 118		10/3/2017	16:22
4-Bromofluorobenzene	83.0	69.4 - 123		10/3/2017	16:22
Pentafluorobenzene	92.3	81.6 - 114		10/3/2017	16:22
Toluene-D8	91.9	82.7 - 112		10/3/2017	16:22

Method Reference(s): EPA 8260C

EPA 5030C

Data File: x45641.D

Client: <u>Lu Engineers, Inc.</u>

Project Reference: 4216-08 Orchard-Whitney

Sample Identifier: OW-MW-Field Duplicate

Lab Sample ID:174404-08Date Sampled:10/2/2017Matrix:GroundwaterDate Received:10/2/2017

<u>Mercury</u>

 Analyte
 Result
 Units
 Qualifier
 Date Analyzed

 Mercury
 < 0.000200</td>
 mg/L
 10/3/2017
 14:27

Method Reference(s):EPA 7470APreparation Date:10/3/2017Data File:Hg171003A

Client: <u>Lu Engineers, Inc.</u>

Project Reference: 4216-08 Orchard-Whitney

Sample Identifier: OW-MW-Field Duplicate

Lab Sample ID:174404-08Date Sampled:10/2/2017Matrix:GroundwaterDate Received:10/2/2017

RCRA Metals (ICP)

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analyzed
Arsenic	< 0.0100	mg/L		10/4/2017 23:28
Barium	0.0787	mg/L	J	10/4/2017 23:28
Cadmium	< 0.00500	mg/L		10/4/2017 23:28
Chromium	0.00605	mg/L	J	10/4/2017 23:28
Lead	< 0.0100	mg/L		10/4/2017 23:28
Selenium	0.0124	mg/L	J	10/4/2017 23:28
Silver	< 0.0100	mg/L		10/5/2017 17:57

Method Reference(s): EPA 6010C

EPA 3005A

 Preparation Date:
 10/3/2017

 Data File:
 171004E

Client: <u>Lu Engineers, Inc.</u>

Project Reference: 4216-08 Orchard-Whitney

Sample Identifier: OW-MW-Field Duplicate

Lab Sample ID:174404-08Date Sampled:10/2/2017Matrix:GroundwaterDate Received:10/2/2017

Volatile Organics

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 2.00	ug/L		10/3/2017 16:45
1,1,2,2-Tetrachloroethane	< 2.00	ug/L		10/3/2017 16:45
1,1,2-Trichloroethane	< 2.00	ug/L		10/3/2017 16:45
1,1-Dichloroethane	< 2.00	ug/L		10/3/2017 16:45
1,1-Dichloroethene	< 2.00	ug/L		10/3/2017 16:45
1,2,3-Trichlorobenzene	< 5.00	ug/L		10/3/2017 16:45
1,2,4-Trichlorobenzene	< 5.00	ug/L		10/3/2017 16:45
1,2-Dibromo-3-Chloropropane	< 10.0	ug/L		10/3/2017 16:45
1,2-Dibromoethane	< 2.00	ug/L		10/3/2017 16:45
1,2-Dichlorobenzene	< 2.00	ug/L		10/3/2017 16:45
1,2-Dichloroethane	< 2.00	ug/L		10/3/2017 16:45
1,2-Dichloropropane	< 2.00	ug/L		10/3/2017 16:45
1,3-Dichlorobenzene	< 2.00	ug/L		10/3/2017 16:45
1,4-Dichlorobenzene	< 2.00	ug/L		10/3/2017 16:45
1,4-dioxane	< 20.0	ug/L		10/3/2017 16:45
2-Butanone	< 10.0	ug/L		10/3/2017 16:45
2-Hexanone	< 5.00	ug/L		10/3/2017 16:45
4-Methyl-2-pentanone	< 5.00	ug/L		10/3/2017 16:45
Acetone	< 10.0	ug/L		10/3/2017 16:45
Benzene	< 1.00	ug/L		10/3/2017 16:45
Bromochloromethane	< 5.00	ug/L		10/3/2017 16:45
Bromodichloromethane	< 2.00	ug/L		10/3/2017 16:45
Bromoform	< 5.00	ug/L		10/3/2017 16:45
Bromomethane	< 2.00	ug/L		10/3/2017 16:45
Carbon disulfide	< 2.00	ug/L		10/3/2017 16:45
Carbon Tetrachloride	< 2.00	ug/L		10/3/2017 16:45
Chlorobenzene	< 2.00	ug/L		10/3/2017 16:45

Client: <u>Lu Engineers, Inc.</u>

Project Reference: 4216-08 Orchard-Whitney

Sample Identifier:	OW-MW-Field	Dunlicate					
Lab Sample ID:	174404-08	Duplicate		Data Ca	ımpled:	10/2/2017	
-					_		
Matrix:	Groundwater			Date Re	eceived:	10/2/2017	
Chloroethane		< 2.00	ug/L			10/3/2017	16:45
Chloroform		< 2.00	ug/L			10/3/2017	16:45
Chloromethane		< 2.00	ug/L			10/3/2017	16:45
cis-1,2-Dichloroethene		< 2.00	ug/L			10/3/2017	16:45
cis-1,3-Dichloropropene	e	< 2.00	ug/L			10/3/2017	16:45
Cyclohexane		< 10.0	ug/L			10/3/2017	16:45
Dibromochloromethane		< 2.00	ug/L			10/3/2017	16:45
Dichlorodifluoromethar	ne	< 2.00	ug/L			10/3/2017	16:45
Ethylbenzene		< 2.00	ug/L			10/3/2017	16:45
Freon 113		< 2.00	ug/L			10/3/2017	16:45
Isopropylbenzene		< 2.00	ug/L			10/3/2017	16:45
m,p-Xylene		< 2.00	ug/L			10/3/2017	16:45
Methyl acetate		< 2.00	ug/L			10/3/2017	16:45
Methyl tert-butyl Ether		< 2.00	ug/L			10/3/2017	16:45
Methylcyclohexane		< 2.00	ug/L			10/3/2017	16:45
Methylene chloride		< 5.00	ug/L			10/3/2017	16:45
o-Xylene		< 2.00	ug/L			10/3/2017	16:45
Styrene		< 5.00	ug/L			10/3/2017	16:45
Tetrachloroethene		< 2.00	ug/L			10/3/2017	16:45
Toluene		< 2.00	ug/L			10/3/2017	16:45
trans-1,2-Dichloroether	ne	< 2.00	ug/L			10/3/2017	16:45
trans-1,3-Dichloroprope	ene	< 2.00	ug/L			10/3/2017	16:45
Trichloroethene		< 2.00	ug/L			10/3/2017	16:45
Trichlorofluoromethane	e	< 2.00	ug/L			10/3/2017	16:45
Vinyl chloride		< 2.00	ug/L			10/3/2017	16:45

Client: <u>Lu Engineers, Inc.</u>

Project Reference: 4216-08 Orchard-Whitney

Sample Identifier: OW-MW-Field Duplicate

Lab Sample ID:174404-08Date Sampled:10/2/2017Matrix:GroundwaterDate Received:10/2/2017

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	zed
1,2-Dichloroethane-d4	92.3	85.9 - 118		10/3/2017	16:45
4-Bromofluorobenzene	80.6	69.4 - 123		10/3/2017	16:45
Pentafluorobenzene	91.0	81.6 - 114		10/3/2017	16:45
Toluene-D8	90.4	82.7 - 112		10/3/2017	16:45

Method Reference(s): EPA 8260C

EPA 5030C

Data File: x45642.D

Client: <u>Lu Engineers, Inc.</u>

Project Reference: 4216-08 Orchard-Whitney

Sample Identifier: Trip Blank

 Lab Sample ID:
 174404-09
 Date Sampled:
 10/2/2017

 Matrix:
 Water
 Date Received:
 10/2/2017

Volatile Organics

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 2.00	ug/L		10/3/2017 14:00
1,1,2,2-Tetrachloroethane	< 2.00	ug/L		10/3/2017 14:00
1,1,2-Trichloroethane	< 2.00	ug/L		10/3/2017 14:00
1,1-Dichloroethane	< 2.00	ug/L		10/3/2017 14:00
1,1-Dichloroethene	< 2.00	ug/L		10/3/2017 14:00
1,2,3-Trichlorobenzene	< 5.00	ug/L		10/3/2017 14:00
1,2,4-Trichlorobenzene	< 5.00	ug/L		10/3/2017 14:00
1,2-Dibromo-3-Chloropropane	< 10.0	ug/L		10/3/2017 14:00
1,2-Dibromoethane	< 2.00	ug/L		10/3/2017 14:00
1,2-Dichlorobenzene	< 2.00	ug/L		10/3/2017 14:00
1,2-Dichloroethane	< 2.00	ug/L		10/3/2017 14:00
1,2-Dichloropropane	< 2.00	ug/L		10/3/2017 14:00
1,3-Dichlorobenzene	< 2.00	ug/L		10/3/2017 14:00
1,4-Dichlorobenzene	< 2.00	ug/L		10/3/2017 14:00
1,4-dioxane	< 20.0	ug/L		10/3/2017 14:00
2-Butanone	< 10.0	ug/L		10/3/2017 14:00
2-Hexanone	< 5.00	ug/L		10/3/2017 14:00
4-Methyl-2-pentanone	< 5.00	ug/L		10/3/2017 14:00
Acetone	< 10.0	ug/L		10/3/2017 14:00
Benzene	< 1.00	ug/L		10/3/2017 14:00
Bromochloromethane	< 5.00	ug/L		10/3/2017 14:00
Bromodichloromethane	< 2.00	ug/L		10/3/2017 14:00
Bromoform	< 5.00	ug/L		10/3/2017 14:00
Bromomethane	< 2.00	ug/L		10/3/2017 14:00
Carbon disulfide	< 2.00	ug/L		10/3/2017 14:00
Carbon Tetrachloride	< 2.00	ug/L		10/3/2017 14:00
Chlorobenzene	< 2.00	ug/L		10/3/2017 14:00

Client: <u>Lu Engineers, Inc.</u>

Project Reference: 4216-08 Orchard-Whitney

Sample Identifier:	Trip Blank				
Lab Sample ID:	174404-09			Date Sampled:	10/2/2017
Matrix:	Water			Date Received:	10/2/2017
Chloroethane		< 2.00	ug/L		10/3/2017 14:00
Chloroform		< 2.00	ug/L		10/3/2017 14:00
Chloromethane		< 2.00	ug/L		10/3/2017 14:00
cis-1,2-Dichloroethene		< 2.00	ug/L		10/3/2017 14:00
cis-1,3-Dichloropropen	e	< 2.00	ug/L		10/3/2017 14:00
Cyclohexane		< 10.0	ug/L		10/3/2017 14:00
Dibromochloromethane	e	< 2.00	ug/L		10/3/2017 14:00
Dichlorodifluorometha	ne	< 2.00	ug/L		10/3/2017 14:00
Ethylbenzene		< 2.00	ug/L		10/3/2017 14:00
Freon 113		< 2.00	ug/L		10/3/2017 14:00
Isopropylbenzene		< 2.00	ug/L		10/3/2017 14:00
m,p-Xylene		< 2.00	ug/L		10/3/2017 14:00
Methyl acetate		< 2.00	ug/L		10/3/2017 14:00
Methyl tert-butyl Ether		< 2.00	ug/L		10/3/2017 14:00
Methylcyclohexane		< 2.00	ug/L		10/3/2017 14:00
Methylene chloride		< 5.00	ug/L		10/3/2017 14:00
o-Xylene		< 2.00	ug/L		10/3/2017 14:00
Styrene		< 5.00	ug/L		10/3/2017 14:00
Tetrachloroethene		< 2.00	ug/L		10/3/2017 14:00
Toluene		< 2.00	ug/L		10/3/2017 14:00
trans-1,2-Dichloroether	ne	< 2.00	ug/L		10/3/2017 14:00
trans-1,3-Dichloroprop	ene	< 2.00	ug/L		10/3/2017 14:00
Trichloroethene		< 2.00	ug/L		10/3/2017 14:00
Trichlorofluoromethan	e	< 2.00	ug/L		10/3/2017 14:00
Vinyl chloride		< 2.00	ug/L		10/3/2017 14:00

Client: <u>Lu Engineers, Inc.</u>

Project Reference: 4216-08 Orchard-Whitney

Sample Identifier: Trip Blank

 Lab Sample ID:
 174404-09
 Date Sampled:
 10/2/2017

 Matrix:
 Water
 Date Received:
 10/2/2017

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	Outliers	Date Analy	vzed
1,2-Dichloroethane-d4	92.2	85.9 - 118		10/3/2017	14:00
4-Bromofluorobenzene	85.4	69.4 - 123		10/3/2017	14:00
Pentafluorobenzene	95.5	81.6 - 114		10/3/2017	14:00
Toluene-D8	92.6	82.7 - 112		10/3/2017	14:00

Method Reference(s): EPA 8260C

EPA 5030C

Data File: x45635.D

Analytical Report Appendix

The reported results relate only to the samples as they have been received by the laboratory.

Each page of this document is part of a multipage report. This document may not be reproduced except in its entirety, without the prior consent of Paradigm Environmental Services, Inc.

All soil/sludge samples have been reported on a dry weight basis, unless qualified "reported as received". Other solids are reported as received.

Low level Volatiles blank reports for soil/solid matrix are based on a nominal 5 gram weight. Sample results and reporting limits are based on actual weight, which may be more or less than 5 grams.

The Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt. Sample condition requirements are defined under the 2003 NELAC Standard, sections 5.5.8.3.1 and 5.5.8.3.2.

NYSDOH ELAP does not certify for all parameters. Paradigm Environmental Services or the indicated subcontracted laboratory does hold certification for all analytes where certification is offered by ELAP unless otherwise specified. Aliquots separated for certain tests, such as TCLP, are indicated on the Chain of Custody and final reports with an "A" suffix.

Data qualifiers are used, when necessary, to provide additional information about the data. This information may be communicated as a flag or as text at the bottom of the report. Please refer to the following list of analyte-specific, frequently used data flags and their meaning:

- "<" = Analyzed for but not detected at or above the quantitation limit.
- "E" = Result has been estimated, calibration limit exceeded.
- "Z" = See case narrative.
- "D" = Sample, Laboratory Control Sample, or Matrix Spike Duplicate results above Relative Percent Difference limit.
- "M" = Matrix spike recoveries outside QC limits. Matrix bias indicated.
- "B" = Method blank contained trace levels of analyte. Refer to included method blank report.
- "J" = Result estimated between the quantitation limit and half the quantitation limit.
- "L" = Laboratory Control Sample recovery outside accepted QC limits.
- "P" = Concentration differs by more than 40% between the primary and secondary analytical columns.
- "NC" = Not calculable. Applicable to RPD if sample or duplicate result is non-detect or estimated (see primary report for data flags). Applicable to MS if sample is greater or equal to ten times the spike added. Applicable to sample surrogates or MS if sample dilution is 10x or higher.
- "*" = Indicates any recoveries outside associated acceptance windows. Surrogate outliers in samples are presumed matrix effects. LCS demonstrates method compliance unless otherwise noted.
- "(1)" = Indicates data from primary column used for QC calculation.
- "A" = denotes a parameter for which ELAP does not offer approval as part of their laboratory certification program.
- "F" = denotes a parameter for which Paradigm does not carry certification, the results for which should therefore only be used where ELAP certification is not required, such as personal exposure assessment.

GENERAL TERMS AND CONDITIONS LABORATORY SERVICES

These Terms and Conditions embody the whole agreement of the parties in the absence of a signed and executed contract between the Laboratory (LAB) and Client. They shall supersede all previous communications, representations, or agreements, either verbal or written. between the parties. The LAB specifically rejects all additional, inconsistent, or conflicting terms, whether printed or otherwise set forth in any purchase order or other communication from the Client to the LAB. The invalidity or unenforceability in whole or in part of any provision, term, or condition hereof shall not affect in any way the validity or enforceability of the remainder of the Terms and Conditions. No waiver by LAB of any provision, term, or condition hereof or of any breach by or obligation of the Client hereunder shall constitute a waiver of such provision, term, or condition on any other occasion or a waiver of any other breach by or obligation of the Client. This agreement shall be administered and interpreted under the laws of the state which services are procured.

Warranty.

Recognizing that the nature of many samples is unknown and that some may contain potentially hazardous components, LAB warrants only that it will perform testing services, obtain findings, and prepare reports in accordance with generally accepted analytical laboratory principles and practices at the time of performance of services. LAB makes no other warranty, express or implied.

Scope and Compensation. LAB agrees to perform the services described in the chain of custody to which these terms and conditions are attached. Unless the parties agree in writing to the contrary, the duties of LAB shall not be construed to exceed the services specifically described. LAB will use LAB default method for all tests unless specified otherwise on the Work Order.

Payment terms are net 30 days from the date of invoice. All overdue payments are subject to an interest charge of one and one-half percent (1-1/2%) per month or a portion thereof. Client shall also be responsible for costs of collection, including payment of reasonable attorney fees if such expense is incurred. The prices, unless stated, do not include any sale, use or other taxes. Such taxes will be added to invoice prices when required.

Prices.

Compensation for services performed will be based on the current Lab Analytical Fee Schedule or on quotations agreed to in writing by the parties. Turnaround time based charges are determined from the time of resolution of all work order questions. Testimony, court appearances or data compilation for legal action will be charged separately. Evaluation and reporting of initial screening runs may incur additional fees.

Limitations of Liability.

In the event of any error, omission, or other professional negligence, the sole and exclusive responsibility of LAB shall be to reperform the deficient work at its own expense and LAB shall have no other liability whatsoever. All claims shall be deemed waived unless made in writing and received by LAB within ninety (90) days following completion of services.

LAB shall have no liability, obligation, or responsibility of any kind for losses, costs, expenses, or other damages (including but not limited to any special, direct, incidental or consequential damages) with respect to LAB's services or results.

All results provided by LAB are strictly for the use of its clients and LAB is in no way responsible for the use of such results by clients or third parties. All reports should be considered in their entirety, and LAB is not responsible for the separation, detachment, or other use of any portion of these reports. Client may not assign the lab report without the written consent of the LAB.

Client covenants and agrees, at its/his/her sole expense, to indemnify, protect, defend, and save harmless the LAB from and against any and all damages, losses, liabilities, obligations, penalties, claims, litigation, demands, defenses, judgments, suits, actions, proceedings, costs, disbursements and/or expenses (including, without limitation attorneys' and experts' fees and disbursements) of any kind whatsoever which may at any time be imposed upon, incurred by or asserted or awarded against client relating to, resulting from or arising out of (a) the breach of this agreement by this client, (b) the negligence of the client in handling, delivering or disclosing any hazardous substance, (c) the violation of the Client of any applicable law, (d) non-compliance by the Client with any

environmental permit or (e) a material misrepresentation in disclosing the materials to be tested.

Hazard Disclosure.

Client represents and warrants that any sample delivered to LAB will be preceded or accompanied by complete written disclosure of the presence of any hazardous substances known or suspected by Client. Client further warrants that any sample containing any hazardous substance that is to be delivered to LAB will be packaged, labeled, transported, and delivered properly and in accordance with applicable laws.

Sample Handling.

Prior to LAB's acceptance of any sample (or after any revocation of acceptance), the entire risk of loss or of damage to such sample remains with Client. Samples are accepted when receipt is acknowledged on chain of custody documentation. In no event will LAB have any responsibility for the action or inaction of any carrier shipping or delivering any sample to or from LAB premises. Client authorizes LAB to proceed with the analysis of samples as received by the laboratory, recognizing that any samples not in compliance with all current DOH-ELAP-NELAP requirements for containers, preservation or holding time will be noted as such on the

Disposal of hazardous waste samples is the responsibility of the Client. If the Client does not wish such samples returned, LAB may add storage and disposal fees to the final invoice. Maximum storage time for samples is 30 days after completion of analysis unless modified by applicable state or federal laws. Client will be required to give the LAB written instructions concerning disposal of these

LAB reserves the absolute right, exercisable at any time, to refuse to receive delivery of, refuse to accept, or revoke acceptance of any sample, which, in the sole judgment of LAB (a) is of unsuitable volume, (b) may be or become unsuitable for or may pose a risk in handling, transport, or processing for any health, safety, environmental or other reason whether or not due to the presence in the sample of any hazardous substance, and whether or not such presence has been disclosed to LAB by Client or (c) if the condition or sample date make the sample unsuitable for analysis.

Legal Responsibility. LAB is solely responsible for performance of this contract, and no affiliated company, director, officer, employee, or agent shall have any legal responsibility hereunder, whether in contract or tort including negligence.

Assignment.

LAB may assign its performance obligations under this contract to other parties, as it deems necessary. LAB shall disclose to Client any assignee (subcontractor) by ELAP ID # on the submitted final report.

Force Majeure.

LAB shall have no responsibility or liability to the Client for any failure or delay in performance by LAB, which results in whole or in part from any cause or circumstance beyond the reasonable control of LAB. Such causes and circumstances shall include, but not limited to, acts of God, acts or orders of any government authority, strikes or other labor disputes, natural disasters, accidents, wars, civil disturbances, difficulties or delays in transportation, mail or delivery services, inability to obtain sufficient services or supplies from LAB's usual suppliers, or any other cause beyond LAB's reasonable control.

Law.

This contract shall be continued under the laws of the State of New York without regard to its conflicts of laws provision.

179 Lake Avenue, Rochester, NY 14608 Office (585) 647-2530 Fax (585) 647-3311 CHAIN OF CUSTODY

MALINA Greator DW-Dinking Water SD-Soil WA-Water WW-Wastewater SL-Sludge REGULESTED ANALYSIS REPOUESTED ANALYSI	Other Other please indicate package needed: please	Other Other Other Please indicate date needed: please
MA. Water WA. Water WA. Water WW. Wastewater REQUESTED ANALYSIS REQUESTED ANALYSI		
MA-Water WA-Water WA-Water WG-Groundwater WW-Wastewater SL-Sludge REDUESTED ANALYSIS REDUESTED ANALYSIS REDUESTED ANALYSIS REQUESTED ANAL		Rush 1 day
MA-Water WA-Water WG-Groundwater WW-Drinking Water WG-Groundwater WW-Drinking Water SU-Stold WG-Groundwater WW-Wastewater SL-Sludge REOUESTED ANALYSIS REOU	Category B	Rush 2 day
THER THER WA-Water WA-Water WW-Wastewater St-Soil WA-Water WW-Groundwater WW-Drinking Water St-Soil WA-Water WW-Drinking Water St-Soil WA-Water WW-Drinking Water St-Soil REQUESTED ANALYSIS REQUESTED AN	Category A NYS	Rush 3 day
THER WA-Water DW-Drinking Water SD-Soil WA-Water DW-Drinking Water SD-Soil WG-Groundwater DW-Drinking Water SL-Sludge MG DWG-Groundwater WW-Wastewater SL-Sludge REQUESTED ANALYSIS REQUESTED ANALYSIS NG DWG-GROUNdwater SL-Sludge REQUESTED A	Batch QC Basi	10 day Ba
THERE TH	None Required None	Standard 5 day
MS / Adura Grecydr WA-Water WA-Water WA-Water WA-Dinking Water WA-Dinking Water SU-Soil WA-Water W	Availability continuent upon lab approval; additional fees may apply.	Availability contingent u
MS Liquid WA-Water WA-Water WA-Water WA-Water WA-Water WA-Water WA-Water WA-Water WA-Drinking Water SO-Soil WA-Water WA-WA-Water WA-Water WA-W	Report Supplements	Turnaround Time
MS Liquid WA-Water WA-Water WA-Water WA-Water WA-Water WA-Water WA-Water WA-Drinking Water SO-Soil WA-Water WA-WA-Water WA-WA-Water WA-WA-Water WA-WA-Water WA-WA-Water WA-Water WA-WA-Water WA-WA-Water WA-WA-Water WA-WA-WATER WA-WATER	Tri	
ATTN: NUS / Lalina (Size ye) ATTN: WA - Water WA -	V 0W 1/W-1-17	•
AMPLE IDENTIFIER MA-Water WA-Water WW-Drinking Water SU-Soil WG-Groundwater WW-Drinking Water SU-Sludge MG-Groundwater WW-Drinking Water SU-Soil WG-Groundwater WW-Wastewater SU-Sludge MG-Groundwater WW-Wastewater SU-Sludge MG-Groundwater WW-Drinking Water SU-Soil WG-Drinking Water SU-Sludge REQUESTED ANALYSIS MG-MG-MG-MG-MG-MG-MG-MG-MG-MG-MG-MG-MG-M	V OW-MW-2	11:30
ATTIVE LIQUID WAS MALLYSIS LOCALY WAS LIQUID WAS ATTIVE DAY OF THE PAINT OF THE PA	1 OW-MW-26	12:40
ATTN: ACTUS / Laura Greger WA-Water WA-Wate	LC-MM-MD. A	j4:00
ATTW: Activation Activatio	V OW-MW-23	11:05
ATTN: ACTUS Laura Greger WA-Water SO-Soil Sous Liquid WA-Water WG-Groundwater WW-Wastewater SL-Sludge A O B T G G G G G G G G G G G G G G G G G G	V, OW-MW-23	11:05
ATTN: Constitution Constitution	1 OW-MW-23	11:05
ATTN: ATTN:	V/ OW-MW-28	2:35
ATTN: ACTUS / AMURCA Greger WA-Water WG-Groundwater MG-Groundwater MG-Groundwater MG-Groundwater MG-Groundwater MG-Groundwater MG-GROUNDW-Wastewater MG-GROUNDW-Wastewater SL-Sludge REQUESTED ANALYSIS NG-GROUNDW-WASTEWALYSIS NG-GROUNDW-W-WASTEWALYSIS NG-GROUNDW-W-WASTEWALYSIS NG-GROUNDW-W-WASTEWALYSIS NG-GROUNDW-W-W-W-W-W-W-W-W-W-W-W-W-W-W-W-W-W-W-	1 / 0	13.50°0.50
ATTN: ATTN: AMA-Water DW-Drinking Water SO-Soil	V, OW-NW-16	10/2/17 09:40
ATTN: ATTN:	m ⊣ − 00 0 2 2 0 0	DATÉ COLLECTED COLLECTED
ATTN: ACTUS //AUCA Grecy or Bous Liquid WA - Water DW - Drinking Water SD - Soil Aqueous Liquid WG - Groundwater WW - Wastewater SL - Sludge	0	
drus /Laura Greger	Matrix	ME16-08 Orchard-Whitney
+141+	ATTIN: ACC	PROJECT REFERENCE
PHONE:	PHONE: 585-385	
STATE: NY ZIPHCON CITY: STATE: ZIP:	CITY: Rochester	
Elist Avenue,	ADDRESS: 339 £	
CLIENT: LAB PROJECT ID	CLIENT:	

Chain of Custody Supplement

Client:	Lu Engineers 174404	Completed by:	6/2/17	
Lab Project ID:	Sample Condition	Date: n Requirements		
	Per NELAC/ELAP 210 NELAC compliance with the sample c		receint	
Condition	Yes	No No	N/A	
Container Type Comments				
Transferred to method- compliant container				
Headspace (<1 mL) Comments	→ vo A			
Preservation Comments				
Chlorine Absent (<0.10 ppm per test strip) Comments				
Holding Time Comments				
Temperature Comments	7°Ciced started infl	eld 10/2/17 15:	os metals	
Sufficient Sample Quantity Comments				
	1			

Client: <u>Lu Engineers, Inc.</u>

Project Reference: Orchard-Whitney 4216-08

Sample Identifier: OW-MW-22_112917

Lab Sample ID:175326-01Date Sampled:11/29/2017Matrix:GroundwaterDate Received:11/29/2017

<u>Mercury</u>

 Analyte
 Result
 Units
 Qualifier
 Date Analyzed

 Mercury
 < 0.000200</td>
 mg/L
 11/30/2017
 13:33

Method Reference(s):EPA 7470APreparation Date:11/30/2017Data File:Hg171130A

Client: <u>Lu Engineers, Inc.</u>

Project Reference: Orchard-Whitney 4216-08

Sample Identifier: OW-MW-22_112917

Lab Sample ID:175326-01Date Sampled:11/29/2017Matrix:GroundwaterDate Received:11/29/2017

RCRA Metals (ICP)

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
Arsenic	< 0.0100	mg/L		12/1/2017 18:36
Barium	0.0833	mg/L	J	12/1/2017 18:36
Cadmium	< 0.00500	mg/L		12/1/2017 18:36
Chromium	0.00568	mg/L	J	12/1/2017 18:36
Lead	< 0.0100	mg/L		12/1/2017 18:36
Selenium	< 0.0200	mg/L		12/4/2017 12:14
Silver	< 0.0100	mg/L		12/1/2017 18:36

Method Reference(s): EPA 6010C

EPA 3005A

 Preparation Date:
 11/30/2017

 Data File:
 171201B

Client: <u>Lu Engineers, Inc.</u>

Project Reference: Orchard-Whitney 4216-08

Sample Identifier: OW-MW-22_112917

Lab Sample ID:175326-01Date Sampled:11/29/2017Matrix:GroundwaterDate Received:11/29/2017

Volatile Organics

Analyte	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 2.00	ug/L		12/5/2017 04:29
1,1,2,2-Tetrachloroethane	< 2.00	ug/L		12/5/2017 04:29
1,1,2-Trichloroethane	< 2.00	ug/L		12/5/2017 04:29
1,1-Dichloroethane	< 2.00	ug/L		12/5/2017 04:29
1,1-Dichloroethene	< 2.00	ug/L		12/5/2017 04:29
1,2,3-Trichlorobenzene	< 5.00	ug/L		12/5/2017 04:29
1,2,4-Trichlorobenzene	< 5.00	ug/L		12/5/2017 04:29
1,2-Dibromo-3-Chloropropane	< 10.0	ug/L		12/5/2017 04:29
1,2-Dibromoethane	< 2.00	ug/L		12/5/2017 04:29
1,2-Dichlorobenzene	< 2.00	ug/L		12/5/2017 04:29
1,2-Dichloroethane	< 2.00	ug/L		12/5/2017 04:29
1,2-Dichloropropane	< 2.00	ug/L		12/5/2017 04:29
1,3-Dichlorobenzene	< 2.00	ug/L		12/5/2017 04:29
1,4-Dichlorobenzene	< 2.00	ug/L		12/5/2017 04:29
1,4-dioxane	< 20.0	ug/L		12/5/2017 04:29
2-Butanone	< 10.0	ug/L		12/5/2017 04:29
2-Hexanone	< 5.00	ug/L		12/5/2017 04:29
4-Methyl-2-pentanone	< 5.00	ug/L		12/5/2017 04:29
Acetone	< 10.0	ug/L		12/5/2017 04:29
Benzene	< 1.00	ug/L		12/5/2017 04:29
Bromochloromethane	< 5.00	ug/L		12/5/2017 04:29
Bromodichloromethane	< 2.00	ug/L	L	12/5/2017 04:29
Bromoform	< 5.00	ug/L		12/5/2017 04:29
Bromomethane	< 2.00	ug/L		12/5/2017 04:29
Carbon disulfide	< 2.00	ug/L		12/5/2017 04:29
Carbon Tetrachloride	< 2.00	ug/L		12/5/2017 04:29
Chlorobenzene	< 2.00	ug/L		12/5/2017 04:29

