PRE-DEVELOPMENT ENVIRONMENTAL INVESTIGATION AND GEOTECHNICAL STUDY REPORT

151 MT. HOPE AVENUE ROCHESTER, NEW YORK

Prepared For:	City of Rochester
	Division of Environmental Quality
	30 Church Street, Room 300B
	Rochester, New York 14614

Prepared By: Day Environmental, Inc. 40 Commercial Street Rochester, New York 14614

Project No.: 4302S-09

Date: September 2010

TABLE OF CONTENTS

1.0	INTI	RODUCTION	1
	1.1	Site Background and History	1
	1.2	Summary of Previous Environmental Reports	2
	1.3	Future Redevelopment Options	6
	1.4	Objective of Study	6
	1.5	Scope of Work	6
2.0		-DEVELOPMENT ENVIRONMENTAL AND GEOTECHNICAL PE OF WORK	7
	2.1	Utility Identification and Capacity Assessment	7
	2.2	Document Review	
	2.3	Subsurface Soil/Fill Evaluation	8
		2.3.1 Test Pits	
		2.3.2 Rotary-Drilled Test Borings	
		2.3.3 Analysis of Soil/Fill Samples	
	2.4	Groundwater Evaluation	
		2.4.1 Monitoring Well Installation	
		2.4.2 Well Development	11
		2.4.3 Groundwater Sampling and Analysis	12
	2.5	Geotechnical Assessment	
	2.6	Study-Derived Wastes	13
3.0	FIN	DINGS	14
	3.1	Subsurface Soff/Fill Environmental Evaluation	14
		3.1.1 Environmental Analytical Laboratory Test Results for Soil/Fill Samples	s_15
	3.2	Groundwater Environmental Evaluation	18
		3.2.1 Environmental Analytical Laboratory Test Results for Groundwater	
		Samples	18
	3.3	Geotechnical Assessment	19
4.0	CON	ICLUSIONS AND RECOMMENDATIONS	21
	4.1	Availability of Utilities to the Site	
	4.2	Environmental Considerations	21
	4.3	Geotechnical Considerations	23
5.0	ACR	ONYMS	25
<u>FIG</u>	JRES		
Figur	re 1	Project Locus Map	
Figur	e 2	Test Location Plan	
Figur	e 3	Test Location Plan with 1892 Sanborn Overlay	
Figur	e 4	Test Location Plan with 1912 Sanborn Overlay	
Figur	e 5	Test Location Plan with 1938 Sanborn Overlay	
Figur	e 6	Test Location Plan with 1950 Sanborn Overlay	
Figur	e 7	Test Location Plan with 1971 Sanborn Overlay	

- Figure 8 Previous Environmental Work Location Plan
- Figure 9 Existing Utility Plan

Figure 10	Existing Fill Material Thickness Isopach Map
Figure 11	Isometric View of Existing Fill Material
Figure 12	Existing Incinerator Waste Layer Thickness Isopach Map
Figure 13	Isometric View of Existing Incinerator Waste Layer
Figure 14	Test Locations with Soil/Fill Samples Exceeding NYSDEC Part 375 SCOs for SVOCs and/or Metals
Figure 15	Potentiometric Groundwater Contour Map for June 4, 2010
TABLES	
Table 1	Analytical Laboratory Testing Program
Table 2	Summary of Detected VOCs-Soil and Fill Samples
Table 3	Summary of Detected SVOCs -Soil and Fill Samples
Table 4	Summary of Metals – Soil and Fill Samples
Table 5	Groundwater Elevation Data for June 4, 2010
Table 6	Summary of VOCs- Groundwater Samples
Table 7	Summary of Detected SVOCs- Groundwater Samples
Table 8	Summary of Detected Metals – Groundwater Samples

APPENDICES

Appendix A	City of Rochester New York Developer's Guide
Appendix B	Pre-Development Assessment Geotechnical Report
Appendix C	Test Boring Logs and Well Construction Diagrams
Appendix D	Well Development Logs and Monitoring Well Sampling Logs
Appendix E	Study-Derived Wastes Disposal Documentation
Appendix F	Environmental Analytical Laboratory Reports
Appendix G	Table 5 from "Supplemental Groundwater and Background Surface Soil Sampling Report, Former APCO Property, 79 Woodstock Road, Rochester, New York" dated February 6, 1998 and prepared by the Sear-Brown Group

1.0 INTRODUCTION

Day Environmental, Inc. (DAY) prepared this Pre-Development Environmental Investigation and Geotechnical Study Report in support of the contemplated redevelopment of the subject property located at 151 Mt. Hope Avenue, Rochester, New York (Site). The work completed herein was completed in accordance with DAY's November 13, 2009 proposal to the City of Rochester.

1.1 Site Background and History

The Site consists of approximately 1.91 acres and it is currently an undeveloped lot landscaped with grass and several trees. A portion of a basketball court located on the adjoining property to the south (i.e., 171 Mt. Hope Ave.) extends onto the southwest corner of the Site. The Site, located near the western bank of the Genesee River, is bounded to the west by the City of Rochester Genesee Gateway Park, to the east by Mt. Hope Avenue, to the south by City of Rochester parkland, and to the north by the Time Warner Cable Operations Center. The Site is located in a mixed residential and commercial area. A Project Locus Map and Test Location Plan are included as Figure 1 and Figure 2, respectively.

Historical Sanborn maps dated 1892, 1912, 1938, 1950, and 1971, were reviewed as part of this project. Figures 3 through 7 attached to this report provide an overlay of the current Site boundary and project test locations in relation to the 1892 Sanborn map, 1912 Sanborn map, 1938 Sanborn map, 1950 Sanborn map, and the 1971 Sanborn map, respectively. The historical maps show that the Site was extensively developed for various uses over the years, which are summarized below:

- The 1892 Sanborn map overlay shows the Site was developed with two 3-story apartment houses and four two story dwellings located along Mt. Hope Avenue. Figure 3 also shows that a feeder canal existed to the east of the buildings trending north-south.
- The 1912 Sanborn map overlay shows development along Mt. Hope Avenue similar to the 1892 Sanborn map. Figure 4 also shows the feeder canal in a similar position as in the 1892 Sanborn map. Twelve sets of railroad tracks are shown on the central and western portions of the Site. One of the rail lines terminates near the southern edge of the Site, parallel to and west of the feeder canal. Two small structures are shown adjacent to railroad tracks near the center of the Site.
- The 1938 Sanborn map overlay shows the structures along Mt. Hope Avenue observed in the 1892 and 1912 Sanborn maps had been demolished and replaced. Figure 5 shows a building materials warehouse, two stores, and a gas station along the western edge of the Site adjacent to Mt. Hope Avenue. Two gas tanks (labeled as "GTs") are shown adjacent to the gas station on the southwest corner of the Site. Sand and gravel bins, associated with a concrete plant, are shown in the general area where the feeder canal was shown on the 1892 and 1912 Sanborn maps. The central and western portions of the Site are designated as 'full of tracks'. A tool house is shown on the southwest portion of the Site and is located between railroad lines.

- As shown on Figure 6, the 1950 Sanborn map overlay shows the same features as the 1938 Sanborn map overlay, except that the sand and gravel bins shown on the 1938 Sanborn map overlay are not shown on the 1950 Sanborn map.
- As shown on Figure 7, the 1971 Sanborn map overlay shows the same features as the 1950 Sanborn map overlay, except that the tool house shown on the 1950 Sanborn map overlay is not shown on the 1971 Sanborn map. The gas station shown on the 1950 Sanborn map overlay is labeled as auto sales on the 1971 Sanborn map.

1.2 Summary of Previous Environmental Reports

DAY completed a 2000 Phase I Environmental Site Assessment (Phase I ESA) of the Site and adjoining/nearby properties to the South. DAY subsequently completed a Phase II Environmental Site Assessment (Phase II ESA) on the properties in 2000. Additional subsurface investigations of the Site, the adjacent property to the south, and other near-by properties were completed by DAY in 2002. A subsequent environmental and geotechnical study was conducted by DAY and Foundation Design, P.C. (Foundation Design) in 2004. Activities associated with remediating petroleum contamination at the Site and the adjacent property to the south in 2007 are documented in a 2009 Soil and Groundwater Management Plan completed by Stantec consulting Services Inc. (Stantec). The results of these environmental studies are summarized below:

2000 Phase I ESA

The 2000 Phase I ESA identified the historic uses of the Site and adjoining/nearby properties as recognized environmental conditions. These historic uses of the Site and adjoining/nearby properties are documented on Figures 3 through 7. The Phase I ESA report described the recognized environmental conditions at the Site as follows:

- A gas station with two gasoline tanks that was present on the southeast portion of the Site from at least 1938 through 1950.
- A concrete plant that was present on the eastern portion of the Site from at least 1938 through 1950.
- An auto sales facility that was present on the southeast portion of the Site around 1971.

The Phase I ESA also identified that based on the historical data, fill material associated with the railroad beds could contain cinders, slag, and coal that have the potential to contain heavy metals. Additionally, materials used to fill the Erie Canal Feeder could be of environmental concern.

2000 Phase II ESA

As part of the 2000 Phase II ESA study, DAY completed eight test locations at the Site. Six test borings (designated TB-1, TB-2, TB-4, TB-5, TB-9 and TB-36) were advanced at locations across the Site through fill materials and native overburden to depths between approximately 18 and 20 feet below ground surface (bgs). These locations are shown on Figures 2 through 8. Two monitoring wells (designated MW-1 and MW-7) were installed at

locations near the southern edge of the Site to depths of 20 feet. Fill depths ranged from approximately 6 feet bgs near the southwest corner of the Site to 13 feet bgs near the southeast corner of the Site.

Soil and groundwater samples collected from the Site were analyzed for Volatile Organic Compounds (VOCs), Semi-Volatile Organic Compounds (SVOCs), Metals, Pesticides, and/or Total Petroleum Hydrocarbons (TPH). The test results are summarized below:

- VOCs, SVOCs, lube oil weight TPH, and gasoline weight TPH were detected at concentrations requiring further evaluation in a soil sample collected at a depth of approximately 12 feet bgs, from boring TB-4, located near the former gas station. Concentrations of several VOCs and SVOCs detected in the sample exceeded regulatory criteria. A water sample collected from monitoring well MW-1 at the same approximate location also contained VOCs at concentrations exceeding regulatory criteria, and gasoline weight TPH indicative of petroleum contamination.
- Concentrations of several SVOC constituents exceeding regulatory criteria were reported in a sample of fill material collected from TB-2 (located near the center of the Site) at depths between four and eight feet bgs.
- An elevated concentration of lube oil weight TPH was detected in a sample of fill material collected from TB-9 (located near the southwest corner of the Site) at depths between zero and four feet bgs.
- Concentrations of several metals (i.e., arsenic, mercury, and/or selenium) exceeding regulatory criteria were reported in samples of fill materials collected from depths between zero and eight feet at four locations across the Site (i.e., TB-1, TB-2, TB-9, and TB-36).

Based on the findings of the study, the New York State Department of Environmental Conservation (NYSDEC) was notified of apparent petroleum spill and a spill No. 0070377 was assigned to the Site and the adjoining/nearby properties to the south.

2002 Phase II ESA

DAY completed eleven test borings (designated TB-100 through TB104, TB-122 through TB-125, TB-A and TB-B) at the Site during the 2002 study (refer to Figures 2 through 8). These test borings, located along the eastern portion of the Site, were advanced through fill and native overburden materials to depths ranging between approximately 10.5 and 20 feet bgs. Fill, described as a heterogeneous material consisting primarily of sand, silt, and gravel intermixed with cinders, slag, silt and ash, ranged in depths from approximately 6 feet bgs near the northeast corner of the Site to 15.5 feet bgs near the southwest corner of the Site. One of the existing groundwater monitoring wells located near the southeast corner of the Site (i.e., MW-1) was sampled during the 2002 study.

Soil and groundwater samples collected from the Site were analyzed for VOCs, SVOCs, and/or Metals. The test results are summarized below:

• VOCs were detected in three samples of native soil or fill materials collected from the southeast portion of the site at depths between approximately 9.5 feet bgs and 13.5 feet bgs (i.e., TB-101, TB-102, and TB-103).

- Only one SVOC compound, naphthalene, was detected in one sample of native soil material collected from the southeast portion of the site at a depth of approximately 9.5 feet (i.e., TB-101).
- Concentrations of several metals (i.e., arsenic, calcium, copper, iron, magnesium, nickel, selenium and/or zinc) exceeding regulatory criteria were reported in samples of fill materials collected from depths between nine and fifteen feet at two locations on the Site (i.e., TB-A and TB-B).
- Concentrations of multiple gasoline-type VOCs that exceeded regulatory criteria were reported in the groundwater sample collected from monitoring well MW-1.

An EM-61 electromagnetic survey was conducted on the southeast portion of the Site in the area of the former gas station and auto sales operation, and the approximate location of that survey is depicted on Figure 8. No geophysical anomalies requiring investigation were identified on that portion of the Site.

The 2002 study concluded that evidence of a source area of subsurface petroleum contamination was located on the Site, in the vicinity of TB-102, which may extend past the eastern boundary of the Site in that area. The report recommended that soil/fill be excavated and removed from the source area in the vicinity of TB-102, and that residual contamination be treated in-place.

2004 Subsurface Investigations

DAY and Foundation Design conducted concurrent subsurface environmental and geotechnical investigations of the Site between January 2004 and February 2004. The environmental study consisted of the advancement of eight test borings (designated TW-1 through TW-8), and installation of two monitoring wells (designated TW-MW-09 and TW-MW-10). The geotechnical study consisted of four test borings (designated B04-1 through B04-5) and four test pits (designated TP04-1 through TP04-4). These test locations are shown on Figures 2 through 8.

Evidence of petroleum impact (i.e., staining and/ gasoline-type odors) was observed in soil samples collected from four of the eight test borings (i.e., TW-2, TW-3, TW-5, and TW-7) advanced on the southeast portion of the Site during the environmental study. Impacted soil was observed at depths between 11 and 20 feet bgs. Additionally, an area of apparently isolated petroleum impact was observed in the geotechnical boring, B04-3, located near the center of the Site at depths between approximately 4 and 9 feet bgs.

Soil and groundwater samples collected from the Site were analyzed for VOCs and/or SVOCs. The test results are summarized below:

• VOCs were detected in one sample of fill material and four samples of native soils collected from the southeast portion of the site at depths between approximately 12 feet bgs and 17 feet bgs (i.e., TW-2, TW-3, TW-5, TW-6 and TW-7). Total VOC concentrations (plus tentatively identified compounds) in several samples exceeded regulatory criteria.

- Only one SVOC compound, phenanthrene, was detected in one sample of native soil material (TW-6) collected from the southeast portion of the site at a depth of approximately 12 feet bgs.
- VOCs and SVOCs were detected in a fill sample collected from B04-3 at a depth of approximately 9 feet bgs.

As part of the geotechnical assessment, representatives of Foundation Design documented and observed subsurface conditions during the advancement of test pits and borings. Foundation Design also collected a sample of soil that was tested by a geotechnical laboratory for moisture content and grain size distribution. The geotechnical assessment concluded that the in-place fill encountered at the Site was unsuitable to support the proposed structures, as well as being unsuitable for re-use as structural fill.