Client: <u>Lu Engineers, Inc.</u>

Project Reference: Orchard-Whitney 4216-08

-				
Sample Identifier:	OW-MW-22_112917			
Lab Sample ID:	175326-01		Date Sampled:	11/29/2017
Matrix:	Groundwater		Date Received:	11/29/2017
Chloroethane	< 2.00	ug/L		12/5/2017 04:29
Chloroform	< 2.00	ug/L		12/5/2017 04:29
Chloromethane	< 2.00	ug/L		12/5/2017 04:29
cis-1,2-Dichloroethene	< 2.00	ug/L		12/5/2017 04:29
cis-1,3-Dichloropropene	< 2.00	ug/L		12/5/2017 04:29
Cyclohexane	< 10.0	ug/L		12/5/2017 04:29
Dibromochloromethane	< 2.00	ug/L		12/5/2017 04:29
Dichlorodifluoromethan	e < 2.00	ug/L		12/5/2017 04:29
Ethylbenzene	< 2.00	ug/L		12/5/2017 04:29
Freon 113	< 2.00	ug/L		12/5/2017 04:29
Isopropylbenzene	< 2.00	ug/L		12/5/2017 04:29
m,p-Xylene	< 2.00	ug/L		12/5/2017 04:29
Methyl acetate	< 2.00	ug/L		12/5/2017 04:29
Methyl tert-butyl Ether	< 2.00	ug/L		12/5/2017 04:29
Methylcyclohexane	< 2.00	ug/L		12/5/2017 04:29
Methylene chloride	< 5.00	ug/L		12/5/2017 04:29
o-Xylene	< 2.00	ug/L		12/5/2017 04:29
Styrene	< 5.00	ug/L		12/5/2017 04:29
Tetrachloroethene	< 2.00	ug/L		12/5/2017 04:29
Toluene	< 2.00	ug/L		12/5/2017 04:29
trans-1,2-Dichloroethen	e < 2.00	ug/L		12/5/2017 04:29
trans-1,3-Dichloroprope	ene < 2.00	ug/L		12/5/2017 04:29
Trichloroethene	< 2.00	ug/L		12/5/2017 04:29
Trichlorofluoromethane	< 2.00	ug/L		12/5/2017 04:29
Vinyl chloride	< 2.00	ug/L		12/5/2017 04:29

Client: <u>Lu Engineers, Inc.</u>

Project Reference: Orchard-Whitney 4216-08

Sample Identifier: OW-MW-22_112917

Lab Sample ID:175326-01Date Sampled:11/29/2017Matrix:GroundwaterDate Received:11/29/2017

<u>Surrogate</u>	Percent Recovery	Limits	Outliers	Date Analyzed	
1,2-Dichloroethane-d4	87.2	85.9 - 118		12/5/2017	04:29
4-Bromofluorobenzene	92.5	69.4 - 123		12/5/2017	04:29
Pentafluorobenzene	101	81.6 - 114		12/5/2017	04:29
Toluene-D8	95.3	82.7 - 112		12/5/2017	04:29

Method Reference(s): EPA 8260C

EPA 5030C

Data File: x47304.D

Client: <u>Lu Engineers, Inc.</u>

Project Reference: Orchard-Whitney 4216-08

Sample Identifier: OW-MW-16_112917

Lab Sample ID:175326-02Date Sampled:11/29/2017Matrix:GroundwaterDate Received:11/29/2017

<u>Mercury</u>

 Analyte
 Result
 Units
 Qualifier
 Date Analyzed

 Mercury
 < 0.000200</td>
 mg/L
 11/30/2017
 13:36

Method Reference(s):EPA 7470APreparation Date:11/30/2017Data File:Hg171130A

Client: <u>Lu Engineers, Inc.</u>

Project Reference: Orchard-Whitney 4216-08

Sample Identifier: OW-MW-16_112917

Lab Sample ID:175326-02Date Sampled:11/29/2017Matrix:GroundwaterDate Received:11/29/2017

RCRA Metals (ICP)

Analyte	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
Arsenic	0.0140	mg/L		12/5/2017 15:08
Barium	< 0.100	mg/L		12/1/2017 18:40
Cadmium	0.00359	mg/L	J	12/1/2017 18:40
Chromium	0.00579	mg/L	J	12/1/2017 18:40
Lead	< 0.0100	mg/L		12/1/2017 18:40
Selenium	< 0.0200	mg/L		12/1/2017 18:40
Silver	< 0.0100	mg/L		12/1/2017 18:40

Method Reference(s): EPA 6010C

EPA 3005A

 Preparation Date:
 11/30/2017

 Data File:
 171205C

Client: <u>Lu Engineers, Inc.</u>

Project Reference: Orchard-Whitney 4216-08

Sample Identifier: OW-MW-16_112917

Lab Sample ID:175326-02Date Sampled:11/29/2017Matrix:GroundwaterDate Received:11/29/2017

Volatile Organics

Analyte	Result	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 2.00	ug/L		12/5/2017 04:52
1,1,2,2-Tetrachloroethane	< 2.00	ug/L		12/5/2017 04:52
1,1,2-Trichloroethane	< 2.00	ug/L		12/5/2017 04:52
1,1-Dichloroethane	< 2.00	ug/L		12/5/2017 04:52
1,1-Dichloroethene	< 2.00	ug/L		12/5/2017 04:52
1,2,3-Trichlorobenzene	< 5.00	ug/L		12/5/2017 04:52
1,2,4-Trichlorobenzene	< 5.00	ug/L		12/5/2017 04:52
1,2-Dibromo-3-Chloropropane	< 10.0	ug/L		12/5/2017 04:52
1,2-Dibromoethane	< 2.00	ug/L		12/5/2017 04:52
1,2-Dichlorobenzene	< 2.00	ug/L		12/5/2017 04:52
1,2-Dichloroethane	< 2.00	ug/L		12/5/2017 04:52
1,2-Dichloropropane	< 2.00	ug/L		12/5/2017 04:52
1,3-Dichlorobenzene	< 2.00	ug/L		12/5/2017 04:52
1,4-Dichlorobenzene	< 2.00	ug/L		12/5/2017 04:52
1,4-dioxane	< 20.0	ug/L		12/5/2017 04:52
2-Butanone	< 10.0	ug/L		12/5/2017 04:52
2-Hexanone	< 5.00	ug/L		12/5/2017 04:52
4-Methyl-2-pentanone	< 5.00	ug/L		12/5/2017 04:52
Acetone	11.2	ug/L		12/5/2017 04:52
Benzene	1.06	ug/L		12/5/2017 04:52
Bromochloromethane	< 5.00	ug/L		12/5/2017 04:52
Bromodichloromethane	< 2.00	ug/L	L	12/5/2017 04:52
Bromoform	< 5.00	ug/L		12/5/2017 04:52
Bromomethane	< 2.00	ug/L		12/5/2017 04:52
Carbon disulfide	< 2.00	ug/L		12/5/2017 04:52
Carbon Tetrachloride	< 2.00	ug/L		12/5/2017 04:52
Chlorobenzene	< 2.00	ug/L		12/5/2017 04:52

Client: <u>Lu Engineers, Inc.</u>

Project Reference: Orchard-Whitney 4216-08

Sample Identifier:	OW-MW-16_11	2917			
Lab Sample ID:	175326-02			Date Sampled:	11/29/2017
Matrix:	Groundwater			Date Received:	11/29/2017
Chloroethane		< 2.00	ug/L		12/5/2017 04:
Chloroform		< 2.00	ug/L		12/5/2017 04:
Chloromethane		< 2.00	ug/L		12/5/2017 04:
cis-1,2-Dichloroethene		< 2.00	ug/L		12/5/2017 04:
cis-1,3-Dichloropropene	9	< 2.00	ug/L		12/5/2017 04:
Cyclohexane		< 10.0	ug/L		12/5/2017 04:
Dibromochloromethane		< 2.00	ug/L		12/5/2017 04:
Dichlorodifluoromethan	ie	< 2.00	ug/L		12/5/2017 04:
Ethylbenzene		< 2.00	ug/L		12/5/2017 04:
Freon 113		< 2.00	ug/L		12/5/2017 04:
Isopropylbenzene		< 2.00	ug/L		12/5/2017 04:
m,p-Xylene		< 2.00	ug/L		12/5/2017 04:
Methyl acetate		< 2.00	ug/L		12/5/2017 04:
Methyl tert-butyl Ether		< 2.00	ug/L		12/5/2017 04:
Methylcyclohexane		< 2.00	ug/L		12/5/2017 04:
Methylene chloride		< 5.00	ug/L		12/5/2017 04:
o-Xylene		< 2.00	ug/L		12/5/2017 04:
Styrene		< 5.00	ug/L		12/5/2017 04:
Tetrachloroethene		< 2.00	ug/L		12/5/2017 04:
Toluene		< 2.00	ug/L		12/5/2017 04:
trans-1,2-Dichloroethen	ie	< 2.00	ug/L		12/5/2017 04:
trans-1,3-Dichloroprope	ene	< 2.00	ug/L		12/5/2017 04:
Trichloroethene		< 2.00	ug/L		12/5/2017 04:
Trichlorofluoromethane	2	< 2.00	ug/L		12/5/2017 04:
Vinyl chloride		< 2.00	ug/L		12/5/2017 04:

Client: <u>Lu Engineers, Inc.</u>

Project Reference: Orchard-Whitney 4216-08

Sample Identifier: OW-MW-16_112917

Lab Sample ID:175326-02Date Sampled:11/29/2017Matrix:GroundwaterDate Received:11/29/2017

Surrogate	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	zed
1,2-Dichloroethane-d4	87.0	85.9 - 118		12/5/2017	04:52
4-Bromofluorobenzene	92.5	69.4 - 123		12/5/2017	04:52
Pentafluorobenzene	100	81.6 - 114		12/5/2017	04:52
Toluene-D8	96.7	82.7 - 112		12/5/2017	04:52

Method Reference(s): EPA 8260C

EPA 5030C

Data File: x47305.D

Client: <u>Lu Engineers, Inc.</u>

Project Reference: Orchard-Whitney 4216-08

Sample Identifier: OW-MW-26_112917

Lab Sample ID:175326-03Date Sampled:11/29/2017Matrix:GroundwaterDate Received:11/29/2017

<u>Mercury</u>

 Analyte
 Result
 Units
 Qualifier
 Date Analyzed

 Mercury
 < 0.000200</td>
 mg/L
 11/30/2017
 13:39

Method Reference(s):EPA 7470APreparation Date:11/30/2017Data File:Hg171130A

Client: <u>Lu Engineers, Inc.</u>

Project Reference: Orchard-Whitney 4216-08

Sample Identifier: OW-MW-26_112917

Lab Sample ID:175326-03Date Sampled:11/29/2017Matrix:GroundwaterDate Received:11/29/2017

RCRA Metals (ICP)

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
Arsenic	< 0.0100	mg/L		12/1/2017 18:44
Barium	0.0721	mg/L	J	12/1/2017 18:44
Cadmium	< 0.00500	mg/L		12/1/2017 18:44
Chromium	0.00680	mg/L	J	12/1/2017 18:44
Lead	< 0.0100	mg/L		12/1/2017 18:44
Selenium	< 0.0200	mg/L		12/4/2017 12:23
Silver	< 0.0100	mg/L		12/1/2017 18:44

Method Reference(s): EPA 6010C

EPA 3005A

 Preparation Date:
 11/30/2017

 Data File:
 171201B

Client: <u>Lu Engineers, Inc.</u>

Project Reference: Orchard-Whitney 4216-08

Sample Identifier: OW-MW-26_112917

Lab Sample ID:175326-03Date Sampled:11/29/2017Matrix:GroundwaterDate Received:11/29/2017

Volatile Organics

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 2.00	ug/L		12/5/2017 05:16
1,1,2,2-Tetrachloroethane	< 2.00	ug/L		12/5/2017 05:16
1,1,2-Trichloroethane	< 2.00	ug/L		12/5/2017 05:16
1,1-Dichloroethane	< 2.00	ug/L		12/5/2017 05:16
1,1-Dichloroethene	< 2.00	ug/L		12/5/2017 05:16
1,2,3-Trichlorobenzene	< 5.00	ug/L		12/5/2017 05:16
1,2,4-Trichlorobenzene	< 5.00	ug/L		12/5/2017 05:16
1,2-Dibromo-3-Chloropropane	< 10.0	ug/L		12/5/2017 05:16
1,2-Dibromoethane	< 2.00	ug/L		12/5/2017 05:16
1,2-Dichlorobenzene	< 2.00	ug/L		12/5/2017 05:16
1,2-Dichloroethane	< 2.00	ug/L		12/5/2017 05:16
1,2-Dichloropropane	< 2.00	ug/L		12/5/2017 05:16
1,3-Dichlorobenzene	< 2.00	ug/L		12/5/2017 05:16
1,4-Dichlorobenzene	< 2.00	ug/L		12/5/2017 05:16
1,4-dioxane	< 20.0	ug/L		12/5/2017 05:16
2-Butanone	< 10.0	ug/L		12/5/2017 05:16
2-Hexanone	< 5.00	ug/L		12/5/2017 05:16
4-Methyl-2-pentanone	< 5.00	ug/L		12/5/2017 05:16
Acetone	< 10.0	ug/L		12/5/2017 05:16
Benzene	< 1.00	ug/L		12/5/2017 05:16
Bromochloromethane	< 5.00	ug/L		12/5/2017 05:16
Bromodichloromethane	< 2.00	ug/L	L	12/5/2017 05:16
Bromoform	< 5.00	ug/L		12/5/2017 05:16
Bromomethane	< 2.00	ug/L		12/5/2017 05:16
Carbon disulfide	< 2.00	ug/L		12/5/2017 05:16
Carbon Tetrachloride	< 2.00	ug/L		12/5/2017 05:16
Chlorobenzene	< 2.00	ug/L		12/5/2017 05:16

Sample Identifier:

Methyl acetate

Methyl tert-butyl Ether

Methylcyclohexane

Methylene chloride

Tetrachloroethene

Trichloroethene

Vinyl chloride

trans-1,2-Dichloroethene

Trichlorofluoromethane

trans-1,3-Dichloropropene

o-Xylene

Stvrene

Toluene

Lab Project ID: 175326

12/5/2017 05:16

12/5/2017 05:16

12/5/2017 05:16

12/5/2017 05:16

12/5/2017 05:16

12/5/2017 05:16

12/5/2017 05:16

12/5/2017 05:16

12/5/2017 05:16

12/5/2017 05:16

12/5/2017 05:16

12/5/2017 05:16

12/5/2017 05:16

Client: Lu Engineers, Inc.

Project Reference: Orchard-Whitney 4216-08

OW-MW-26 112917

Lab Sample ID:	175326-03			Date Sampled:	11/29/2017
Matrix:	Groundwater			Date Received:	11/29/2017
Chloroethane		< 2.00	ug/L		12/5/2017 05:16
Chloroform		1.43	ug/L	J	12/5/2017 05:16
Chloromethane		< 2.00	ug/L		12/5/2017 05:16
cis-1,2-Dichloroethene		< 2.00	ug/L		12/5/2017 05:16
cis-1,3-Dichloropropene	e	< 2.00	ug/L		12/5/2017 05:16
Cyclohexane		< 10.0	ug/L		12/5/2017 05:16
Dibromochloromethane	2	< 2.00	ug/L		12/5/2017 05:16
Dichlorodifluoromethar	ne	< 2.00	ug/L		12/5/2017 05:16
Ethylbenzene		< 2.00	ug/L		12/5/2017 05:16
Freon 113		< 2.00	ug/L		12/5/2017 05:16
Isopropylbenzene		< 2.00	ug/L		12/5/2017 05:16
m,p-Xylene		< 2.00	ug/L		12/5/2017 05:16

ug/L

< 2.00

< 2.00

< 2.00

< 5.00

< 2.00

< 5.00

< 2.00

< 2.00

< 2.00

< 2.00

< 2.00

< 2.00

< 2.00

Client: <u>Lu Engineers, Inc.</u>

Project Reference: Orchard-Whitney 4216-08

Sample Identifier: OW-MW-26_112917

Lab Sample ID:175326-03Date Sampled:11/29/2017Matrix:GroundwaterDate Received:11/29/2017

Surrogate	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	zed
1,2-Dichloroethane-d4	89.7	85.9 - 118		12/5/2017	05:16
4-Bromofluorobenzene	94.3	69.4 - 123		12/5/2017	05:16
Pentafluorobenzene	100	81.6 - 114		12/5/2017	05:16
Toluene-D8	95.4	82.7 - 112		12/5/2017	05:16

Method Reference(s): EPA 8260C

EPA 5030C

Data File: x47306.D

Client: <u>Lu Engineers, Inc.</u>

Project Reference: Orchard-Whitney 4216-08

Sample Identifier: OW-MW-28_112917

Lab Sample ID:175326-04Date Sampled:11/29/2017Matrix:GroundwaterDate Received:11/29/2017

<u>Mercury</u>

 Analyte
 Result
 Units
 Qualifier
 Date Analyzed

 Mercury
 < 0.000200</td>
 mg/L
 11/30/2017
 13:41

Method Reference(s):EPA 7470APreparation Date:11/30/2017Data File:Hg171130A

Client: <u>Lu Engineers, Inc.</u>

Project Reference: Orchard-Whitney 4216-08

Sample Identifier: OW-MW-28_112917

Lab Sample ID:175326-04Date Sampled:11/29/2017Matrix:GroundwaterDate Received:11/29/2017

RCRA Metals (ICP)

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
Arsenic	< 0.0100	mg/L		12/1/2017 18:49
Barium	0.0553	mg/L	J	12/1/2017 18:49
Cadmium	< 0.00500	mg/L		12/1/2017 18:49
Chromium	< 0.0100	mg/L		12/1/2017 18:49
Lead	< 0.0100	mg/L		12/1/2017 18:49
Selenium	< 0.0200	mg/L		12/4/2017 12:27
Silver	< 0.0100	mg/L		12/1/2017 18:49

Method Reference(s): EPA 6010C

EPA 3005A

 Preparation Date:
 11/30/2017

 Data File:
 171201B

Client: <u>Lu Engineers, Inc.</u>

Project Reference: Orchard-Whitney 4216-08

Sample Identifier: OW-MW-28_112917

Lab Sample ID:175326-04Date Sampled:11/29/2017Matrix:GroundwaterDate Received:11/29/2017

Volatile Organics

Analyte	Result	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 2.00	ug/L		12/5/2017 05:39
1,1,2,2-Tetrachloroethane	< 2.00	ug/L		12/5/2017 05:39
1,1,2-Trichloroethane	< 2.00	ug/L		12/5/2017 05:39
1,1-Dichloroethane	< 2.00	ug/L		12/5/2017 05:39
1,1-Dichloroethene	< 2.00	ug/L		12/5/2017 05:39
1,2,3-Trichlorobenzene	< 5.00	ug/L		12/5/2017 05:39
1,2,4-Trichlorobenzene	< 5.00	ug/L		12/5/2017 05:39
1,2-Dibromo-3-Chloropropane	< 10.0	ug/L		12/5/2017 05:39
1,2-Dibromoethane	< 2.00	ug/L		12/5/2017 05:39
1,2-Dichlorobenzene	< 2.00	ug/L		12/5/2017 05:39
1,2-Dichloroethane	< 2.00	ug/L		12/5/2017 05:39
1,2-Dichloropropane	< 2.00	ug/L		12/5/2017 05:39
1,3-Dichlorobenzene	< 2.00	ug/L		12/5/2017 05:39
1,4-Dichlorobenzene	< 2.00	ug/L		12/5/2017 05:39
1,4-dioxane	< 20.0	ug/L		12/5/2017 05:39
2-Butanone	< 10.0	ug/L		12/5/2017 05:39
2-Hexanone	< 5.00	ug/L		12/5/2017 05:39
4-Methyl-2-pentanone	< 5.00	ug/L		12/5/2017 05:39
Acetone	< 10.0	ug/L		12/5/2017 05:39
Benzene	< 1.00	ug/L		12/5/2017 05:39
Bromochloromethane	< 5.00	ug/L		12/5/2017 05:39
Bromodichloromethane	< 2.00	ug/L	L	12/5/2017 05:39
Bromoform	< 5.00	ug/L		12/5/2017 05:39
Bromomethane	< 2.00	ug/L		12/5/2017 05:39
Carbon disulfide	< 2.00	ug/L		12/5/2017 05:39
Carbon Tetrachloride	< 2.00	ug/L		12/5/2017 05:39
Chlorobenzene	< 2.00	ug/L		12/5/2017 05:39

Client: <u>Lu Engineers, Inc.</u>

Project Reference: Orchard-Whitney 4216-08

Lab Sample ID: 175326-04 Date Samples: 11/29/2017 Matrix: Groundwater Date Received: 11/29/2017 Chloroethane < 2.00 ug/L 12/5/2017 9-33 Chloromethane < 2.00 ug/L 12/5/2017 9-33 Chloromethane < 2.00 ug/L 12/5/2017 95-33 cis-1,2-Dichloroethene < 2.00 ug/L 12/5/2017 95-33 Cyclohexane < 10.0 ug/L 12/5/2017 95-33 Dibromochloromethane < 2.00 ug/L 12/5/2017 95-33 Ethylbenzene < 2.00 ug/L 12/5/2017 95-33 Ethylbenzene < 2.00 ug/L 12/5/2017 95-33 Isopropylbenzene < 2.00 ug/L 12/5/2017 95-33 Methyl scetate < 2.00 ug/L 12/5/2017 95-33 Methylcyclohexane < 2.00 ug/L 12/5/2017 95-33 Methylcyclohexane < 2.00 ug/L 12/5/2017 95-33	Sample Identifier:	OW MW 20 11	12017			
Matrix: Groundwater Date Received: 11/29/2017 3-53 Chloroethane < 2.00 ug/L 12/5/2017 6-53 Chloroform < 2.00 ug/L 12/5/2017 6-53 Chloromethane < 2.00 ug/L 12/5/2017 6-53 cis-1,2-Dichloroethene < 2.00 ug/L 12/5/2017 6-53 cis-1,3-Dichloropropene < 2.00 ug/L 12/5/2017 6-53 Cyclohexane < 10.0 ug/L 12/5/2017 6-53 Dibromochloromethane < 2.00 ug/L 12/5/2017 6-53 Ethylbenzene < 2.00 ug/L 12/5/2017 6-53 Ethylbenzene < 2.00 ug/L 12/5/2017 6-53 Isopropylbenzene < 2.00 ug/L 12/5/2017 6-53 Methyl acetate < 2.00 ug/L 12/5/2017 6-53 Methylcyclohexane < 2.00 ug/L 12/5/2017 6-53 Methylcene chloride < 5.00 ug/L 12/5/2017	•	_	12917			44 100 1004
Chloroethane < 2.00	•					<i>,</i> ,
Chloroform < 2.00 ug/L 12/5/2017 05:34 Chloromethane < 2.00 ug/L 12/5/2017 05:34 cis-1,2-Dichloroethene < 2.00 ug/L 12/5/2017 05:34 cis-1,3-Dichloropropene < 2.00 ug/L 12/5/2017 05:34 Cyclohexane < 10.0 ug/L 12/5/2017 05:34 Dibromochloromethane < 2.00 ug/L 12/5/2017 05:34 Ethylbenzene < 2.00 ug/L 12/5/2017 05:34 Ethylbenzene < 2.00 ug/L 12/5/2017 05:34 Isopropylbenzene < 2.00 ug/L 12/5/2017 05:34 Isopropylbenzene < 2.00 ug/L 12/5/2017 05:34 Methyl acetate < 2.00 ug/L 12/5/2017 05:34 Methyl tert-butyl Ether < 2.00 ug/L 12/5/2017 05:34 Methylchoekxane < 2.00 ug/L 12/5/2017 05:34 Methylene chloride < 5.00 ug/L 12/5/	Matrix:	Groundwater			Date Received:	11/29/2017
Chloromethane < 2.00	Chloroethane		< 2.00	ug/L		12/5/2017 05:39
cis-1,2-Dichloroethene < 2.00	Chloroform		< 2.00	ug/L		12/5/2017 05:39
cis-1,3-Dichloropropene < 2.00	Chloromethane		< 2.00	ug/L		12/5/2017 05:39
Cyclohexane < 10.0	cis-1,2-Dichloroethene		< 2.00	ug/L		12/5/2017 05:39
Dibromochloromethane < 2.00 ug/L 12/5/2017 05:34 Dichlorodifluoromethane < 2.00	cis-1,3-Dichloropropene	•	< 2.00	ug/L		12/5/2017 05:39
Dichlorodifluoromethane < 2.00	Cyclohexane		< 10.0	ug/L		12/5/2017 05:39
Ethylbenzene	Dibromochloromethane		< 2.00	ug/L		12/5/2017 05:39
Freon 113 < 2.00	Dichlorodifluoromethan	ıe	< 2.00	ug/L		12/5/2017 05:39
Isopropylbenzene	Ethylbenzene		< 2.00	ug/L		12/5/2017 05:39
m,p-Xylene < 2.00	Freon 113		< 2.00	ug/L		12/5/2017 05:39
Methyl acetate < 2.00	Isopropylbenzene		< 2.00	ug/L		12/5/2017 05:39
Methyl tert-butyl Ether < 2.00	m,p-Xylene		< 2.00	ug/L		12/5/2017 05:39
Methylcyclohexane < 2.00	Methyl acetate		< 2.00	ug/L		12/5/2017 05:39
Methylene chloride < 5.00	Methyl tert-butyl Ether		< 2.00	ug/L		12/5/2017 05:39
o-Xylene < 2.00	Methylcyclohexane		< 2.00	ug/L		12/5/2017 05:39
Styrene < 5.00	Methylene chloride		< 5.00	ug/L		12/5/2017 05:39
Tetrachloroethene < 2.00	o-Xylene		< 2.00	ug/L		12/5/2017 05:39
Toluene < 2.00	Styrene		< 5.00	ug/L		12/5/2017 05:39
trans-1,2-Dichloroethene < 2.00	Tetrachloroethene		< 2.00	ug/L		12/5/2017 05:39
trans-1,3-Dichloropropene < 2.00	Toluene		< 2.00	ug/L		12/5/2017 05:39
Trichloroethene 1.08 ug/L J 12/5/2017 05:30 Trichlorofluoromethane < 2.00	trans-1,2-Dichloroethen	e	< 2.00	ug/L		12/5/2017 05:39
Trichlorofluoromethane < 2.00 ug/L 12/5/2017 05:30	trans-1,3-Dichloroprope	ene	< 2.00	ug/L		12/5/2017 05:39
, , , , , , , , , , , , , , , , , , ,	Trichloroethene		1.08	ug/L	J	12/5/2017 05:39
Vinyl chloride < 2.00 ug/L 12/5/2017 05:30	Trichlorofluoromethane	!	< 2.00	ug/L		12/5/2017 05:39
	Vinyl chloride		< 2.00	ug/L		12/5/2017 05:39

Client: <u>Lu Engineers, Inc.</u>

Project Reference: Orchard-Whitney 4216-08

Sample Identifier: OW-MW-28_112917

Lab Sample ID:175326-04Date Sampled:11/29/2017Matrix:GroundwaterDate Received:11/29/2017

<u>Surrogate</u>	Percent Recovery Limits		<u>Outliers</u>	Date Analy	zed
1,2-Dichloroethane-d4	88.7	85.9 - 118		12/5/2017	05:39
4-Bromofluorobenzene	92.3	69.4 - 123		12/5/2017	05:39
Pentafluorobenzene	99.5	81.6 - 114		12/5/2017	05:39
Toluene-D8	95.1	82.7 - 112		12/5/2017	05:39

Method Reference(s): EPA 8260C

EPA 5030C

Data File: x47307.D

Client: <u>Lu Engineers, Inc.</u>

Project Reference: Orchard-Whitney 4216-08

Sample Identifier: OW-MW-29_112917

Lab Sample ID:175326-05Date Sampled:11/29/2017Matrix:GroundwaterDate Received:11/29/2017

<u>Mercury</u>

 Analyte
 Result
 Units
 Qualifier
 Date Analyzed

 Mercury
 < 0.000200</td>
 mg/L
 11/30/2017
 13:50

Method Reference(s):EPA 7470APreparation Date:11/30/2017Data File:Hg171130A

Client: <u>Lu Engineers, Inc.</u>

Project Reference: Orchard-Whitney 4216-08

Sample Identifier: OW-MW-29_112917

Lab Sample ID:175326-05Date Sampled:11/29/2017Matrix:GroundwaterDate Received:11/29/2017

RCRA Metals (ICP)

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	<u>Qualifier</u>	Date Analyzed
Arsenic	< 0.0100	mg/L		12/1/2017 19:02
Barium	< 0.100	mg/L		12/1/2017 19:02
Cadmium	0.00553	mg/L		12/1/2017 19:02
Chromium	< 0.0100	mg/L		12/1/2017 19:02
Lead	< 0.0100	mg/L		12/1/2017 19:02
Selenium	< 0.0200	mg/L		12/1/2017 19:02
Silver	< 0.0100	mg/L		12/1/2017 19:02

Method Reference(s): EPA 6010C

EPA 3005A

 Preparation Date:
 11/30/2017

 Data File:
 171201B

Client: <u>Lu Engineers, Inc.</u>

Project Reference: Orchard-Whitney 4216-08

Sample Identifier: OW-MW-29_112917

Lab Sample ID:175326-05Date Sampled:11/29/2017Matrix:GroundwaterDate Received:11/29/2017

Volatile Organics

Analyte	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 2.00	ug/L		12/5/2017 06:03
1,1,2,2-Tetrachloroethane	< 2.00	ug/L		12/5/2017 06:03
1,1,2-Trichloroethane	< 2.00	ug/L		12/5/2017 06:03
1,1-Dichloroethane	< 2.00	ug/L		12/5/2017 06:03
1,1-Dichloroethene	< 2.00	ug/L		12/5/2017 06:03
1,2,3-Trichlorobenzene	< 5.00	ug/L		12/5/2017 06:03
1,2,4-Trichlorobenzene	< 5.00	ug/L		12/5/2017 06:03
1,2-Dibromo-3-Chloropropane	< 10.0	ug/L		12/5/2017 06:03
1,2-Dibromoethane	< 2.00	ug/L		12/5/2017 06:03
1,2-Dichlorobenzene	< 2.00	ug/L		12/5/2017 06:03
1,2-Dichloroethane	< 2.00	ug/L		12/5/2017 06:03
1,2-Dichloropropane	< 2.00	ug/L		12/5/2017 06:03
1,3-Dichlorobenzene	< 2.00	ug/L		12/5/2017 06:03
1,4-Dichlorobenzene	< 2.00	ug/L		12/5/2017 06:03
1,4-dioxane	< 20.0	ug/L		12/5/2017 06:03
2-Butanone	< 10.0	ug/L		12/5/2017 06:03
2-Hexanone	< 5.00	ug/L		12/5/2017 06:03
4-Methyl-2-pentanone	< 5.00	ug/L		12/5/2017 06:03
Acetone	< 10.0	ug/L		12/5/2017 06:03
Benzene	< 1.00	ug/L		12/5/2017 06:03
Bromochloromethane	< 5.00	ug/L		12/5/2017 06:03
Bromodichloromethane	< 2.00	ug/L	L	12/5/2017 06:03
Bromoform	< 5.00	ug/L		12/5/2017 06:03
Bromomethane	< 2.00	ug/L		12/5/2017 06:03
Carbon disulfide	< 2.00	ug/L		12/5/2017 06:03
Carbon Tetrachloride	< 2.00	ug/L		12/5/2017 06:03
Chlorobenzene	< 2.00	ug/L		12/5/2017 06:03

12/5/2017 06:03

Client: <u>Lu Engineers, Inc.</u>

Project Reference: Orchard-Whitney 4216-08

Sample Identifier:	OW-MW-29_112917			
Lab Sample ID:	175326-05		Date Sampled:	11/29/2017
Matrix:	Groundwater		Date Received:	11/29/2017
Chloroethane	< 2.00	ug/L		12/5/2017 06:03
Chloroform	< 2.00	ug/L		12/5/2017 06:03
Chloromethane	< 2.00	ug/L		12/5/2017 06:03
cis-1,2-Dichloroethene	< 2.00	ug/L		12/5/2017 06:03
cis-1,3-Dichloropropene	< 2.00	ug/L		12/5/2017 06:03
Cyclohexane	< 10.0	ug/L		12/5/2017 06:03
Dibromochloromethane	< 2.00	ug/L		12/5/2017 06:03
Dichlorodifluoromethan	e < 2.00	ug/L		12/5/2017 06:03
Ethylbenzene	< 2.00	ug/L		12/5/2017 06:03
Freon 113	< 2.00	ug/L		12/5/2017 06:03
Isopropylbenzene	< 2.00	ug/L		12/5/2017 06:03
m,p-Xylene	< 2.00	ug/L		12/5/2017 06:03
Methyl acetate	< 2.00	ug/L		12/5/2017 06:03
Methyl tert-butyl Ether	< 2.00	ug/L		12/5/2017 06:03
Methylcyclohexane	< 2.00	ug/L		12/5/2017 06:03
Methylene chloride	< 5.00	ug/L		12/5/2017 06:03
o-Xylene	< 2.00	ug/L		12/5/2017 06:03
Styrene	< 5.00	ug/L		12/5/2017 06:03
Tetrachloroethene	< 2.00	ug/L		12/5/2017 06:03
Toluene	< 2.00	ug/L		12/5/2017 06:03
trans-1,2-Dichloroethene	e < 2.00	ug/L		12/5/2017 06:03
trans-1,3-Dichloroprope	ne < 2.00	ug/L		12/5/2017 06:03
Trichloroethene	< 2.00	ug/L		12/5/2017 06:03
Trichlorofluoromethane	< 2.00	ug/L		12/5/2017 06:03

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

ug/L

< 2.00

Vinyl chloride

Client: <u>Lu Engineers, Inc.</u>

Project Reference: Orchard-Whitney 4216-08

Sample Identifier: OW-MW-29_112917

Lab Sample ID:175326-05Date Sampled:11/29/2017Matrix:GroundwaterDate Received:11/29/2017

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	Outliers	Date Analy	vzed
1,2-Dichloroethane-d4	90.9	85.9 - 118		12/5/2017	06:03
4-Bromofluorobenzene	90.3	69.4 - 123		12/5/2017	06:03
Pentafluorobenzene	99.9	81.6 - 114		12/5/2017	06:03
Toluene-D8	94.7	82.7 - 112		12/5/2017	06:03

Method Reference(s): EPA 8260C

EPA 5030C

Data File: x47308.D

Client: <u>Lu Engineers, Inc.</u>

Project Reference: Orchard-Whitney 4216-08

Sample Identifier: OW-MW-27_112917

Lab Sample ID:175326-06Date Sampled:11/29/2017Matrix:GroundwaterDate Received:11/29/2017

<u>Mercury</u>

 Analyte
 Result
 Units
 Qualifier
 Date Analyzed

 Mercury
 < 0.000200</td>
 mg/L
 11/30/2017
 13:53

Method Reference(s):EPA 7470APreparation Date:11/30/2017Data File:Hg171130A

Client: <u>Lu Engineers, Inc.</u>

Project Reference: Orchard-Whitney 4216-08

Sample Identifier: OW-MW-27_112917

Lab Sample ID:175326-06Date Sampled:11/29/2017Matrix:GroundwaterDate Received:11/29/2017

RCRA Metals (ICP)

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analyzed
Arsenic	< 0.0100	mg/L		12/1/2017 19:06
Barium	< 0.100	mg/L		12/1/2017 19:06
Cadmium	< 0.00500	mg/L		12/1/2017 19:06
Chromium	< 0.0100	mg/L		12/1/2017 19:06
Lead	< 0.0100	mg/L		12/1/2017 19:06
Selenium	< 0.0200	mg/L		12/4/2017 12:31
Silver	< 0.0100	mg/L		12/1/2017 19:06

Method Reference(s): EPA 6010C

EPA 3005A

 Preparation Date:
 11/30/2017

 Data File:
 171201B

Client: <u>Lu Engineers, Inc.</u>

Project Reference: Orchard-Whitney 4216-08

Sample Identifier: OW-MW-27_112917

Lab Sample ID:175326-06Date Sampled:11/29/2017Matrix:GroundwaterDate Received:11/29/2017

Volatile Organics

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 2.00	ug/L		12/5/2017 06:26
1,1,2,2-Tetrachloroethane	< 2.00	ug/L		12/5/2017 06:26
1,1,2-Trichloroethane	< 2.00	ug/L		12/5/2017 06:26
1,1-Dichloroethane	< 2.00	ug/L		12/5/2017 06:26
1,1-Dichloroethene	< 2.00	ug/L		12/5/2017 06:26
1,2,3-Trichlorobenzene	< 5.00	ug/L		12/5/2017 06:26
1,2,4-Trichlorobenzene	< 5.00	ug/L		12/5/2017 06:26
1,2-Dibromo-3-Chloropropane	< 10.0	ug/L		12/5/2017 06:26
1,2-Dibromoethane	< 2.00	ug/L		12/5/2017 06:26
1,2-Dichlorobenzene	< 2.00	ug/L		12/5/2017 06:26
1,2-Dichloroethane	< 2.00	ug/L		12/5/2017 06:26
1,2-Dichloropropane	< 2.00	ug/L		12/5/2017 06:26
1,3-Dichlorobenzene	< 2.00	ug/L		12/5/2017 06:26
1,4-Dichlorobenzene	< 2.00	ug/L		12/5/2017 06:26
1,4-dioxane	< 20.0	ug/L		12/5/2017 06:26
2-Butanone	< 10.0	ug/L		12/5/2017 06:26
2-Hexanone	< 5.00	ug/L		12/5/2017 06:26
4-Methyl-2-pentanone	< 5.00	ug/L		12/5/2017 06:26
Acetone	< 10.0	ug/L		12/5/2017 06:26
Benzene	< 1.00	ug/L		12/5/2017 06:26
Bromochloromethane	< 5.00	ug/L		12/5/2017 06:26
Bromodichloromethane	< 2.00	ug/L	LM	12/5/2017 06:26
Bromoform	< 5.00	ug/L		12/5/2017 06:26
Bromomethane	< 2.00	ug/L		12/5/2017 06:26
Carbon disulfide	< 2.00	ug/L		12/5/2017 06:26
Carbon Tetrachloride	< 2.00	ug/L		12/5/2017 06:26
Chlorobenzene	< 2.00	ug/L		12/5/2017 06:26

Client: <u>Lu Engineers, Inc.</u>

Project Reference: Orchard-Whitney 4216-08

Sample Identifier:	OW-MW-27_112917			
Lab Sample ID:	175326-06		Date Sampled:	11/29/2017
Matrix:	Groundwater		Date Received:	11/29/2017
Chloroethane	< 2.00	ug/L		12/5/2017 06:26
Chloroform	< 2.00	ug/L		12/5/2017 06:26
Chloromethane	< 2.00	ug/L		12/5/2017 06:26
cis-1,2-Dichloroethene	< 2.00	ug/L		12/5/2017 06:26
cis-1,3-Dichloropropene	< 2.00	ug/L		12/5/2017 06:26
Cyclohexane	< 10.0	ug/L		12/5/2017 06:26
Dibromochloromethane	< 2.00	ug/L		12/5/2017 06:26
Dichlorodifluoromethan	e < 2.00	ug/L		12/5/2017 06:26
Ethylbenzene	< 2.00	ug/L		12/5/2017 06:26
Freon 113	< 2.00	ug/L		12/5/2017 06:26
Isopropylbenzene	< 2.00	ug/L		12/5/2017 06:26
m,p-Xylene	< 2.00	ug/L		12/5/2017 06:26
Methyl acetate	< 2.00	ug/L		12/5/2017 06:26
Methyl tert-butyl Ether	< 2.00	ug/L		12/5/2017 06:26
Methylcyclohexane	< 2.00	ug/L		12/5/2017 06:26
Methylene chloride	< 5.00	ug/L		12/5/2017 06:26
o-Xylene	< 2.00	ug/L		12/5/2017 06:26
Styrene	< 5.00	ug/L		12/5/2017 06:26
Tetrachloroethene	< 2.00	ug/L		12/5/2017 06:26
Toluene	< 2.00	ug/L		12/5/2017 06:26
trans-1,2-Dichloroethen	e < 2.00	ug/L		12/5/2017 06:26
trans-1,3-Dichloroprope	ene < 2.00	ug/L		12/5/2017 06:26
Trichloroethene	< 2.00	ug/L		12/5/2017 06:26
Trichlorofluoromethane	< 2.00	ug/L		12/5/2017 06:26
Vinyl chloride	< 2.00	ug/L		12/5/2017 06:26

Client: <u>Lu Engineers, Inc.</u>

Project Reference: Orchard-Whitney 4216-08

Sample Identifier: OW-MW-27_112917

Lab Sample ID:175326-06Date Sampled:11/29/2017Matrix:GroundwaterDate Received:11/29/2017

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	zed
1,2-Dichloroethane-d4	94.2	85.9 - 118		12/5/2017	06:26
4-Bromofluorobenzene	91.7	69.4 - 123		12/5/2017	06:26
Pentafluorobenzene	101	81.6 - 114		12/5/2017	06:26
Toluene-D8	94.8	82.7 - 112		12/5/2017	06:26

Method Reference(s): EPA 8260C

EPA 5030C

Data File: x47309.D

Client: <u>Lu Engineers, Inc.</u>

Project Reference: Orchard-Whitney 4216-08

Sample Identifier: OW-MW-Field Duplicate

Lab Sample ID:175326-07Date Sampled:11/29/2017Matrix:GroundwaterDate Received:11/29/2017

<u>Mercury</u>

 Analyte
 Result
 Units
 Qualifier
 Date Analyzed

 Mercury
 < 0.000200</td>
 mg/L
 11/30/2017
 14:01

Method Reference(s):EPA 7470APreparation Date:11/30/2017Data File:Hg171130A

Client: <u>Lu Engineers, Inc.</u>

Project Reference: Orchard-Whitney 4216-08

Sample Identifier: OW-MW-Field Duplicate

Lab Sample ID:175326-07Date Sampled:11/29/2017Matrix:GroundwaterDate Received:11/29/2017

RCRA Metals (ICP)

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analyzed
Arsenic	< 0.0100	mg/L		12/1/2017 19:26
Barium	< 0.100	mg/L		12/1/2017 19:26
Cadmium	0.00555	mg/L		12/1/2017 19:26
Chromium	< 0.0100	mg/L		12/1/2017 19:26
Lead	< 0.0100	mg/L		12/1/2017 19:26
Selenium	< 0.0200	mg/L		12/1/2017 19:26
Silver	< 0.0100	mg/L		12/1/2017 19:26

Method Reference(s): EPA 6010C

EPA 3005A

 Preparation Date:
 11/30/2017

 Data File:
 171201B

Client: <u>Lu Engineers, Inc.</u>

Project Reference: Orchard-Whitney 4216-08

Sample Identifier: OW-MW-Field Duplicate

Lab Sample ID:175326-07Date Sampled:11/29/2017Matrix:GroundwaterDate Received:11/29/2017

Volatile Organics

Analyte	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 2.00	ug/L		12/5/2017 07:37
1,1,2,2-Tetrachloroethane	< 2.00	ug/L		12/5/2017 07:37
1,1,2-Trichloroethane	< 2.00	ug/L		12/5/2017 07:37
1,1-Dichloroethane	< 2.00	ug/L		12/5/2017 07:37
1,1-Dichloroethene	< 2.00	ug/L		12/5/2017 07:37
1,2,3-Trichlorobenzene	< 5.00	ug/L		12/5/2017 07:37
1,2,4-Trichlorobenzene	< 5.00	ug/L		12/5/2017 07:37
1,2-Dibromo-3-Chloropropane	< 10.0	ug/L		12/5/2017 07:37
1,2-Dibromoethane	< 2.00	ug/L		12/5/2017 07:37
1,2-Dichlorobenzene	< 2.00	ug/L		12/5/2017 07:37
1,2-Dichloroethane	< 2.00	ug/L		12/5/2017 07:37
1,2-Dichloropropane	< 2.00	ug/L		12/5/2017 07:37
1,3-Dichlorobenzene	< 2.00	ug/L		12/5/2017 07:37
1,4-Dichlorobenzene	< 2.00	ug/L		12/5/2017 07:37
1,4-dioxane	< 20.0	ug/L		12/5/2017 07:37
2-Butanone	< 10.0	ug/L		12/5/2017 07:37
2-Hexanone	< 5.00	ug/L		12/5/2017 07:37
4-Methyl-2-pentanone	< 5.00	ug/L		12/5/2017 07:37
Acetone	< 10.0	ug/L		12/5/2017 07:37
Benzene	< 1.00	ug/L		12/5/2017 07:37
Bromochloromethane	< 5.00	ug/L		12/5/2017 07:37
Bromodichloromethane	< 2.00	ug/L	L	12/5/2017 07:37
Bromoform	< 5.00	ug/L		12/5/2017 07:37
Bromomethane	< 2.00	ug/L		12/5/2017 07:37
Carbon disulfide	< 2.00	ug/L		12/5/2017 07:37
Carbon Tetrachloride	< 2.00	ug/L		12/5/2017 07:37
Chlorobenzene	< 2.00	ug/L		12/5/2017 07:37

Client: <u>Lu Engineers, Inc.</u>

Project Reference: Orchard-Whitney 4216-08

C 1 11 .:C	OTAL MALE: 11 D. 1: .			
Sample Identifier:	OW-MW-Field Duplicate	<u>)</u>		
Lab Sample ID:	175326-07		Date Sampled:	11/29/2017
Matrix:	Groundwater		Date Received:	11/29/2017
Chloroethane	< 2.00	ug/L		12/5/2017 07:37
Chloroform	< 2.00	ug/L		12/5/2017 07:37
Chloromethane	< 2.00	ug/L		12/5/2017 07:37
cis-1,2-Dichloroethene	< 2.00	ug/L		12/5/2017 07:37
cis-1,3-Dichloropropen	e < 2.00	ug/L		12/5/2017 07:37
Cyclohexane	< 10.0	ug/L		12/5/2017 07:37
Dibromochloromethan	e < 2.00	ug/L		12/5/2017 07:37
Dichlorodifluorometha	ne < 2.00	ug/L		12/5/2017 07:37
Ethylbenzene	< 2.00	ug/L		12/5/2017 07:37
Freon 113	< 2.00	ug/L		12/5/2017 07:37
Isopropylbenzene	< 2.00	ug/L		12/5/2017 07:37
m,p-Xylene	< 2.00	ug/L		12/5/2017 07:37
Methyl acetate	< 2.00	ug/L		12/5/2017 07:37
Methyl tert-butyl Ether	< 2.00	ug/L		12/5/2017 07:37
Methylcyclohexane	< 2.00	ug/L		12/5/2017 07:37
Methylene chloride	< 5.00	ug/L		12/5/2017 07:37
o-Xylene	< 2.00	ug/L		12/5/2017 07:37
Styrene	< 5.00	ug/L		12/5/2017 07:37
Tetrachloroethene	< 2.00	ug/L		12/5/2017 07:37
Toluene	< 2.00	ug/L		12/5/2017 07:37
trans-1,2-Dichloroether	ne < 2.00	ug/L		12/5/2017 07:37
trans-1,3-Dichloroprop	ene < 2.00	ug/L		12/5/2017 07:37
Trichloroethene	< 2.00	ug/L		12/5/2017 07:37
Trichlorofluoromethan	e < 2.00	ug/L		12/5/2017 07:37
Vinyl chloride	< 2.00	ug/L		12/5/2017 07:37

Client: <u>Lu Engineers, Inc.</u>

Project Reference: Orchard-Whitney 4216-08

Sample Identifier: OW-MW-Field Duplicate

Lab Sample ID:175326-07Date Sampled:11/29/2017Matrix:GroundwaterDate Received:11/29/2017

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	rs <u>Date Analyzed</u>	
1,2-Dichloroethane-d4	92.4	85.9 - 118		12/5/2017	07:37
4-Bromofluorobenzene	93.5	69.4 - 123		12/5/2017	07:37
Pentafluorobenzene	100	81.6 - 114		12/5/2017	07:37
Toluene-D8	95.8	82.7 - 112		12/5/2017	07:37

Method Reference(s): EPA 8260C

EPA 5030C

Data File: x47312.D

Client: <u>Lu Engineers, Inc.</u>

Project Reference: Orchard-Whitney 4216-08

Sample Identifier: OW-MW-23_112917

Lab Sample ID:175326-08Date Sampled:11/29/2017Matrix:GroundwaterDate Received:11/29/2017

<u>Mercury</u>

 Analyte
 Result
 Units
 Qualifier
 Date Analyzed

 Mercury
 < 0.000200</td>
 mg/L
 11/30/2017
 14:04

Method Reference(s):EPA 7470APreparation Date:11/30/2017Data File:Hg171130A

Client: <u>Lu Engineers, Inc.</u>

Project Reference: Orchard-Whitney 4216-08

Sample Identifier: OW-MW-23_112917

Lab Sample ID:175326-08Date Sampled:11/29/2017Matrix:GroundwaterDate Received:11/29/2017

RCRA Metals (ICP)

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analyzed
Arsenic	0.00540	mg/L	J	12/1/2017 19:31
Barium	0.112	mg/L		12/1/2017 19:31
Cadmium	< 0.00500	mg/L		12/1/2017 19:31
Chromium	< 0.0100	mg/L		12/1/2017 19:31
Lead	0.00626	mg/L	J	12/1/2017 19:31
Selenium	< 0.0200	mg/L		12/1/2017 19:31
Silver	< 0.0100	mg/L		12/1/2017 19:31

Method Reference(s): EPA 6010C

EPA 3005A

 Preparation Date:
 11/30/2017

 Data File:
 171201B

Client: <u>Lu Engineers, Inc.</u>

Project Reference: Orchard-Whitney 4216-08

Sample Identifier: OW-MW-23_112917

Lab Sample ID:175326-08Date Sampled:11/29/2017Matrix:GroundwaterDate Received:11/29/2017

Volatile Organics

Analyte	Result	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 2.00	ug/L		12/5/2017 08:00
1,1,2,2-Tetrachloroethane	< 2.00	ug/L		12/5/2017 08:00
1,1,2-Trichloroethane	< 2.00	ug/L		12/5/2017 08:00
1,1-Dichloroethane	< 2.00	ug/L		12/5/2017 08:00
1,1-Dichloroethene	< 2.00	ug/L		12/5/2017 08:00
1,2,3-Trichlorobenzene	< 5.00	ug/L		12/5/2017 08:00
1,2,4-Trichlorobenzene	< 5.00	ug/L		12/5/2017 08:00
1,2-Dibromo-3-Chloropropane	< 10.0	ug/L		12/5/2017 08:00
1,2-Dibromoethane	< 2.00	ug/L		12/5/2017 08:00
1,2-Dichlorobenzene	< 2.00	ug/L		12/5/2017 08:00
1,2-Dichloroethane	< 2.00	ug/L		12/5/2017 08:00
1,2-Dichloropropane	< 2.00	ug/L		12/5/2017 08:00
1,3-Dichlorobenzene	< 2.00	ug/L		12/5/2017 08:00
1,4-Dichlorobenzene	< 2.00	ug/L		12/5/2017 08:00
1,4-dioxane	< 20.0	ug/L		12/5/2017 08:00
2-Butanone	< 10.0	ug/L		12/5/2017 08:00
2-Hexanone	< 5.00	ug/L		12/5/2017 08:00
4-Methyl-2-pentanone	< 5.00	ug/L		12/5/2017 08:00
Acetone	< 10.0	ug/L		12/5/2017 08:00
Benzene	< 1.00	ug/L		12/5/2017 08:00
Bromochloromethane	< 5.00	ug/L		12/5/2017 08:00
Bromodichloromethane	< 2.00	ug/L	L	12/5/2017 08:00
Bromoform	< 5.00	ug/L		12/5/2017 08:00
Bromomethane	< 2.00	ug/L		12/5/2017 08:00
Carbon disulfide	< 2.00	ug/L		12/5/2017 08:00
Carbon Tetrachloride	< 2.00	ug/L		12/5/2017 08:00
Chlorobenzene	< 2.00	ug/L		12/5/2017 08:00

Client: <u>Lu Engineers, Inc.</u>

Project Reference: Orchard-Whitney 4216-08

Sample Identifier:	OW-MW-23_112917			
Lab Sample ID:	175326-08		Date Sampled:	11/29/2017
Matrix:	Groundwater		Date Received:	11/29/2017
Chloroethane	< 2.00	ug/L		12/5/2017 08:00
Chloroform	< 2.00	ug/L		12/5/2017 08:00
Chloromethane	< 2.00	ug/L		12/5/2017 08:00
cis-1,2-Dichloroethene	< 2.00	ug/L		12/5/2017 08:00
cis-1,3-Dichloropropene	< 2.00	ug/L		12/5/2017 08:00
Cyclohexane	< 10.0	ug/L		12/5/2017 08:00
Dibromochloromethane	< 2.00	ug/L		12/5/2017 08:00
Dichlorodifluoromethan	e < 2.00	ug/L		12/5/2017 08:00
Ethylbenzene	< 2.00	ug/L		12/5/2017 08:00
Freon 113	< 2.00	ug/L		12/5/2017 08:00
Isopropylbenzene	< 2.00	ug/L		12/5/2017 08:00
m,p-Xylene	< 2.00	ug/L		12/5/2017 08:00
Methyl acetate	< 2.00	ug/L		12/5/2017 08:00
Methyl tert-butyl Ether	< 2.00	ug/L		12/5/2017 08:00
Methylcyclohexane	< 2.00	ug/L		12/5/2017 08:00
Methylene chloride	< 5.00	ug/L		12/5/2017 08:00
o-Xylene	< 2.00	ug/L		12/5/2017 08:00
Styrene	< 5.00	ug/L		12/5/2017 08:00
Tetrachloroethene	< 2.00	ug/L		12/5/2017 08:00
Toluene	< 2.00	ug/L		12/5/2017 08:00
trans-1,2-Dichloroethen	e < 2.00	ug/L		12/5/2017 08:00
trans-1,3-Dichloroprope	ene < 2.00	ug/L		12/5/2017 08:00
Trichloroethene	< 2.00	ug/L		12/5/2017 08:00
Trichlorofluoromethane	< 2.00	ug/L		12/5/2017 08:00
Vinyl chloride	< 2.00	ug/L		12/5/2017 08:00

Client: <u>Lu Engineers, Inc.</u>

Project Reference: Orchard-Whitney 4216-08

Sample Identifier: OW-MW-23_112917

Lab Sample ID:175326-08Date Sampled:11/29/2017Matrix:GroundwaterDate Received:11/29/2017

Surrogate	Percent Recovery	Limits	Outliers	Date Analy	zed
1,2-Dichloroethane-d4	96.9	85.9 - 118		12/5/2017	08:00
4-Bromofluorobenzene	92.8	69.4 - 123		12/5/2017	08:00
Pentafluorobenzene	97.8	81.6 - 114		12/5/2017	08:00
Toluene-D8	94.1	82.7 - 112		12/5/2017	08:00

Method Reference(s): EPA 8260C

EPA 5030C

Data File: x47313.D

Client: <u>Lu Engineers, Inc.</u>

Project Reference: Orchard-Whitney 4216-08

Sample Identifier: Trip Blank

 Lab Sample ID:
 175326-09
 Date Sampled:
 11/29/2017

 Matrix:
 Water
 Date Received:
 11/29/2017

Volatile Organics

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 2.00	ug/L		12/5/2017 08:24
1,1,2,2-Tetrachloroethane	< 2.00	ug/L		12/5/2017 08:24
1,1,2-Trichloroethane	< 2.00	ug/L		12/5/2017 08:24
1,1-Dichloroethane	< 2.00	ug/L		12/5/2017 08:24
1,1-Dichloroethene	< 2.00	ug/L		12/5/2017 08:24
1,2,3-Trichlorobenzene	< 5.00	ug/L		12/5/2017 08:24
1,2,4-Trichlorobenzene	< 5.00	ug/L		12/5/2017 08:24
1,2-Dibromo-3-Chloropropane	< 10.0	ug/L		12/5/2017 08:24
1,2-Dibromoethane	< 2.00	ug/L		12/5/2017 08:24
1,2-Dichlorobenzene	< 2.00	ug/L		12/5/2017 08:24
1,2-Dichloroethane	< 2.00	ug/L		12/5/2017 08:24
1,2-Dichloropropane	< 2.00	ug/L		12/5/2017 08:24
1,3-Dichlorobenzene	< 2.00	ug/L		12/5/2017 08:24
1,4-Dichlorobenzene	< 2.00	ug/L		12/5/2017 08:24
1,4-dioxane	< 20.0	ug/L		12/5/2017 08:24
2-Butanone	< 10.0	ug/L		12/5/2017 08:24
2-Hexanone	< 5.00	ug/L		12/5/2017 08:24
4-Methyl-2-pentanone	< 5.00	ug/L		12/5/2017 08:24
Acetone	< 10.0	ug/L		12/5/2017 08:24
Benzene	< 1.00	ug/L		12/5/2017 08:24
Bromochloromethane	< 5.00	ug/L		12/5/2017 08:24
Bromodichloromethane	< 2.00	ug/L	L	12/5/2017 08:24
Bromoform	< 5.00	ug/L		12/5/2017 08:24
Bromomethane	< 2.00	ug/L		12/5/2017 08:24
Carbon disulfide	< 2.00	ug/L		12/5/2017 08:24
Carbon Tetrachloride	< 2.00	ug/L		12/5/2017 08:24
Chlorobenzene	< 2.00	ug/L		12/5/2017 08:24

Client: <u>Lu Engineers, Inc.</u>

Project Reference: Orchard-Whitney 4216-08

Sample Identifier:	Trip Blank				
Lab Sample ID:	175326-09			Date Sampled:	11/29/2017
Matrix:	Water			Date Received:	11/29/2017
Chloroethane		< 2.00	ug/L		12/5/2017 08:24
Chloroform		< 2.00	ug/L		12/5/2017 08:24
Chloromethane		< 2.00	ug/L		12/5/2017 08:24
cis-1,2-Dichloroethene		< 2.00	ug/L		12/5/2017 08:24
cis-1,3-Dichloropropen	e	< 2.00	ug/L		12/5/2017 08:24
Cyclohexane		< 10.0	ug/L		12/5/2017 08:24
Dibromochloromethane	ė	< 2.00	ug/L		12/5/2017 08:24
Dichlorodifluorometha	ne	< 2.00	ug/L		12/5/2017 08:24
Ethylbenzene		< 2.00	ug/L		12/5/2017 08:24
Freon 113		< 2.00	ug/L		12/5/2017 08:24
Isopropylbenzene		< 2.00	ug/L		12/5/2017 08:24
m,p-Xylene		< 2.00	ug/L		12/5/2017 08:24
Methyl acetate		< 2.00	ug/L		12/5/2017 08:24
Methyl tert-butyl Ether		< 2.00	ug/L		12/5/2017 08:24
Methylcyclohexane		< 2.00	ug/L		12/5/2017 08:24
Methylene chloride		< 5.00	ug/L		12/5/2017 08:24
o-Xylene		< 2.00	ug/L		12/5/2017 08:24
Styrene		< 5.00	ug/L		12/5/2017 08:24
Tetrachloroethene		< 2.00	ug/L		12/5/2017 08:24
Toluene		< 2.00	ug/L		12/5/2017 08:24
trans-1,2-Dichloroether	ne	< 2.00	ug/L		12/5/2017 08:24
trans-1,3-Dichloroprop	ene	< 2.00	ug/L		12/5/2017 08:24
Trichloroethene		< 2.00	ug/L		12/5/2017 08:24
Trichlorofluoromethan	e	< 2.00	ug/L		12/5/2017 08:24
Vinyl chloride		< 2.00	ug/L		12/5/2017 08:24

Client: <u>Lu Engineers, Inc.</u>

Project Reference: Orchard-Whitney 4216-08

Sample Identifier: Trip Blank

 Lab Sample ID:
 175326-09
 Date Sampled:
 11/29/2017

 Matrix:
 Water
 Date Received:
 11/29/2017

Surrogate	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	zed
1,2-Dichloroethane-d4	97.6	85.9 - 118		12/5/2017	08:24
4-Bromofluorobenzene	92.7	69.4 - 123		12/5/2017	08:24
Pentafluorobenzene	99.7	81.6 - 114		12/5/2017	08:24
Toluene-D8	93.9	82.7 - 112		12/5/2017	08:24

Method Reference(s): EPA 8260C

EPA 5030C

Data File: x47314.D

OC Report for Laboratory Control Sample

Client: <u>Lu Engineers, Inc.</u>

Project Reference: Orchard-Whitney 4216-08

Lab Project ID: 175326

5326-01

SDG #:

Matrix: Groundwater

Volatile Organics

	Spike	Spike	LCS	LCS %	% Rec	LCS	Date
Analyte	Added	Units	Result	Recovery	Limits	Outliers	Analyzed
1,1,1-Trichloroethane	20.0	ug/L	17.7	88.3	70.3 - 119		12/5/2017
1,1,2,2-Tetrachloroethane	20.0	ug/L	20.9	105	83.4 - 123		12/5/2017
1,1,2-Trichloroethane	20.0	ug/L	18.4	92.1	85.2 - 118		12/5/2017
1,1-Dichloroethane	20.0	ug/L	18.1	90.5	76.7 - 114		12/5/2017
1,1-Dichloroethene	20.0	ug/L	18.4	92.2	62.4 - 115		12/5/2017
1,2-Dichlorobenzene	20.0	ug/L	18.5	92.6	87.3 - 118		12/5/2017
1,2-Dichloroethane	20.0	ug/L	18.6	92.9	85.5 - 122		12/5/2017
1,2-Dichloropropane	20.0	ug/L	17.8	89.1	81.2 - 109		12/5/2017
1,3-Dichlorobenzene	20.0	ug/L	17.6	88.1	80.9 - 114		12/5/2017
1,4-Dichlorobenzene	20.0	ug/L	17.8	88.8	80.2 - 109		12/5/2017
Benzene	20.0	ug/L	18.8	94.2	86.6 - 114		12/5/2017
Bromodichloromethane	20.0	ug/L	16.7	83.6	85.7 - 116	*	12/5/2017
Bromoform	20.0	ug/L	17.5	87.3	69.2 - 110		12/5/2017
Bromomethane	20.0	ug/L	17.8	89.0	50.6 - 170		12/5/2017
Carbon Tetrachloride	20.0	ug/L	17.4	87.1	65.5 - 121		12/5/2017
Chlorobenzene	20.0	ug/L	17.9	89.5	84.7 - 110		12/5/2017
This report is part of a multipage document and should only be surfueded in its outlines. The Obside of Co.	hould only be evaluated in it	to optimate The	9		11:1:1		

QC Report for Laboratory Control Sample

Client: <u>Lu Engineers, Inc.</u>

Project Reference: Orchard-Whitney 4216-08

Lab Project ID: 175326 SDG #: 5326-01

Groundwater

Matrix:

Volatile Organics

Vincel obligation	Trichlorofluoromethane	Trichloroethene	trans-1,3-Dichloropropene	trans-1,2-Dichloroethene	Toluene	Tetrachloroethene	Methylene chloride	Ethylbenzene	Dibromochloromethane	cis-1,3-Dichloropropene	Chloromethane	Chloroform .	Chloroethane	Analyte	,
20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	Added	Spike
ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	Units	Spike
20.4	18.4	18.0	16.2	17.6	17.7	19.0	19.2	17.3	18.5	17.8	21.8	18.0	17.2	Result	LCS
102	92.1	90.0	80.8	87.9	88.7	95.0	95.9	86.3	92.5	89.0	109	90.0	85.8	Recovery	LCS %
70.6 - 144	62.6 - 139	76.3 - 113	65.7 - 109	70.5 - 118	87 - 113	73.6 - 126	46.4 - 150	81.5 - 118	81.2 - 119	74 - 114	73.9 - 143	82.1 - 119	78 - 140	Limits	% Rec
														Outliers	LCS
12/5/2017	12/5/2017	12/5/2017	12/5/2017	12/5/2017	12/5/2017	12/5/2017	12/5/2017	12/5/2017	12/5/2017	12/5/2017	12/5/2017	12/5/2017	12/5/2017	Analyzed	Date

compliance with the sample condition requirements upon receipt. This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including

QC Report for Laboratory Control Sample

Client: Lu Engineers, Inc.