2007 Remedial Activities

Between October 2007 and November 2007, Stantec excavated and disposed of petroleumimpacted soil from the Site, and the adjoining/nearby properties to the south that were associated with NYSDEC Spill #0070377. The areal extent of the excavation on the Site totaled approximately 5,200 square feet. Excavation depths on the Site ranged from approximately 8 to 21 feet bgs. The approximate location of the Stantec excavation is depicted on Figure 8.

As depicted on Figure 8, the Stantec excavation was completed in stages, each extending to different depths in the subsurface based on the impacted soil encountered. A portion of the area (i.e., on the west side of the excavation area, depicted in Figure 8 with a gray hatch symbol) was investigated by Stantec, but the conditions observed did not warrant soil removal in that area. However, Stantec did encounter multiple foundation remnants in the shallow subsurface. The approximate locations of these structures are also depicted on Figure 8(i.e., red-lined objects within the gray hatched area).

The excavations were backfilled with an imported bank run material and with non-impacted soil/fill from the excavation areas deemed suitable for re-use.

Confirmatory samples collected from the sidewalls of the excavation subsequent to the removal work indicate that residual petroleum contamination may be present along portions of the 30-foot wide utility easement area located along the eastern boundary of the Site. This is shown on Figure 8 by an orange hatched area that includes previous test boring TB-101. The confirmatory soil samples contained one or more petroleum-type VOCs that exceed TAGM 4046 RSCOs.

Stantec removed monitoring well MW-1 during the remedial activities. Upon completion of remedial activities, monitoring well MW-1R (replacement) was installed in the vicinity of the former location of MW-1. The location of MW-1R is shown on Figures 2 through 8.

Concentrations of each VOC analyzed in a groundwater sample collected from MW-1R were below laboratory detection limits in February 2009, when Stantec discontinued its groundwater monitoring program.

1.3 Future Redevelopment Options

The City of Rochester (City) is considering redevelopment options for the Site, which are presumed to consist of mixed residential/commercial use.

A copy of the City of Rochester New York Developer's Guide is included in Appendix A. This guide can be used to assist a developer in meeting the City's requirements and expectations as they relate to redevelopment of the Site. The document provides guidance on zoning, environmental and construction standards, identifies City Departments and other governmental agencies typically involved with the process, identifies types of permits commonly required by City Departments and other governmental agencies, and a flow chart that presents the general review process.

1.4 Objective of Study

The objective of the scope of work performed during this project was to evaluate subsurface conditions with regard to environmental and geotechnical characteristics, in order to provide information and guidance for use in the redevelopment of the Site.

1.5 Scope of Work

To assist in meeting the objective of this project, the following scope of work was performed:

- Utility Identification and Capacity Assessment;
- Concurrent subsurface environmental and geotechnical assessment involving excavation of test pits, advancement and sampling of rotary-drilled and direct-push test borings, installation of groundwater monitoring wells, and analysis of soil and groundwater samples;
- Location and elevation survey of the subsurface test locations; and
- Development of a Pre-Development Environmental Investigation and Geotechnical Study Report.

The scope of work performed is further described in Section 2.0 of this report.

2.0 PRE-DEVELOPMENT ENVIRONMENTAL AND GEOTECHNICAL SCOPE OF WORK

This section of the report provides details regarding the scope of work that was implemented to fulfill the objective of the study described in Section 1.4.

2.1 Utility Identification and Capacity Assessment

DAY reviewed and obtained publicly available City and utility records, which were used to assist in identifying the location of the utilities at, or available, to the Site. Based upon the research performed, the locations of select aboveground and buried utilities identified on the Site, as well as select utilities off-site, are shown on Figure 9, and are further described below.

On-site utilities include:

• No on-site utilities.

Utilities adjacent and parallel to the eastern boundary along Mt. Hope Avenue include:

- 8-inch diameter steel natural gas main.
 - The available pressure is reported as 8-12 pounds per square inch (psi).
- Buried electric service.
 - An RG&E representative stated that a completed electric service request form needs to be submitted to RG&E for review to determine electric service configuration that would be available.
- 12-inch diameter domestic water main.
 - Water main static pressure has been tested at 51.0 psi, with residual pressure at 48.0 psi, available flow at 20 psi has been calculated at 11,660 gallons per minute (gpm).
- 52-inch diameter combined sanitary-storm sewer flowing north.

The northern-most section of sewer has a calculated capacity of 44.88 cubic feet per second (cfs)

• Buried telephone service.

Note: The ability to service the Site with existing utilities will be dependent on capacity requirements, and each utility company should be contacted to discuss these requirements at the time of design.

2.2 Document Review

DAY and its geotechnical subconsultant (Foundation Design, P.C.) reviewed various in-house documents and resources. DAY and Foundation Design, P.C. also reviewed historical maps, photos and figures provided by the City. This document review provided useful information concerning anticipated subsurface site conditions, such as the locations of former building foundations, gas station properties, etc. and this information was used to assist in the planning and evaluation of this study.

2.3 Subsurface Soil/Fill Evaluation

Intrusive investigative work was performed as part of a concurrent environmental and geotechnical subsurface evaluation for the Site. This subsurface evaluation included the excavation of 23 test pits, the advancement of 3 rotary-drilled test borings, the installation of three monitoring wells in the rotary-drilled borings, and the collection, field screening, field observation, and environmental laboratory analysis of soil and/or groundwater samples. Additional details concerning the subsurface evaluation work are provided in the subsections below.

DAY used a Trimble Geo XH model GPS to mark out the location of each test pit and test boring advanced during this study. Further, the elevation of each test location was surveyed using a laser level, with reference to a known datum located on the property adjacent to the south. The locations were measured in relation to New York State coordinates, western zone, NAD 83 (1996), which is consistent with the City of Rochester Geographical Information System (GIS) mapping.

2.3.1 Test Pits

DAY retained TREC Environmental, Inc. (TREC) to advance 23 test pits at the Site between February 18, 2010 and February 19, 2010. The locations of these test pits (designated as TP10-1 through TP10-23) are shown on Figure 2 through Figure 8. The test pits were generally selected based on the following criteria:

- Test Pits TP10-5, TP10-6, TP10-11 and TP10-12 were excavated around previous boring B04-3 where apparent petroleum-impacted fill material had previously been identified (refer to Figure 2). These locations are also on or near the footprints of former railroad tracks and/or railroad trellis (refer to Figures 4 through 7).
- Test Pits TP10-1 and TP10-4 were excavated within or through the former Erie Canal Feeder location, including its former western wall location (refer to Figure 4).
- Test Pits TP10-9 and TP10-10 were excavated within or near the footprints of the former Tool House building on the southwest portion of the Site (refer to Figures 5 and 6).
- Test Pits TP10-14 and TP10-15 were excavated within the footprints of a former building and railroad improvement on the west central portion of the Site (refer to Figure 4).
- Test Pit TP10-8 was excavated at the end of a former railroad spur, which was later developed with former railroad tracks (refer to Figures 4 through 7).
- Test Pits TP10-2 and TP10-3 were excavated within or near the footprints of former buildings that used to be located on the east side of the Site along Mt. Hope Avenue (refer to Figures 3 through 7).
- Test Pits TP10-7, TP10-13, TP10-16, TP10-17, TP10-18, TP10-19, TP10-20, TP10-21, TP10-22, and TP10-23 were excavated on or near the footprints of former railroad tracks on the Site (refer to Figures 3 through 7).

Some of the test pit locations were also useful in evaluating the extent of fill material, early equipment refusals, or other subsurface conditions that were encountered as the work progressed.

The test pits were excavated to depths ranging between 2.0 feet and 18.0 feet bgs. The shallower test pits (i.e., depths ranging between 2.0 feet and 4.0 feet) were terminated when apparent foundation or concrete flooring remnants were encountered. Personnel from DAY and Foundation Design observed the excavations and prepared a log of the test pits. DAY collected select samples for possible laboratory analysis. Additionally, DAY also screened soil/fill during excavation with a photoionization detector (PID) for evidence of VOC vapors. Pertinent information for each test pit is provided on logs included in Appendix B. Following excavation, the test pits were backfilled with excavated material and compact by tamping with the excavator bucket.

2.3.2 Rotary-Drilled Test Borings

DAY retained Nothnagle Drilling, Inc. (Nothnagle) to advance three test borings at the Site using a rotary drill-rig. Nothnagle advanced these test borings on May 5, 2010 and May 6, 2010, and the locations of these test borings (designated as MW10-1 through MW10-3) are shown on Figure 2 through Figure 8.

The purpose of these test borings was to: 1) document the in-place density of the soil using standardized test methods; 2) evaluate subsurface conditions regarding soil/fill types and evidence of contamination; and 3) subsequently install monitoring wells so that additional groundwater quality and flow data could be obtained (refer to Section 2.4.1). The test borings were generally selected based on the following criteria:

- Boring MW10-1 was advanced in an area of former railroad tracks on the northwest portion of the Site (refer to Figures 3 through 7), which is also a location away from other wells intended to provide greater groundwater monitoring coverage across the Site.
- Boring MW10-2 was advanced in an area of former railroad tracks on the north central portion of the Site (refer to Figures 3 through 7), which is also near the locations of TP10-6, TP10-11 and B04-3 where petroleum-impacted soil and/or fill material was documented.
- Boring MW10-3 was advanced through the former Erie Canal feeder on the northeast portion of the Site (refer to Figures 3 and 4), which is also a location away from other wells intended to provide greater groundwater monitoring coverage across the Site.

During drilling, continuous split spoon samples were collected via Standard Penetration Test (SPT) methods in the overburden ahead of the hollow stem augers. Split-spoon soil samples were classified, logged, and also screened with the PID. Selected soil samples were retained for possible testing for the presence of selected chemical constituents. Each boring was advanced to auger refusal, which corresponds to depths ranging between 18.8 feet and 25.0 feet below the ground surface. Pertinent information for each test boring is provided on logs included in Appendix C.

2.3.3 Analysis of Soil/Fill Samples

Various soil or fill samples from test pits and rotary-drilled test borings were selected for analytical laboratory testing This included: 1) samples from test borings and test pits with the greatest field evidence of impact (e.g., highest PID readings measured, staining, suspect fill material, odors, etc.); 2) samples collected from immediately above the water table, immediately above bedrock, or near the bottom of the test boring/test pit when evidence of impact was not encountered; and 3) samples based on spatial relationship to other test locations to evaluate extents of potential impact.

The following samples (summarized on Table 1) were delivered under chain-of-custody control to Mitkem Laboratories, Inc., (Mitkem) located in Warwick, Rhode Island, which is a New York State Department of Health (NYSDOH) Environmental Laboratory Approval Program (ELAP)-certified analytical laboratory for the tests that were performed:

- Sample TP10-1 (8.5') consisting of apparent indigenous soil.
- Sample TP10-4 (2') consisting of apparent reworked soil fill with few pieces of slab rock and concrete, and trace brick, wire, wood, cinders, plastic, ash, and slag (i.e., black light-weight pebble size material with vesicles).
- Sample TP10-4 (11') consisting of apparent reworked soil fill with some organics and trace wood, brick, ash, and metal.
- Sample TP10-6 (3.5') consisting of apparent reworked soil fill with trace amounts of concrete, brick, ash, and cinders.
- Sample TP10-6 (5-5.8') consisting of apparent incinerator ash with little sand and cobbles and trace brick, asphalt shingles, glass, and organics.
- Sample TP10-6 (9') consisting of apparent reworked soil fill with little amounts of metal, ash, wood, brick, and glass.
- Sample TP10-7 (6.5') consisting of apparent incinerator ash with lesser amounts of slag, glass, and metal.
- Sample TP10-8 (2.5') consisting of apparent reworked soil fill with some organics and trace amounts of wire wood, brick, ash, and glass.
- Sample TP10-11 (7') consisting of apparent incinerator ash with some sand, gravel, slag, cinders, coal, and trace wood, glass, ceramic, tile, metal, and shingles.
- Sample TP10-13 (11') consisting of apparent reworked soil fill with little brick, wood pulp, and metal strips.
- Sample TP10-15 (7') consisting of apparent incinerator ash.
- Sample TP10-20 (6.5') consisting of apparent reworked soil fill with trace amounts of organic material and brick.
- Sample TP10-22 (8') consisting of apparent incinerator ash with slag, cinders, glass, and tile.
- Sample TP10-23 (8') consisting of apparent reworked soil fill.
- Sample MW10-1 (7-8') consisting of apparent incinerator ash.
- Sample MW10-1 (8.5-10') consisting of apparent reworked soil fill with little brick and ash.

- Sample MW10-1 (10-11') consisting of apparent incinerator ash with little sand and wood fragments transitioning into native soil.
- Sample MW10-2 (5.5-6') consisting of apparent reworked soil fill with trace coal fragments, brick, concrete fragments, and organics.
- Sample MW10-2 (8-9.5') consisting of apparent incinerator ash transitioning into native soil.
- Sample MW10-3 (10-12') consisting of apparent incinerator ash intermixed with reworked soil fill.
- Sample MW10-3 (13') consisting of apparent native soil.

Samples were analyzed for one or more of the following (refer to Table 1): Target Compound List (TCL) and Spill Technology and Remediation Series (STARS)-list VOCs using United States Environmental Protection Agency (USEPA) Method 8260; TCL SVOCs using USEPA Method 8270; Target Analyte List (TAL) metals using USEPA Methods 6010 and 7471; and/or, Resource Conservation and Recovery Act (RCRA) metals using USEPA Methods 6010 and 7471.

In addition, one trip blank sample accompanied the soil/fill samples collected from the test pits (designated as TB021910) and one trip blank sample accompanied the soil/fill samples collected from the test borings (designated as TB050610). The trip blank samples were analyzed for TCL and STARS-list VOCs using USEPA Method 8260.

2.4 Groundwater Evaluation

An environmental groundwater evaluation was performed as part of this project. The evaluation included: installation and development of three monitoring wells; survey of well locations using GPS and laser level equipment in relation to established control datum; collection of static water levels from four existing and three new monitoring wells; collection of groundwater samples from the three new monitoring wells; and analysis of groundwater samples that were collected from the wells. Additional detail concerning this work is provided in the subsections below.

2.4.1 Monitoring Well Installation

On May 5, 2010, test borings MW10-1, MW10-2, and MW10-3 were converted to groundwater monitoring wells (refer to Figure 2 through Figure 8). Each groundwater monitoring well was constructed with a 2-inch inner diameter Schedule 40 polyvinyl chloride (PVC) screen attached to solid riser piping of the same material. Well construction diagrams for each monitoring well that provide additional specifics are included in Appendix C.

2.4.2 Well Development

On May 18, 2010, DAY developed the new groundwater monitoring wells by removing groundwater from each well and taking water quality measurements using a Horiba U-22 water quality meter. DAY screened the ambient air inside each of the three wells with a PID upon being opened, and PID readings in parts per million (ppm) were recorded. The above information is summarized on well development logs that are included in Appendix D.