Project Reference: Orchard-Whitney 4216-08

Lab Project ID:

175326

SDG #: 5326-01

Groundwater

Matrix:

Volatile Organics

Method Reference(s):

Analyte

EPA 8260C

Added Spike

Units Spike

Result LCS

Recovery LCS%

Outliers LCS

Analyzed Date

% Rec Limits

x47293.D EPA 5030C

Data File:

QC Number: QC Batch ID:

voaw171205A

compliance with the sample condition requirements upon receipt. This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including

Analytical Report Appendix

The reported results relate only to the samples as they have been received by the laboratory.

Each page of this document is part of a multipage report. This document may not be reproduced except in its entirety, without the prior consent of Paradigm Environmental Services, Inc.

All soil/sludge samples have been reported on a dry weight basis, unless qualified "reported as received". Other solids are reported as received.

Low level Volatiles blank reports for soil/solid matrix are based on a nominal 5 gram weight. Sample results and reporting limits are based on actual weight, which may be more or less than 5 grams.

The Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt. Sample condition requirements are defined under the 2003 NELAC Standard, sections 5.5.8.3.1 and 5.5.8.3.2.

NYSDOH ELAP does not certify for all parameters. Paradigm Environmental Services or the indicated subcontracted laboratory does hold certification for all analytes where certification is offered by ELAP unless otherwise specified. Aliquots separated for certain tests, such as TCLP, are indicated on the Chain of Custody and final reports with an "A" suffix.

Data qualifiers are used, when necessary, to provide additional information about the data. This information may be communicated as a flag or as text at the bottom of the report. Please refer to the following list of analyte-specific, frequently used data flags and their meaning:

- "<" = Analyzed for but not detected at or above the quantitation limit.
- "E" = Result has been estimated, calibration limit exceeded.
- "Z" = See case narrative.
- "D" = Sample, Laboratory Control Sample, or Matrix Spike Duplicate results above Relative Percent Difference limit.
- "M" = Matrix spike recoveries outside QC limits. Matrix bias indicated.
- "B" = Method blank contained trace levels of analyte. Refer to included method blank report.
- "J" = Result estimated between the quantitation limit and half the quantitation limit.
- "L" = Laboratory Control Sample recovery outside accepted QC limits.
- "P" = Concentration differs by more than 40% between the primary and secondary analytical columns.
- "NC" = Not calculable. Applicable to RPD if sample or duplicate result is non-detect or estimated (see primary report for data flags). Applicable to MS if sample is greater or equal to ten times the spike added. Applicable to sample surrogates or MS if sample dilution is 10x or higher.
- "*" = Indicates any recoveries outside associated acceptance windows. Surrogate outliers in samples are presumed matrix effects. LCS demonstrates method compliance unless otherwise noted.
- "(1)" = Indicates data from primary column used for QC calculation.
- "A" = denotes a parameter for which ELAP does not offer approval as part of their laboratory certification program.
- "F" = denotes a parameter for which Paradigm does not carry certification, the results for which should therefore only be used where ELAP certification is not required, such as personal exposure assessment.

GENERAL TERMS AND CONDITIONS LABORATORY SERVICES

These Terms and Conditions embody the whole agreement of the parties in the absence of a signed and executed contract between the Laboratory (LAB) and Client. They shall supersede all previous communications, representations, or agreements, either verbal or written. between the parties. The LAB specifically rejects all additional, inconsistent, or conflicting terms, whether printed or otherwise set forth in any purchase order or other communication from the Client to the LAB. The invalidity or unenforceability in whole or in part of any provision, term, or condition hereof shall not affect in any way the validity or enforceability of the remainder of the Terms and Conditions. No waiver by LAB of any provision, term, or condition hereof or of any breach by or obligation of the Client hereunder shall constitute a waiver of such provision, term, or condition on any other occasion or a waiver of any other breach by or obligation of the Client. This agreement shall be administered and interpreted under the laws of the state which services are procured.

Warranty.

Recognizing that the nature of many samples is unknown and that some may contain potentially hazardous components, LAB warrants only that it will perform testing services, obtain findings, and prepare reports in accordance with generally accepted analytical laboratory principles and practices at the time of performance of services. LAB makes no other warranty, express or implied.

Scope and Compensation. LAB agrees to perform the services described in the chain of custody to which these terms and conditions are attached. Unless the parties agree in writing to the contrary, the duties of LAB shall not be construed to exceed the services specifically described. LAB will use LAB default method for all tests unless specified otherwise on the Work Order.

Payment terms are net 30 days from the date of invoice. All overdue payments are subject to an interest charge of one and one-half percent (1-1/2%) per month or a portion thereof. Client shall also be responsible for costs of collection, including payment of reasonable attorney fees if such expense is incurred. The prices, unless stated, do not include any sale, use or other taxes. Such taxes will be added to invoice prices when required.

Prices.

Compensation for services performed will be based on the current Lab Analytical Fee Schedule or on quotations agreed to in writing by the parties. Turnaround time based charges are determined from the time of resolution of all work order questions. Testimony, court appearances or data compilation for legal action will be charged separately. Evaluation and reporting of initial screening runs may incur additional fees.

Limitations of Liability.

In the event of any error, omission, or other professional negligence, the sole and exclusive responsibility of LAB shall be to reperform the deficient work at its own expense and LAB shall have no other liability whatsoever. All claims shall be deemed waived unless made in writing and received by LAB within ninety (90) days following completion of services.

LAB shall have no liability, obligation, or responsibility of any kind for losses, costs, expenses, or other damages (including but not limited to any special, direct, incidental or consequential damages) with respect to LAB's services or results.

All results provided by LAB are strictly for the use of its clients and LAB is in no way responsible for the use of such results by clients or third parties. All reports should be considered in their entirety, and LAB is not responsible for the separation, detachment, or other use of any portion of these reports. Client may not assign the lab report without the written consent of the LAB.

Client covenants and agrees, at its/his/her sole expense, to indemnify, protect, defend, and save harmless the LAB from and against any and all damages, losses, liabilities, obligations, penalties, claims, litigation, demands, defenses, judgments, suits, actions, proceedings, costs, disbursements and/or expenses (including, without limitation attorneys' and experts' fees and disbursements) of any kind whatsoever which may at any time be imposed upon, incurred by or asserted or awarded against client relating to, resulting from or arising out of (a) the breach of this agreement by this client, (b) the negligence of the client in handling, delivering or disclosing any hazardous substance, (c) the violation of the Client of any applicable law, (d) non-compliance by the Client with any

environmental permit or (e) a material misrepresentation in disclosing the materials to be tested.

Hazard Disclosure.

Client represents and warrants that any sample delivered to LAB will be preceded or accompanied by complete written disclosure of the presence of any hazardous substances known or suspected by Client. Client further warrants that any sample containing any hazardous substance that is to be delivered to LAB will be packaged, labeled, transported, and delivered properly and in accordance with applicable laws.

Sample Handling.

Prior to LAB's acceptance of any sample (or after any revocation of acceptance), the entire risk of loss or of damage to such sample remains with Client. Samples are accepted when receipt is acknowledged on chain of custody documentation. In no event will LAB have any responsibility for the action or inaction of any carrier shipping or delivering any sample to or from LAB premises. Client authorizes LAB to proceed with the analysis of samples as received by the laboratory, recognizing that any samples not in compliance with all current DOH-ELAP-NELAP requirements for containers, preservation or holding time will be noted as such on the

Disposal of hazardous waste samples is the responsibility of the Client. If the Client does not wish such samples returned, LAB may add storage and disposal fees to the final invoice. Maximum storage time for samples is 30 days after completion of analysis unless modified by applicable state or federal laws. Client will be required to give the LAB written instructions concerning disposal of these

LAB reserves the absolute right, exercisable at any time, to refuse to receive delivery of, refuse to accept, or revoke acceptance of any sample, which, in the sole judgment of LAB (a) is of unsuitable volume, (b) may be or become unsuitable for or may pose a risk in handling, transport, or processing for any health, safety, environmental or other reason whether or not due to the presence in the sample of any hazardous substance, and whether or not such presence has been disclosed to LAB by Client or (c) if the condition or sample date make the sample unsuitable for analysis.

Legal Responsibility. LAB is solely responsible for performance of this contract, and no affiliated company, director, officer, employee, or agent shall have any legal responsibility hereunder, whether in contract or tort including negligence.

Assignment.

LAB may assign its performance obligations under this contract to other parties, as it deems necessary. LAB shall disclose to Client any assignee (subcontractor) by ELAP ID # on the submitted final report.

Force Majeure.

LAB shall have no responsibility or liability to the Client for any failure or delay in performance by LAB, which results in whole or in part from any cause or circumstance beyond the reasonable control of LAB. Such causes and circumstances shall include, but not limited to, acts of God, acts or orders of any government authority, strikes or other labor disputes, natural disasters, accidents, wars, civil disturbances, difficulties or delays in transportation, mail or delivery services, inability to obtain sufficient services or supplies from LAB's usual suppliers, or any other cause beyond LAB's reasonable control.

Law.

This contract shall be continued under the laws of the State of New York without regard to its conflicts of laws provision.

CHAIN OF CUSTODY

ditions	See additional page for sample conditions	See addit		Section Section		ļ			
inversed by clien	to Paradigm Terms and Conditions (reverse). 10 1/10/17	gm Terms and Co	/29//フー/3:4フ , client agrees to Paradi	$S^{3}C^{3}C^{3}C^{3}C^{3}C^{3}C^{3}C^{3}C$	Other EDD Spease indicate EDD needed : By		Other please indicate package needed:		Other please indicate date needed:
L		Date/Time	Date/	Received @ Lab By	Re				Rush 1 day
		1, 41 01	(1) 20/11			Ø.	Category B		Rush 2 day
	PIF	139/17 1320	Date	Received By	NYSDEC EDD X		Category A		Rush 3 day
			Date	Relinquished By	Basic EDD Re		Batch QC		10 day
	Otal Cost.	loglist . a. on	Date	Sampled by	None Required		None Required		Standard 5 day
		19117/13:05	Traver 11/12	hung #		Availability contingent upon lab approval; additional fees may apply.	t upon lab app	lity contingen	Availab
@ 1/29/17		1	,		ements	Report Supplements		d Time	Turnaround Time
1/1 09			01/24/12 62 1m25-200	WA ZI	and a	Trip BI			
10 08				WG 3 V	22112017	OW-MW-	~	13:00	<
09 97		3	/ //	W6 3 1	Field Tunlicate	JW-MW-	~		
0	/			WQ VI	11 NSD 112917	JW-MW-	<	10:05	_
107			2./	WG S	77 MS_1/29/7	OW-MW-a	1	10.00	-
>06			<u> </u>		74/129/7	イグーMM-MO	~	9.75	
G N			W/	WG W	29-112914	OW-MW-29	<	9:50	
40			<u> </u>	20 9W	-28 112917	OW-MW-2	/	11:05	
63			M/		4112112	OW-MW-26	1	12:05	
02				W6 3 V	11	OW-MW-16	V	10:55	1
0			1/	W6 3 1	-22_112917	BW-MW-22		11:55	4/100/14
PARADIGM LAB SAMPLE NUMBER	REMARKS		RCBA Mtals	×- × - × - × - × - × - × - × - × - × -	SAMPLE IDENTIFIER		m	TIME	DATE COLLECTED
		SIS	REQUESTED ANALYS						
OL - Oil AR - Air	SD - Solid WP - Wipe PT - Paint CK - Caulk	SO - Soil SL - Sludge	DW - Drinking Water WW - Wastewater	WA - Water WG - Groundwater	ous Liquid Aqueous Liquid	Matrix Codes: AQ - Aque NQ - Non-	diga	80-9184	1
ingineers, con	gregandines winding news nom			ATTN:	Frichers	ATTN: GREY!	NCE	PROJECT REFERENCE	PROJE
	Email:			PHONE:	414-538	1			
	Quotation #:	ZIP:	SALSTARE	14894 CITY	STATE: NY	CITY: Roch	7		
	175326			4 200 ADDRESS:	GOST MIRMON SUT	ADDRESS: 290	9		1
	LAB PROJECT ID			CLIENT:	a cined &	0	- 5	TARADIGM	てひて
			INVOICE TO:		REPORT TO:)

Chain of Custody Supplement

Lu Engineers	Completed by:	Glenn Perzulo	
Sample Condition	on Requirements	11/29/17	
	condition requirements upo No	on receipt N/A	
VOA-			
5°C:ced 11/29/17	13:47	Minls	
	Sample Condition Per NELAC/ELAP 23 NELAC compliance with the sample Yes Society 10/29/17	Date: Sample Condition Requirements Per NELAC/ELAP 210/241/242/243/244 NELAC compliance with the sample condition requirements upon Yes No VOA S°C:CEAL N/29/// 13:47	

Client: <u>Lu Engineers, Inc.</u>

Project Reference: Orchard Whitney 4216-08

Sample Identifier: OW-MW-22_032118

Lab Sample ID:181072-01Date Sampled:3/21/2018Matrix:GroundwaterDate Received:3/22/2018

<u>Mercury</u>

 Analyte
 Result
 Units
 Qualifier
 Date Analyzed

 Mercury
 < 0.000200</td>
 mg/L
 3/26/2018 09:32

Method Reference(s):EPA 7470APreparation Date:3/23/2018Data File:Hg180326A

Client: <u>Lu Engineers, Inc.</u>

Project Reference: Orchard Whitney 4216-08

Sample Identifier: OW-MW-22_032118

Lab Sample ID:181072-01Date Sampled:3/21/2018Matrix:GroundwaterDate Received:3/22/2018

RCRA Metals (ICP)

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
Arsenic	0.00946	mg/L	J	3/26/2018 19:56
Barium	0.0735	mg/L	J	3/26/2018 19:56
Cadmium	< 0.00500	mg/L		3/26/2018 19:56
Chromium	0.00541	mg/L	J	3/26/2018 19:56
Lead	< 0.0100	mg/L		3/26/2018 19:56
Selenium	0.0157	mg/L	J	3/26/2018 19:56
Silver	< 0.0100	mg/L		3/26/2018 19:56

Method Reference(s): EPA 6010C

EPA 3005A

Preparation Date: 3/23/2018
Data File: 180326A

Client: <u>Lu Engineers, Inc.</u>

Project Reference: Orchard Whitney 4216-08

Sample Identifier: OW-MW-22_032118

Lab Sample ID:181072-01Date Sampled:3/21/2018Matrix:GroundwaterDate Received:3/22/2018

Volatile Organics

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	<u>Qualifier</u>	Date Analyzed
1,1,1-Trichloroethane	< 2.00	ug/L		3/26/2018 14:48
1,1,2,2-Tetrachloroethane	< 2.00	ug/L		3/26/2018 14:48
1,1,2-Trichloroethane	< 2.00	ug/L		3/26/2018 14:48
1,1-Dichloroethane	< 2.00	ug/L		3/26/2018 14:48
1,1-Dichloroethene	< 2.00	ug/L		3/26/2018 14:48
1,2,3-Trichlorobenzene	< 5.00	ug/L		3/26/2018 14:48
1,2,4-Trichlorobenzene	< 5.00	ug/L		3/26/2018 14:48
1,2-Dibromo-3-Chloropropane	< 10.0	ug/L		3/26/2018 14:48
1,2-Dibromoethane	< 2.00	ug/L		3/26/2018 14:48
1,2-Dichlorobenzene	< 2.00	ug/L		3/26/2018 14:48
1,2-Dichloroethane	< 2.00	ug/L		3/26/2018 14:48
1,2-Dichloropropane	< 2.00	ug/L		3/26/2018 14:48
1,3-Dichlorobenzene	< 2.00	ug/L		3/26/2018 14:48
1,4-Dichlorobenzene	< 2.00	ug/L		3/26/2018 14:48
1,4-dioxane	< 20.0	ug/L		3/26/2018 14:48
2-Butanone	< 10.0	ug/L		3/26/2018 14:48
2-Hexanone	< 5.00	ug/L		3/26/2018 14:48
4-Methyl-2-pentanone	< 5.00	ug/L		3/26/2018 14:48
Acetone	< 10.0	ug/L		3/26/2018 14:48
Benzene	< 1.00	ug/L		3/26/2018 14:48
Bromochloromethane	< 5.00	ug/L		3/26/2018 14:48
Bromodichloromethane	< 2.00	ug/L		3/26/2018 14:48
Bromoform	< 5.00	ug/L		3/26/2018 14:48
Bromomethane	< 2.00	ug/L		3/26/2018 14:48
Carbon disulfide	< 2.00	ug/L		3/26/2018 14:48
Carbon Tetrachloride	< 2.00	ug/L		3/26/2018 14:48
Chlorobenzene	< 2.00	ug/L		3/26/2018 14:48

3/26/2018 14:48

3/26/2018 14:48

Client: <u>Lu Engineers, Inc.</u>

Project Reference: Orchard Whitney 4216-08

-					
Sample Identifier:	OW-MW-22_032118				
Lab Sample ID:	181072-01		Date Sampled:	3/21/2018	
Matrix:	Groundwater		Date Received:	3/22/2018	
Chloroethane	< 2.00	ug/L		3/26/2018	14:48
Chloroform	< 2.00	ug/L		3/26/2018	14:48
Chloromethane	< 2.00	ug/L		3/26/2018	14:48
cis-1,2-Dichloroethene	< 2.00	ug/L		3/26/2018	14:48
cis-1,3-Dichloropropen	e < 2.00	ug/L		3/26/2018	14:48
Cyclohexane	< 10.0	ug/L		3/26/2018	14:48
Dibromochloromethane	< 2.00	ug/L		3/26/2018	14:48
Dichlorodifluoromethar	ne < 2.00	ug/L		3/26/2018	14:48
Ethylbenzene	< 2.00	ug/L		3/26/2018	14:48
Freon 113	< 2.00	ug/L		3/26/2018	14:48
Isopropylbenzene	< 2.00	ug/L		3/26/2018	14:48
m,p-Xylene	< 2.00	ug/L		3/26/2018	14:48
Methyl acetate	< 2.00	ug/L		3/26/2018	14:48
Methyl tert-butyl Ether	< 2.00	ug/L		3/26/2018	14:48
Methylcyclohexane	< 2.00	ug/L		3/26/2018	14:48
Methylene chloride	< 5.00	ug/L		3/26/2018	14:48
o-Xylene	< 2.00	ug/L		3/26/2018	14:48
Styrene	< 5.00	ug/L		3/26/2018	14:48
Tetrachloroethene	< 2.00	ug/L		3/26/2018	14:48
Toluene	< 2.00	ug/L		3/26/2018	14:48
trans-1,2-Dichloroether	ne < 2.00	ug/L		3/26/2018	14:48
trans-1,3-Dichloroprope	ene < 2.00	ug/L		3/26/2018	14:48
Trichloroethene	< 2.00	ug/L		3/26/2018	14:48
m . 11				0.40.6.40.4.0	

ug/L

ug/L

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

< 2.00

< 2.00

Trichlorofluoromethane

Vinyl chloride

Client: <u>Lu Engineers, Inc.</u>

Project Reference: Orchard Whitney 4216-08

Sample Identifier: OW-MW-22_032118

Lab Sample ID:181072-01Date Sampled:3/21/2018Matrix:GroundwaterDate Received:3/22/2018

Surrogate	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	vzed
1,2-Dichloroethane-d4	103	77.2 - 121		3/26/2018	14:48
4-Bromofluorobenzene	92.4	70 - 123		3/26/2018	14:48
Pentafluorobenzene	99.8	85.4 - 110		3/26/2018	14:48
Toluene-D8	97.8	83.8 - 112		3/26/2018	14:48

Method Reference(s): EPA 8260C

EPA 5030C

Data File: x49410.D

Client: <u>Lu Engineers, Inc.</u>

Project Reference: Orchard Whitney 4216-08

Sample Identifier: OW-MW-23_032118

Lab Sample ID:181072-02Date Sampled:3/21/2018Matrix:GroundwaterDate Received:3/22/2018

<u>Mercury</u>

 Analyte
 Result
 Units
 Qualifier
 Date Analyzed

 Mercury
 < 0.000200</td>
 mg/L
 3/26/2018 09:34

Method Reference(s):EPA 7470APreparation Date:3/23/2018Data File:Hg180326A

Client: <u>Lu Engineers, Inc.</u>

Project Reference: Orchard Whitney 4216-08

Sample Identifier: OW-MW-23_032118

Lab Sample ID:181072-02Date Sampled:3/21/2018Matrix:GroundwaterDate Received:3/22/2018

RCRA Metals (ICP)

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
Arsenic	< 0.0100	mg/L		3/26/2018 20:00
Barium	0.114	mg/L		3/26/2018 20:00
Cadmium	< 0.00500	mg/L		3/26/2018 20:00
Chromium	< 0.0100	mg/L		3/26/2018 20:00
Lead	0.00805	mg/L	J	3/26/2018 20:00
Selenium	< 0.0200	mg/L		3/26/2018 20:00
Silver	< 0.0100	mg/L		3/26/2018 20:00

Method Reference(s): EPA 6010C

EPA 3005A

Preparation Date: 3/23/2018
Data File: 180326A

Client: <u>Lu Engineers, Inc.</u>

Project Reference: Orchard Whitney 4216-08

Sample Identifier: OW-MW-23_032118

Lab Sample ID:181072-02Date Sampled:3/21/2018Matrix:GroundwaterDate Received:3/22/2018

Volatile Organics

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 2.00	ug/L		3/26/2018 15:12
1,1,2,2-Tetrachloroethane	< 2.00	ug/L		3/26/2018 15:12
1,1,2-Trichloroethane	< 2.00	ug/L		3/26/2018 15:12
1,1-Dichloroethane	< 2.00	ug/L		3/26/2018 15:12
1,1-Dichloroethene	< 2.00	ug/L		3/26/2018 15:12
1,2,3-Trichlorobenzene	< 5.00	ug/L		3/26/2018 15:12
1,2,4-Trichlorobenzene	< 5.00	ug/L		3/26/2018 15:12
1,2-Dibromo-3-Chloropropane	< 10.0	ug/L		3/26/2018 15:12
1,2-Dibromoethane	< 2.00	ug/L		3/26/2018 15:12
1,2-Dichlorobenzene	< 2.00	ug/L		3/26/2018 15:12
1,2-Dichloroethane	< 2.00	ug/L		3/26/2018 15:12
1,2-Dichloropropane	< 2.00	ug/L		3/26/2018 15:12
1,3-Dichlorobenzene	< 2.00	ug/L		3/26/2018 15:12
1,4-Dichlorobenzene	< 2.00	ug/L		3/26/2018 15:12
1,4-dioxane	< 20.0	ug/L		3/26/2018 15:12
2-Butanone	< 10.0	ug/L		3/26/2018 15:12
2-Hexanone	< 5.00	ug/L		3/26/2018 15:12
4-Methyl-2-pentanone	< 5.00	ug/L		3/26/2018 15:12
Acetone	< 10.0	ug/L		3/26/2018 15:12
Benzene	< 1.00	ug/L		3/26/2018 15:12
Bromochloromethane	< 5.00	ug/L		3/26/2018 15:12
Bromodichloromethane	< 2.00	ug/L		3/26/2018 15:12
Bromoform	< 5.00	ug/L		3/26/2018 15:12
Bromomethane	< 2.00	ug/L		3/26/2018 15:12
Carbon disulfide	< 2.00	ug/L		3/26/2018 15:12
Carbon Tetrachloride	< 2.00	ug/L		3/26/2018 15:12
Chlorobenzene	< 2.00	ug/L		3/26/2018 15:12

Lab Project ID: 181072

Lu Engineers, Inc. Client:

Project Reference: Orchard Whitney 4216-08

Sample Identifier:	OW-MW-23_032118		
Lab Sample ID:	181072-02	Date Sampled:	3/21/2018
Matrix:	Groundwater	Date Received:	3/22/2018
Clalanasahlaana	. 2.00		2/26/2010

Lab Sample ID:	181072-02		Date Sampled:	3/21/2018	
Matrix:	Groundwater		Date Received:	3/22/2018	
Chloroethane	< 2.00	ug/L		3/26/2018 15:12	2
Chloroform	< 2.00	ug/L		3/26/2018 15:12	2
Chloromethane	< 2.00	ug/L		3/26/2018 15:12	2
cis-1,2-Dichloroethene	< 2.00	ug/L		3/26/2018 15:12	2
cis-1,3-Dichloropropene	< 2.00	ug/L		3/26/2018 15:12	2
Cyclohexane	< 10.0	ug/L		3/26/2018 15:12	2
Dibromochloromethane	< 2.00	ug/L		3/26/2018 15:12	2
Dichlorodifluoromethan	e < 2.00	ug/L		3/26/2018 15:12	2
Ethylbenzene	< 2.00	ug/L		3/26/2018 15:12	2
Freon 113	< 2.00	ug/L		3/26/2018 15:12	2
Isopropylbenzene	< 2.00	ug/L		3/26/2018 15:12	2
m,p-Xylene	< 2.00	ug/L		3/26/2018 15:12	2
Methyl acetate	< 2.00	ug/L		3/26/2018 15:12	2
Methyl tert-butyl Ether	< 2.00	ug/L		3/26/2018 15:12	2
Methylcyclohexane	< 2.00	ug/L		3/26/2018 15:12	2
Methylene chloride	< 5.00	ug/L		3/26/2018 15:12	2
o-Xylene	< 2.00	ug/L		3/26/2018 15:12	2
Styrene	< 5.00	ug/L		3/26/2018 15:12	2
Tetrachloroethene	< 2.00	ug/L		3/26/2018 15:12	2
Toluene	< 2.00	ug/L		3/26/2018 15:12	2
trans-1,2-Dichloroethen	e < 2.00	ug/L		3/26/2018 15:12	2
trans-1,3-Dichloroprope	ene < 2.00	ug/L		3/26/2018 15:12	2
Trichloroethene	< 2.00	ug/L		3/26/2018 15:12	2
Trichlorofluoromethane	< 2.00	ug/L		3/26/2018 15:12	2
Vinyl chloride	< 2.00	ug/L		3/26/2018 15:12	2

Client: <u>Lu Engineers, Inc.</u>

Project Reference: Orchard Whitney 4216-08

Sample Identifier: OW-MW-23_032118

Lab Sample ID:181072-02Date Sampled:3/21/2018Matrix:GroundwaterDate Received:3/22/2018

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	vzed
1,2-Dichloroethane-d4	103	77.2 - 121		3/26/2018	15:12
4-Bromofluorobenzene	90.0	70 - 123		3/26/2018	15:12
Pentafluorobenzene	97.4	85.4 - 110		3/26/2018	15:12
Toluene-D8	95.6	83.8 - 112		3/26/2018	15:12

Method Reference(s): EPA 8260C

EPA 5030C

Data File: x49411.D

Client: <u>Lu Engineers, Inc.</u>

Project Reference: Orchard Whitney 4216-08

Sample Identifier: OW-MW-26_032118

Lab Sample ID:181072-03Date Sampled:3/21/2018Matrix:GroundwaterDate Received:3/22/2018