2.4.3 Groundwater Sampling and Analysis

On June 4, 2010, DAY obtained water level measurements and checked for light non-aqueous phase liquid (LNAPL) using an oil/water interface probe in each of the seven on-site monitoring wells.

The three new wells (i.e., MW10-1, MW10-2 and MW10-3) were subsequently sampled using low-flow sampling techniques. Monitoring well sampling logs that provide additional specifics are included in Appendix D. The groundwater samples from wells MW10-1, MW10-2, and MW10-3 were submitted to Mitkem for laboratory analysis. The three groundwater samples were analyzed for TCL and STARS-list VOCs using USEPA Method 8260, TCL and STARS-list SVOCs using USEPA Method 8270, and RCRA Metals using USEPA Methods 6010 and 7470.

A trip blank (designated as TB 6/4/10) accompanied the June 4, 2010 groundwater samples to Mitkem. The trip blank was analyzed by Mitkem for TCL and STARS-list VOCs using USEPA Method 8260.

DAY surveyed the elevation of each monitoring well using a laser level. The surveyed elevations are relative to a datum provided/surveyed by the City of Rochester as referenced on the Department of Environmental Services, Bureau of Engineering Services, Office of Maps and Surveys, FB 1887, PG 14, and are as follows:

MW10-1:	Rim elevation = 517.23'; Inner PVC elevation = 516.87'
<u>MW10-2:</u>	Rim elevation = 515.66'; Inner PVC elevation = 515.41'
<u>MW10-3:</u>	Rim elevation = 514.63'; Inner PVC elevation = 514.32'
<u>MW-1R:</u>	Rim elevation = 513.20'; Inner PVC elevation = 513.06'
<u>MW-7:</u>	Rim elevation = 517.20'; Inner PVC elevation = 516.54'
<u>TWMW-09:</u>	Rim elevation = 514.27'; Inner PVC elevation = 513.88'
TWMW-10:	Rim elevation = 513.60'; Inner PVC elevation = 513.35'

2.5 Geotechnical Assessment

DAY retained Foundation Design to perform a geotechnical assessment concurrently with the environmental evaluation. As part of the geotechnical assessment, representatives of Foundation Design documented and observed subsurface conditions during the advancement of test pits that were performed on February 18, 2010 and February 19, 2010, and borings that were performed on May 5, 2010 and May 6, 2010. The information obtained by DAY and Foundation Design was shared as part of this project. A copy of the geotechnical report prepared by Foundation Design is included in Appendix B.

2.6 Study-Derived Wastes

Soil and drill cuttings, drilling water, decontamination water and well purge water were placed in New York State Department of Transportation (NYSDOT)-approved 55-gallon drums, labeled, and staged on-site at a common location. The City subsequently arranged for the transportation and disposal of the study-derived wastes. A copy of disposal documentation for the study-derived wastes is included in Appendix E.

3.0 FINDINGS

The results and findings of this project are presented in this section of the report.

3.1 Subsurface Soil/Fill Environmental Evaluation

The Site is covered with an approximately 0.5 to 1.5 foot thick layer of topsoil. Fill material generally consisting of reworked soil (i.e., silt, sand, gravel, cobbles, and boulders) was observed below the topsoil in each of the test locations advanced during this study. The reworked soil fill also contains lesser amounts of topsoil, ash, coal, slag, glass, wire, brick, concrete fragments, lumber, metal objects (e.g., scrap, railroad rail, rebar), and/or plastic. Large pockets of fill consisting primarily of incinerator waste (i.e., ash, cinders, slag, and non-combustible metal and glass fragments) were also observed on the Site.

The uppermost layer of indigenous soil underlying fill at the Site generally consists of silt with lesser amounts of clay, sand and organics. Thin pockets of highly organic soil were also observed within this silt layer. Compact silty sand, presumed to be glacial till or a river deposit, underlies the silt material. Large boulders were encountered at the base of the till near the presumed top of bedrock. The overburden soil and fill at the Site are underlain by Dolomite bedrock of the Lockport Formation. The depth to bedrock at the rotary test borings ranged from approximately 24.1 feet to 25.5 feet below the ground surface. The upper three to five feet of the bedrock was observed to be highly fractured and was difficult to differentiate from the overlying boulders.

Four test pits excavated on the eastern portion of the Site (i.e., TP10-14, TP10-16, TP10-17, TP10-18) were terminated on concrete slabs that were encountered at depths ranging from between 2 feet bgs (TP10-17) and 4 feet bgs (TP10-14 and TP10-18).

Three geologic cross-sections (A-A', B-B', and C-C') were developed for the Site (refer to Figure 2 for plan view), and are included in the Pre-Development Geotechnical Assessment (Appendix B) as Figures 1,2, and 3, respectively. Cross-section A-A' generally trends west to east across the northern portion of the Site, cross-section B-B' generally trends west to east across the southern portion of the Site, and cross-section C-C- generally trends south to north across the center-west portion of the Site. These cross-sections illustrate the overburden types and corresponding depths identified in test borings, well locations and test pits that were advanced as part of this study and previous studies identified in Section 1.2.

Information collected during previous intrusive investigations at the Site, in addition to data generated during this study was used to interpolate the extent of the soil fill layer across the site, and to estimate an approximate fill volume for material at the Site. The interpolation was conducted with the Environmental Systems Research Institute (ESRI) Spatial Analyst software using an inverse distance weighted (IDW) statistical analysis method. The fill volume estimate was calculated with the ESRI Spatial Analysis software using the Cut/Fill Tool. A fill thickness isopach map, showing the interpolated fill thickness across the Site, is included as Figure 10.

As shown in Figure 10, the measured depths to the bottom of the soil fill ranged from approximately 4 feet bgs (TP10-23) to approximately 15.4 feet bgs (TB-104) at test boring and test pit locations that were terminated in underlying indigenous soil. Based on the fill thickness shown on Figure 10, the total volume of fill present at the Site was calculated to total approximately 25,472 cubic yards. A cross sectional view of the soil fill estimated to be present at the site was created from the fill isopach map data, and is included as Figure 11. The figure also shows the relative elevation of soils interpreted to be indigenous to the Site.

The approximate thickness and location of the incinerator waste layer, observed in the test pits advanced in February 2010, is shown on an incinerator waste layer isopach map included as Figure 12. [Note: Due to its compressible nature, the incinerator waste layer was generally not observed in the samples collected from test borings advanced during this study and past studies. Therefore, the incinerator waste layer model covers only that portion of the Site on which test pits TP04-1 through TP04-3 and TP10-1 through TP1023 were advanced. It is possible that the incinerator waste layer extends onto other parts of the Site that are not represented in the modeled area shown on Figure 12] The approximate thickness of the incinerator waste layer between the test pit locations was interpolated with the ESRI Spatial Analyst software using the IDW statistical analysis method. As shown in Figure 12, the measured thickness of the incinerator waste ranged from less than one foot (TP10-6, TP10-8, TP10-20, TP10-21) to approximately 7.5 feet (TP04-3) in thickness. A cross sectional view of the incinerator waste layer estimated to be present on the portion of the Site that could be modeled was created from the fill isopach map data, and is included as Figure 13.

3.1.1 Environmental Analytical Laboratory Test Results for Soil/Fill Samples

Test results for VOCs, SVOCs, and metals are summarized on Table 2, Table 3, and Table 4, respectively. Copies of the Mitkem laboratory reports are included in Appendix F. Although the Site is not currently within an environmental program mandated by the NYSDEC, the test results for the soil/fill samples that were tested as part of this study are compared to the following criteria referenced in the NYSDEC document titled "6 NYCRR Part 375, Environmental Remediation Programs" dated December 14, 2006.

- Restricted Residential Soil Cleanup Objectives (SCOs);
- Restricted Commercial SCOs; and
- SCOs for the Protection of Groundwater

The test results and comparison to the above criteria are further discussed below.

<u>VOCs</u>

As shown on Table 2, VOCs were detected in each of the 6 samples that were tested. VOCs detected in one or more sample included: 1,1,2-trichloroethane; 2-hexanone; acetone; chloroform; isopropylbenzene; methylene chloride; n-butylbenzene; naphthalene; secbutylbenzene; tert-butylbenzene; toluene; 1,2,4-trimethylbenzene; 1,3,5-trimethylbenzene; and xylene. Concentrations of specific VOCs detected ranged between 0.0013 and 0.35 mg/kg or ppm. Many of the detected concentrations were qualified as estimated concentrations by the analytical laboratory since they were detected below the method detection limit. The VOCs chloroform; methylene chloride; and naphthalene were also detected in an associated method blank; thus, these VOCs may not be attributable to the Site. Also, methylene chloride and acetone are common laboratory artifacts; thus, the concentrations detected in the field samples could be attributable to laboratory artifacts.

The concentration of acetone (i.e., 0.082 mg/kg or ppm) in the soil sample collected from TP-6 (9') exceeds the Protection of Groundwater SCO (0.050 mg/kg or ppm) by just 0.032 mg/kg or ppm. The remaining concentrations of VOCs detected in these samples do not exceed their respective Restricted Residential SCOs, Restricted Commercial SCOs, or Protection of Groundwater SCOs.

<u>SVOCs</u>

.

As shown on Table 3, SVOCs were detected in each of the 13 samples that were tested. SVOCs detected in one or more sample included: acenaphthene; acenaphthylene; anthracene; benzo(a)pyrene; benzo(b)fluoranthene; benzo(g,h,i)pervlene; benzo(a)anthracene: benzo(k)fluoranthene: carbazole; chrysene; dibenzo(a,h)anthracene; dibenzofuran: fluoranthene; fluorene; indeno(1,2,3-cd)pyrene; naphthalene; 2-methylnephthalene; 2methylphenol; 4-methylphenol; phenanthrene; phenol; and pyrene. Concentrations of specific SVOCs detected ranged between 0.040 and 110 mg/kg or ppm. Many of the detected concentrations were qualified as estimated concentrations by the analytical laboratory since they were detected below the method detection limit.

A comparison of the detected SVOC concentrations to SCOs is summarized below:

- Sample TP10-4(2') contained benzo(a)anthracene; benzo(a)pyrene, benzo(b)fluoranthene, chrysene, and indeno(1,2,3-cd)pyrene at concentrations exceeding respective Restricted Residential SCOs, Restricted Commercial SCOs, and/or Protection of Groundwater SCOs. The levels of exceedance are only 1.8 times or less the respective SCOs. The concentrations of the other SVOCs detected in this sample were below their respective Restricted Residential SCOs, Restricted Commercial SCOs, and Protection of Groundwater SCOs.
- Sample TP10-8(2.5') contained benzo(a)anthracene, benzo(a)pyrene, benzo(b) fluoranthene, benzo(k)fluoranthene chrysene, dibenzo(a,h)anthracene, and indeno(1,2,3-cd)pyrene at concentrations exceeding respective Restricted Residential SCOs, Restricted Commercial SCOs, and/or Protection of Groundwater SCOs. The levels of exceedance are only 5.6 times or less the respective SCOs. The concentrations of the other SVOCs detected in this sample were below their respective Restricted Residential SCOs, Restricted SCOs, Restricted Commercial SCOs, and Protection of Groundwater SCOs.
- Sample TP10-11(7') contained benzo(a)anthracene, benzo(a)pyrene, benzo(b) fluoranthene, benzo(k)fluoranthene chrysene, dibenzo(a,h)anthracene, indeno(1,2,3-cd)pyrene, naphthalene, phenanthrene, and phenol at concentrations exceeding respective Restricted Residential SCOs, Restricted Commercial SCOs, and/or Protection of Groundwater SCOs. The levels of exceedance are 49 times or less the respective SCOs. The concentrations of the other SVOCs detected in this sample were below their respective Restricted Residential SCOs, Restricted Commercial SCOs, and Protection of Groundwater SCOs.
- Sample TP10-15(7') contained benzo(a)anthracene, benzo(a)pyrene, benzo(b) fluoranthene, benzo(k)fluoranthene chrysene, dibenzo(a,h)anthracene, and indeno(1,2,3-cd)pyrene at concentrations exceeding respective Restricted Residential SCOs, Restricted

Commercial SCOs, and/or Protection of Groundwater SCOs. The levels of exceedance are only 6.2 times or less the respective SCOs. The concentrations of the other SVOCs detected in this sample were below their respective Restricted Residential SCOs, Restricted Commercial SCOs, and Protection of Groundwater SCOs.

• The concentrations of the SVOCs detected in the other nine samples were below their respective, Restricted Residential SCOs, Restricted Commercial SCOs, and Protection of Groundwater SCOs.

The samples that exceeded one or more SCO (i.e., Restricted Residential, Restricted Commercial, and Protection of Groundwater) for SVOCs are identified on Figure 14, and this figure also lists the total SVOC concentrations detected in those samples.

In addition, SVOC background surface sample data was generated by the City of Rochester in 1998 as part of a NYSDEC Environmental Restoration Project at the former APCO Site, 79 Woodstock Road, Rochester, New York (NYSDEC Site #B-00001-8). The background data is identified in a document titled "Supplemental Groundwater and Background Surface Soil Sampling Report, Former APCO Property, 79 Woodstock Road, Rochester, New York" dated February 6, 1998 and prepared by the Sear-Brown Group. A summary of the detected SVOCs in the background surface soil samples is provided on Table 5 of the 1998 report, and this table is included in Appendix G.

Generally, SVOC concentrations that exceeded one or more SCO in three samples analyzed for this study [i.e., TP10-8(2.5'), TP10-11(7'), and TP10-15(7')] also exceeded the upper threshold background concentration listed in Table 5.

<u>Metals</u>

TAL and/or RCRA metals were detected in each of the fifteen samples that were tested. A comparison of the detected concentrations of metals in these samples to SCOs is provided on Table 4, and is also summarized below:

- Samples TP10-4(11'), TP10-6(9'), TP10-20(6.5'), and TP10-22(8') contained mercury at concentrations exceeding the Restricted Residential SCO and the Protection of Groundwater SCO, but not the Restricted Commercial SCO. The levels of exceedance are only 3.3 times or less the respective SCO.
- Sample MW10-1(10-11') contained arsenic at a concentration exceeding the Unrestricted SCOs, Restricted Residential SCO, Restricted Commercial SCO, and the Protection of Groundwater SCO. The level of exceedance are only 2.3 times than respective SCOs.
- The concentrations of the other metals detected in these samples, as well as the concentrations of all metals detected in the other ten samples analyzed, were below their respective Unrestricted SCOs, Restricted Residential SCOs, and Protection of Groundwater SCOs.

The samples that exceeded one or more SCO for metals are identified on Figure 14, and this figure also lists the concentrations of the specific metals that exceeded the SCOs in the samples.

QA/QC Trip Blanks

Trip blanks TB021910 and TB050610 accompanied test pit soil/fill samples and test boring soil/fill samples (respectively) from to the laboratory. The quality assurance/quality control (QA/QC) trip blank laboratory results can be found in Appendix F. VOCs were not detected in the trip blank samples.

3.2 Groundwater Environmental Evaluation

LNAPL was not detected at the seven on-site wells during the June 4, 2010 monitoring event.

Using the surveyed well elevations and static water level measurements from June 6, 2010, the groundwater elevations for on-site wells were calculated for that date: MW10-1 (504.61'); MW10-2 (504.06'); MW10-3 (497.91'); MW-1R (498.31'); TW-MW-9 (499.67'); TW-MW-10 = (497.61'); and MW-7 (504.05'). The above information is summarized on Table 5. A potentiometric groundwater contour map for the June 4, 2010 monitoring event was developed and is included as Figure 15. As shown, groundwater flow on June 4, 2010 was to the east, towards Mt. Hope Avenue and away from the Genesee River.

A review of static groundwater elevations measured in on-site wells during previous studies at the Site suggests that static groundwater elevations measured during the June 4, 2010 are consistent with those measured in the past. Further, the general direction of groundwater flow (i.e., toward the east, away from the Genesee River) interpreted from the June 4, 2010 static groundwater elevations is generally consistent with flow directions reported during previous studies listed in Section 1.2. Additionally, the static groundwater level in MW-1R, measured on June 4, 2010 is similar to the static groundwater level reported in monitoring well MW-1 during sampling events in 2000 and 2001; suggesting that groundwater is not mounding in the area of the backfilled soil remediation excavation on the southeast portion of the Site.

3.2.1 Environmental Analytical Laboratory Test Results for Groundwater Samples

The groundwater samples collected from wells MW10-1, MW10-2 and MW10-3 on June 4, 2010 were analyzed by Mitkem for TCL and STARS-list VOCs using USEPA Method 8260, TCL and STARS-list SVOCs using USEPA Method 8270, and for RCRA metals using USEPA Methods 6010 and 7470. A copy of the Mitkem laboratory report is included in Appendix F.

The VOCs, SVOCs, and RCRA metals test results for the June 10, 2010 groundwater samples are included in Table 6, Table 7, and Table 8, respectively. A comparison of the June 4, 2010 test results to groundwater standards or guidance values referenced in the NYSDEC document titled "Division of Water Technical and Operational Guidance Series 1.1.1; Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations" dated June 1998 as amended with April 2000 and June 2004 addendum tables (TOGS 1.1.1) are included on Table 6, Table 7, and Table 8. The results and comparison to the TOGS 1.1.1 groundwater standards are summarized below:

• As indicated in Table 6, VOCs were not detected at concentrations above analytical laboratory detection limits in the June 4, 2010 groundwater samples collected from MW10-1, MW10-2, and MW10-3.

- As indicated in Table 7, estimated concentrations of SVOCs acenaphthene and fluorene were detected in the June 4, 2010 groundwater sample collected from MW10-2. The estimated concentrations of the detected SVOCs in this sample do not exceed their respective NYSDEC TOGS 1.1.1 guidance values. No other SVOCs were detected in the sample collected from MW10-2. SVOCs were not detected in the June 4, 2010 groundwater samples collected from monitoring wells MW10-1 and MW10-3 at concentrations above reported analytical laboratory detection limits.
- As indicated in Table 8, the metal barium was detected in the groundwater sample collected on June 4, 2010 from MW10-2. Further, estimated quantities of the metal barium were detected in the groundwater samples collected on June 4, 2010 from MW10-1 and MW10-3. The concentrations of barium detected in these samples (i.e., ranging from 38 ug/l or parts per billion (ppb) in MW10-3, to 210 ug/l in MW10-2) were below the TOGS 1.1.1 standard of 1,000 ug/l. No other RCRA metals were detected in these groundwater samples.

VOCs were not detected in the June 4, 2010 "Trip Blank" at concentrations above reported analytical laboratory detection limits. The QA/QC Trip Blank Laboratory results can be found in Appendix F.

3.3 Geotechnical Assessment

A copy of the geotechnical report prepared by Foundation Design is included in Appendix B. The report includes an assessment of subsurface conditions, geotechnical laboratory test results, and conclusions and recommendations based on evaluation of site conditions in relation geotechnical concerns associated with redevelopment of the Site.

In summary, the geotechnical assessment report indicates that:

- The subsurface profile consists of topsoil over mixed fills, organic and/or clayey silt, glacial till, then dolomite bedrock. The fill consists of mixed earth, topsoil, ash, coal, slag, glass, wire, brick, concrete fragments, and other deleterious material. Large zones within the fill consist primarily of incinerator waste (ash, etc.). Remnants of pre-existing structures were encountered in several of the test pits excavated during the study, and were also observed during previous studies at the Site.
- The upper, natural soils consist of loose to firm silt with trace to some clay, trace to little sand, and trace organics. Thin pockets of more highly organic soil were also noted in the sampling. Compact to dense glacial till or river-deposited sand and gravel underlies the organic silt. Based on a review of the existing data, the bedrock surface lies between 490 feet and 495 feet above mean sea level, roughly 25 feet below the surface. The upper three to five feet of bedrock was observed to be highly fractured, making it difficult to differentiate this upper portion from boulders in the overlying unit. Rock quality improved below this upper interval of fractured bedrock.

- Groundwater was generally encountered at depths below 10 feet bgs. Water observed in test pits at approximately 10 feet bgs was interpreted to be perched (i.e., trapped in the fill at these locations).
- The in-place fill material and underlying organic silt/clay deposits are not suitable to support new construction. The in-place fill contains sporadic areas where highly compressible ash and cinders have been deposited. This material would consolidate and compress under new structural loads, leading to unacceptable settlement of the structure and floor slabs. The underlying organic material will slowly decompose over time, leading to more consolidation and settlement.
- For preliminary estimating, assume that a deep foundation system and structural floor slab will be required for a new building. The deep foundation system will be highly dependent on building loads, and load distribution within the structure.

The geotechnical assessment report also provides conclusions and guidance on: site preparation items; structural fill and backfill materials; seismic considerations; underground utilities; pavement/sidewalk measures; bedrock/groundwater considerations; and premium cost items in relation to redevelopment of this Site as compared to development of a 'green' site. The premium cost items are associated with structural/design costs and geotechnical construction oversight costs.

In the closure section, the geotechnical assessment report states that "additional geotechnical exploration, testing, and/or engineering analysis will be required after the building locations, sizes, design loads, and site grading have been established".

4.0 CONCLUSIONS AND RECOMMENDATIONS

This section of the report summarizes the findings of the pre-development environmental investigation and geotechnical studies that were performed at the Site, and also provides conclusions and recommendations as they pertain to environmental and geotechnical conditions that should be considered when planning and implementing the redevelopment of the Site. This study also included researching and identifying utilities that are currently on and around the Site. The conclusions and recommendations provided herein assumed future redevelopment options, which are residential and/or commercial.

Based on the environmental and geotechnical Site conditions identified during this study, and on current City zoning, redevelopment of the Site for restricted residential use and/or restricted commercial use as defined in NYSDEC Part 375-1.8 are feasible options.

Restricted residential use allows common ownership or a single owner/managing entity of the site, and active recreational uses that are public uses with a reasonable potential for soil contact. Restricted residential use restricts or prohibits:

- Single family housing; and
- Vegetable gardens, although community vegetable gardens could possibly be considered with regulatory agency approval.

Commercial components would likely not require common ownership, and also allow passive recreational uses, which are public uses with limited potential for soil contact.

4.1 Availability of Utilities to the Site

DAY reviewed and obtained publicly available City and utility records to assist in identifying the type and location of the utilities at or available to the Site. Utilities do not presently exist on-site. Utilities adjacent to the east of the Site along Mt. Hope Avenue include:

- Natural gas
- Electric service
- Domestic water
- Combined sanitary-storm sewer
- Telephone service.

The ability to service the project site with existing utilities will be dependent on capacity requirements of the redeveloped Site. Each utility company should be contacted to discuss specific requirements at the time of design.

4.2 Environmental Considerations

The Site is covered with an approximately 0.5 to 1.5 foot thick layer of topsoil. Fill material generally consisting of reworked soil (i.e., silt, sand, gravel, cobbles, and boulders) was observed below the topsoil in each of the test locations advanced during this study. The reworked soil fill also contains lesser amounts of topsoil, ash, coal, slag, glass, wire, brick, concrete fragments, lumber, metal objects (e.g., scrap, railroad rail, rebar), and/or plastic.

Large pockets within the fill consist primarily of incinerator waste comprised of ash, cinders, slag, and non-combustible metal and glass fragments.

The upper most layer of indigenous soil underlying fill deposits at the Site generally consists of silt with lesser amounts of clay, sand and organics. Thin pockets of highly organic soil were also observed within this silt layer. Compact silty sand, presumed to be glacial till or a river deposit, underlies the silt material. Large boulders were encountered at the base of the till near the presumed top of bedrock. The overburden soil and fill at the Site are underlain by Dolomite bedrock of the Lockport Formation. The depth to bedrock at the rotary test borings ranged from approximately 24.1 feet to 25.5 feet below the ground surface. The upper three to five feet of the bedrock was reported to be highly fractured and difficult to differentiate from the overlying boulders.

Although six samples of soil/fill analyzed during this study were found to contain concentrations of the metals mercury and/or arsenic that exceed SCOs for Protection of Groundwater and Restricted Residential Use, only the fill sample TP10-1(10-11') contained a metal analyte (i.e., Arsenic) at a concentration that exceeded its SCO for Restricted Commercial Use. Also, only four of the thirteen soil or fill samples tested during this study were found to contain concentrations of one or more SVOC that exceeded SCOs for Restricted Residential Use and/or Restricted Commercial Use. Only one fill sample, TP10-6 (9') contained a VOC (i.e., acetone) at a concentration exceeding the SCO for Protection of Groundwater by 0.032 mg/kg or ppm, but did not exceed the SCO for Restricted Residential Use.

Based on the subsurface evaluation performed to date, areas of fill material at the Site will require specialized handling/disposal as a construction and demolition (C&D) waste or solid waste if displaced during redevelopment or other future activities. The remaining reworked soil fill likely could be re-used on-site, and would be exempt from being considered a regulated solid waste requiring off-site disposal since it appears to meet beneficial use descriptions referenced in NYSDEC Part 360 (Solid Waste Management Facilities) §360-1.15 (Beneficial Use).

An unknown quantity of petroleum impacted soil was left in-place along the utility corridor on the southeast portion of the Site subsequent to the soil remediation effort conducted by Stantec in 2007. Samples of this material from the eastern sidewall of the excavation along an approximately 30-foot section contained one or more petroleum constituent that exceeded TAGM 4046 RSCOs. The residual petroleum impacted soil (and associated groundwater, if any) located on this portion of the Site is addressed in a Soil and Groundwater Management Plan document titled "151-191 Mount Hope Avenue, Rochester, Monroe County NY (NYSDEC Spill #0070377)" (SGMP) dated August 2009 and prepared by Stantec. The SGMP includes measures for management of subsurface work on the southeast portion of the Site.

No VOCs were detected in June 2010 groundwater samples from monitoring wells MW10-1, MW10-2, and MW10-3 at concentrations exceeding the laboratory detection limit of 5 ug/l or ppb. While several SVOCs (i.e., acenaphthene and fluorene) and the metal barium were detected in one or more of the June 2010 groundwater samples from monitoring wells MW10-

1, MW10-2, and MW10-3, the concentrations did not exceed TOGS 1.1.1 standards or guidance values.

Based on the studies and remediation completed to date, soil vapor intrusion into new buildings or structures does not appear to be a concern across the majority of the Site. Only the area east of the soil removal excavation where petroleum impacted soils exceeding TAGM 4046 RSCOs presents a potential for soil vapor intrusion into new buildings; however, construction of buildings in this area is unlikely since the area is within a 30-foot wide utility easement.

Environmental Recommendations

Based on the studies performed, interim remedial measures or site-wide remediation do not appear warranted at this time. However, since some samples of fill material contained various SVOCs and metals above SCOs for Restricted Residential Use and/or Restricted Commercial Use, it is recommended that an Environmental Management Plan (EMP) be developed and implemented during future activities at the Site that have the potential to disturb these media. The EMP should: a) identify, characterize, and detail the handling, disposal of, or re-use of fill material; and, b) establish goals, procedures, appropriate response actions and contingency actions to be used by on-site personnel should fill material, contaminated groundwater, or other unknown contaminated media be encountered and disturbed in the future. In addition, it is recommended that a Health and Safety Plan be developed to protect construction workers, on-site occupants, and the nearby community from exposures to constituents in the fill material or groundwater should they be disturbed (i.e. during redevelopment activities, construction activities, utility trenching, site grading, etc.).

The 2009 Stantec SGMP should be implemented in conjunction with the new EMP, or the relevant requirements of the SGMP that are applicable to the 151 Mt. Hope Avenue parcel should be incorporated into the new EMP.

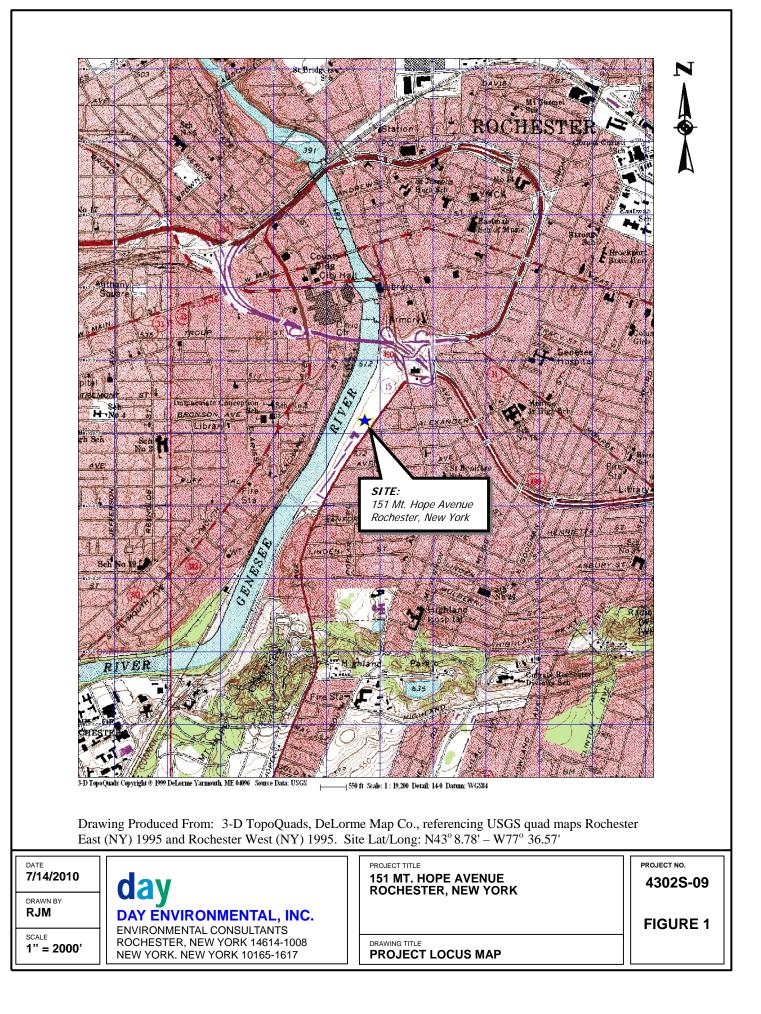
The potential for vapor intrusion into future buildings or structures should by considered only for the portion of the Site in the area east of the soil removal excavation where petroleum impacted soils exceeding TAGM 4046 RSCOs were left in-place.