<u>Mercury</u>

AnalyteResultUnitsQualifierDate AnalyzedMercury< 0.000200</td>mg/L3/26/2018 09:49

Method Reference(s):EPA 7470APreparation Date:3/23/2018Data File:Hg180326A

Client: <u>Lu Engineers, Inc.</u>

Project Reference: Orchard Whitney 4216-08

Sample Identifier: OW-MW-26_032118

Lab Sample ID:181072-03Date Sampled:3/21/2018Matrix:GroundwaterDate Received:3/22/2018

RCRA Metals (ICP)

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
Arsenic	< 0.0100	mg/L		3/26/2018 20:22
Barium	0.0645	mg/L	J	3/26/2018 20:22
Cadmium	< 0.00500	mg/L		3/26/2018 20:22
Chromium	< 0.0100	mg/L		3/26/2018 20:22
Lead	< 0.0100	mg/L		3/26/2018 20:22
Selenium	< 0.0200	mg/L		3/26/2018 20:22
Silver	< 0.0100	mg/L		3/26/2018 20:22

Method Reference(s): EPA 6010C

EPA 3005A

Preparation Date: 3/23/2018
Data File: 180326A

Client: <u>Lu Engineers, Inc.</u>

Project Reference: Orchard Whitney 4216-08

Sample Identifier: OW-MW-26_032118

Lab Sample ID:181072-03Date Sampled:3/21/2018Matrix:GroundwaterDate Received:3/22/2018

Volatile Organics

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 2.00	ug/L		3/26/2018 15:35
1,1,2,2-Tetrachloroethane	< 2.00	ug/L		3/26/2018 15:35
1,1,2-Trichloroethane	< 2.00	ug/L		3/26/2018 15:35
1,1-Dichloroethane	< 2.00	ug/L		3/26/2018 15:35
1,1-Dichloroethene	< 2.00	ug/L		3/26/2018 15:35
1,2,3-Trichlorobenzene	< 5.00	ug/L		3/26/2018 15:35
1,2,4-Trichlorobenzene	< 5.00	ug/L		3/26/2018 15:35
1,2-Dibromo-3-Chloropropane	< 10.0	ug/L		3/26/2018 15:35
1,2-Dibromoethane	< 2.00	ug/L		3/26/2018 15:35
1,2-Dichlorobenzene	< 2.00	ug/L		3/26/2018 15:35
1,2-Dichloroethane	< 2.00	ug/L		3/26/2018 15:35
1,2-Dichloropropane	< 2.00	ug/L		3/26/2018 15:35
1,3-Dichlorobenzene	< 2.00	ug/L		3/26/2018 15:35
1,4-Dichlorobenzene	< 2.00	ug/L		3/26/2018 15:35
1,4-dioxane	< 20.0	ug/L		3/26/2018 15:35
2-Butanone	< 10.0	ug/L		3/26/2018 15:35
2-Hexanone	< 5.00	ug/L		3/26/2018 15:35
4-Methyl-2-pentanone	< 5.00	ug/L		3/26/2018 15:35
Acetone	< 10.0	ug/L		3/26/2018 15:35
Benzene	< 1.00	ug/L		3/26/2018 15:35
Bromochloromethane	< 5.00	ug/L		3/26/2018 15:35
Bromodichloromethane	< 2.00	ug/L		3/26/2018 15:35
Bromoform	< 5.00	ug/L		3/26/2018 15:35
Bromomethane	< 2.00	ug/L		3/26/2018 15:35
Carbon disulfide	< 2.00	ug/L		3/26/2018 15:35
Carbon Tetrachloride	< 2.00	ug/L		3/26/2018 15:35
Chlorobenzene	< 2.00	ug/L		3/26/2018 15:35

Client: <u>Lu Engineers, Inc.</u>

Project Reference: Orchard Whitney 4216-08

Sample Identifier:	OW-MW-26_032118		
Lab Sample ID:	181072-03	Date Sampled:	3/21/2018
Matrix.	Cyanadayatay	Data Bassiyadı	2 /22 /2010

Matrix: Groundwater Date Received: 3/22/2018 Chloroethane < 2.00 ug/L 3/26/2018 15:35 Chloroform 1.18 ug/L J 3/26/2018 15:35 Chloromethane < 2.00 ug/L 3/26/2018 15:35 cis-1.2-Dichloroethene < 2.00 ug/L 3/26/2018 15:35 cis-1,3-Dichloropropene < 2.00 ug/L 3/26/2018 15:35 Cyclohexane < 10.0 ug/L 3/26/2018 15:35 Dibromochloromethane < 2.00 ug/L 3/26/2018 15:35 Dichlorodifluoromethane < 2.00 3/26/2018 15:35 ug/L Ethylbenzene < 2.00 ug/L 3/26/2018 15:35 Freon 113 < 2.00 ug/L 3/26/2018 15:35 Isopropylbenzene < 2.00 ug/L 3/26/2018 15:35 m,p-Xylene < 2.00 ug/L 3/26/2018 15:35 Methyl acetate < 2.00 ug/L 3/26/2018 15:35 < 2.00 Methyl tert-butyl Ether ug/L 3/26/2018 15:35 Methylcyclohexane < 2.00 ug/L 3/26/2018 15:35 3/26/2018 15:35 Methylene chloride < 5.00 ug/L o-Xylene < 2.00 ug/L 3/26/2018 15:35 < 5.00 ug/L Stvrene 3/26/2018 15:35 Tetrachloroethene < 2.00 ug/L 3/26/2018 15:35 Toluene < 2.00 ug/L 3/26/2018 15:35 trans-1,2-Dichloroethene < 2.00 ug/L 3/26/2018 15:35 trans-1,3-Dichloropropene < 2.00 ug/L 3/26/2018 15:35 3/26/2018 15:35 Trichloroethene 1.13 ug/L I Trichlorofluoromethane < 2.00 ug/L 3/26/2018 15:35 Vinyl chloride < 2.00 ug/L 3/26/2018 15:35

Client: <u>Lu Engineers, Inc.</u>

Project Reference: Orchard Whitney 4216-08

Sample Identifier: OW-MW-26_032118

Lab Sample ID:181072-03Date Sampled:3/21/2018Matrix:GroundwaterDate Received:3/22/2018

Surrogate	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	zed
1,2-Dichloroethane-d4	101	77.2 - 121		3/26/2018	15:35
4-Bromofluorobenzene	91.1	70 - 123		3/26/2018	15:35
Pentafluorobenzene	100	85.4 - 110		3/26/2018	15:35
Toluene-D8	96.2	83.8 - 112		3/26/2018	15:35

Method Reference(s): EPA 8260C

EPA 5030C

Data File: x49412.D

Client: <u>Lu Engineers, Inc.</u>

Project Reference: Orchard Whitney 4216-08

Sample Identifier: OW-MW-Field Duplicate

Lab Sample ID:181072-04Date Sampled:3/21/2018Matrix:GroundwaterDate Received:3/22/2018

<u>Mercury</u>

 Analyte
 Result
 Units
 Qualifier
 Date Analyzed

 Mercury
 < 0.000200</td>
 mg/L
 3/26/2018 09:51

Method Reference(s):EPA 7470APreparation Date:3/23/2018Data File:Hg180326A

Client: <u>Lu Engineers, Inc.</u>

Project Reference: Orchard Whitney 4216-08

Sample Identifier: OW-MW-Field Duplicate

Lab Sample ID:181072-04Date Sampled:3/21/2018Matrix:GroundwaterDate Received:3/22/2018

RCRA Metals (ICP)

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analyzed
Arsenic	0.00870	mg/L	J	3/28/2018 14:56
Barium	0.0544	mg/L	J	3/28/2018 10:59
Cadmium	0.00610	mg/L		3/28/2018 10:59
Chromium	0.0109	mg/L		3/28/2018 10:59
Lead	0.00529	mg/L	J	3/28/2018 10:59
Selenium	< 0.0200	mg/L		3/28/2018 10:59
Silver	< 0.0100	mg/L		3/28/2018 10:59

Method Reference(s): EPA 6010C

EPA 3005A

 Preparation Date:
 3/23/2018

 Data File:
 180328B

Client: <u>Lu Engineers, Inc.</u>

Project Reference: Orchard Whitney 4216-08

Sample Identifier: OW-MW-Field Duplicate

Lab Sample ID:181072-04Date Sampled:3/21/2018Matrix:GroundwaterDate Received:3/22/2018

Volatile Organics

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 2.00	ug/L		3/26/2018 15:59
1,1,2,2-Tetrachloroethane	< 2.00	ug/L		3/26/2018 15:59
1,1,2-Trichloroethane	< 2.00	ug/L		3/26/2018 15:59
1,1-Dichloroethane	< 2.00	ug/L		3/26/2018 15:59
1,1-Dichloroethene	< 2.00	ug/L		3/26/2018 15:59
1,2,3-Trichlorobenzene	< 5.00	ug/L		3/26/2018 15:59
1,2,4-Trichlorobenzene	< 5.00	ug/L		3/26/2018 15:59
1,2-Dibromo-3-Chloropropane	< 10.0	ug/L		3/26/2018 15:59
1,2-Dibromoethane	< 2.00	ug/L		3/26/2018 15:59
1,2-Dichlorobenzene	< 2.00	ug/L		3/26/2018 15:59
1,2-Dichloroethane	< 2.00	ug/L		3/26/2018 15:59
1,2-Dichloropropane	< 2.00	ug/L		3/26/2018 15:59
1,3-Dichlorobenzene	< 2.00	ug/L		3/26/2018 15:59
1,4-Dichlorobenzene	< 2.00	ug/L		3/26/2018 15:59
1,4-dioxane	< 20.0	ug/L		3/26/2018 15:59
2-Butanone	< 10.0	ug/L		3/26/2018 15:59
2-Hexanone	< 5.00	ug/L		3/26/2018 15:59
4-Methyl-2-pentanone	< 5.00	ug/L		3/26/2018 15:59
Acetone	8.75	ug/L	J	3/26/2018 15:59
Benzene	1.00	ug/L		3/26/2018 15:59
Bromochloromethane	< 5.00	ug/L		3/26/2018 15:59
Bromodichloromethane	< 2.00	ug/L		3/26/2018 15:59
Bromoform	< 5.00	ug/L		3/26/2018 15:59
Bromomethane	< 2.00	ug/L		3/26/2018 15:59
Carbon disulfide	< 2.00	ug/L		3/26/2018 15:59
Carbon Tetrachloride	< 2.00	ug/L		3/26/2018 15:59
Chlorobenzene	< 2.00	ug/L		3/26/2018 15:59

Client: <u>Lu Engineers, Inc.</u>

Project Reference: Orchard Whitney 4216-08

Sample Identifier:	OW-MW-Field Duplica	ite			
Lab Sample ID:	181072-04		Date Sampled:	3/21/2018	
Matrix:	Groundwater		Date Received:	3/22/2018	
Chloroethane	< 2.00	ug/L		3/26/2018	15:59
Chloroform	< 2.00	ug/L		3/26/2018	15:59
Chloromethane	< 2.00	ug/L		3/26/2018	15:59
cis-1,2-Dichloroethene	< 2.00	ug/L		3/26/2018	15:59
cis-1,3-Dichloropropene	< 2.00	ug/L		3/26/2018	15:59
Cyclohexane	< 10.0	ug/L		3/26/2018	15:59
Dibromochloromethane	< 2.00	ug/L		3/26/2018	15:59
Dichlorodifluoromethan	e < 2.00	ug/L		3/26/2018	15:59
Ethylbenzene	< 2.00	ug/L		3/26/2018	15:59
Freon 113	< 2.00	ug/L		3/26/2018	15:59
Isopropylbenzene	< 2.00	ug/L		3/26/2018	15:59
m,p-Xylene	< 2.00	ug/L		3/26/2018	15:59
Methyl acetate	< 2.00	ug/L		3/26/2018	15:59
Methyl tert-butyl Ether	< 2.00	ug/L		3/26/2018	15:59
Methylcyclohexane	< 2.00	ug/L		3/26/2018	15:59
Methylene chloride	< 5.00	ug/L		3/26/2018	15:59
o-Xylene	< 2.00	ug/L		3/26/2018	15:59
Styrene	< 5.00	ug/L		3/26/2018	15:59
Tetrachloroethene	< 2.00	ug/L		3/26/2018	15:59
Toluene	< 2.00	ug/L		3/26/2018	15:59
trans-1,2-Dichloroethen	e < 2.00	ug/L		3/26/2018	15:59
trans-1,3-Dichloroprope	ene < 2.00	ug/L		3/26/2018	15:59
Trichloroethene	< 2.00	ug/L		3/26/2018	15:59
Trichlorofluoromethane	< 2.00	ug/L		3/26/2018	15:59
Vinyl chloride	< 2.00	ug/L		3/26/2018	15:59

Client: <u>Lu Engineers, Inc.</u>

Project Reference: Orchard Whitney 4216-08

Sample Identifier: OW-MW-Field Duplicate

Lab Sample ID:181072-04Date Sampled:3/21/2018Matrix:GroundwaterDate Received:3/22/2018

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	zed
1,2-Dichloroethane-d4	104	77.2 - 121		3/26/2018	15:59
4-Bromofluorobenzene	95.1	70 - 123		3/26/2018	15:59
Pentafluorobenzene	99.3	85.4 - 110		3/26/2018	15:59
Toluene-D8	97.5	83.8 - 112		3/26/2018	15:59

Method Reference(s): EPA 8260C

EPA 5030C

Data File: x49413.D

Client: <u>Lu Engineers, Inc.</u>

Project Reference: Orchard Whitney 4216-08

Sample Identifier: OW-MW-16_032118

Lab Sample ID:181072-05Date Sampled:3/21/2018Matrix:GroundwaterDate Received:3/22/2018

<u>Mercury</u>

 Analyte
 Result
 Units
 Qualifier
 Date Analyzed

 Mercury
 < 0.000200</td>
 mg/L
 3/26/2018 09:54

Method Reference(s):EPA 7470APreparation Date:3/23/2018Data File:Hg180326A

Client: <u>Lu Engineers, Inc.</u>

Project Reference: Orchard Whitney 4216-08

Sample Identifier: OW-MW-16_032118

Lab Sample ID:181072-05Date Sampled:3/21/2018Matrix:GroundwaterDate Received:3/22/2018

RCRA Metals (ICP)

<u>Analyte</u>	Result	<u>Units</u>	<u>Qualifier</u>	Date Analyzed
Arsenic	0.00740	mg/L	J	3/28/2018 15:01
Barium	0.0566	mg/L	J	3/28/2018 11:03
Cadmium	0.00672	mg/L		3/28/2018 11:03
Chromium	0.0115	mg/L		3/28/2018 11:03
Lead	0.00872	mg/L	J	3/28/2018 11:03
Selenium	< 0.0200	mg/L		3/28/2018 11:03
Silver	< 0.0100	mg/L		3/28/2018 11:03

Method Reference(s): EPA 6010C

EPA 3005A

 Preparation Date:
 3/23/2018

 Data File:
 180328B

Client: <u>Lu Engineers, Inc.</u>

Project Reference: Orchard Whitney 4216-08

Sample Identifier: OW-MW-16_032118

Lab Sample ID:181072-05Date Sampled:3/21/2018Matrix:GroundwaterDate Received:3/22/2018

Volatile Organics

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 2.00	ug/L		3/26/2018 16:23
1,1,2,2-Tetrachloroethane	< 2.00	ug/L		3/26/2018 16:23
1,1,2-Trichloroethane	< 2.00	ug/L		3/26/2018 16:23
1,1-Dichloroethane	< 2.00	ug/L		3/26/2018 16:23
1,1-Dichloroethene	< 2.00	ug/L		3/26/2018 16:23
1,2,3-Trichlorobenzene	< 5.00	ug/L		3/26/2018 16:23
1,2,4-Trichlorobenzene	< 5.00	ug/L		3/26/2018 16:23
1,2-Dibromo-3-Chloropropane	< 10.0	ug/L		3/26/2018 16:23
1,2-Dibromoethane	< 2.00	ug/L		3/26/2018 16:23
1,2-Dichlorobenzene	< 2.00	ug/L		3/26/2018 16:23
1,2-Dichloroethane	< 2.00	ug/L		3/26/2018 16:23
1,2-Dichloropropane	< 2.00	ug/L		3/26/2018 16:23
1,3-Dichlorobenzene	< 2.00	ug/L		3/26/2018 16:23
1,4-Dichlorobenzene	< 2.00	ug/L		3/26/2018 16:23
1,4-dioxane	< 20.0	ug/L		3/26/2018 16:23
2-Butanone	< 10.0	ug/L		3/26/2018 16:23
2-Hexanone	< 5.00	ug/L		3/26/2018 16:23
4-Methyl-2-pentanone	< 5.00	ug/L		3/26/2018 16:23
Acetone	8.57	ug/L	J	3/26/2018 16:23
Benzene	0.847	ug/L	J	3/26/2018 16:23
Bromochloromethane	< 5.00	ug/L		3/26/2018 16:23
Bromodichloromethane	< 2.00	ug/L		3/26/2018 16:23
Bromoform	< 5.00	ug/L		3/26/2018 16:23
Bromomethane	< 2.00	ug/L		3/26/2018 16:23
Carbon disulfide	< 2.00	ug/L		3/26/2018 16:23
Carbon Tetrachloride	< 2.00	ug/L		3/26/2018 16:23
Chlorobenzene	< 2.00	ug/L		3/26/2018 16:23

Client: <u>Lu Engineers, Inc.</u>

Project Reference: Orchard Whitney 4216-08

OW-MW-16_032118				
181072-05		Date Sampled:	3/21/2018	
Groundwater		Date Received:	3/22/2018	
< 2.00	ug/L		3/26/2018	16:23
< 2.00	ug/L		3/26/2018	16:23
< 2.00	ug/L		3/26/2018	16:23
< 2.00	ug/L		3/26/2018	16:23
e < 2.00	ug/L		3/26/2018	16:23
< 10.0	ug/L		3/26/2018	16:23
e < 2.00	ug/L		3/26/2018	16:23
ne < 2.00	ug/L		3/26/2018	16:23
< 2.00	ug/L		3/26/2018	16:23
< 2.00	ug/L		3/26/2018	16:23
< 2.00	ug/L		3/26/2018	16:23
< 2.00	ug/L		3/26/2018	16:23
< 2.00	ug/L		3/26/2018	16:23
< 2.00	ug/L		3/26/2018	16:23
< 2.00	ug/L		3/26/2018	16:23
< 5.00	ug/L		3/26/2018	16:23
< 2.00	ug/L		3/26/2018	16:23
< 5.00	ug/L		3/26/2018	16:23
< 2.00	ug/L		3/26/2018	16:23
< 2.00	ug/L		3/26/2018	16:23
ne < 2.00	ug/L		3/26/2018	16:23
ene < 2.00	ug/L		3/26/2018	16:23
< 2.00	ug/L		3/26/2018	16:23
e < 2.00	ug/L		3/26/2018	16:23
< 2.00	ug/L		3/26/2018	16:23
	181072-05 Groundwater <pre></pre>	181072-05 Groundwater	Date Sampled: Date Received: Date Received: Dat	Date Sampled: 3/21/2018 Date Received: 3/22/2018 3/22/2018 3/22/2018 3/22/2018 3/26/2018

Client: <u>Lu Engineers, Inc.</u>

Project Reference: Orchard Whitney 4216-08

Sample Identifier: OW-MW-16_032118

Lab Sample ID:181072-05Date Sampled:3/21/2018Matrix:GroundwaterDate Received:3/22/2018

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	zed
1,2-Dichloroethane-d4	105	77.2 - 121		3/26/2018	16:23
4-Bromofluorobenzene	94.8	70 - 123		3/26/2018	16:23
Pentafluorobenzene	98.3	85.4 - 110		3/26/2018	16:23
Toluene-D8	97.8	83.8 - 112		3/26/2018	16:23

Method Reference(s): EPA 8260C

EPA 5030C

Data File: x49414.D

Client: <u>Lu Engineers, Inc.</u>

Project Reference: Orchard Whitney 4216-08

Sample Identifier: OW-MW-27_032218

Lab Sample ID:181072-06Date Sampled:3/22/2018Matrix:GroundwaterDate Received:3/22/2018

<u>Mercury</u>

 Analyte
 Result
 Units
 Qualifier
 Date Analyzed

 Mercury
 < 0.000200</td>
 mg/L
 3/26/2018 09:57

Method Reference(s):EPA 7470APreparation Date:3/23/2018Data File:Hg180326A

Client: <u>Lu Engineers, Inc.</u>

Project Reference: Orchard Whitney 4216-08

Sample Identifier: OW-MW-27_032218

Lab Sample ID:181072-06Date Sampled:3/22/2018Matrix:GroundwaterDate Received:3/22/2018

RCRA Metals (ICP)

Analyte	Result	<u>Units</u>	Qualifier	Date Analyzed
Arsenic	< 0.0100	mg/L		3/28/2018 15:05
Barium	< 0.100	mg/L		3/28/2018 11:07
Cadmium	< 0.00500	mg/L		3/28/2018 11:07
Chromium	< 0.0100	mg/L		3/28/2018 11:07
Lead	< 0.0100	mg/L		3/28/2018 11:07
Selenium	< 0.0200	mg/L		3/28/2018 11:07
Silver	< 0.0100	mg/L		3/28/2018 11:07

Method Reference(s): EPA 6010C

EPA 3005A

 Preparation Date:
 3/23/2018

 Data File:
 180328B

Client: <u>Lu Engineers, Inc.</u>

Project Reference: Orchard Whitney 4216-08

Sample Identifier: OW-MW-27_032218

Lab Sample ID:181072-06Date Sampled:3/22/2018Matrix:GroundwaterDate Received:3/22/2018

Volatile Organics

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 2.00	ug/L		3/26/2018 16:47
1,1,2,2-Tetrachloroethane	< 2.00	ug/L		3/26/2018 16:47
1,1,2-Trichloroethane	< 2.00	ug/L		3/26/2018 16:47
1,1-Dichloroethane	< 2.00	ug/L		3/26/2018 16:47
1,1-Dichloroethene	< 2.00	ug/L		3/26/2018 16:47
1,2,3-Trichlorobenzene	< 5.00	ug/L		3/26/2018 16:47
1,2,4-Trichlorobenzene	< 5.00	ug/L		3/26/2018 16:47
1,2-Dibromo-3-Chloropropane	< 10.0	ug/L		3/26/2018 16:47
1,2-Dibromoethane	< 2.00	ug/L		3/26/2018 16:47
1,2-Dichlorobenzene	< 2.00	ug/L		3/26/2018 16:47
1,2-Dichloroethane	< 2.00	ug/L		3/26/2018 16:47
1,2-Dichloropropane	< 2.00	ug/L		3/26/2018 16:47
1,3-Dichlorobenzene	< 2.00	ug/L		3/26/2018 16:47
1,4-Dichlorobenzene	< 2.00	ug/L		3/26/2018 16:47
1,4-dioxane	< 20.0	ug/L		3/26/2018 16:47
2-Butanone	< 10.0	ug/L		3/26/2018 16:47
2-Hexanone	< 5.00	ug/L		3/26/2018 16:47
4-Methyl-2-pentanone	< 5.00	ug/L		3/26/2018 16:47
Acetone	< 10.0	ug/L		3/26/2018 16:47
Benzene	< 1.00	ug/L		3/26/2018 16:47
Bromochloromethane	< 5.00	ug/L		3/26/2018 16:47
Bromodichloromethane	< 2.00	ug/L		3/26/2018 16:47
Bromoform	< 5.00	ug/L		3/26/2018 16:47
Bromomethane	< 2.00	ug/L		3/26/2018 16:47
Carbon disulfide	< 2.00	ug/L		3/26/2018 16:47
Carbon Tetrachloride	< 2.00	ug/L		3/26/2018 16:47
Chlorobenzene	< 2.00	ug/L		3/26/2018 16:47

3/26/2018 16:47

Client: <u>Lu Engineers, Inc.</u>

Project Reference: Orchard Whitney 4216-08

Sample Identifier:	OW-MW-27_032218				
Lab Sample ID:	181072-06		Date Sampled:	3/22/2018	
Matrix:	Groundwater		Date Received:	3/22/2018	
Chloroethane	< 2.00	ug/L		3/26/2018	16:47
Chloroform	< 2.00	ug/L		3/26/2018	16:47
Chloromethane	< 2.00	ug/L		3/26/2018	16:47
cis-1,2-Dichloroethene	< 2.00	ug/L		3/26/2018	16:47
cis-1,3-Dichloropropene	e < 2.00	ug/L		3/26/2018	16:47
Cyclohexane	< 10.0	ug/L		3/26/2018	16:47
Dibromochloromethane	< 2.00	ug/L		3/26/2018	16:47
Dichlorodifluoromethan	ne < 2.00	ug/L		3/26/2018	16:47
Ethylbenzene	< 2.00	ug/L		3/26/2018	16:47
Freon 113	< 2.00	ug/L		3/26/2018	16:47
Isopropylbenzene	< 2.00	ug/L		3/26/2018	16:47
m,p-Xylene	< 2.00	ug/L		3/26/2018	16:47
Methyl acetate	< 2.00	ug/L		3/26/2018	16:47
Methyl tert-butyl Ether	< 2.00	ug/L		3/26/2018	16:47
Methylcyclohexane	< 2.00	ug/L		3/26/2018	16:47
Methylene chloride	< 5.00	ug/L		3/26/2018	16:47
o-Xylene	< 2.00	ug/L		3/26/2018	16:47
Styrene	< 5.00	ug/L		3/26/2018	16:47
Tetrachloroethene	< 2.00	ug/L		3/26/2018	16:47
Toluene	< 2.00	ug/L		3/26/2018	16:47
trans-1,2-Dichloroethen	e < 2.00	ug/L		3/26/2018	16:47
trans-1,3-Dichloroprope	ene < 2.00	ug/L		3/26/2018	16:47
Trichloroethene	< 2.00	ug/L		3/26/2018	16:47
Trichlorofluoromethane	< 2.00	ug/L		3/26/2018	16:47

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

ug/L

< 2.00

Vinyl chloride

Client: <u>Lu Engineers, Inc.</u>

Project Reference: Orchard Whitney 4216-08

Sample Identifier: OW-MW-27_032218

Lab Sample ID:181072-06Date Sampled:3/22/2018Matrix:GroundwaterDate Received:3/22/2018

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	<u>Date Analy</u>	<u>vzed</u>
1,2-Dichloroethane-d4	102	77.2 - 121		3/26/2018	16:47
4-Bromofluorobenzene	93.6	70 - 123		3/26/2018	16:47
Pentafluorobenzene	99.8	85.4 - 110		3/26/2018	16:47
Toluene-D8	97.4	83.8 - 112		3/26/2018	16:47

Method Reference(s): EPA 8260C

EPA 5030C

Data File: x49415.D

Client: <u>Lu Engineers, Inc.</u>

Project Reference: Orchard Whitney 4216-08

Sample Identifier: OW-MW-28_032218

Lab Sample ID:181072-07Date Sampled:3/22/2018Matrix:GroundwaterDate Received:3/22/2018

<u>Mercury</u>

 Analyte
 Result
 Units
 Qualifier
 Date Analyzed

 Mercury
 < 0.000200</td>
 mg/L
 3/26/2018 10:00

Method Reference(s):EPA 7470APreparation Date:3/23/2018Data File:Hg180326A

Client: <u>Lu Engineers, Inc.</u>

Project Reference: Orchard Whitney 4216-08

Sample Identifier: OW-MW-28_032218

Lab Sample ID:181072-07Date Sampled:3/22/2018Matrix:GroundwaterDate Received:3/22/2018

RCRA Metals (ICP)

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
Arsenic	< 0.0100	mg/L		3/28/2018 15:09
Barium	< 0.100	mg/L		3/28/2018 11:12
Cadmium	< 0.00500	mg/L		3/28/2018 11:12
Chromium	< 0.0100	mg/L		3/28/2018 11:12
Lead	< 0.0100	mg/L		3/28/2018 11:12
Selenium	< 0.0200	mg/L		3/28/2018 11:12
Silver	< 0.0100	mg/L		3/28/2018 11:12

Method Reference(s): EPA 6010C

EPA 3005A

 Preparation Date:
 3/23/2018

 Data File:
 180328B

Client: <u>Lu Engineers, Inc.</u>

Project Reference: Orchard Whitney 4216-08

Sample Identifier: OW-MW-28_032218

Lab Sample ID:181072-07Date Sampled:3/22/2018Matrix:GroundwaterDate Received:3/22/2018

Volatile Organics

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 2.00	ug/L		3/26/2018 17:11
1,1,2,2-Tetrachloroethane	< 2.00	ug/L		3/26/2018 17:11
1,1,2-Trichloroethane	< 2.00	ug/L		3/26/2018 17:11
1,1-Dichloroethane	< 2.00	ug/L		3/26/2018 17:11
1,1-Dichloroethene	< 2.00	ug/L		3/26/2018 17:11
1,2,3-Trichlorobenzene	< 5.00	ug/L		3/26/2018 17:11
1,2,4-Trichlorobenzene	< 5.00	ug/L		3/26/2018 17:11
1,2-Dibromo-3-Chloropropane	< 10.0	ug/L		3/26/2018 17:11
1,2-Dibromoethane	< 2.00	ug/L		3/26/2018 17:11
1,2-Dichlorobenzene	< 2.00	ug/L		3/26/2018 17:11
1,2-Dichloroethane	< 2.00	ug/L		3/26/2018 17:11
1,2-Dichloropropane	< 2.00	ug/L		3/26/2018 17:11
1,3-Dichlorobenzene	< 2.00	ug/L		3/26/2018 17:11
1,4-Dichlorobenzene	< 2.00	ug/L		3/26/2018 17:11
1,4-dioxane	< 20.0	ug/L		3/26/2018 17:11
2-Butanone	< 10.0	ug/L		3/26/2018 17:11
2-Hexanone	< 5.00	ug/L		3/26/2018 17:11
4-Methyl-2-pentanone	< 5.00	ug/L		3/26/2018 17:11
Acetone	< 10.0	ug/L		3/26/2018 17:11
Benzene	< 1.00	ug/L		3/26/2018 17:11
Bromochloromethane	< 5.00	ug/L		3/26/2018 17:11
Bromodichloromethane	< 2.00	ug/L		3/26/2018 17:11
Bromoform	< 5.00	ug/L		3/26/2018 17:11
Bromomethane	< 2.00	ug/L		3/26/2018 17:11
Carbon disulfide	< 2.00	ug/L		3/26/2018 17:11
Carbon Tetrachloride	< 2.00	ug/L		3/26/2018 17:11
Chlorobenzene	< 2.00	ug/L		3/26/2018 17:11