Prior to development, it is recommended that a copy of this report be submitted to the appropriate regulatory agencies for their review and to assure their concurrence with the findings and recommendations presented in this report. Based on the heterogeneity of the fill and/or if environmental conditions are to be further addressed under a formal NYSDEC program (e.g., Brownfield Cleanup Program), it is possible that additional investigation or corrective actions may be required at the Site.

4.3 Geotechnical Considerations

The geotechnical report, included in Appendix B states: "...The in-place fill material and underlying organic silt/clay deposit (encountered at the Site) are not suitable to support new construction. The in-place fill contains sporadic areas where highly compressible ash and cinders have been deposited. This material would consolidate and compress under new structural loads, leading to unacceptable settlement of the structure and floor slabs. The underlying organic material will slowly decompose over time, leading to more consolidation and settlement. For preliminary estimating, assume that a deep foundation system and structural floor slab will be required for the new building. The deep foundation system that will ultimately be utilized is highly dependent on building loads, and load distribution with the structure. Old foundations were encountered in several test pits...(and) also encountered in the western portion of the Stantec environmental clean-up excavation; these foundations were left in-place. Old foundations are possible in other old building/trestle locations."

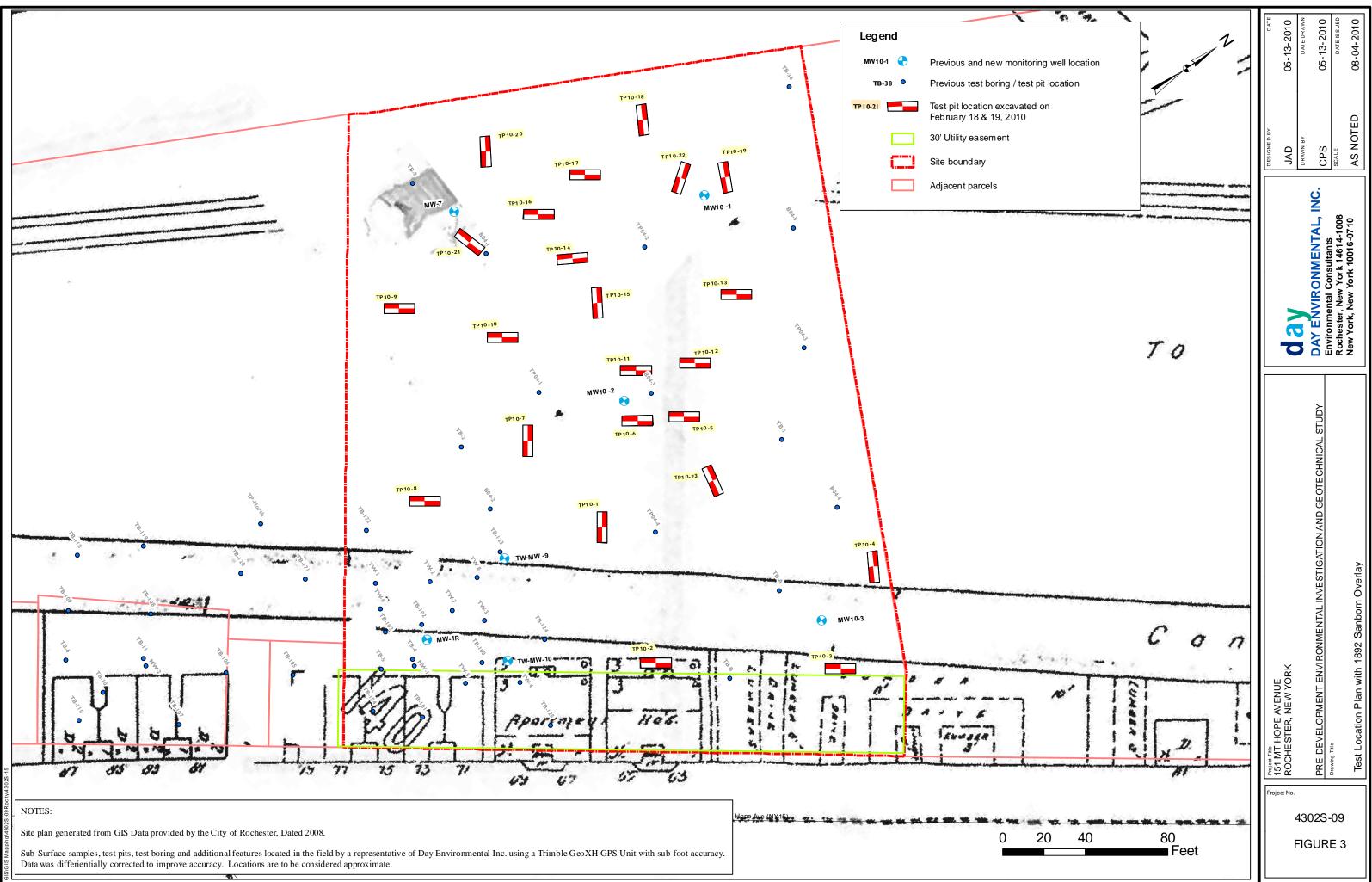
The geotechnical report also provides conclusions and guidance on: site preparation items; structural fill and backfill materials; seismic considerations; underground utilities; pavement/sidewalk measures; bedrock/groundwater considerations; and premium cost items in relation to redevelopment of this site as compared to development of a 'green' site. The premium cost items are associated with structural/design costs and geotechnical construction oversight costs.

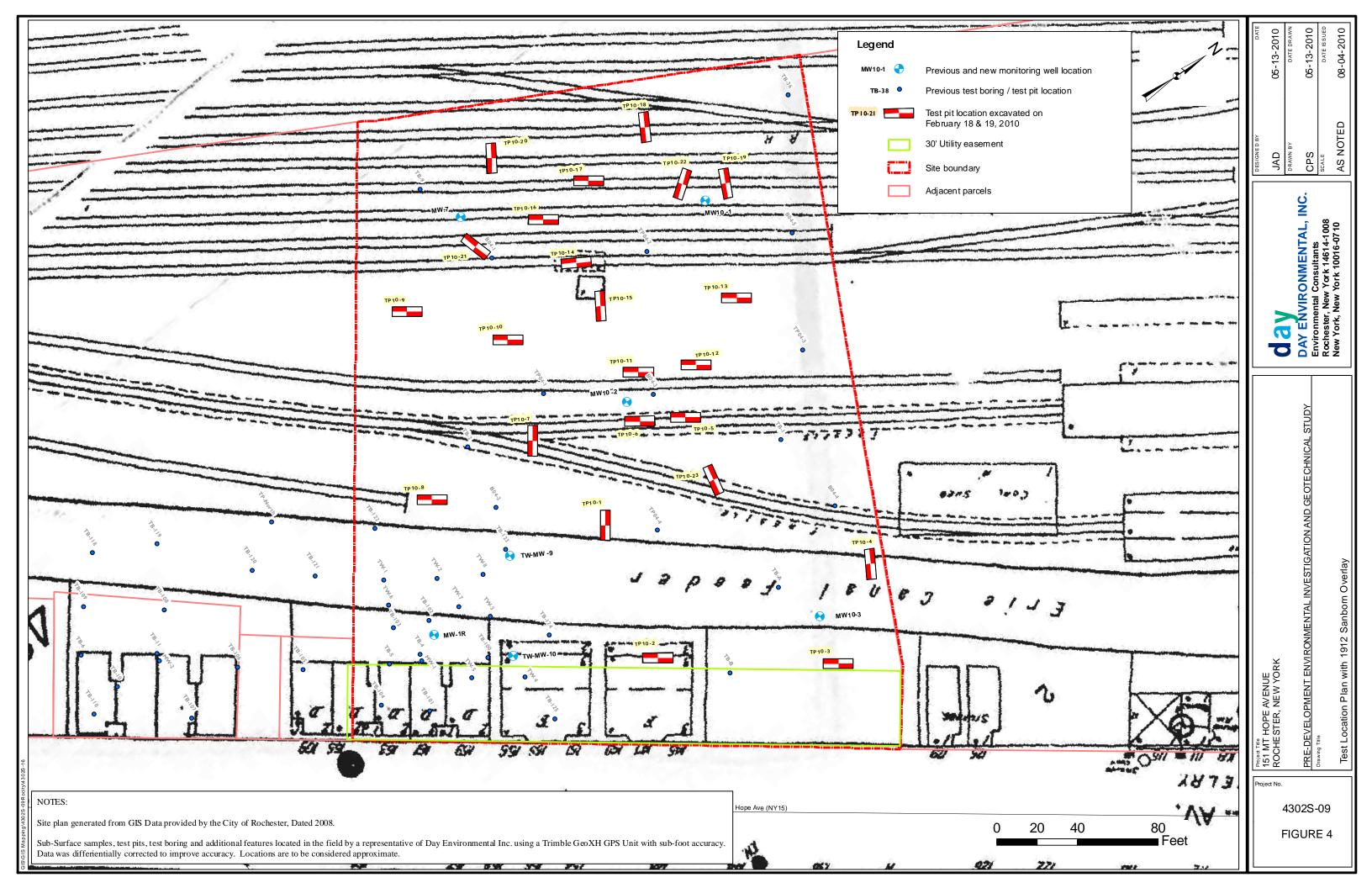

In the closure section, the geotechnical report states: "...additional geotechnical exploration, testing, and/or engineering analysis will be required after the building locations, sizes, design loads, and site grading have been established".

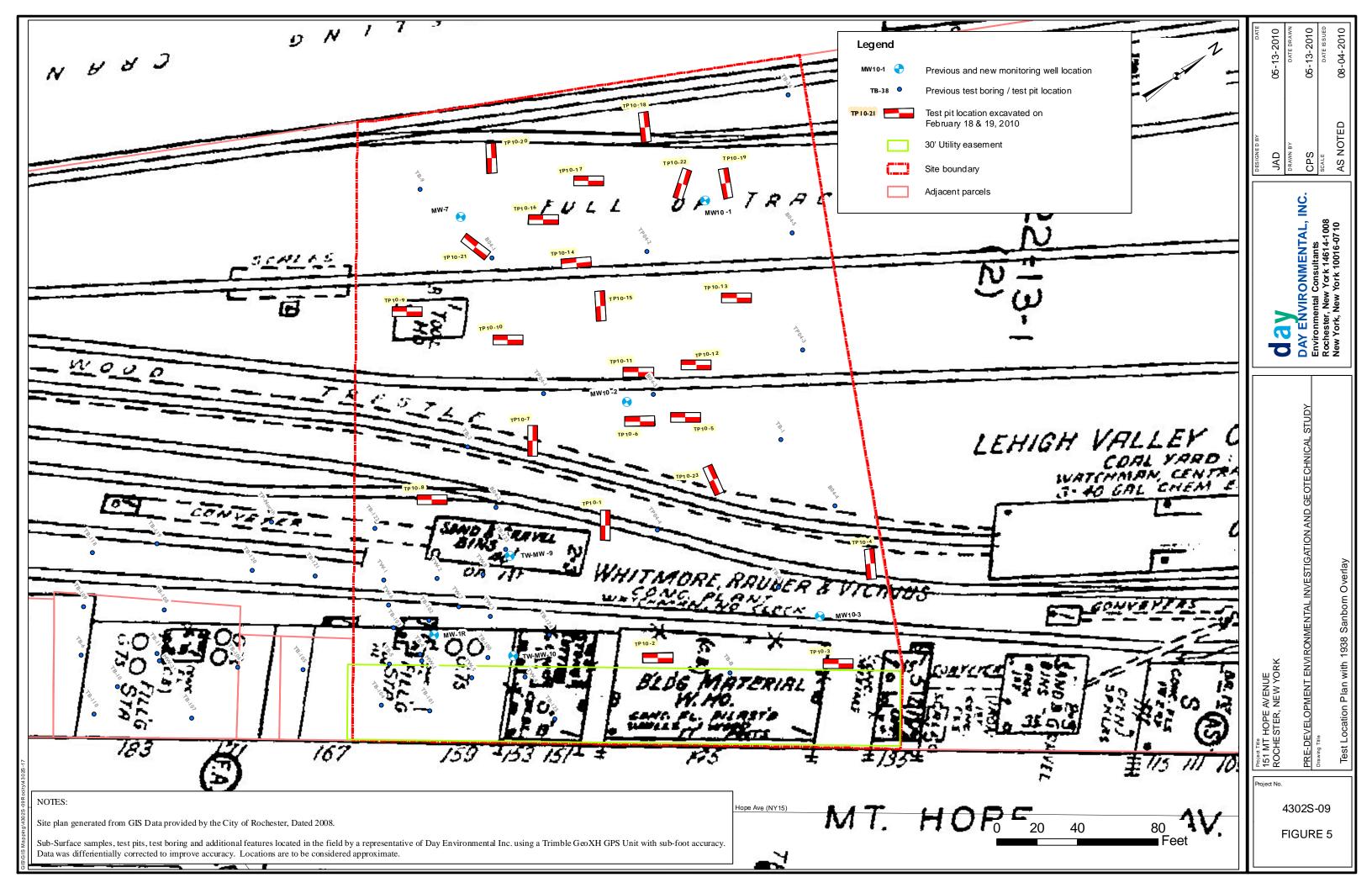
The complete geotechnical report is included in Appendix B. This report provides additional discussion regarding subsurface conditions, and provides further recommendations concerning geotechnical considerations, for the Site.