3/26/2018 17:11

Client: <u>Lu Engineers, Inc.</u>

Project Reference: Orchard Whitney 4216-08

Sample Identifier:	OM/ MM/ 20 02	22210			
•	OW-MW-28_03	32218		D . C . 1 . 1	0.400.400.40
Lab Sample ID:	181072-07			Date Sampled:	3/22/2018
Matrix:	Groundwater			Date Received:	3/22/2018
Chloroethane		< 2.00	ug/L		3/26/2018 17:11
Chloroform		< 2.00	ug/L		3/26/2018 17:11
Chloromethane		< 2.00	ug/L		3/26/2018 17:11
cis-1,2-Dichloroethene		< 2.00	ug/L		3/26/2018 17:11
cis-1,3-Dichloropropen	e	< 2.00	ug/L		3/26/2018 17:11
Cyclohexane		< 10.0	ug/L		3/26/2018 17:11
Dibromochloromethane	2	< 2.00	ug/L		3/26/2018 17:11
Dichlorodifluoromethan	ne	< 2.00	ug/L		3/26/2018 17:11
Ethylbenzene		< 2.00	ug/L		3/26/2018 17:11
Freon 113		< 2.00	ug/L		3/26/2018 17:11
Isopropylbenzene		< 2.00	ug/L		3/26/2018 17:11
m,p-Xylene		< 2.00	ug/L		3/26/2018 17:11
Methyl acetate		< 2.00	ug/L		3/26/2018 17:11
Methyl tert-butyl Ether		< 2.00	ug/L		3/26/2018 17:11
Methylcyclohexane		< 2.00	ug/L		3/26/2018 17:11
Methylene chloride		< 5.00	ug/L		3/26/2018 17:11
o-Xylene		< 2.00	ug/L		3/26/2018 17:11
Styrene		< 5.00	ug/L		3/26/2018 17:11
Tetrachloroethene		< 2.00	ug/L		3/26/2018 17:11
Toluene		< 2.00	ug/L		3/26/2018 17:11
trans-1,2-Dichloroether	ne	< 2.00	ug/L		3/26/2018 17:11
trans-1,3-Dichloroprop	ene	< 2.00	ug/L		3/26/2018 17:11
Trichloroethene		1.70	ug/L	J	3/26/2018 17:11
Trichlorofluoromethan	e	< 2.00	ug/L		3/26/2018 17:11

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

ug/L

< 2.00

Vinyl chloride

Client: <u>Lu Engineers, Inc.</u>

Project Reference: Orchard Whitney 4216-08

Sample Identifier: OW-MW-28_032218

Lab Sample ID:181072-07Date Sampled:3/22/2018Matrix:GroundwaterDate Received:3/22/2018

Surrogate	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	vzed
1,2-Dichloroethane-d4	102	77.2 - 121		3/26/2018	17:11
4-Bromofluorobenzene	92.0	70 - 123		3/26/2018	17:11
Pentafluorobenzene	98.2	85.4 - 110		3/26/2018	17:11
Toluene-D8	97.2	83.8 - 112		3/26/2018	17:11

Method Reference(s): EPA 8260C

EPA 5030C

Data File: x49416.D

Client: <u>Lu Engineers, Inc.</u>

Project Reference: Orchard Whitney 4216-08

Sample Identifier: OW-MW-29_032218

Lab Sample ID:181072-08Date Sampled:3/22/2018Matrix:GroundwaterDate Received:3/22/2018

<u>Mercury</u>

 Analyte
 Result
 Units
 Qualifier
 Date Analyzed

 Mercury
 < 0.000200</td>
 mg/L
 3/26/2018 10:02

Method Reference(s):EPA 7470APreparation Date:3/23/2018Data File:Hg180326A

Client: <u>Lu Engineers, Inc.</u>

Project Reference: Orchard Whitney 4216-08

Sample Identifier: OW-MW-29_032218

Lab Sample ID:181072-08Date Sampled:3/22/2018Matrix:GroundwaterDate Received:3/22/2018

RCRA Metals (ICP)

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analyzed
Arsenic	< 0.0100	mg/L		3/28/2018 15:14
Barium	0.0571	mg/L	J	3/28/2018 11:16
Cadmium	0.00386	mg/L	J	3/28/2018 11:16
Chromium	< 0.0100	mg/L		3/28/2018 11:16
Lead	< 0.0100	mg/L		3/28/2018 11:16
Selenium	< 0.0200	mg/L		3/28/2018 11:16
Silver	< 0.0100	mg/L		3/28/2018 11:16

Method Reference(s): EPA 6010C

EPA 3005A

 Preparation Date:
 3/23/2018

 Data File:
 180328B

Client: <u>Lu Engineers, Inc.</u>

Project Reference: Orchard Whitney 4216-08

Sample Identifier: OW-MW-29_032218

Lab Sample ID:181072-08Date Sampled:3/22/2018Matrix:GroundwaterDate Received:3/22/2018

Volatile Organics

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 2.00	ug/L		3/26/2018 17:34
1,1,2,2-Tetrachloroethane	< 2.00	ug/L		3/26/2018 17:34
1,1,2-Trichloroethane	< 2.00	ug/L		3/26/2018 17:34
1,1-Dichloroethane	< 2.00	ug/L		3/26/2018 17:34
1,1-Dichloroethene	< 2.00	ug/L		3/26/2018 17:34
1,2,3-Trichlorobenzene	< 5.00	ug/L		3/26/2018 17:34
1,2,4-Trichlorobenzene	< 5.00	ug/L		3/26/2018 17:34
1,2-Dibromo-3-Chloropropane	< 10.0	ug/L		3/26/2018 17:34
1,2-Dibromoethane	< 2.00	ug/L		3/26/2018 17:34
1,2-Dichlorobenzene	< 2.00	ug/L		3/26/2018 17:34
1,2-Dichloroethane	< 2.00	ug/L		3/26/2018 17:34
1,2-Dichloropropane	< 2.00	ug/L		3/26/2018 17:34
1,3-Dichlorobenzene	< 2.00	ug/L		3/26/2018 17:34
1,4-Dichlorobenzene	< 2.00	ug/L		3/26/2018 17:34
1,4-dioxane	< 20.0	ug/L		3/26/2018 17:34
2-Butanone	< 10.0	ug/L		3/26/2018 17:34
2-Hexanone	< 5.00	ug/L		3/26/2018 17:34
4-Methyl-2-pentanone	< 5.00	ug/L		3/26/2018 17:34
Acetone	< 10.0	ug/L		3/26/2018 17:34
Benzene	< 1.00	ug/L		3/26/2018 17:34
Bromochloromethane	< 5.00	ug/L		3/26/2018 17:34
Bromodichloromethane	< 2.00	ug/L		3/26/2018 17:34
Bromoform	< 5.00	ug/L		3/26/2018 17:34
Bromomethane	< 2.00	ug/L		3/26/2018 17:34
Carbon disulfide	< 2.00	ug/L		3/26/2018 17:34
Carbon Tetrachloride	< 2.00	ug/L		3/26/2018 17:34
Chlorobenzene	< 2.00	ug/L		3/26/2018 17:34

Client: <u>Lu Engineers, Inc.</u>

Project Reference: Orchard Whitney 4216-08

,						
Sample Identifier:	OW-MW-29_03	2218				
Lab Sample ID:	181072-08			Date Sampled:	3/22/2018	
Matrix:	Groundwater			Date Received:	3/22/2018	
Chloroethane		< 2.00	ug/L		3/26/2018	17:34
Chloroform		< 2.00	ug/L		3/26/2018	17:34
Chloromethane		< 2.00	ug/L		3/26/2018	17:34
cis-1,2-Dichloroethene		< 2.00	ug/L		3/26/2018	17:34
cis-1,3-Dichloropropene		< 2.00	ug/L		3/26/2018	17:34
Cyclohexane		< 10.0	ug/L		3/26/2018	17:34
Dibromochloromethane		< 2.00	ug/L		3/26/2018	17:34
Dichlorodifluoromethan	e	< 2.00	ug/L		3/26/2018	17:34
Ethylbenzene		< 2.00	ug/L		3/26/2018	17:34
Freon 113		< 2.00	ug/L		3/26/2018	17:34
Isopropylbenzene		< 2.00	ug/L		3/26/2018	17:34
m,p-Xylene		< 2.00	ug/L		3/26/2018	17:34
Methyl acetate		< 2.00	ug/L		3/26/2018	17:34
Methyl tert-butyl Ether		< 2.00	ug/L		3/26/2018	17:34
Methylcyclohexane		< 2.00	ug/L		3/26/2018	17:34
Methylene chloride		< 5.00	ug/L		3/26/2018	17:34
o-Xylene		< 2.00	ug/L		3/26/2018	17:34
Styrene		< 5.00	ug/L		3/26/2018	17:34
Tetrachloroethene		< 2.00	ug/L		3/26/2018	17:34
Toluene		< 2.00	ug/L		3/26/2018	17:34
trans-1,2-Dichloroethene	е	< 2.00	ug/L		3/26/2018	17:34
trans-1,3-Dichloroprope	ne	< 2.00	ug/L		3/26/2018	17:34
Trichloroethene		1.32	ug/L	J	3/26/2018	17:34
Trichlorofluoromethane		< 2.00	ug/L		3/26/2018	17:34
Vinyl chloride		< 2.00	ug/L		3/26/2018	17:34

Client: <u>Lu Engineers, Inc.</u>

Project Reference: Orchard Whitney 4216-08

Sample Identifier: OW-MW-29_032218

Lab Sample ID:181072-08Date Sampled:3/22/2018Matrix:GroundwaterDate Received:3/22/2018

Surrogate	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	vzed
1,2-Dichloroethane-d4	103	77.2 - 121		3/26/2018	17:34
4-Bromofluorobenzene	91.9	70 - 123		3/26/2018	17:34
Pentafluorobenzene	97.9	85.4 - 110		3/26/2018	17:34
Toluene-D8	98.7	83.8 - 112		3/26/2018	17:34

Method Reference(s): EPA 8260C

EPA 5030C

Data File: x49417.D

Client: <u>Lu Engineers, Inc.</u>

Project Reference: Orchard Whitney 4216-08

Sample Identifier: Trip Blank

Lab Sample ID:181072-09Date Sampled:3/21/2018Matrix:WaterDate Received:3/22/2018

Volatile Organics

Analyte	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 2.00	ug/L		3/26/2018 14:25
1,1,2,2-Tetrachloroethane	< 2.00	ug/L		3/26/2018 14:25
1,1,2-Trichloroethane	< 2.00	ug/L		3/26/2018 14:25
1,1-Dichloroethane	< 2.00	ug/L		3/26/2018 14:25
1,1-Dichloroethene	< 2.00	ug/L		3/26/2018 14:25
1,2,3-Trichlorobenzene	< 5.00	ug/L		3/26/2018 14:25
1,2,4-Trichlorobenzene	< 5.00	ug/L		3/26/2018 14:25
1,2-Dibromo-3-Chloropropane	< 10.0	ug/L		3/26/2018 14:25
1,2-Dibromoethane	< 2.00	ug/L		3/26/2018 14:25
1,2-Dichlorobenzene	< 2.00	ug/L		3/26/2018 14:25
1,2-Dichloroethane	< 2.00	ug/L		3/26/2018 14:25
1,2-Dichloropropane	< 2.00	ug/L		3/26/2018 14:25
1,3-Dichlorobenzene	< 2.00	ug/L		3/26/2018 14:25
1,4-Dichlorobenzene	< 2.00	ug/L		3/26/2018 14:25
1,4-dioxane	< 20.0	ug/L		3/26/2018 14:25
2-Butanone	< 10.0	ug/L		3/26/2018 14:25
2-Hexanone	< 5.00	ug/L		3/26/2018 14:25
4-Methyl-2-pentanone	< 5.00	ug/L		3/26/2018 14:25
Acetone	< 10.0	ug/L		3/26/2018 14:25
Benzene	< 1.00	ug/L		3/26/2018 14:25
Bromochloromethane	< 5.00	ug/L		3/26/2018 14:25
Bromodichloromethane	< 2.00	ug/L		3/26/2018 14:25
Bromoform	< 5.00	ug/L		3/26/2018 14:25
Bromomethane	< 2.00	ug/L		3/26/2018 14:25
Carbon disulfide	< 2.00	ug/L		3/26/2018 14:25
Carbon Tetrachloride	< 2.00	ug/L		3/26/2018 14:25
Chlorobenzene	< 2.00	ug/L		3/26/2018 14:25

Client: <u>Lu Engineers, Inc.</u>

Project Reference: Orchard Whitney 4216-08

Sample Identifier:	Trip Blank				
Lab Sample ID:	181072-09			Date Sampled:	3/21/2018
Matrix:	Water			Date Received:	3/22/2018
Chloroethane		< 2.00	ug/L		3/26/2018 14:25
Chloroform		< 2.00	ug/L		3/26/2018 14:25
Chloromethane		< 2.00	ug/L		3/26/2018 14:25
cis-1,2-Dichloroethene		< 2.00	ug/L		3/26/2018 14:25
cis-1,3-Dichloropropene	e	< 2.00	ug/L		3/26/2018 14:25
Cyclohexane		< 10.0	ug/L		3/26/2018 14:25
Dibromochloromethane	?	< 2.00	ug/L		3/26/2018 14:25
Dichlorodifluoromethar	ne	< 2.00	ug/L		3/26/2018 14:25
Ethylbenzene		< 2.00	ug/L		3/26/2018 14:25
Freon 113		< 2.00	ug/L		3/26/2018 14:25
Isopropylbenzene		< 2.00	ug/L		3/26/2018 14:25
m,p-Xylene		< 2.00	ug/L		3/26/2018 14:25
Methyl acetate		< 2.00	ug/L		3/26/2018 14:25
Methyl tert-butyl Ether		< 2.00	ug/L		3/26/2018 14:25
Methylcyclohexane		< 2.00	ug/L		3/26/2018 14:25
Methylene chloride		< 5.00	ug/L		3/26/2018 14:25
o-Xylene		< 2.00	ug/L		3/26/2018 14:25
Styrene		< 5.00	ug/L		3/26/2018 14:25
Tetrachloroethene		< 2.00	ug/L		3/26/2018 14:25
Toluene		< 2.00	ug/L		3/26/2018 14:25
trans-1,2-Dichloroether	ne	< 2.00	ug/L		3/26/2018 14:25
trans-1,3-Dichloroprope	ene	< 2.00	ug/L		3/26/2018 14:25
Trichloroethene		< 2.00	ug/L		3/26/2018 14:25
Trichlorofluoromethane	2	< 2.00	ug/L		3/26/2018 14:25
Vinyl chloride		< 2.00	ug/L		3/26/2018 14:25

Client: <u>Lu Engineers, Inc.</u>

Project Reference: Orchard Whitney 4216-08

Sample Identifier: Trip Blank

Lab Sample ID:181072-09Date Sampled:3/21/2018Matrix:WaterDate Received:3/22/2018

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	vzed
1,2-Dichloroethane-d4	100	77.2 - 121		3/26/2018	14:25
4-Bromofluorobenzene	92.7	70 - 123		3/26/2018	14:25
Pentafluorobenzene	101	85.4 - 110		3/26/2018	14:25
Toluene-D8	96.7	83.8 - 112		3/26/2018	14:25

Method Reference(s): EPA 8260C

EPA 5030C

Data File: x49409.D

Analytical Report Appendix

The reported results relate only to the samples as they have been received by the laboratory.

Each page of this document is part of a multipage report. This document may not be reproduced except in its entirety, without the prior consent of Paradigm Environmental Services, Inc.

All soil/sludge samples have been reported on a dry weight basis, unless qualified "reported as received". Other solids are reported as received.

Low level Volatiles blank reports for soil/solid matrix are based on a nominal 5 gram weight. Sample results and reporting limits are based on actual weight, which may be more or less than 5 grams.

The Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt. Sample condition requirements are defined under the 2003 NELAC Standard, sections 5.5.8.3.1 and 5.5.8.3.2.

NYSDOH ELAP does not certify for all parameters. Paradigm Environmental Services or the indicated subcontracted laboratory does hold certification for all analytes where certification is offered by ELAP unless otherwise specified. Aliquots separated for certain tests, such as TCLP, are indicated on the Chain of Custody and final reports with an "A" suffix.

Data qualifiers are used, when necessary, to provide additional information about the data. This information may be communicated as a flag or as text at the bottom of the report. Please refer to the following list of analyte-specific, frequently used data flags and their meaning:

- "<" = Analyzed for but not detected at or above the quantitation limit.
- "E" = Result has been estimated, calibration limit exceeded.
- "Z" = See case narrative.
- "D" = Sample, Laboratory Control Sample, or Matrix Spike Duplicate results above Relative Percent Difference limit.
- "M" = Matrix spike recoveries outside QC limits. Matrix bias indicated.
- "B" = Method blank contained trace levels of analyte. Refer to included method blank report.
- "J" = Result estimated between the quantitation limit and half the quantitation limit.
- "L" = Laboratory Control Sample recovery outside accepted QC limits.
- "P" = Concentration differs by more than 40% between the primary and secondary analytical columns.
- "NC" = Not calculable. Applicable to RPD if sample or duplicate result is non-detect or estimated (see primary report for data flags). Applicable to MS if sample is greater or equal to ten times the spike added. Applicable to sample surrogates or MS if sample dilution is 10x or higher.
- "*" = Indicates any recoveries outside associated acceptance windows. Surrogate outliers in samples are presumed matrix effects. LCS demonstrates method compliance unless otherwise noted.
- "(1)" = Indicates data from primary column used for QC calculation.
- "A" = denotes a parameter for which ELAP does not offer approval as part of their laboratory certification program.
- "F" = denotes a parameter for which Paradigm does not carry certification, the results for which should therefore only be used where ELAP certification is not required, such as personal exposure assessment.

GENERAL TERMS AND CONDITIONS LABORATORY SERVICES

These Terms and Conditions embody the whole agreement of the parties in the absence of a signed and executed contract between the Laboratory (LAB) and Client. They shall supersede all previous communications, representations, or agreements, either verbal or written. between the parties. The LAB specifically rejects all additional, inconsistent, or conflicting terms, whether printed or otherwise set forth in any purchase order or other communication from the Client to the LAB. The invalidity or unenforceability in whole or in part of any provision, term, or condition hereof shall not affect in any way the validity or enforceability of the remainder of the Terms and Conditions. No waiver by LAB of any provision, term, or condition hereof or of any breach by or obligation of the Client hereunder shall constitute a waiver of such provision, term, or condition on any other occasion or a waiver of any other breach by or obligation of the Client. This agreement shall be administered and interpreted under the laws of the state which services are procured.

Warranty.

Recognizing that the nature of many samples is unknown and that some may contain potentially hazardous components, LAB warrants only that it will perform testing services, obtain findings, and prepare reports in accordance with generally accepted analytical laboratory principles and practices at the time of performance of services. LAB makes no other warranty, express or implied.

Scope and Compensation. LAB agrees to perform the services described in the chain of custody to which these terms and conditions are attached. Unless the parties agree in writing to the contrary, the duties of LAB shall not be construed to exceed the services specifically described. LAB will use LAB default method for all tests unless specified otherwise on the Work Order.

Payment terms are net 30 days from the date of invoice. All overdue payments are subject to an interest charge of one and one-half percent (1-1/2%) per month or a portion thereof. Client shall also be responsible for costs of collection, including payment of reasonable attorney fees if such expense is incurred. The prices, unless stated, do not include any sale, use or other taxes. Such taxes will be added to invoice prices when required.

Prices.

Compensation for services performed will be based on the current Lab Analytical Fee Schedule or on quotations agreed to in writing by the parties. Turnaround time based charges are determined from the time of resolution of all work order questions. Testimony, court appearances or data compilation for legal action will be charged separately. Evaluation and reporting of initial screening runs may incur additional fees.

Limitations of Liability.

In the event of any error, omission, or other professional negligence, the sole and exclusive responsibility of LAB shall be to reperform the deficient work at its own expense and LAB shall have no other liability whatsoever. All claims shall be deemed waived unless made in writing and received by LAB within ninety (90) days following completion of services.

LAB shall have no liability, obligation, or responsibility of any kind for losses, costs, expenses, or other damages (including but not limited to any special, direct, incidental or consequential damages) with respect to LAB's services or results.

All results provided by LAB are strictly for the use of its clients and LAB is in no way responsible for the use of such results by clients or third parties. All reports should be considered in their entirety, and LAB is not responsible for the separation, detachment, or other use of any portion of these reports. Client may not assign the lab report without the written consent of the LAB.

Client covenants and agrees, at its/his/her sole expense, to indemnify, protect, defend, and save harmless the LAB from and against any and all damages, losses, liabilities, obligations, penalties, claims, litigation, demands, defenses, judgments, suits, actions, proceedings, costs, disbursements and/or expenses (including, without limitation attorneys' and experts' fees and disbursements) of any kind whatsoever which may at any time be imposed upon, incurred by or asserted or awarded against client relating to, resulting from or arising out of (a) the breach of this agreement by this client, (b) the negligence of the client in handling, delivering or disclosing any hazardous substance, (c) the violation of the Client of any applicable law, (d) non-compliance by the Client with any

environmental permit or (e) a material misrepresentation in disclosing the materials to be tested.

Hazard Disclosure.

Client represents and warrants that any sample delivered to LAB will be preceded or accompanied by complete written disclosure of the presence of any hazardous substances known or suspected by Client. Client further warrants that any sample containing any hazardous substance that is to be delivered to LAB will be packaged, labeled, transported, and delivered properly and in accordance with applicable laws.

Sample Handling.

Prior to LAB's acceptance of any sample (or after any revocation of acceptance), the entire risk of loss or of damage to such sample remains with Client. Samples are accepted when receipt is acknowledged on chain of custody documentation. In no event will LAB have any responsibility for the action or inaction of any carrier shipping or delivering any sample to or from LAB premises. Client authorizes LAB to proceed with the analysis of samples as received by the laboratory, recognizing that any samples not in compliance with all current DOH-ELAP-NELAP requirements for containers, preservation or holding time will be noted as such on the

Disposal of hazardous waste samples is the responsibility of the Client. If the Client does not wish such samples returned, LAB may add storage and disposal fees to the final invoice. Maximum storage time for samples is 30 days after completion of analysis unless modified by applicable state or federal laws. Client will be required to give the LAB written instructions concerning disposal of these

LAB reserves the absolute right, exercisable at any time, to refuse to receive delivery of, refuse to accept, or revoke acceptance of any sample, which, in the sole judgment of LAB (a) is of unsuitable volume, (b) may be or become unsuitable for or may pose a risk in handling, transport, or processing for any health, safety, environmental or other reason whether or not due to the presence in the sample of any hazardous substance, and whether or not such presence has been disclosed to LAB by Client or (c) if the condition or sample date make the sample unsuitable for analysis.

Legal Responsibility. LAB is solely responsible for performance of this contract, and no affiliated company, director, officer, employee, or agent shall have any legal responsibility hereunder, whether in contract or tort including negligence.

Assignment.

LAB may assign its performance obligations under this contract to other parties, as it deems necessary. LAB shall disclose to Client any assignee (subcontractor) by ELAP ID # on the submitted final report.

Force Majeure.

LAB shall have no responsibility or liability to the Client for any failure or delay in performance by LAB, which results in whole or in part from any cause or circumstance beyond the reasonable control of LAB. Such causes and circumstances shall include, but not limited to, acts of God, acts or orders of any government authority, strikes or other labor disputes, natural disasters, accidents, wars, civil disturbances, difficulties or delays in transportation, mail or delivery services, inability to obtain sufficient services or supplies from LAB's usual suppliers, or any other cause beyond LAB's reasonable control.

Law.

This contract shall be continued under the laws of the State of New York without regard to its conflicts of laws provision.

CHAIN OF CUSTODY

/きょ

ditions	See additional page for sample conditions.	See addi						1		
	to Paradigm Terms and Conditions (reverse).	digm Terms and Co	client agrees to Para	By signing this form, client agrees	By signi	please indicate EDD needed :	age needed:	please indicate package needed:		please indicate date needed:
			18 13:30	Circa 3/22/	3. Cired	Other EDD		Other		Other
		0 -		@ Lab'By	Received					Rush 1 day
		1) & // Et/	را	73				Category B	Ω	Rush 2 day
	2.25	5/22/19 1.	Z	Leuda	Paraivad	NYSDEC EDD X		Category A	Ω	Rush 3 day
	600		Da	hed By	Relinquished	Basic EDD		Batch QC	В	10 day
	M. 16	3/72/18		A S	Sampled By	None Required		None Required	Z	Standard 5 day
	0	22/18/12:11	Frager 31	THE PAINT	20	Availability contingent upon lab approval; additional fees may apply.	roval; additional f	pon lab appi	ity contingent u	Availabi
_		1			ple label	lements proson	Report Supplements		d Time	Turnaround Time
200				AN P		X				
8			<	NO DW		-28-03-12/X	OW-MW	<	10:58	3/20/18
67				W6 3 V		-28 032218	OW-MW	\	11:40	3/22/18
06	· ·		/\/	WG 3		-27.032218	OW-MW-	~	16:31	3/22/18
05				WG 3		16.032118	OW-MW-	*	10:45	8/118/18
0 4				V SW	ate	Field Duplie	OW-MW	<		3/3/1/8
2000				50 S		26-032118	OW-MW-26	<	12:35	3/21/18
of Jak to			/4/	N C YM	180	-23-MSD-0321	OW-MW-23-	<	9:40	2/1/8/10
\$ 5				NG 3N		23-MS-032118	OW-MW-23-MS	1	9:40	3/2/18
02	1			WG 3		23_032118	OW-MW-23	<<	9:35	3/21/18
0/			M	WG 33	-	81188	OW-AW-22	V,	13:28	8/21/18
PARADIGM LAB SAMPLE NUMBER	REMARKS		TCL VOCS 8260 RCRA Metals	x-n→≥		SAMPLE IDENTIFIER		m ⊣ − ν ο ≥ σ ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο	TIME	DATE COLLECTED
		YSIS	REQUESTED ANALYSIS							
OL - Oil AR - Air	SD - Solid WP - Wipe PT - Paint CK - Caulk	SO - Soil SL - Sludge	DW - Drinking Water WW - Wastewater	er undwater	WA - Water WG - Groundwater	Codles: AQ - Aqueous Liquid NQ - Non-Aqueous Liquid	Matrix Codes: AQ - Aque NQ - Non-	or that	316-08 216-08	OKN
WINES - CAN	gregardino (michigariers - car)			ATTN:		Andres	ALOJE :NILV	CE CE	PROJECT REFERENCE	PROJEC
	Email:			PHONE:		5-385-4417	PHONE: 58%		-	i
	Quotation #:	C ZIP:	STATE:	OH CITY:	JAP / 412 Y	ACKUSTU STATE: N	OITY: Roche			
	181072	3	/ W O /	ADDRESS:	0. Suite	かけから	ADDRESS: 129	•		1
	LAB PROJECT ID			CLIENT:		SYDDINOORS	CLIENT:		TAKAUIGM	フロス
		Ö,	INVOICE TO:			REPORT TO:				J

Chain of Custody Supplement

Client: Lab Project ID:	Lu Engineers 181072	Completed by:	3/22/18
240 2 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Sample Condition	n Requirements	
Condition	NELAC compliance with the sample c Yes	ondition requirements upo No	on receipt N/A
Container Type Comments			
Transferred to method- compliant contàiner			
Headspace (<1 mL) Comments	Z VOA		
Preservation Comments	40V		
Chlorine Absent (<0.10 ppm per test strip) Comments			
Holding Time Comments			
Temperature Comments	3°C red 3/22/18	/3:38	Metals
Sufficient Sample Quantity Comments			
			-

Client: <u>Lu Engineers, Inc.</u>

Project Reference: Orchard Whitney 4216-08

Sample Identifier: OW-MW-22_050418

Lab Sample ID:181872-01Date Sampled:5/4/2018Matrix:GroundwaterDate Received:5/7/2018

<u>Mercury</u>

 Analyte
 Result
 Units
 Qualifier
 Date Analyzed

 Mercury
 < 0.000200</td>
 mg/L
 5/10/2018 10:45

Method Reference(s):EPA 7470APreparation Date:5/9/2018Data File:Hg180510A

Client: <u>Lu Engineers, Inc.</u>

Project Reference: Orchard Whitney 4216-08

Sample Identifier: OW-MW-22_050418

Lab Sample ID:181872-01Date Sampled:5/4/2018Matrix:GroundwaterDate Received:5/7/2018

RCRA Metals (ICP)

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
Arsenic	< 0.0100	mg/L		5/10/2018 16:37
Barium	0.0645	mg/L	J	5/10/2018 16:37
Cadmium	< 0.00500	mg/L		5/10/2018 16:37
Chromium	0.0119	mg/L		5/10/2018 16:37
Lead	< 0.0100	mg/L		5/10/2018 16:37
Selenium	< 0.0200	mg/L		5/10/2018 16:37
Silver	< 0.0100	mg/L		5/10/2018 16:37

Method Reference(s): EPA 6010C

EPA 3005A

Preparation Date: 5/7/2018 Data File: 5/7/2018

Client: <u>Lu Engineers, Inc.</u>

Project Reference: Orchard Whitney 4216-08

Sample Identifier: OW-MW-22_050418

Lab Sample ID:181872-01Date Sampled:5/4/2018Matrix:GroundwaterDate Received:5/7/2018

Volatile Organics

Analyte	<u>Result</u>	<u>Units</u>	Qualifier l	Date Analyz	zed
1,1,1-Trichloroethane	< 2.00	ug/L	!	5/10/2018	19:08
1,1,2,2-Tetrachloroethane	< 2.00	ug/L	!	5/10/2018	19:08
1,1,2-Trichloroethane	< 2.00	ug/L	!	5/10/2018	19:08
1,1-Dichloroethane	< 2.00	ug/L	!	5/10/2018	19:08
1,1-Dichloroethene	< 2.00	ug/L	!	5/10/2018	19:08
1,2,3-Trichlorobenzene	< 5.00	ug/L	!	5/10/2018	19:08
1,2,4-Trichlorobenzene	< 5.00	ug/L	!	5/10/2018	19:08
1,2-Dibromo-3-Chloropropane	< 10.0	ug/L		5/10/2018	19:08
1,2-Dibromoethane	< 2.00	ug/L		5/10/2018	19:08
1,2-Dichlorobenzene	< 2.00	ug/L	!	5/10/2018	19:08
1,2-Dichloroethane	< 2.00	ug/L		5/10/2018	19:08
1,2-Dichloropropane	< 2.00	ug/L	!	5/10/2018	19:08
1,3-Dichlorobenzene	< 2.00	ug/L	!	5/10/2018	19:08
1,4-Dichlorobenzene	< 2.00	ug/L		5/10/2018	19:08
1,4-dioxane	< 20.0	ug/L	!	5/10/2018	19:08
2-Butanone	< 10.0	ug/L	!	5/10/2018	19:08
2-Hexanone	< 5.00	ug/L	!	5/10/2018	19:08
4-Methyl-2-pentanone	< 5.00	ug/L	!	5/10/2018	19:08
Acetone	< 10.0	ug/L	!	5/10/2018	19:08
Benzene	< 1.00	ug/L	!	5/10/2018	19:08
Bromochloromethane	< 5.00	ug/L	!	5/10/2018	19:08
Bromodichloromethane	< 2.00	ug/L	!	5/10/2018	19:08
Bromoform	< 5.00	ug/L	!	5/10/2018	19:08
Bromomethane	< 2.00	ug/L	!	5/10/2018	19:08
Carbon disulfide	< 2.00	ug/L	!	5/10/2018	19:08
Carbon Tetrachloride	< 2.00	ug/L	!	5/10/2018	19:08
Chlorobenzene	< 2.00	ug/L	!	5/10/2018	19:08