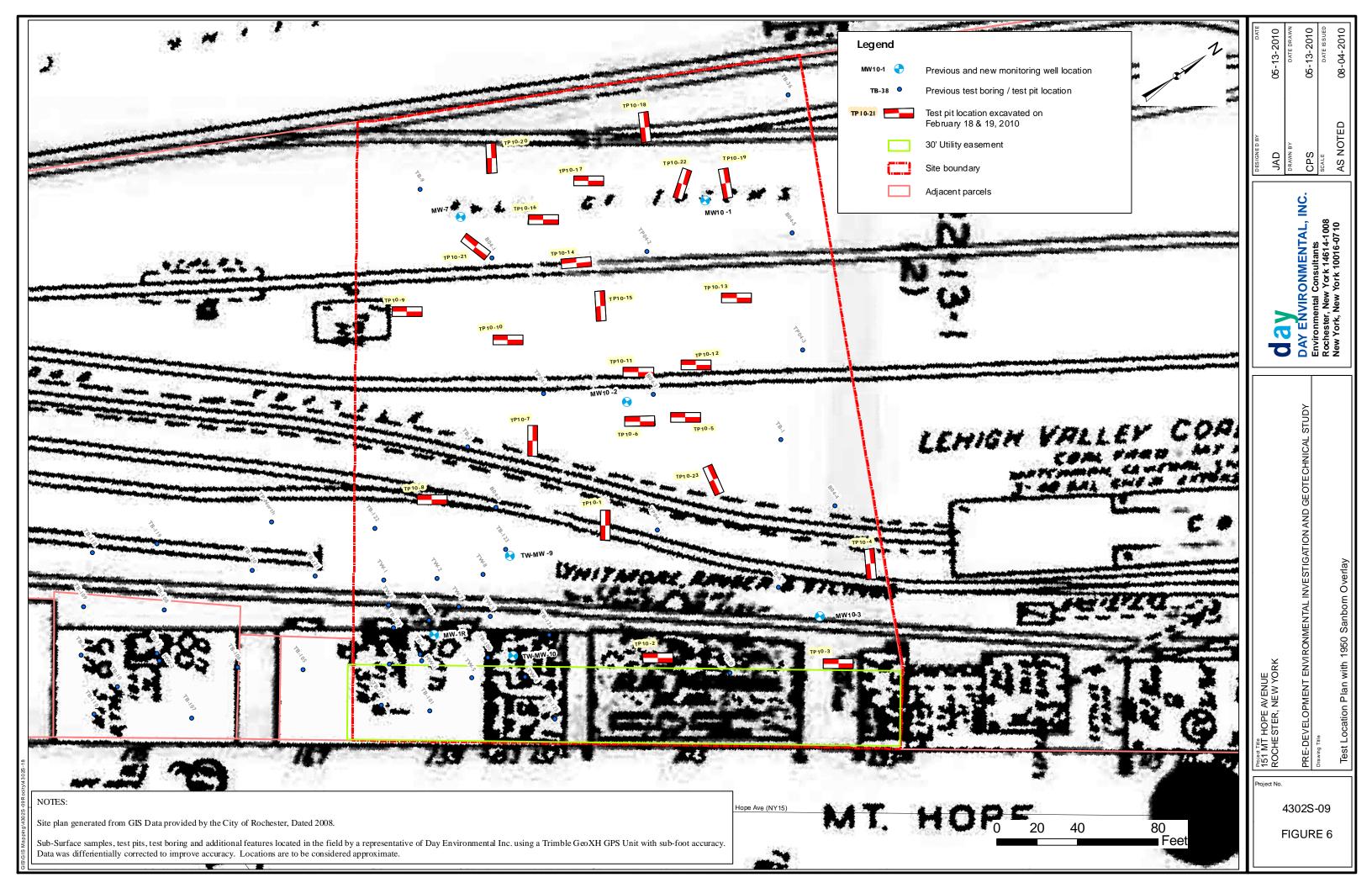
5.0 ACRONYMS

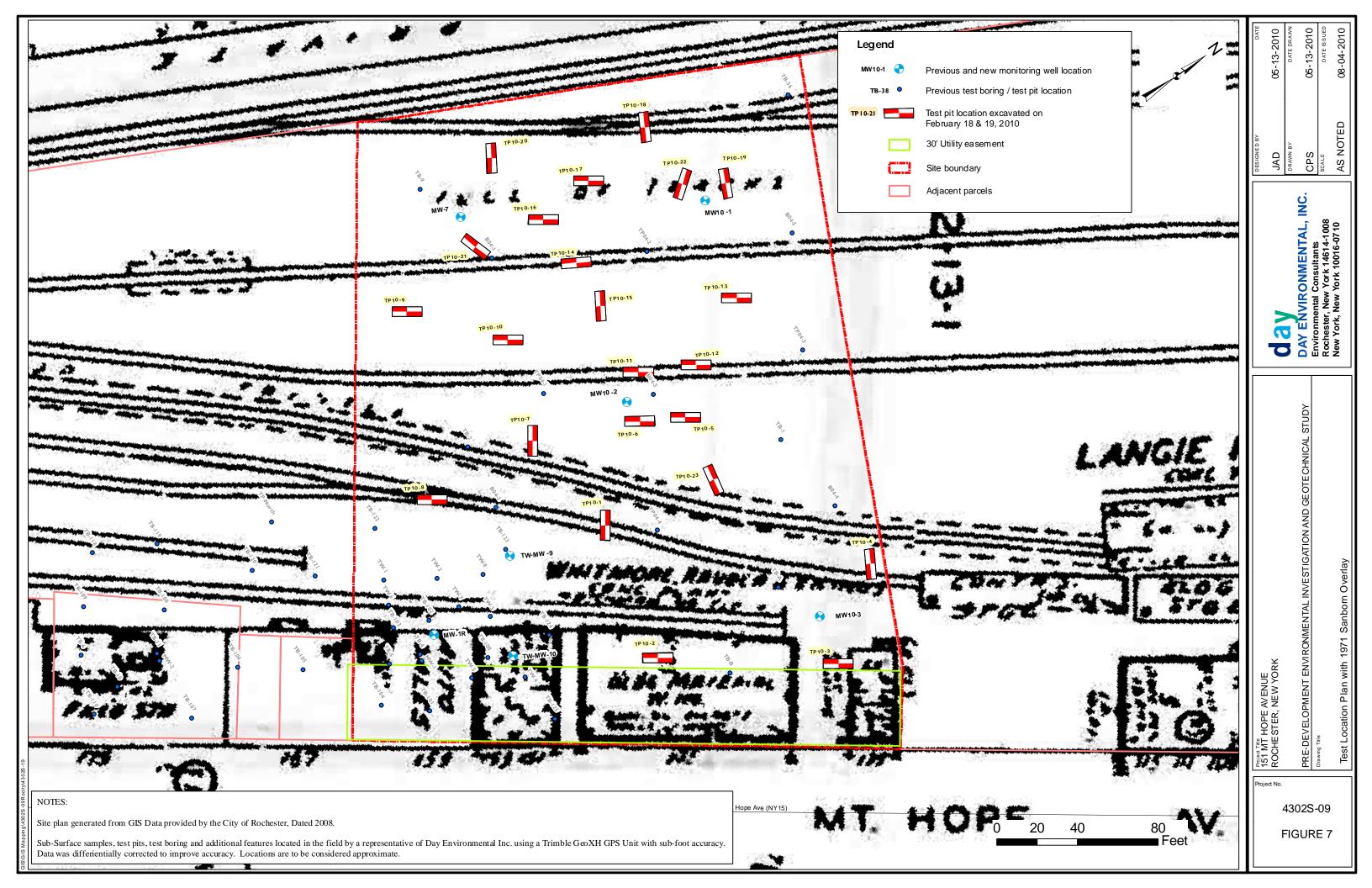
C&D	Construction and Demolition
CFS	Cubic Feet per Second
DAY	Day Environmental, Inc.
ELAP	Environmental Laboratory Approval Program
ESRI	Environmental Systems Research Institute
EMP	Environmental Management Plan
GIS	Geographic Information System
GPS	Geographic Positioning System
IDW	Inverse Distance Weighted
LNAPL	Light Non-Aqueous Phase Liquid
NAD	North American Datum
NYCRR	New York Codes, Rules, and Regulations
NYSDEC	New York State Department of Environmental Conservation
NYSDOH	New York State Department of Health
NYSDOT	New York State Department of Transportation
Phase I ESA	Phase I Environmental Site Assessment
Phase II ESA	Phase II Environmental Site Assessment
PID	Photoionization Detector
PPB	Parts Per Billion
PPM	Parts Per Million
PVC	Polyvinyl Chloride
QA/QC	Quality Assurance/Quality Control
RCRA	Resource Conservation and Recovery Act
RSCO	Recommended Soil Cleanup Objective
SCO	Soil Cleanup Objective
SPT	Standard Penetration Test
Stantec	Stantec Environmental Services Inc.
STARS	Spill Technology and Remediation Series
SVOC	Semi-Volatile Organic Compound
TAL	Target Analyte List
TCL	Target Compound List
TPH	Total Petroleum Hydrocarbons
TOGS	Technical and Operational Guidance Series
TREC	Trec Environmental, Inc.
USEPA	United States Environmental Protection Agency
VOC	Volatile Organic Compound