Client: <u>Lu Engineers, Inc.</u>

Project Reference: Orchard Whitney 4216-08

Lab Sample ID:	181872-01			Date Sampled:	5/4/2018
Matrix:	Groundwater			Date Received:	5/7/2018
Chloroethane	-	< 2.00	ug/L		5/10/2018 19:08
Chloroform		< 2.00	ug/L		5/10/2018 19:08
Chloromethane		< 2.00	ug/L		5/10/2018 19:08
cis-1,2-Dichloroethene		< 2.00	ug/L		5/10/2018 19:08
cis-1,3-Dichloropropene		< 2.00	ug/L		5/10/2018 19:08
Cyclohexane		< 10.0	ug/L		5/10/2018 19:08
Dibromochloromethane		< 2.00	ug/L		5/10/2018 19:08
Dichlorodifluoromethane	e	< 2.00	ug/L		5/10/2018 19:08
Ethylbenzene		< 2.00	ug/L		5/10/2018 19:08
Freon 113		< 2.00	ug/L		5/10/2018 19:08
Isopropylbenzene		< 2.00	ug/L		5/10/2018 19:08
m,p-Xylene		< 2.00	ug/L		5/10/2018 19:08
Methyl acetate		< 2.00	ug/L		5/10/2018 19:08
Methyl tert-butyl Ether		< 2.00	ug/L		5/10/2018 19:08
Methylcyclohexane		< 2.00	ug/L		5/10/2018 19:08
Methylene chloride		< 5.00	ug/L		5/10/2018 19:08
o-Xylene		< 2.00	ug/L		5/10/2018 19:08
Styrene		< 5.00	ug/L		5/10/2018 19:08
Tetrachloroethene		< 2.00	ug/L		5/10/2018 19:08
Toluene		< 2.00	ug/L		5/10/2018 19:08
trans-1,2-Dichloroethene	e	< 2.00	ug/L		5/10/2018 19:08
trans-1,3-Dichloroprope	ne	< 2.00	ug/L		5/10/2018 19:08
Trichloroethene		< 2.00	ug/L		5/10/2018 19:08
Trichlorofluoromethane		< 2.00	ug/L		5/10/2018 19:08
Vinyl chloride		< 2.00	ug/L		5/10/2018 19:08

Client: <u>Lu Engineers, Inc.</u>

Project Reference: Orchard Whitney 4216-08

Sample Identifier: OW-MW-22_050418

Lab Sample ID:181872-01Date Sampled:5/4/2018Matrix:GroundwaterDate Received:5/7/2018

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	Outliers	Date Analy	<u>vzed</u>
1,2-Dichloroethane-d4	105	77.2 - 121		5/10/2018	19:08
4-Bromofluorobenzene	93.7	70 - 123		5/10/2018	19:08
Pentafluorobenzene	97.3	85.4 - 110		5/10/2018	19:08
Toluene-D8	95.6	83.8 - 112		5/10/2018	19:08

Method Reference(s): EPA 8260C

EPA 5030C

Data File: x50574.D

Client: <u>Lu Engineers, Inc.</u>

Project Reference: Orchard Whitney 4216-08

Sample Identifier: OW-MW-23_050418

Lab Sample ID:181872-02Date Sampled:5/4/2018Matrix:GroundwaterDate Received:5/7/2018

<u>Mercury</u>

 Analyte
 Result
 Units
 Qualifier
 Date Analyzed

 Mercury
 < 0.000200</td>
 mg/L
 5/10/2018
 10:48

Method Reference(s):EPA 7470APreparation Date:5/9/2018Data File:Hg180510A

Client: <u>Lu Engineers, Inc.</u>

Project Reference: Orchard Whitney 4216-08

Sample Identifier: OW-MW-23_050418

Lab Sample ID:181872-02Date Sampled:5/4/2018Matrix:GroundwaterDate Received:5/7/2018

RCRA Metals (ICP)

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analyzed
Arsenic	< 0.0100	mg/L		5/10/2018 16:41
Barium	0.105	mg/L		5/10/2018 16:41
Cadmium	< 0.00500	mg/L		5/10/2018 16:41
Chromium	< 0.0100	mg/L		5/10/2018 16:41
Lead	0.00586	mg/L	J	5/10/2018 16:41
Selenium	0.0113	mg/L	J	5/10/2018 16:41
Silver	< 0.0100	mg/L		5/10/2018 16:41

Method Reference(s): EPA 6010C

EPA 3005A

Preparation Date: 5/7/2018
Data File: 180510C

Client: <u>Lu Engineers, Inc.</u>

Project Reference: Orchard Whitney 4216-08

Sample Identifier: OW-MW-23_050418

Lab Sample ID:181872-02Date Sampled:5/4/2018Matrix:GroundwaterDate Received:5/7/2018

Volatile Organics

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 2.00	ug/L		5/10/2018 19:32
1,1,2,2-Tetrachloroethane	< 2.00	ug/L		5/10/2018 19:32
1,1,2-Trichloroethane	< 2.00	ug/L		5/10/2018 19:32
1,1-Dichloroethane	< 2.00	ug/L		5/10/2018 19:32
1,1-Dichloroethene	< 2.00	ug/L		5/10/2018 19:32
1,2,3-Trichlorobenzene	< 5.00	ug/L		5/10/2018 19:32
1,2,4-Trichlorobenzene	< 5.00	ug/L		5/10/2018 19:32
1,2-Dibromo-3-Chloropropane	< 10.0	ug/L		5/10/2018 19:32
1,2-Dibromoethane	< 2.00	ug/L		5/10/2018 19:32
1,2-Dichlorobenzene	< 2.00	ug/L		5/10/2018 19:32
1,2-Dichloroethane	< 2.00	ug/L		5/10/2018 19:32
1,2-Dichloropropane	< 2.00	ug/L		5/10/2018 19:32
1,3-Dichlorobenzene	< 2.00	ug/L		5/10/2018 19:32
1,4-Dichlorobenzene	< 2.00	ug/L		5/10/2018 19:32
1,4-dioxane	< 20.0	ug/L		5/10/2018 19:32
2-Butanone	< 10.0	ug/L		5/10/2018 19:32
2-Hexanone	< 5.00	ug/L		5/10/2018 19:32
4-Methyl-2-pentanone	< 5.00	ug/L		5/10/2018 19:32
Acetone	< 10.0	ug/L		5/10/2018 19:32
Benzene	< 1.00	ug/L		5/10/2018 19:32
Bromochloromethane	< 5.00	ug/L		5/10/2018 19:32
Bromodichloromethane	< 2.00	ug/L		5/10/2018 19:32
Bromoform	< 5.00	ug/L		5/10/2018 19:32
Bromomethane	< 2.00	ug/L		5/10/2018 19:32
Carbon disulfide	< 2.00	ug/L		5/10/2018 19:32
Carbon Tetrachloride	< 2.00	ug/L		5/10/2018 19:32
Chlorobenzene	< 2.00	ug/L		5/10/2018 19:32

Lu Engineers, Inc. Client:

Project Reference: Orchard Whitney 4216-08

Sample Identifier:	OW-MW-23_050418		
Lab Sample ID:	181872-02	Date Sampled:	5/4/2018
Matrix	Croundwater	Data Pacaiyadı	E /7 /2010

Lab Sample ID:	181872-02		Date Sampled:	5/4/2018	
Matrix:	Groundwater		Date Received:	5/7/2018	
Chloroethane	< 2.00	ug/L		5/10/2018 19:32	= !
Chloroform	< 2.00	ug/L		5/10/2018 19:32	
Chloromethane	< 2.00	ug/L		5/10/2018 19:32	!
cis-1,2-Dichloroethene	< 2.00	ug/L		5/10/2018 19:32	
cis-1,3-Dichloropropene	< 2.00	ug/L		5/10/2018 19:32	
Cyclohexane	< 10.0	ug/L		5/10/2018 19:32	!
Dibromochloromethane	< 2.00	ug/L		5/10/2018 19:32	!
Dichlorodifluoromethan	e < 2.00	ug/L		5/10/2018 19:32	!
Ethylbenzene	< 2.00	ug/L		5/10/2018 19:32	
Freon 113	< 2.00	ug/L		5/10/2018 19:32	
Isopropylbenzene	< 2.00	ug/L		5/10/2018 19:32	:
m,p-Xylene	< 2.00	ug/L		5/10/2018 19:32	:
Methyl acetate	< 2.00	ug/L		5/10/2018 19:32	:
Methyl tert-butyl Ether	< 2.00	ug/L		5/10/2018 19:32	:
Methylcyclohexane	< 2.00	ug/L		5/10/2018 19:32	:
Methylene chloride	< 5.00	ug/L		5/10/2018 19:32	:
o-Xylene	< 2.00	ug/L		5/10/2018 19:32	:
Styrene	< 5.00	ug/L		5/10/2018 19:32	:
Tetrachloroethene	< 2.00	ug/L		5/10/2018 19:32	:
Toluene	< 2.00	ug/L		5/10/2018 19:32	:
trans-1,2-Dichloroethen	e < 2.00	ug/L		5/10/2018 19:32	:
trans-1,3-Dichloroprope	ene < 2.00	ug/L		5/10/2018 19:32	:
Trichloroethene	< 2.00	ug/L		5/10/2018 19:32	
Trichlorofluoromethane	< 2.00	ug/L		5/10/2018 19:32	
Vinyl chloride	< 2.00	ug/L		5/10/2018 19:32	

Client: <u>Lu Engineers, Inc.</u>

Project Reference: Orchard Whitney 4216-08

Sample Identifier: OW-MW-23_050418

Lab Sample ID:181872-02Date Sampled:5/4/2018Matrix:GroundwaterDate Received:5/7/2018

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analyzed	
1,2-Dichloroethane-d4	106	77.2 - 121		5/10/2018	19:32
4-Bromofluorobenzene	95.4	70 - 123		5/10/2018	19:32
Pentafluorobenzene	97.4	85.4 - 110		5/10/2018	19:32
Toluene-D8	95.2	83.8 - 112		5/10/2018	19:32

Method Reference(s): EPA 8260C

EPA 5030C

Data File: x50575.D

Client: <u>Lu Engineers, Inc.</u>

Project Reference: Orchard Whitney 4216-08

Sample Identifier: OW-MW-16_050418

Lab Sample ID:181872-03Date Sampled:5/4/2018Matrix:GroundwaterDate Received:5/7/2018

<u>Mercury</u>

 Analyte
 Result
 Units
 Qualifier
 Date Analyzed

 Mercury
 < 0.000200</td>
 mg/L
 5/10/2018 10:51

Method Reference(s):EPA 7470APreparation Date:5/9/2018Data File:Hg180510A

Client: <u>Lu Engineers, Inc.</u>

Project Reference: Orchard Whitney 4216-08

Sample Identifier: OW-MW-16_050418

Lab Sample ID:181872-03Date Sampled:5/4/2018Matrix:GroundwaterDate Received:5/7/2018

RCRA Metals (ICP)

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
Arsenic	0.0106	mg/L		5/10/2018 16:45
Barium	< 0.100	mg/L		5/10/2018 16:45
Cadmium	< 0.00500	mg/L		5/10/2018 16:45
Chromium	0.00654	mg/L	J	5/10/2018 16:45
Lead	< 0.0100	mg/L		5/10/2018 16:45
Selenium	< 0.0200	mg/L		5/10/2018 16:45
Silver	< 0.0100	mg/L		5/10/2018 16:45

Method Reference(s): EPA 6010C

EPA 3005A

Preparation Date: 5/7/2018
Data File: 180510C

Client: <u>Lu Engineers, Inc.</u>

Project Reference: Orchard Whitney 4216-08

Sample Identifier: OW-MW-16_050418

Lab Sample ID:181872-03Date Sampled:5/4/2018Matrix:GroundwaterDate Received:5/7/2018

Volatile Organics

Analyte	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 2.00	ug/L		5/10/2018 19:55
1,1,2,2-Tetrachloroethane	< 2.00	ug/L		5/10/2018 19:55
1,1,2-Trichloroethane	< 2.00	ug/L		5/10/2018 19:55
1,1-Dichloroethane	< 2.00	ug/L		5/10/2018 19:55
1,1-Dichloroethene	< 2.00	ug/L		5/10/2018 19:55
1,2,3-Trichlorobenzene	< 5.00	ug/L		5/10/2018 19:55
1,2,4-Trichlorobenzene	< 5.00	ug/L		5/10/2018 19:55
1,2-Dibromo-3-Chloropropane	< 10.0	ug/L		5/10/2018 19:55
1,2-Dibromoethane	< 2.00	ug/L		5/10/2018 19:55
1,2-Dichlorobenzene	< 2.00	ug/L		5/10/2018 19:55
1,2-Dichloroethane	< 2.00	ug/L		5/10/2018 19:55
1,2-Dichloropropane	< 2.00	ug/L		5/10/2018 19:55
1,3-Dichlorobenzene	< 2.00	ug/L		5/10/2018 19:55
1,4-Dichlorobenzene	< 2.00	ug/L		5/10/2018 19:55
1,4-dioxane	< 20.0	ug/L		5/10/2018 19:55
2-Butanone	< 10.0	ug/L		5/10/2018 19:55
2-Hexanone	< 5.00	ug/L		5/10/2018 19:55
4-Methyl-2-pentanone	< 5.00	ug/L		5/10/2018 19:55
Acetone	11.3	ug/L		5/10/2018 19:55
Benzene	0.991	ug/L	J	5/10/2018 19:55
Bromochloromethane	< 5.00	ug/L		5/10/2018 19:55
Bromodichloromethane	< 2.00	ug/L		5/10/2018 19:55
Bromoform	< 5.00	ug/L		5/10/2018 19:55
Bromomethane	< 2.00	ug/L		5/10/2018 19:55
Carbon disulfide	< 2.00	ug/L		5/10/2018 19:55
Carbon Tetrachloride	< 2.00	ug/L		5/10/2018 19:55
Chlorobenzene	< 2.00	ug/L		5/10/2018 19:55

Client: <u>Lu Engineers, Inc.</u>

Project Reference: Orchard Whitney 4216-08

Sample Identifier: 0W-MW-16_050418

Lab Sample ID: 181872-03 Date Sampled: 5/4/2018

Lab Sample ID:	181872-03			Date Sampled:	5/4/2018	
Matrix:	Groundwater			Date Received:	5/7/2018	
Chloroethane	<	2.00	ug/L		5/10/2018	19:55
Chloroform	<	2.00	ug/L		5/10/2018	19:55
Chloromethane	<	2.00	ug/L		5/10/2018	19:55
cis-1,2-Dichloroethene	<	2.00	ug/L		5/10/2018	19:55
cis-1,3-Dichloropropene	<	2.00	ug/L		5/10/2018	19:55
Cyclohexane	<	10.0	ug/L		5/10/2018	19:55
Dibromochloromethane	<	2.00	ug/L		5/10/2018	19:55
Dichlorodifluoromethan	e <	2.00	ug/L		5/10/2018	19:55
Ethylbenzene	<	2.00	ug/L		5/10/2018	19:55
Freon 113	<	2.00	ug/L		5/10/2018	19:55
Isopropylbenzene	<	2.00	ug/L		5/10/2018	19:55
m,p-Xylene	<	2.00	ug/L		5/10/2018	19:55
Methyl acetate	<	2.00	ug/L		5/10/2018	19:55
Methyl tert-butyl Ether	<	2.00	ug/L		5/10/2018	19:55
Methylcyclohexane	<	2.00	ug/L		5/10/2018	19:55
Methylene chloride	<	5.00	ug/L		5/10/2018	19:55
o-Xylene	<	2.00	ug/L		5/10/2018	19:55
Styrene	<	5.00	ug/L		5/10/2018	19:55
Tetrachloroethene	<	2.00	ug/L		5/10/2018	19:55
Toluene	<	2.00	ug/L		5/10/2018	19:55
trans-1,2-Dichloroethen	e <	2.00	ug/L		5/10/2018	19:55
trans-1,3-Dichloroprope	ene <	2.00	ug/L		5/10/2018	19:55
Trichloroethene	<	2.00	ug/L		5/10/2018	19:55
Trichlorofluoromethane	<	2.00	ug/L		5/10/2018	19:55
Vinyl chloride	<	2.00	ug/L		5/10/2018	19:55

Client: <u>Lu Engineers, Inc.</u>

Project Reference: Orchard Whitney 4216-08

Sample Identifier: OW-MW-16_050418

Lab Sample ID:181872-03Date Sampled:5/4/2018Matrix:GroundwaterDate Received:5/7/2018

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analyzed		
1,2-Dichloroethane-d4	107	77.2 - 121		5/10/2018	19:55	
4-Bromofluorobenzene	95.9	70 - 123		5/10/2018	19:55	
Pentafluorobenzene	99.4	85.4 - 110		5/10/2018	19:55	
Toluene-D8	94.7	83.8 - 112		5/10/2018	19:55	

Method Reference(s): EPA 8260C

EPA 5030C

Data File: x50576.D

Client: <u>Lu Engineers, Inc.</u>

Project Reference: Orchard Whitney 4216-08

Sample Identifier: OW-MW-26_050418

Lab Sample ID:181872-04Date Sampled:5/4/2018Matrix:GroundwaterDate Received:5/7/2018

<u>Mercury</u>

 Analyte
 Result
 Units
 Qualifier
 Date Analyzed

 Mercury
 < 0.000200</td>
 mg/L
 5/10/2018 10:54

Method Reference(s):EPA 7470APreparation Date:5/9/2018Data File:Hg180510A

Client: <u>Lu Engineers, Inc.</u>

Project Reference: Orchard Whitney 4216-08

Sample Identifier: OW-MW-26_050418

Lab Sample ID:181872-04Date Sampled:5/4/2018Matrix:GroundwaterDate Received:5/7/2018

RCRA Metals (ICP)

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analyzed
Arsenic	< 0.0100	mg/L		5/10/2018 16:50
Barium	0.0576	mg/L	J	5/10/2018 16:50
Cadmium	< 0.00500	mg/L		5/10/2018 16:50
Chromium	0.00997	mg/L	J	5/10/2018 16:50
Lead	< 0.0100	mg/L		5/10/2018 16:50
Selenium	0.0158	mg/L	J	5/10/2018 16:50
Silver	< 0.0100	mg/L		5/10/2018 16:50

Method Reference(s): EPA 6010C

EPA 3005A

Preparation Date: 5/7/2018
Data File: 180510C

Client: <u>Lu Engineers, Inc.</u>

Project Reference: Orchard Whitney 4216-08

Sample Identifier: OW-MW-26_050418

Lab Sample ID:181872-04Date Sampled:5/4/2018Matrix:GroundwaterDate Received:5/7/2018

Volatile Organics

Analyte	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed	
1,1,1-Trichloroethane	< 2.00	ug/L		5/10/2018 20:	18
1,1,2,2-Tetrachloroethane	< 2.00	ug/L		5/10/2018 20:	18
1,1,2-Trichloroethane	< 2.00	ug/L		5/10/2018 20:	18
1,1-Dichloroethane	< 2.00	ug/L		5/10/2018 20:	18
1,1-Dichloroethene	< 2.00	ug/L		5/10/2018 20:	18
1,2,3-Trichlorobenzene	< 5.00	ug/L		5/10/2018 20:	18
1,2,4-Trichlorobenzene	< 5.00	ug/L		5/10/2018 20:	18
1,2-Dibromo-3-Chloropropane	< 10.0	ug/L		5/10/2018 20:	18
1,2-Dibromoethane	< 2.00	ug/L		5/10/2018 20:	18
1,2-Dichlorobenzene	< 2.00	ug/L		5/10/2018 20:	18
1,2-Dichloroethane	< 2.00	ug/L		5/10/2018 20:	18
1,2-Dichloropropane	< 2.00	ug/L		5/10/2018 20:	18
1,3-Dichlorobenzene	< 2.00	ug/L		5/10/2018 20:	18
1,4-Dichlorobenzene	< 2.00	ug/L		5/10/2018 20:	18
1,4-dioxane	< 20.0	ug/L		5/10/2018 20:	18
2-Butanone	< 10.0	ug/L		5/10/2018 20:	18
2-Hexanone	< 5.00	ug/L		5/10/2018 20:	18
4-Methyl-2-pentanone	< 5.00	ug/L		5/10/2018 20:	18
Acetone	< 10.0	ug/L		5/10/2018 20:	18
Benzene	< 1.00	ug/L		5/10/2018 20:	18
Bromochloromethane	< 5.00	ug/L		5/10/2018 20:	18
Bromodichloromethane	< 2.00	ug/L		5/10/2018 20:	18
Bromoform	< 5.00	ug/L		5/10/2018 20:	18
Bromomethane	< 2.00	ug/L		5/10/2018 20:	18
Carbon disulfide	< 2.00	ug/L		5/10/2018 20:	18
Carbon Tetrachloride	< 2.00	ug/L		5/10/2018 20:	18
Chlorobenzene	< 2.00	ug/L		5/10/2018 20:	18

Client: <u>Lu Engineers, Inc.</u>

Project Reference: Orchard Whitney 4216-08

Sample Identifier: 0W-MW-26_050418
Lab Sample ID: 181872-04 Date Sampled: 5/4/2018

Date Received: Matrix: Groundwater 5/7/2018 Chloroethane < 2.00 ug/L 5/10/2018 20:18 Chloroform 5/10/2018 20:18 < 2.00 ug/L Chloromethane < 2.00 ug/L 5/10/2018 20:18 cis-1.2-Dichloroethene < 2.00 ug/L 5/10/2018 20:18 cis-1,3-Dichloropropene < 2.00 ug/L 5/10/2018 20:18 Cyclohexane < 10.0 ug/L 5/10/2018 20:18 5/10/2018 20:18 Dibromochloromethane < 2.00 ug/L 5/10/2018 20:18 Dichlorodifluoromethane < 2.00 ug/L 5/10/2018 20:18 Ethylbenzene < 2.00 ug/L Freon 113 < 2.00 ug/L 5/10/2018 20:18 < 2.00 Isopropylbenzene ug/L 5/10/2018 20:18 5/10/2018 20:18 m,p-Xylene < 2.00 ug/L Methyl acetate < 2.00 ug/L 5/10/2018 20:18 < 2.00 5/10/2018 20:18 Methyl tert-butyl Ether ug/L Methylcyclohexane < 2.00 5/10/2018 20:18 ug/L Methylene chloride < 5.00 ug/L 5/10/2018 20:18 o-Xylene < 2.00 ug/L 5/10/2018 20:18 < 5.00 ug/L 5/10/2018 20:18 Styrene Tetrachloroethene < 2.00 ug/L 5/10/2018 20:18 Toluene < 2.00 ug/L 5/10/2018 20:18 trans-1,2-Dichloroethene < 2.00 ug/L 5/10/2018 20:18 trans-1,3-Dichloropropene < 2.00 ug/L 5/10/2018 20:18 Trichloroethene < 2.00 5/10/2018 20:18 ug/L Trichlorofluoromethane < 2.00 ug/L 5/10/2018 20:18 Vinyl chloride < 2.00 ug/L 5/10/2018 20:18

Client: <u>Lu Engineers, Inc.</u>

Project Reference: Orchard Whitney 4216-08

Sample Identifier: OW-MW-26_050418

Lab Sample ID:181872-04Date Sampled:5/4/2018Matrix:GroundwaterDate Received:5/7/2018

Surrogate	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	vzed
1,2-Dichloroethane-d4	107	77.2 - 121		5/10/2018	20:18
4-Bromofluorobenzene	93.8	70 - 123		5/10/2018	20:18
Pentafluorobenzene	93.6	85.4 - 110		5/10/2018	20:18
Toluene-D8	95.9	83.8 - 112		5/10/2018	20:18

Method Reference(s): EPA 8260C

EPA 5030C

Data File: x50577.D

Client: <u>Lu Engineers, Inc.</u>

Project Reference: Orchard Whitney 4216-08

Sample Identifier: OW-MW-27_050418

Lab Sample ID:181872-05Date Sampled:5/4/2018Matrix:GroundwaterDate Received:5/7/2018

Mercury

 Analyte
 Result
 Units
 Qualifier
 Date Analyzed

 Mercury
 < 0.000200</td>
 mg/L
 5/10/2018 10:57

Method Reference(s): EPA 7470A
Preparation Date: 5/9/2018
Data File: Hg180510A

Client: <u>Lu Engineers, Inc.</u>

Project Reference: Orchard Whitney 4216-08

Sample Identifier: OW-MW-27_050418

Lab Sample ID:181872-05Date Sampled:5/4/2018Matrix:GroundwaterDate Received:5/7/2018

RCRA Metals (ICP)

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analyzed
Arsenic	< 0.0100	mg/L		5/10/2018 16:54
Barium	< 0.100	mg/L		5/10/2018 16:54
Cadmium	< 0.00500	mg/L		5/10/2018 16:54
Chromium	< 0.0100	mg/L		5/10/2018 16:54
Lead	< 0.0100	mg/L		5/10/2018 16:54
Selenium	0.0137	mg/L	J	5/10/2018 16:54
Silver	< 0.0100	mg/L		5/10/2018 16:54

Method Reference(s): EPA 6010C

EPA 3005A

Preparation Date: 5/7/2018 Data File: 5/7/2018

Client: <u>Lu Engineers, Inc.</u>

Project Reference: Orchard Whitney 4216-08

Sample Identifier: OW-MW-27_050418

Lab Sample ID:181872-05Date Sampled:5/4/2018Matrix:GroundwaterDate Received:5/7/2018

Volatile Organics

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 2.00	ug/L		5/10/2018 20:42
1,1,2,2-Tetrachloroethane	< 2.00	ug/L		5/10/2018 20:42
1,1,2-Trichloroethane	< 2.00	ug/L		5/10/2018 20:42
1,1-Dichloroethane	< 2.00	ug/L		5/10/2018 20:42
1,1-Dichloroethene	< 2.00	ug/L		5/10/2018 20:42
1,2,3-Trichlorobenzene	< 5.00	ug/L		5/10/2018 20:42
1,2,4-Trichlorobenzene	< 5.00	ug/L		5/10/2018 20:42
1,2-Dibromo-3-Chloropropane	< 10.0	ug/L		5/10/2018 20:42
1,2-Dibromoethane	< 2.00	ug/L		5/10/2018 20:42
1,2-Dichlorobenzene	< 2.00	ug/L		5/10/2018 20:42
1,2-Dichloroethane	< 2.00	ug/L		5/10/2018 20:42
1,2-Dichloropropane	< 2.00	ug/L		5/10/2018 20:42
1,3-Dichlorobenzene	< 2.00	ug/L		5/10/2018 20:42
1,4-Dichlorobenzene	< 2.00	ug/L		5/10/2018 20:42
1,4-dioxane	< 20.0	ug/L		5/10/2018 20:42
2-Butanone	< 10.0	ug/L		5/10/2018 20:42
2-Hexanone	< 5.00	ug/L		5/10/2018 20:42
4-Methyl-2-pentanone	< 5.00	ug/L		5/10/2018 20:42
Acetone	< 10.0	ug/L		5/10/2018 20:42
Benzene	< 1.00	ug/L		5/10/2018 20:42
Bromochloromethane	< 5.00	ug/L		5/10/2018 20:42
Bromodichloromethane	< 2.00	ug/L		5/10/2018 20:42
Bromoform	< 5.00	ug/L		5/10/2018 20:42
Bromomethane	< 2.00	ug/L		5/10/2018 20:42
Carbon disulfide	< 2.00	ug/L		5/10/2018 20:42
Carbon Tetrachloride	< 2.00	ug/L		5/10/2018 20:42
Chlorobenzene	< 2.00	ug/L		5/10/2018 20:42

Client: <u>Lu Engineers, Inc.</u>

Project Reference: Orchard Whitney 4216-08

Sample Identifier: 0W-MW-27_050418

Lab Sample ID: 181872-05 Date Sampled: 5/4/201

Lab Sample ID:	181872-05		Date Sampled:	5/4/2018	
Matrix:	Groundwater		Date Received:	5/7/2018	
Chloroethane	< 2.0	0 ug/L		5/10/2018 20:42	<u> </u>
Chloroform	< 2.0	0 ug/L		5/10/2018 20:42	2
Chloromethane	< 2.0	0 ug/L		5/10/2018 20:42	2
cis-1,2-Dichloroethene	< 2.0	0 ug/L		5/10/2018 20:42	2
cis-1,3-Dichloropropene	< 2.0	0 ug/L		5/10/2018 20:42	2
Cyclohexane	< 10.	0 ug/L		5/10/2018 20:42	2
Dibromochloromethane	< 2.0	0 ug/L		5/10/2018 20:42	2
Dichlorodifluoromethan	e < 2.0	0 ug/L		5/10/2018 20:42	2
Ethylbenzene	< 2.0	0 ug/L		5/10/2018 20:42	2
Freon 113	< 2.0	0 ug/L		5/10/2018 20:42	2
Isopropylbenzene	< 2.0	0 ug/L		5/10/2018 20:42	2
m,p-Xylene	< 2.0	0 ug/L		5/10/2018 20:42	2
Methyl acetate	< 2.0	0 ug/L		5/10/2018 20:42	2
Methyl tert-butyl Ether	< 2.0	0 ug/L		5/10/2018 20:42	2
Methylcyclohexane	< 2.0	0 ug/L		5/10/2018 20:42	2
Methylene chloride	< 5.0	0 ug/L		5/10/2018 20:42	2
o-Xylene	< 2.0	0 ug/L		5/10/2018 20:42	2
Styrene	< 5.0	0 ug/L		5/10/2018 20:42	2
Tetrachloroethene	< 2.0	0 ug/L		5/10/2018 20:42	2
Toluene	< 2.0	0 ug/L		5/10/2018 20:42	2
trans-1,2-Dichloroethen	e < 2.0	0 ug/L		5/10/2018 20:42	2
trans-1,3-Dichloroprope	ene < 2.0	0 ug/L		5/10/2018 20:42	2
Trichloroethene	< 2.0	0 ug/L		5/10/2018 20:42	2
Trichlorofluoromethane	< 2.0	0 ug/L		5/10/2018 20:42	2
Vinyl chloride	< 2.0	0 ug/L		5/10/2018 20:42	2

Client: <u>Lu Engineers, Inc.</u>

Project Reference: Orchard Whitney 4216-08

Sample Identifier: OW-MW-27_050418

Lab Sample ID:181872-05Date Sampled:5/4/2018Matrix:GroundwaterDate Received:5/7/2018

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	vzed
1,2-Dichloroethane-d4	109	77.2 - 121		5/10/2018	20:42
4-Bromofluorobenzene	93.3	70 - 123		5/10/2018	20:42
Pentafluorobenzene	95.4	85.4 - 110		5/10/2018	20:42
Toluene-D8	95.0	83.8 - 112		5/10/2018	20:42

Method Reference(s): EPA 8260C

EPA 5030C

Data File: x50578.D

Client: <u>Lu Engineers, Inc.</u>

Project Reference: Orchard Whitney 4216-08

Sample Identifier: OW-MW-28_050418

Lab Sample ID:181872-06Date Sampled:5/4/2018Matrix:GroundwaterDate Received:5/7/2018

<u>Mercury</u>

 Analyte
 Result
 Units
 Qualifier
 Date Analyzed

 Mercury
 < 0.000200</td>
 mg/L
 5/10/2018 10:59

Method Reference(s):EPA 7470APreparation Date:5/9/2018Data File:Hg180510A

Client: <u>Lu Engineers, Inc.</u>

Project Reference: Orchard Whitney 4216-08

Sample Identifier: OW-MW-28_050418

Lab Sample ID:181872-06Date Sampled:5/4/2018Matrix:GroundwaterDate Received:5/7/2018

RCRA Metals (ICP)

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
Arsenic	< 0.0100	mg/L		5/10/2018 16:58
Barium	0.0648	mg/L	J	5/10/2018 16:58
Cadmium	< 0.00500	mg/L		5/10/2018 16:58
Chromium	< 0.0100	mg/L		5/10/2018 16:58
Lead	< 0.0100	mg/L		5/10/2018 16:58
Selenium	< 0.0200	mg/L		5/10/2018 16:58
Silver	< 0.0100	mg/L		5/10/2018 16:58

Method Reference(s): EPA 6010C

EPA 3005A

Preparation Date: 5/7/2018
Data File: 180510C

Client: <u>Lu Engineers, Inc.</u>

Project Reference: Orchard Whitney 4216-08

Sample Identifier: OW-MW-28_050418

Lab Sample ID:181872-06Date Sampled:5/4/2018Matrix:GroundwaterDate Received:5/7/2018

Volatile Organics

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 2.00	ug/L		5/10/2018 21:05
1,1,2,2-Tetrachloroethane	< 2.00	ug/L		5/10/2018 21:05
1,1,2-Trichloroethane	< 2.00	ug/L		5/10/2018 21:05
1,1-Dichloroethane	< 2.00	ug/L		5/10/2018 21:05
1,1-Dichloroethene	< 2.00	ug/L		5/10/2018 21:05
1,2,3-Trichlorobenzene	< 5.00	ug/L		5/10/2018 21:05
1,2,4-Trichlorobenzene	< 5.00	ug/L		5/10/2018 21:05
1,2-Dibromo-3-Chloropropane	< 10.0	ug/L		5/10/2018 21:05
1,2-Dibromoethane	< 2.00	ug/L		5/10/2018 21:05
1,2-Dichlorobenzene	< 2.00	ug/L		5/10/2018 21:05
1,2-Dichloroethane	< 2.00	ug/L		5/10/2018 21:05
1,2-Dichloropropane	< 2.00	ug/L		5/10/2018 21:05
1,3-Dichlorobenzene	< 2.00	ug/L		5/10/2018 21:05
1,4-Dichlorobenzene	< 2.00	ug/L		5/10/2018 21:05
1,4-dioxane	< 20.0	ug/L		5/10/2018 21:05
2-Butanone	< 10.0	ug/L		5/10/2018 21:05
2-Hexanone	< 5.00	ug/L		5/10/2018 21:05
4-Methyl-2-pentanone	< 5.00	ug/L		5/10/2018 21:05
Acetone	< 10.0	ug/L		5/10/2018 21:05
Benzene	< 1.00	ug/L		5/10/2018 21:05
Bromochloromethane	< 5.00	ug/L		5/10/2018 21:05
Bromodichloromethane	< 2.00	ug/L		5/10/2018 21:05
Bromoform	< 5.00	ug/L		5/10/2018 21:05
Bromomethane	< 2.00	ug/L		5/10/2018 21:05
Carbon disulfide	< 2.00	ug/L		5/10/2018 21:05
Carbon Tetrachloride	< 2.00	ug/L		5/10/2018 21:05
Chlorobenzene	< 2.00	ug/L		5/10/2018 21:05

Lab Project ID: 181872

Lu Engineers, Inc. Client:

Project Reference: Orchard Whitney 4216-08

Matrix:	Groundwater	Date Received:	5/7/2018
Lab Sample ID:	181872-06	Date Sampled:	5/4/2018
Sample Identifier:	OW-MW-28_050418		

Lab Sample ID:	181872-06		Date Sampled:	5/4/2018
Matrix:	Groundwater		Date Received:	5/7/2018
Chloroethane	< 2.00	ug/L		5/10/2018 21:05
Chloroform	< 2.00	ug/L		5/10/2018 21:05
Chloromethane	< 2.00	ug/L		5/10/2018 21:05
cis-1,2-Dichloroethene	< 2.00	ug/L		5/10/2018 21:05
cis-1,3-Dichloropropene	< 2.00	ug/L		5/10/2018 21:05
Cyclohexane	< 10.0	ug/L		5/10/2018 21:05
Dibromochloromethane	< 2.00	ug/L		5/10/2018 21:05
Dichlorodifluoromethan	e < 2.00	ug/L		5/10/2018 21:05
Ethylbenzene	< 2.00	ug/L		5/10/2018 21:05
Freon 113	< 2.00	ug/L		5/10/2018 21:05
Isopropylbenzene	< 2.00	ug/L		5/10/2018 21:05
m,p-Xylene	< 2.00	ug/L		5/10/2018 21:05
Methyl acetate	< 2.00	ug/L		5/10/2018 21:05
Methyl tert-butyl Ether	< 2.00	ug/L		5/10/2018 21:05
Methylcyclohexane	< 2.00	ug/L		5/10/2018 21:05
Methylene chloride	< 5.00	ug/L		5/10/2018 21:05
o-Xylene	< 2.00	ug/L		5/10/2018 21:05
Styrene	< 5.00	ug/L		5/10/2018 21:05
Tetrachloroethene	< 2.00	ug/L		5/10/2018 21:05
Toluene	< 2.00	ug/L		5/10/2018 21:05
trans-1,2-Dichloroethen	e < 2.00	ug/L		5/10/2018 21:05
trans-1,3-Dichloroprope	ene < 2.00	ug/L		5/10/2018 21:05
Trichloroethene	< 2.00	ug/L		5/10/2018 21:05
Trichlorofluoromethane	< 2.00	ug/L		5/10/2018 21:05
Vinyl chloride	< 2.00	ug/L		5/10/2018 21:05

Client: <u>Lu Engineers, Inc.</u>

Project Reference: Orchard Whitney 4216-08

Sample Identifier: OW-MW-28_050418

Lab Sample ID:181872-06Date Sampled:5/4/2018Matrix:GroundwaterDate Received:5/7/2018

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	vzed
1,2-Dichloroethane-d4	105	77.2 - 121		5/10/2018	21:05
4-Bromofluorobenzene	95.0	70 - 123		5/10/2018	21:05
Pentafluorobenzene	95.2	85.4 - 110		5/10/2018	21:05
Toluene-D8	96.1	83.8 - 112		5/10/2018	21:05

Method Reference(s): EPA 8260C

EPA 5030C

Data File: x50579.D

Client: <u>Lu Engineers, Inc.</u>

Project Reference: Orchard Whitney 4216-08

Sample Identifier: OW-MW-29_050418

Lab Sample ID:181872-07Date Sampled:5/4/2018Matrix:GroundwaterDate Received:5/7/2018

<u>Mercury</u>

 Analyte
 Result
 Units
 Qualifier
 Date Analyzed

 Mercury
 < 0.000200</td>
 mg/L
 5/10/2018
 11:02

Method Reference(s):EPA 7470APreparation Date:5/9/2018Data File:Hg180510A

Client: <u>Lu Engineers, Inc.</u>

Project Reference: Orchard Whitney 4216-08

Sample Identifier: OW-MW-29_050418

Lab Sample ID:181872-07Date Sampled:5/4/2018Matrix:GroundwaterDate Received:5/7/2018

RCRA Metals (ICP)

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
Arsenic	< 0.0100	mg/L		5/10/2018 17:11
Barium	< 0.100	mg/L		5/10/2018 17:11
Cadmium	< 0.00500	mg/L		5/10/2018 17:11
Chromium	< 0.0100	mg/L		5/10/2018 17:11
Lead	< 0.0100	mg/L		5/10/2018 17:11
Selenium	< 0.0200	mg/L		5/10/2018 17:11
Silver	< 0.0100	mg/L		5/10/2018 17:11

Method Reference(s): EPA 6010C

EPA 3005A

Preparation Date: 5/7/2018
Data File: 180510C

Client: <u>Lu Engineers, Inc.</u>

Project Reference: Orchard Whitney 4216-08

Sample Identifier: OW-MW-29_050418

Lab Sample ID:181872-07Date Sampled:5/4/2018Matrix:GroundwaterDate Received:5/7/2018

Volatile Organics

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 2.00	ug/L		5/10/2018 21:29
1,1,2,2-Tetrachloroethane	< 2.00	ug/L		5/10/2018 21:29
1,1,2-Trichloroethane	< 2.00	ug/L		5/10/2018 21:29
1,1-Dichloroethane	< 2.00	ug/L		5/10/2018 21:29
1,1-Dichloroethene	< 2.00	ug/L		5/10/2018 21:29
1,2,3-Trichlorobenzene	< 5.00	ug/L		5/10/2018 21:29
1,2,4-Trichlorobenzene	< 5.00	ug/L		5/10/2018 21:29
1,2-Dibromo-3-Chloropropane	< 10.0	ug/L		5/10/2018 21:29
1,2-Dibromoethane	< 2.00	ug/L		5/10/2018 21:29
1,2-Dichlorobenzene	< 2.00	ug/L		5/10/2018 21:29
1,2-Dichloroethane	< 2.00	ug/L		5/10/2018 21:29
1,2-Dichloropropane	< 2.00	ug/L		5/10/2018 21:29
1,3-Dichlorobenzene	< 2.00	ug/L		5/10/2018 21:29
1,4-Dichlorobenzene	< 2.00	ug/L		5/10/2018 21:29
1,4-dioxane	< 20.0	ug/L		5/10/2018 21:29
2-Butanone	< 10.0	ug/L		5/10/2018 21:29
2-Hexanone	< 5.00	ug/L		5/10/2018 21:29
4-Methyl-2-pentanone	< 5.00	ug/L		5/10/2018 21:29
Acetone	< 10.0	ug/L		5/10/2018 21:29
Benzene	< 1.00	ug/L		5/10/2018 21:29
Bromochloromethane	< 5.00	ug/L		5/10/2018 21:29
Bromodichloromethane	< 2.00	ug/L		5/10/2018 21:29
Bromoform	< 5.00	ug/L		5/10/2018 21:29
Bromomethane	< 2.00	ug/L		5/10/2018 21:29
Carbon disulfide	< 2.00	ug/L		5/10/2018 21:29
Carbon Tetrachloride	< 2.00	ug/L		5/10/2018 21:29
Chlorobenzene	< 2.00	ug/L		5/10/2018 21:29

5/10/2018 21:29

5/10/2018 21:29

5/10/2018 21:29

5/10/2018 21:29

Client: <u>Lu Engineers, Inc.</u>

Project Reference: Orchard Whitney 4216-08

Sample Identifier:	OW-MW-29_050418			
Lab Sample ID:	181872-07		Date Sampled:	5/4/2018
Matrix:	Groundwater		Date Received:	5/7/2018
Chloroethane	< 2.00	ug/L		5/10/2018 21:29
Chloroform	< 2.00	ug/L		5/10/2018 21:29
Chloromethane	< 2.00	ug/L		5/10/2018 21:29
cis-1,2-Dichloroethene	< 2.00	ug/L		5/10/2018 21:29
cis-1,3-Dichloropropen	e < 2.00	ug/L		5/10/2018 21:29
Cyclohexane	< 10.0	ug/L		5/10/2018 21:29
Dibromochloromethan	e < 2.00	ug/L		5/10/2018 21:29
Dichlorodifluorometha	ne < 2.00	ug/L		5/10/2018 21:29
Ethylbenzene	< 2.00	ug/L		5/10/2018 21:29
Freon 113	< 2.00	ug/L		5/10/2018 21:29
Isopropylbenzene	< 2.00	ug/L		5/10/2018 21:29
m,p-Xylene	< 2.00	ug/L		5/10/2018 21:29
Methyl acetate	< 2.00	ug/L		5/10/2018 21:29
Methyl tert-butyl Ether	< 2.00	ug/L		5/10/2018 21:29
Methylcyclohexane	< 2.00	ug/L		5/10/2018 21:29
Methylene chloride	< 5.00	ug/L		5/10/2018 21:29
o-Xylene	< 2.00	ug/L		5/10/2018 21:29
Styrene	< 5.00	ug/L		5/10/2018 21:29
Tetrachloroethene	< 2.00	ug/L		5/10/2018 21:29
Toluene	< 2.00	ug/L		5/10/2018 21:29
trans-1,2-Dichloroether	ne < 2.00	ug/L		5/10/2018 21:29

ug/L

ug/L

ug/L

ug/L

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

< 2.00

< 2.00

< 2.00

< 2.00

trans-1,3-Dichloropropene

Trichlorofluoromethane

Trichloroethene

Vinyl chloride

Client: <u>Lu Engineers, Inc.</u>

Project Reference: Orchard Whitney 4216-08

Sample Identifier: OW-MW-29_050418

Lab Sample ID:181872-07Date Sampled:5/4/2018Matrix:GroundwaterDate Received:5/7/2018

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	<u>vzed</u>
1,2-Dichloroethane-d4	108	77.2 - 121		5/10/2018	21:29
4-Bromofluorobenzene	92.9	70 - 123		5/10/2018	21:29
Pentafluorobenzene	96.1	85.4 - 110		5/10/2018	21:29
Toluene-D8	96.7	83.8 - 112		5/10/2018	21:29

Method Reference(s): EPA 8260C

EPA 5030C

Data File: x50580.D

Analytical Report Appendix

The reported results relate only to the samples as they have been received by the laboratory.

Each page of this document is part of a multipage report. This document may not be reproduced except in its entirety, without the prior consent of Paradigm Environmental Services, Inc.

All soil/sludge samples have been reported on a dry weight basis, unless qualified "reported as received". Other solids are reported as received.

Low level Volatiles blank reports for soil/solid matrix are based on a nominal 5 gram weight. Sample results and reporting limits are based on actual weight, which may be more or less than 5 grams.

The Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt. Sample condition requirements are defined under the 2003 NELAC Standard, sections 5.5.8.3.1 and 5.5.8.3.2.

NYSDOH ELAP does not certify for all parameters. Paradigm Environmental Services or the indicated subcontracted laboratory does hold certification for all analytes where certification is offered by ELAP unless otherwise specified. Aliquots separated for certain tests, such as TCLP, are indicated on the Chain of Custody and final reports with an "A" suffix.

Data qualifiers are used, when necessary, to provide additional information about the data. This information may be communicated as a flag or as text at the bottom of the report. Please refer to the following list of analyte-specific, frequently used data flags and their meaning:

- "<" = Analyzed for but not detected at or above the quantitation limit.
- "E" = Result has been estimated, calibration limit exceeded.
- "Z" = See case narrative.
- "D" = Sample, Laboratory Control Sample, or Matrix Spike Duplicate results above Relative Percent Difference limit.
- "M" = Matrix spike recoveries outside QC limits. Matrix bias indicated.
- "B" = Method blank contained trace levels of analyte. Refer to included method blank report.
- "J" = Result estimated between the quantitation limit and half the quantitation limit.
- "L" = Laboratory Control Sample recovery outside accepted QC limits.
- "P" = Concentration differs by more than 40% between the primary and secondary analytical columns.
- "NC" = Not calculable. Applicable to RPD if sample or duplicate result is non-detect or estimated (see primary report for data flags). Applicable to MS if sample is greater or equal to ten times the spike added. Applicable to sample surrogates or MS if sample dilution is 10x or higher.
- "*" = Indicates any recoveries outside associated acceptance windows. Surrogate outliers in samples are presumed matrix effects. LCS demonstrates method compliance unless otherwise noted.
- "(1)" = Indicates data from primary column used for QC calculation.
- "A" = denotes a parameter for which ELAP does not offer approval as part of their laboratory certification program.
- "F" = denotes a parameter for which Paradigm does not carry certification, the results for which should therefore only be used where ELAP certification is not required, such as personal exposure assessment.

GENERAL TERMS AND CONDITIONS LABORATORY SERVICES

These Terms and Conditions embody the whole agreement of the parties in the absence of a signed and executed contract between the Laboratory (LAB) and Client. They shall supersede all previous communications, representations, or agreements, either verbal or written. between the parties. The LAB specifically rejects all additional, inconsistent, or conflicting terms, whether printed or otherwise set forth in any purchase order or other communication from the Client to the LAB. The invalidity or unenforceability in whole or in part of any provision, term, or condition hereof shall not affect in any way the validity or enforceability of the remainder of the Terms and Conditions. No waiver by LAB of any provision, term, or condition hereof or of any breach by or obligation of the Client hereunder shall constitute a waiver of such provision, term, or condition on any other occasion or a waiver of any other breach by or obligation of the Client. This agreement shall be administered and interpreted under the laws of the state which services are procured.

Warranty.

Recognizing that the nature of many samples is unknown and that some may contain potentially hazardous components, LAB warrants only that it will perform testing services, obtain findings, and prepare reports in accordance with generally accepted analytical laboratory principles and practices at the time of performance of services. LAB makes no other warranty, express or implied.

Scope and Compensation. LAB agrees to perform the services described in the chain of custody to which these terms and conditions are attached. Unless the parties agree in writing to the contrary, the duties of LAB shall not be construed to exceed the services specifically described. LAB will use LAB default method for all tests unless specified otherwise on the Work Order.

Payment terms are net 30 days from the date of invoice. All overdue payments are subject to an interest charge of one and one-half percent (1-1/2%) per month or a portion thereof. Client shall also be responsible for costs of collection, including payment of reasonable attorney fees if such expense is incurred. The prices, unless stated, do not include any sale, use or other taxes. Such taxes will be added to invoice prices when required.

Prices.

Compensation for services performed will be based on the current Lab Analytical Fee Schedule or on quotations agreed to in writing by the parties. Turnaround time based charges are determined from the time of resolution of all work order questions. Testimony, court appearances or data compilation for legal action will be charged separately. Evaluation and reporting of initial screening runs may incur additional fees.

Limitations of Liability.

In the event of any error, omission, or other professional negligence, the sole and exclusive responsibility of LAB shall be to reperform the deficient work at its own expense and LAB shall have no other liability whatsoever. All claims shall be deemed waived unless made in writing and received by LAB within ninety (90) days following completion of services.

LAB shall have no liability, obligation, or responsibility of any kind for losses, costs, expenses, or other damages (including but not limited to any special, direct, incidental or consequential damages) with respect to LAB's services or results.

All results provided by LAB are strictly for the use of its clients and LAB is in no way responsible for the use of such results by clients or third parties. All reports should be considered in their entirety, and LAB is not responsible for the separation, detachment, or other use of any portion of these reports. Client may not assign the lab report without the written consent of the LAB.

Client covenants and agrees, at its/his/her sole expense, to indemnify, protect, defend, and save harmless the LAB from and against any and all damages, losses, liabilities, obligations, penalties, claims, litigation, demands, defenses, judgments, suits, actions, proceedings, costs, disbursements and/or expenses (including, without limitation attorneys' and experts' fees and disbursements) of any kind whatsoever which may at any time be imposed upon, incurred by or asserted or awarded against client relating to, resulting from or arising out of (a) the breach of this agreement by this client, (b) the negligence of the client in handling, delivering or disclosing any hazardous substance, (c) the violation of the Client of any applicable law, (d) non-compliance by the Client with any

environmental permit or (e) a material misrepresentation in disclosing the materials to be tested.

Hazard Disclosure.

Client represents and warrants that any sample delivered to LAB will be preceded or accompanied by complete written disclosure of the presence of any hazardous substances known or suspected by Client. Client further warrants that any sample containing any hazardous substance that is to be delivered to LAB will be packaged, labeled, transported, and delivered properly and in accordance with applicable laws.

Sample Handling.

Prior to LAB's acceptance of any sample (or after any revocation of acceptance), the entire risk of loss or of damage to such sample remains with Client. Samples are accepted when receipt is acknowledged on chain of custody documentation. In no event will LAB have any responsibility for the action or inaction of any carrier shipping or delivering any sample to or from LAB premises. Client authorizes LAB to proceed with the analysis of samples as received by the laboratory, recognizing that any samples not in compliance with all current DOH-ELAP-NELAP requirements for containers, preservation or holding time will be noted as such on the

Disposal of hazardous waste samples is the responsibility of the Client. If the Client does not wish such samples returned, LAB may add storage and disposal fees to the final invoice. Maximum storage time for samples is 30 days after completion of analysis unless modified by applicable state or federal laws. Client will be required to give the LAB written instructions concerning disposal of these

LAB reserves the absolute right, exercisable at any time, to refuse to receive delivery of, refuse to accept, or revoke acceptance of any sample, which, in the sole judgment of LAB (a) is of unsuitable volume, (b) may be or become unsuitable for or may pose a risk in handling, transport, or processing for any health, safety, environmental or other reason whether or not due to the presence in the sample of any hazardous substance, and whether or not such presence has been disclosed to LAB by Client or (c) if the condition or sample date make the sample unsuitable for analysis.

Legal Responsibility. LAB is solely responsible for performance of this contract, and no affiliated company, director, officer, employee, or agent shall have any legal responsibility hereunder, whether in contract or tort including negligence.

Assignment.

LAB may assign its performance obligations under this contract to other parties, as it deems necessary. LAB shall disclose to Client any assignee (subcontractor) by ELAP ID # on the submitted final report.

Force Majeure.

LAB shall have no responsibility or liability to the Client for any failure or delay in performance by LAB, which results in whole or in part from any cause or circumstance beyond the reasonable control of LAB. Such causes and circumstances shall include, but not limited to, acts of God, acts or orders of any government authority, strikes or other labor disputes, natural disasters, accidents, wars, civil disturbances, difficulties or delays in transportation, mail or delivery services, inability to obtain sufficient services or supplies from LAB's usual suppliers, or any other cause beyond LAB's reasonable control.

Law.

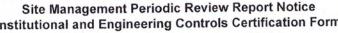
This contract shall be continued under the laws of the State of New York without regard to its conflicts of laws provision.

CHAIN OF CUSTODY

<	21.18.17	~ "103:20 W Q	2 :: 03:15	" 02:50 V OL	12:45	10 N O1:40	02:15	05/04/18 03:20 VO	04:40 81/40/50	DATE COLLECTED TIME P R R A A B B I I B		4216-08		PXO	077		IAUU
	OW-MW-29-MSD-050418	an-MM-29-MS-050418	NU-MU-29_050418	6W-MW-28_050418	OW-MW-27_ 250418	0W-MW-26-050418	BIHOSO - 91 - MM - MO	OW-MW-23-050418	0W-MW-22 - 050418	SAMPLE IDENTIFIER		es; .queous Liquid lon-Aqueous Liquid	Gircs Andres	747 - 285 - 385	STATE: ZIP/BH	Are orie	1
W6	NG.	DG.	23	SS.	E S	WG.	W6 .	W6.	790	X-21-25 000000		WA - Water WG - Groundwater	ATTN	PHO		003	
8 //	3	3		W \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	W)	w . \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	ω /	3 / /	\(\sigma\)	RCRA Metuls	OREQUESTED ANALYSIS	DW - Drinking Water SO - Soil WW - Wastewater SL - Sludge	N:		Y: STATE: ZIP:	\	ADDRESS
	fix									REMARKS		SD - Solid WP - Wipe PT - Paint CK - Caulk	gregardon's (news, news word	Email:	Quotation #:	1018.9	0
	/	707		30	0.5	50	63	ů	0	PARADIGM LAB SAMPLE NUMBER		OL - Oil AR - Air	giners.co				

Coop delitional transfer of the delitional trans				1
By signing this form, client agrees to Paradigm Terms and Conditions (reverse).	Other EDD please indicate EDD needed :	Other please indicate package needed:		Other please indicate date needed:
Received @ Lab By Date/Time	4			Rush 1 day
5/7//8 69:33		Category B		Rush 2 day
Waid 5/4/18 1726	NYSDEC EDD X	Category A		Rush 3 day
Relinquished By Date/Time	Basic EDD	Batch QC		10 day
Date I Ime W Chiller	None Required	None Required	X	Standard 5 day
· XX	nal fees may apply.	Availability contingent upon lab approval; additional fees may apply.	/ contingent	Availability
Company of the Chair of the Company of the Chair	Report Supplements	Report Su	Time	Turnaround Time

Chain of Custody Supplement


Client:	Lu Engineers	Completed by:	6 lenn Pezzulo 5/7/18
Lab Project ID:	Lu Engineers 181872	Date:	5/1/18
	Sample Condition Per NELAC/ELAP 210		
No. Condition	ELAC compliance with the sample c Yes	ondition requirements upo No	n receipt N/A
Container Type Comments			
Transferred to method- compliant container			
Headspace (<1 mL) Comments	X VoA		
Preservation Comments			
Chlorine Absent (<0.10 ppm per test strip) Comments			
Holding Time Comments			
Temperature Comments	5°C : ced 5/4/18 1	7:25	Metals
Sufficient Sample Quantity Comments			

Attachment D

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

		Site Details	Box 1	
		e No. E828123		
5	Site	e Name Orchard-Whitney Site		
(City	e Address: 415 Orchard Street & 354 Whitney Street Zip Code: 14606 y/Town: Rochester unty: Monroe e Acreage: 4.1		
F	Rep	porting Period: March 17, 2017 to May 31, 2018		
			YES	NO
•	1.	Is the information above correct?	×	(I)
		If NO, include handwritten above or on a separate sheet.		
2	2.	Has some or all of the site property been sold, subdivided, merged, or undergone a tax map amendment during this Reporting Period?		×
;	3.	Has there been any change of use at the site during this Reporting Period (see 6NYCRR 375-1.11(d))?	IT	×
4	4.	Have any federal, state, and/or local permits (e.g., building, discharge) been issued for or at the property during this Reporting Period?		×
		If you answered YES to questions 2 thru 4, include documentation or evidence that documentation has been previously submitted with this certification form.		
	5.	Is the site currently undergoing development?	i .	×
			Box 2	
			YES	NO
	6.	Is the current site use consistent with the use(s) listed below? Commercial and Industrial	x	
	7.	Are all ICs/ECs in place and functioning as designed?	X	
		IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below a DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.	and	
	Α (Corrective Measures Work Plan must be submitted along with this form to address t	hese iss	ues.
			16	
	Sic	nature of Owner, Remedial Party or Designated Representative Date		

SITE NO. E828123 Box 3

Description of Institutional Controls

Parcel

Owner

105.6-3-24

City of Rochester

Institutional Control

Ground Water Use Restriction

Landuse Restriction Site Management Plan

Environmental Easement:

Site use is restricted to commercial or industrial uses; Restrict the use of groundwater as a potable source; and Site Management Plan which includes an excavation plan.

105.66-3-23

City of Rochester

Ground Water Use Restriction Site Management Plan

Landuse Restriction

Environmental Easement;

Site use is restricted to commercial or industrial uses; Restrict the use of groundwater as a potable source; and Site Management Plan which includes an excavation plan.

Box 4

Description of Engineering Controls

Parcel

Engineering Control

105.6-3-24

Cover System Vapor Mitigation

A one foot soil cover that meets the restricted commercial SCOs or paved surfaces or buildings. SVI evaluation for any future occupied structures.

105.66-3-23

Cover System Vapor Mitigation

A one foot soil cover that meets the restricted commercial SCOs or paved surfaces or buildings. SVI evaluation for any future occupied structures.

Periodic Review Report (PRR) Certification Statements

1.	I certify	by	checking	"YES"	below	that:	
----	-----------	----	----------	-------	-------	-------	--

- a) the Periodic Review report and all attachments were prepared under the direction of, and reviewed by, the party making the certification;
- b) to the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted engineering practices; and the information presented is accurate and compete.

YES NO

×

- If this site has an IC/EC Plan (or equivalent as required in the Decision Document), for each Institutional
 or Engineering control listed in Boxes 3 and/or 4, I certify by checking "YES" below that all of the
 following statements are true:
 - (a) the Institutional Control and/or Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department;
 - (b) nothing has occurred that would impair the ability of such Control, to protect public health and the environment;
 - (c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control;
 - (d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and
 - (e) if a financial assurance mechanism is required by the oversight document for the site, the mechanism remains valid and sufficient for its intended purpose established in the document.

YES NO

×

IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.

A Corrective Measures Work Plan must be submitted along with this form to address these issues.

Signature of Owner, Remedial Party or Designated Representative

Date

IC CERTIFICATIONS SITE NO. E828123

Box 6

SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE

I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

Anne E Spaulding at 30 Church St. Rm 300B, Rochestor, NY 146,14 print name print business address

am certifying as City of Bockestor, Max. of Environmental Quality (Owner or Remedial Party)

for the Site named in the Site Details Section of this form.

Signature of Owner, Remedial Party, or Designated Representative Rendering Certification

Date

IC/EC CERTIFICATIONS

Box 7

Qualified Environmental Professional Signature

I certify that all information in Boxes 4 and 5 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

print name at 339 EAST AVE, SULTE 200, ROCHESTER, NY,

am certifying as a Qualified Environmental Professional for the

OWNER Owner or Remedial Party)

ed for PE)

Susan A. Hickor

Signature of Qualified Environmental Professional, for the Owner or Remedial Party, Rendering Certification 6 22 2018

Dat