FIGURES

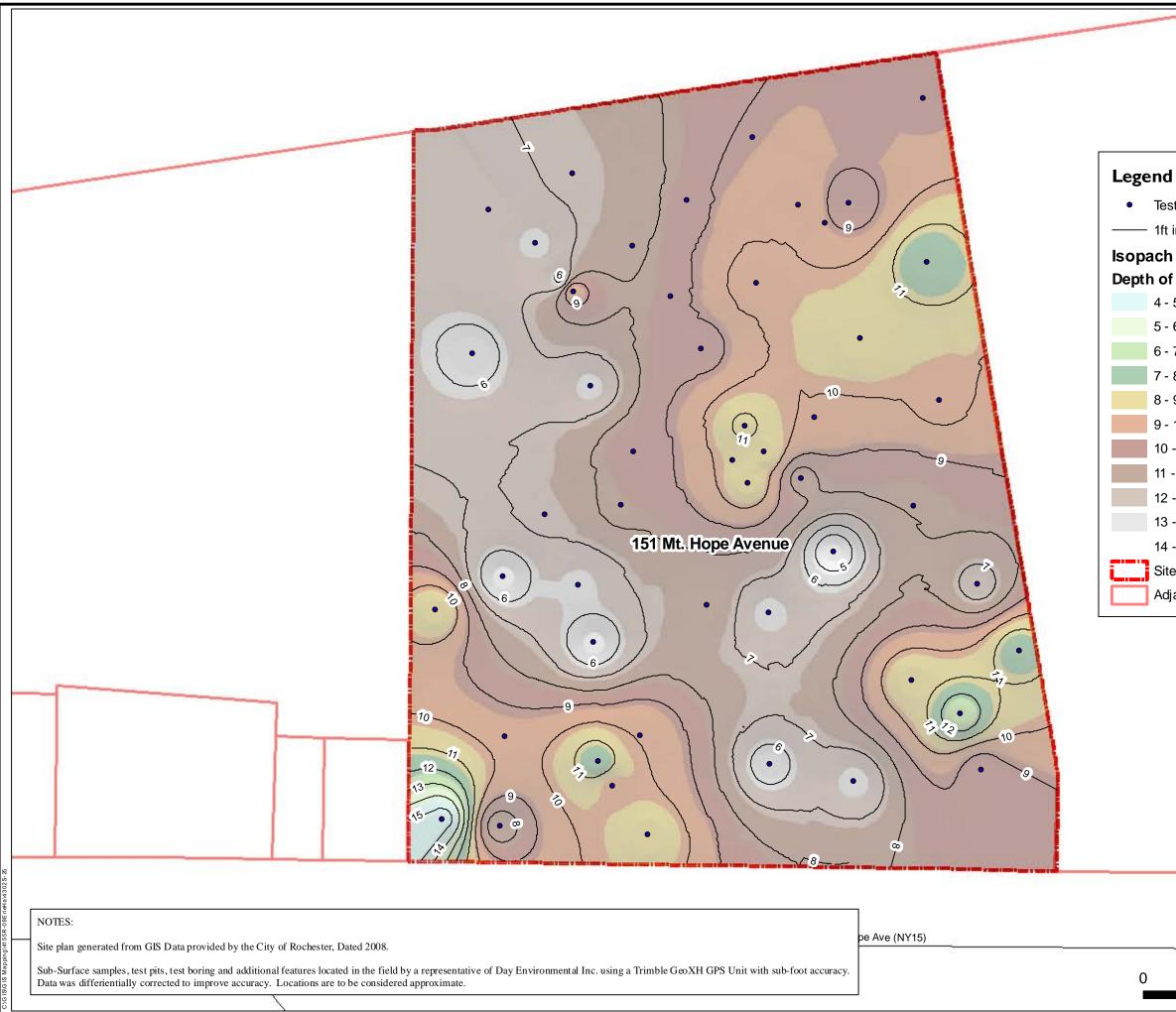


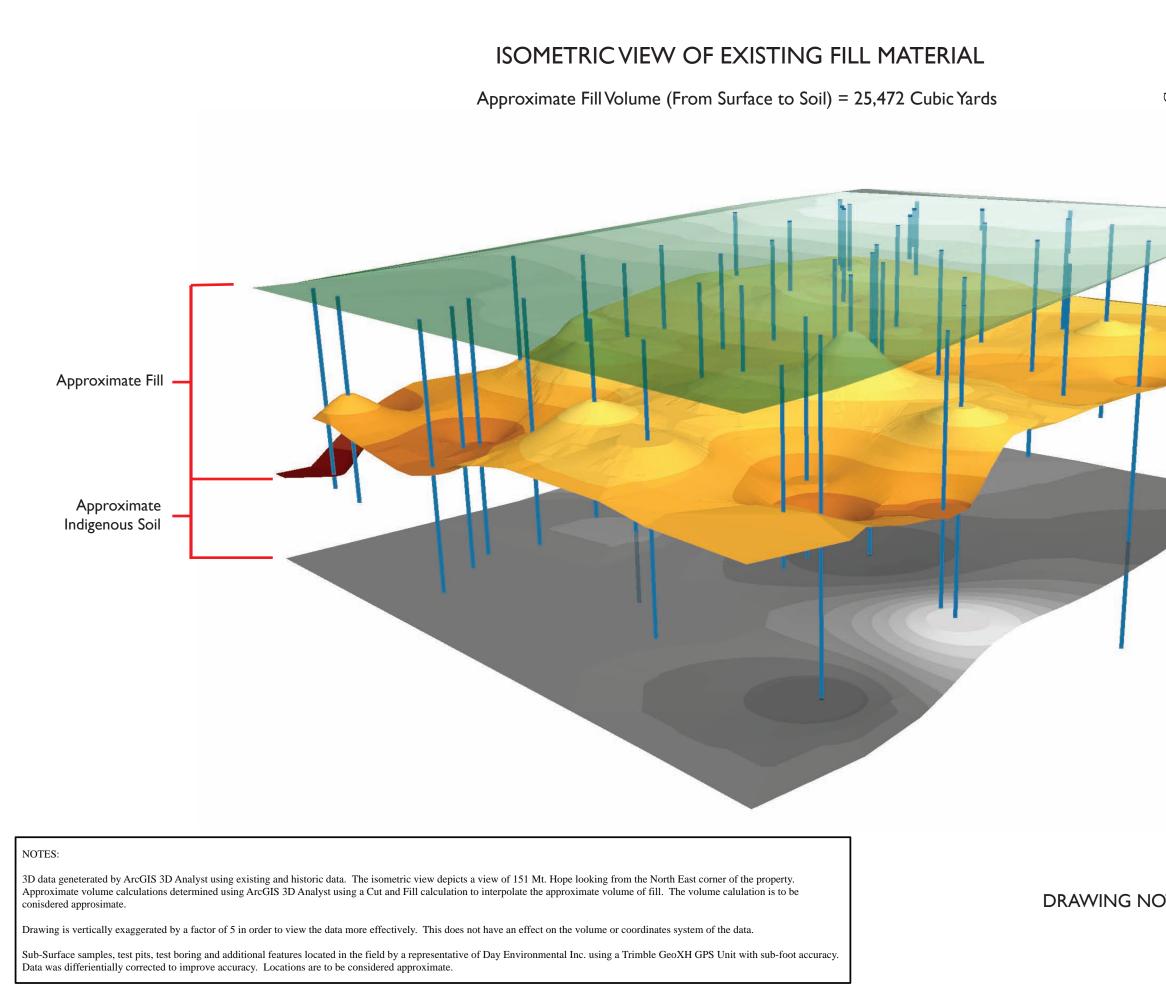


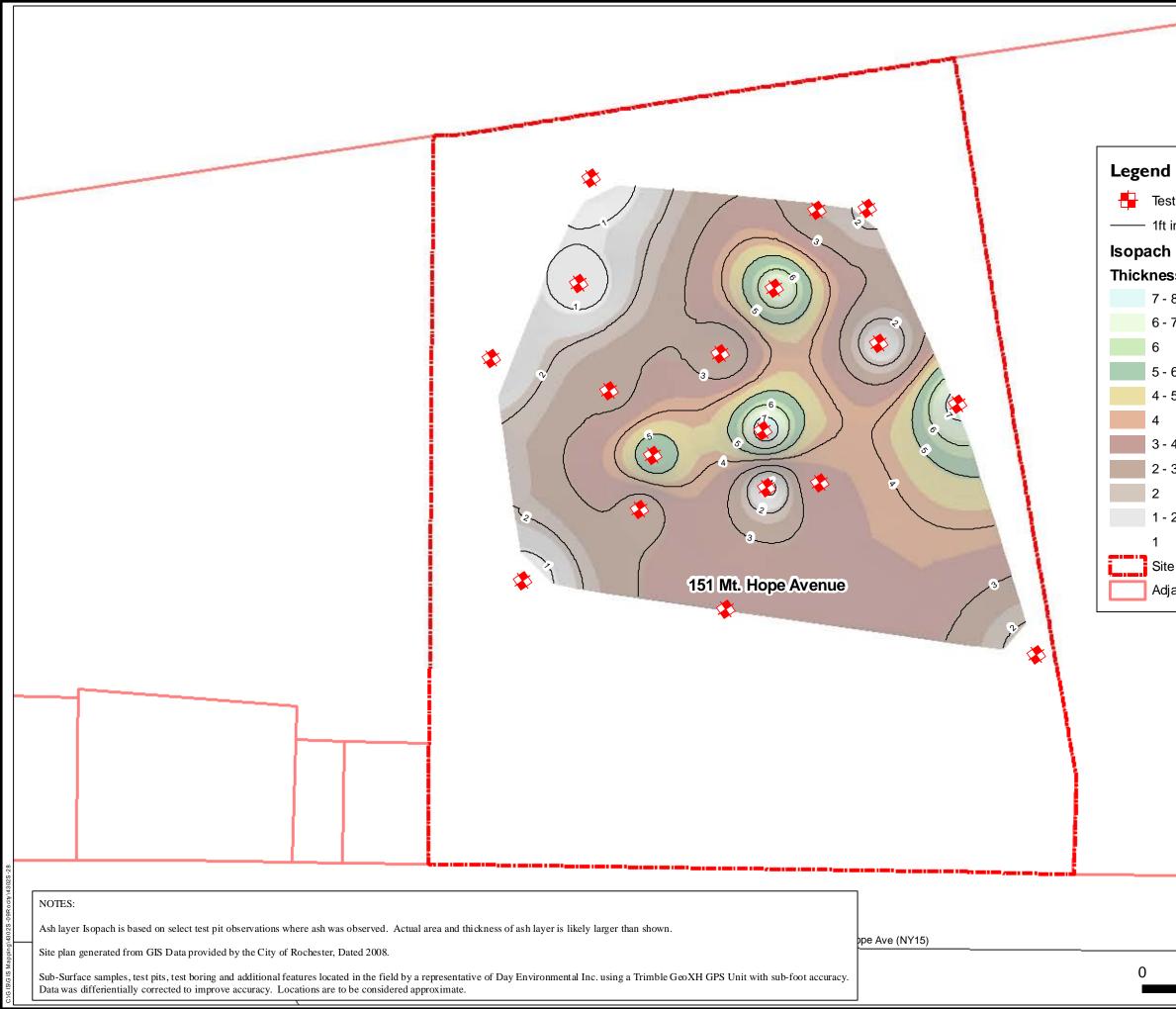

And in case of the local division of the loc


Proj			DESIGNED BY	DATE
	ROCHESTER, NEW YORK		JAD	05-13-2010
			DRAWN BY	DATE DRAWN
)2S· iUR	PRE-DEVELOPMENT ENVIRONMENTAL INVESTIGATION AND GEOTECHNICAL STUDY	DAY ENVIRONMENTAL, INC. Environmental Consultants	CPS	05-13-2010
	Drawing Title	Rochester, New York 14614-1008	SCALE	DATE IS SUED
	Test Location Plan	New York, New York 10016-0710	AS NOTED	08-04-2010

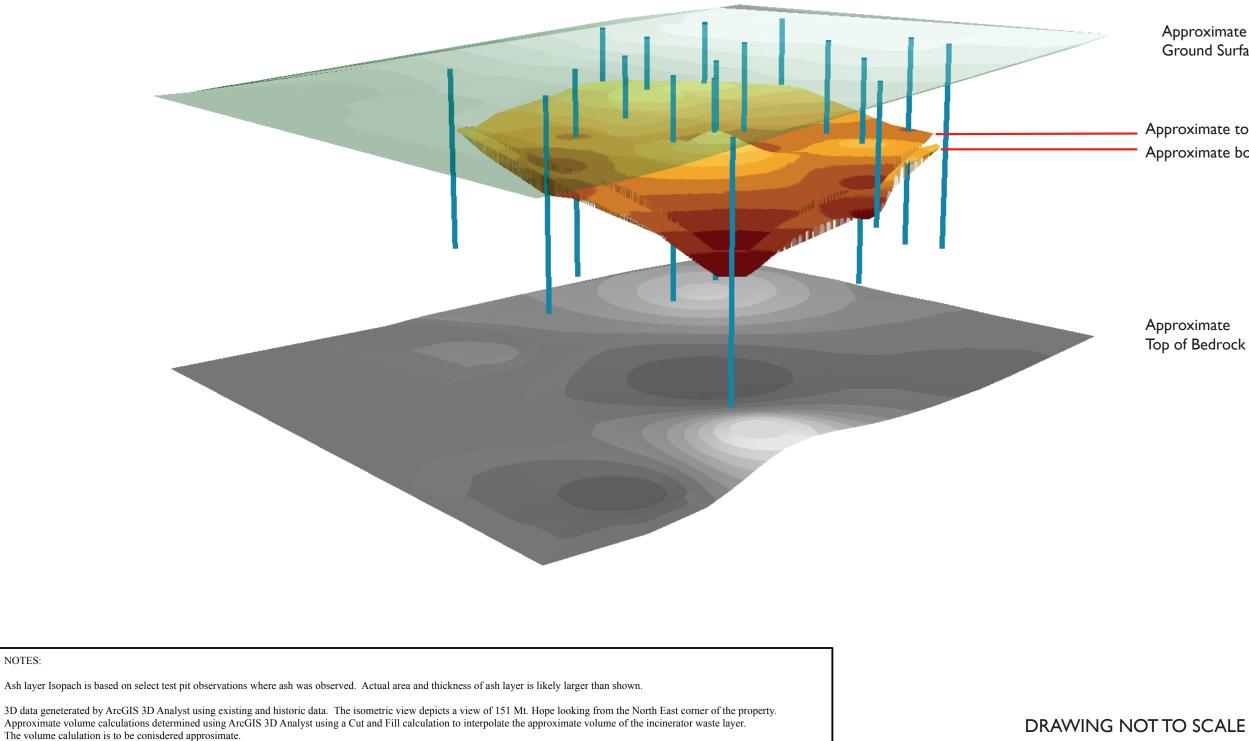







	Proje			DESIGNED BY	DATE
FIC	ect No. 4	_		JAD	05-07-2010
GL	30			DRAWN BY	DATE DRAWN
JRE	2S-(PRE-DEVELOPMENT ENVIRONMENTAL INVESTIGATION AND GEOTECHNICAL STUDY	DAY ENVIRONMENTAL, INC. Environmental Consultants	CPS	05-07-2010
9)9	Drawing Title	Rochester, New York 14614-1008	SCALE	DATE IS SUED
		Existing Utility Plan	New York, New York 10016-0710	AS NOTED	08-04-2010

2	DATE	06-28-2010	DATE DRAWN	06-28-2010	08-04-2010
4	DESIGNED BY	JAD	DRAWN BY	CPS	AS NOTED
st locations					
interval fill thickness contour			NC		
ו			AL	Î	1008 710
f Fill Material Thickness (Feet)			L N	ants	1614- 016-0
5 Ft			MN	nsult	rk 14 'k 10(
6 Ft			C C C		w Yor w Yor
7 Ft			DAY ENVIRONMENTAL. INC.	Environmental Consultants	Rochester, New York 14614-1008 New York, New York 10016-0710
8 Ft			у Ш У У	ironn	heste Yorl
9 Ft		τ		Бŋ	R oc New
10 Ft					
- 11 Ft					
- 12 Ft					
- 13 Ft			CT CT	5	
- 14 Ft					
- 15 Ft				2	
te boundary				5	
ljacent parcels					
		ct No.			Existing Fill Material Thickness Isopach Map
20 40 90		۲ı	GUF	ᅙᄃ	10
20 40 80 Feet		r-10	301		10


	DATE	06-28-2010	06-28-2010	DATE ISSUED	08-04-2010
E	DESIGNED BY	JAD	CPS	SCALE	AS NOTED
Approximate Ground Surface			DAY ENVIRONMENTAL, INC.	Environmental Consultants Rochester, New York 14614-1008	New York, New York 10016-0710
Approximate Top of Indigenous Soil		090	DAY ENVIE	Environmental Rochester, Nev	New York, New
Approximate Data	Project Title 151 MT HOPE AVENUE	ROCHESTER, NEW YORK	PRE-DEVELOPMENT ENVIRONMENTAL INVESTIGATION AND GEOTECHNICAL STUDY	Ite	Isometric View of Existing Fill Material
OT TO SCALE	Project Title	No.	ы 802S-	Drawing Title	Isor
	F	FIG	UR	E 1	1

2	DATE	06-28-2010	DATE DRAWN	06-28-2010	DATE ISSUED	08-04-2010
1	DESIGNED BY	JAD	DRAWN BY	CPS	SCALE	AS NOTED
st locations selection		,		0	Ō	4
interval ash thickness contour				NC.		
n of Incinerator Waste Material				۲ ۲	1008	710
ss of material (Feet)					4014-	016-0
8					ork 1	rk 10
7				ا RO د د	lew √.	ew Yo
				DAY ENVIRONMENTAL, INC.	Rochester, New York 14614-1008	v, N
6			3	A A		ew Yo
5						Ž
4						
3				λ		
				D GE OTE CHNICAL STUDY		
2				INICA		
				비		
e boundary				ЮЩ		
jacent parcels				IAND		Map
	jod Pojed Tite			PRE-DEVELOPMENT ENVIRONMENTAL INVESTIGATION AN	Drawing Trite	Existing Incinerator Waste Layer Thickness Isopach Mag
		4	302	2S-I	09	
20 40 80 Feet		FI	GU	IRE	E 1:	2
	-					

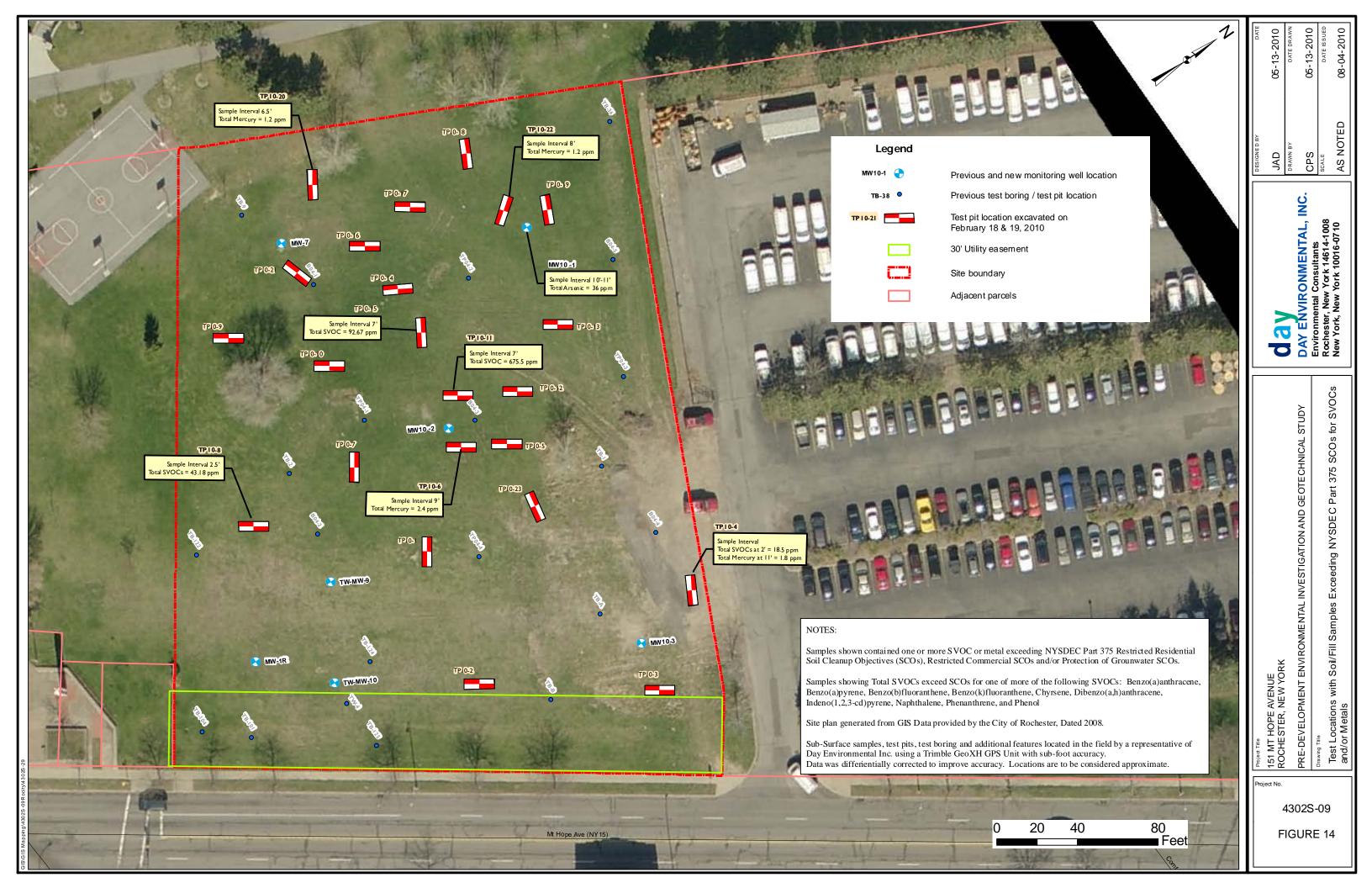
ISOMETRIC VIEW OF EXISTING INCINERATOR WASTE LAYER

Approximate Incinerator Waste Volume = 3,726 Cubic Yards

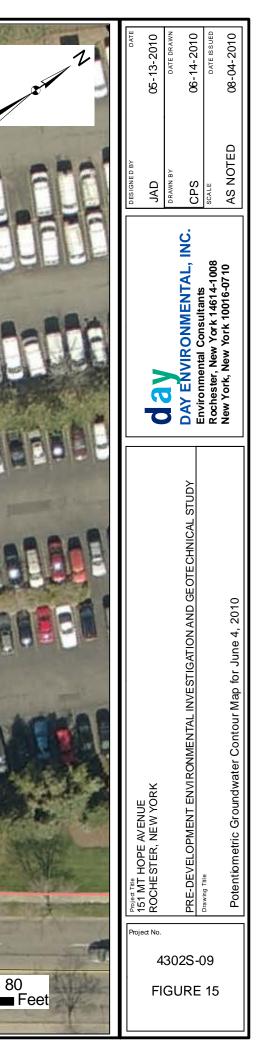
Drawing is vertically exaggerated by a factor of 5 in order to view the data more effectively. This does not have an effect on the volume or coordinates system of the data.

NOTES:

Sub-Surface samples, test pits, test boring and additional features located in the field by a representative of Day Environmental Inc. using a Trimble GeoXH GPS Unit with sub-foot accuracy. Data was differientially corrected to improve accuracy. Locations are to be considered approximate.



Approximate Ground Surface


Approximate top of Incinerator Waste Approximate bottom of Waste

Approximate Top of Bedrock

	Pro	Project Title		DESIGNED BY	DATE
	oject No	151 MT HOPE AVENUE		JAD	06-28-2010
				DRAWN BY	DATE DRAWN
JR)2S	PRE-DEVELOPMENT ENVIRONMENTAL INVESTIGATION AND GEOTECHNICAL STUDY	DAY ENVIRONMENTAL, INC.	S D S	06-28-2010
	~	Drawine Title	Environmental Consultants	5	0 0 0 00
	0		Rochester, New York 14614-1008	SCALE	DATE ISSUED
3		Isometric View of Existing Incinerator Waste Layer	New York, New York 10016-0710	AS NOTED	08-04-2010

TABLES

151 Mt. Hope Avenue Rochester, New York

Analytical Laboratory Testing Program

Sample ID	Date Collected	Sample Matrix	Laboratory Analysis
TP10-1 (8.5')	2/19/2010	Soil	RCRA Metals
TP10-4 (2')	2/19/2010	Fill	TCL SVOC's, RCRA Metals
TP10-4 (11')	2/19/2010	Fill	TCL SVOC's, RCRA Metals
TP10-6 (3.5')	2/18/2010	Fill	TCL SVOC's, RCRA Metals
TP10-6 (5-5.8')	2/18/2010	Fill	TAL Metals
TP10-6 (9')	2/18/2010	Fill	TCL and STARS VOC's, TCL SVOC's, RCRA Metals
TP10-7 (6.5')	2/19/2010	Fill	RCRA Metals
TP10-8 (2.5')	2/19/2010	Fill	TCL SVOC's, RCRA Metals
TP10-11 (7')	2/18/2010	Fill	TCL and STARS VOC's, TCL SVOC's
TP10-13 (11')	2/18/2010	Fill	TCL and STARS VOC's, TCL SVOC's
TP10-15 (7')	2/18/2010	Fill	TCL and STARS VOC's, TCL SVOC's
TP10-20 (6.5')	2/18/2010	Fill	TCL SVOC's, TAL Metals
TP10-22 (8')	2/19/2010	Fill	TAL Metals
TP10-23 (8')	2/19/2010	Fill	TCL and STARS VOC's, TCL SVOC's
Trip Blank TB021910	2/19/2010	Water	TCL and STARS VOC's
MW10-1 (7'-8')	5/5/2010	Fill	RCRA Metals
MW10-1 (8.5'-10')	5/5/2010	Fill	TCL SVOC's
MW10-1 (10'-11')	5/5/2010	Fill/Soil	RCRA Metals
MW10-2 (5.5'-6')	5/5/2010	Fill	TCL and STARS VOC's
MW10-2 (8'-9.5')	5/5/2010	Fill	TCL SVOC's, RCRA Metals
MW10-3 (10'-12')	5/6/2010	Fill/Soil	TCL SVOC's, RCRA Metals
MW10-3 (13')	5/6/2010	Soil	RCRA Metals
Trip Blank TB050610	5/6/2010	Water	TCL and STARS VOC's
MW10-1	6/4/2010	Groundwater	TCL and STARS VOC's, TCL SVOC's, RCRA Metals
MW10-2	6/4/2010	Groundwater	TCL and STARS VOC's, TCL SVOC's, RCRA Metals
MW10-3	6/4/2010	Groundwater	TCL and STARS VOC's, TCL SVOC's, RCRA Metals
Trip Blank TB 6/4/10	6/4/2010	Water	TCL and STARS VOC's

STARS = Spill Technology and Remediation Series

TCL = Target Compound List

TAL Metals = Target Analyte List Metals by USEPA Method 6010/7470

RCRA Metals = Resource and Recovery Act Metals by USEPA Method 6010/7470

VOCs = Volatile Organic Compounds by USEPA Method 8260

SVOCs = Semi-Volatile Organic Compounds by USEPA Method 8270

151 Mt. Hope Ave, Rochester, NY

Summary of Detected VOCs Soil and Fill Samples

Constituent	CAS Number	A Protection of Groundwater SCO	B Restricted Residential Use SCO	C Restricted Commercial Use SCO	TP10-6 (9') 2/18/10		TP10-11 (7') 2/18/10	TP10-13 (11') 2/18/10	TP10-15 (7') 2/18/10	TP10-23 (8') 2/19/10	MW10-2 (5.5'-6') 05/05/10
1,1,2-Trichloroethane	79-00-5	NA	NA	NA	0.22		U	U	U	U	U
2-Hexanone	591-78-6	NA	NA	NA	0.35		U	U	U	U	U
Acetone	67-64-1	0.05	100	500	0.082	A	0.04	0.021	0.026	0.02	U
Chloroform`	67-66-3	0.37	49	350	U		U	U	U	U	0.0013 BJ
Isopropylbenzene	98-82-8	NA	NA	NA	U		0.0068 J	U	U	U	U
Methylene chloride	75-09-2	0.05	100	500	0.0094 BJ		0.008 BJ	0.0029 BJ	0.0033 BJ	0.003 BJ	U
n-Butylbenzene	104-51-8	12	100	500	0.059		0.031	U	U	U	U
Naphthalene	91-20-3	12	100	500	0.02		0.13	0.0045 BJ	0.0059 B	0.0024 BJ	0.01 B
sec-Butylbenzene	135-98-8	11	100	500	0.094		0.027	U	U	U	U
tert-Butylbenzene	98-06-6	5.9	100	500	0.042		0.005 J	U	U	U	U
Toluene	108-88-3	0.7	100	500	U		0.0034 J	U	0.0015 J	U	U
1,2,4-Trimethylbenzene	95-63-6	3.6	52	190	0.015 J		0.019	U	0.0021 J	U	U
1,3,5-Trimethylbenzene	108-67-8	8.4	52	190	U		0.0045 J	U	U	U	U
Xylene (mixed)	1330-20-7	1.6	100	500	0.006 J		0.019	U	0.0074	0.0017 J	U
Total VOCs	NA	NA	NA	NA	0.8974 BJ		0.2937 BJ	0.0284 BJ	0.0462 BJ	0.0271 BJ	0.0113 BJ

Values are in milligrams per kilogram (mg/kg) or parts per million (ppm)

Soil Clean Up Objectives (SCOs) referenced in 6 NYCRR Part 375-6, Remedial Program Soil Cleanup Objectives, dated December 14, 2006

VOC = Volatile Organic Compound

B = Detected In Method Blank

J = Estimated Value

NA = Not Available

U = Not Detected

A = Exceeds Protection of Groundwater SCO

151 Mt. Hope Ave, Rochester, NY

Summary Of Detected SVOCs Soil and Fill Samples

Constituent	CAS Number	A Protection of Groundwater SCO	B Restricted Residential Use SCO	C Restricted Commercial Use SCO	TP10-4 (2') 2/19/10		TP10-4 (11') 2/19/10	TP10-6 (3.5') 2/18/10	TP10-6 (9') 2/18/10	TP10- (2.5') 2/19/1		TP10-11 (7') 2/18/10	TP10-13 (11') 2/18/10	TP10-15 (7') 2/18/10	TP10-20 (6.5') 2/18/10	TP10-23 (8') 2/19/10	MW10-1 (8.5'-10') 05/05/10	MW10-2 (8'-9.5') 05/05/10	MW10-3 (10'-12') 05/05/10
Acenaphthene	83-32-9	98	100	500	0.092 J		0.33 J	0.055 J	U	0.18 J		19 D	U	1.8	U	U	U	0.8	U
Acenaphthylene	208-96-8	107	100	500	0.14 J		U	0.095 J	U	2.1		3.2	0.082 J	0.63	U	U	U	0.59	U
Anthracene	120-12-7	1,000	100	500	0.54		0.12 J	0.16 J	0.31 J	1.4		38 D	0.15 J	3.4	0.15 J	0.045 J	0.12 J	0.55	U
Benzo(a)anthracene	56-55-3	1	1	5.6	1.8	AB	0.3 J	0.54	0.56	4.2	AB	49 D ABC	0.38 J	6.2 ABC	0.42 J	0.094 J	0.27 J	0.75	0.078 J
Benzo(a)pyrene	50-32-8	22	1	1	1.4	BC	0.28 J	0.41	0.47 J	4.3	BC	37 D ABC	0.36 J	5.2 BC	0.34 J	0.075 J	0.14 J	0.35 J	0.055 J
Benzo(b)fluoranthene	205-99-2	1.7	1	5.6	1.7	В	0.41 J	0.6	0.58	5.6	AB	44 D ABC	0.44 J	6.2 ABC	0.43 J	0.086 J	0.19 J	0.5 J	0.083 J
Benzo(g,h,i)perylene	191-24-2	1,000	100	500	0.84		0.22 J	0.24 J	0.27 J	2.9		15 D	0.2 J	3.1	0.2 J	0.049 J	U	0.084 J	U
Benzo(k)fluoranthene	207-08-9	1.7	3.9	56	0.93		0.15 J	0.22 J	0.35 J	2.3	Α	17 D AB	0.18 J	2.9 A	0.18 J	0.05 J	0.091 J	0.22 J	U
Carbazole	86-74-8	NA	NA	NA	0.12 J		U	0.056 J	U	0.27 J		13 D	0.049 J	1.4	U	U	U	U	U
Chrysene	218-01-9	1	3.9	56	1.7	Α	0.35 J	0.56	0.6	4.3	AB	44 D AB	0.35 J	6.2 AB	0.41 J	0.087 J	0.23 J	0.61	0.087 J
Dibenzo(a,h)anthracene	53-70-3	1,000	0.33	0.56	0.26 J		U	0.08 J	0.075 J	1.1	BC	6 DJ BC	0.062 J	1.3 BC	0.056 J	U	U	U	U
Dibenzofuran	132-64-9	210	59	350	0.051 J		U	0.093 J	U	0.13 J		20 D	0.048 J	1.4	U	U	U	0.89	U
Fluoranthene	206-44-0	1,000	100	500	3.7		0.71	1.1	1.8	5.3		97 D	0.76	15 D	0.91	0.22 J	0.52	1.4	0.1 J
Fluorene	86-73-7	386	100	500	0.11 J	C	0.089 J	0.075 J	U	0.18 J		28 D	0.069 J	1.8	0.066 J	U	0.063 J	2.1	U
Indeno(1,2,3-cd)pyrene	193-39-5	8.2	0.5	5.6	0.78	В	0.19 J	0.22	0.26 J	2.7	В	15 D ABC	0.19 J	2.8 B	0.17 J	0.054 J	U	0.17 J	U
Naphthalene	91-20-3	12	100	500	U		U	0.18 J	U	0.33 J		24 D A	U	2.9	U	U	U	0.38 J	U
2-Methylnapthalene	91-57-6	NA	NA	NA	0.04 J		U	0.25 J	U	0.19 J		6.2	U	2.1	U	U	U	0.28 J	U
2-Methylphenol	95-48-7	NA	NA	NA	U		U	U	U	U		1.6	U	0.073 J	U	U	U	U	U
4-Methylphenol	8001-28-3	NA	NA	NA	U		0.12 J	U	U	U		3.7	0.067 J	0.18 J	U	U	U	U	U
Phenanthrene	85-01-8	1,000	100	500	1.6		0.41 J	0.61	0.5 J	1.1		110 D B	0.44	14 D	0.62	0.11 J	0.37 J	2.5	0.069 J
Phenol	108-95-2	0.33	100	500	U		U	U	U	U		1.8 A	U	0.091 J	U	U	U	U	U
Pyrene	129-00-0	1,000	100	500	2.7		0.58	0.9	0.97	4.6		83 D	0.54	14 D	0.7	0.16 J	0.46	2.3	0.12 J
Total SVOCs	NA	NA	NA	NA	18.503 J	4	4.259 J	6.444 J	6.745 J	43.18 J		675.5 DJ	4.367 J	92.674 DJ	4.652 J	1.03 J	2.454 J	14.474 J	0.592 J

Values are in milligrams per kilogram (mg/kg) or parts per million (ppm)

Soil Cleanup Objectives (SCOs) referenced in 6 NYCRR Part 375-6, Remedial Program Soil Cleanup Objectives, dated December 14, 2006

SVOC = Semi-Volatile Organic Compound

B = Detected In Method Blank

D = Diluted Sample

J = Estimated Value

NA = Not Available

U = Not Detected

A = Exceeds Protection of Groundwater SCO

B = Exceeds Restricted Residential Use SCO

C = Exceeds Restricted Commercial Use SCO

151 Mt. Hope Avenue, Rochester, NY

Summary of Metals Soil and Fill Samples

Constituent	CAS Number	A Protection of Groundwater SCO	B Restricted Residential Use SCO	C Restricted Commercial Use SCO	TP10-1 (8.5') 2/19/10	TP10-4 (2') 2/19/10	TP10-4 (11') 2/19/10	TP10-6 (3.5') 2/18/10	TP10-6 (5-5.8') 2/18/10	TP10-6 (9') 2/18/10	TP10-7 (6.5') 2/19/10	TP10-8 (2.5') 2/19/10	TP10-20 (6.5') 2/18/10	TP10-22 (8') 2/19/10	MW10-1 (7'-8') 05/05/10	MW10-1 (10'-11') 05/05/10	MW10-2 (8'-9.5') 05/05/10	MW10-3 (10'-12') 05/05/10	MW10-3 (13') 05/05/10
Aluminum	7429-90-5	NA	NA	NA					5,200 B				5700 B	4,400 B					
Antimony	7440-36-0	NA	NA	NA					0.3 BJ				1.5 B	0.53 BJ					
Arsenic	7440-38-2	16	16	16	4.9	5.3	13	3.6	10	14	15	5.3	12	11	8.6	36 ABC	9.1	10	6.3
Barium	7440-39-3	820	400	400	110 B	88 B	150 B	34 B	57 B	120 B	96 B	31 B	140 B	120 B	85	120	88	260	97
Beryllium	7440-41-7	47	72	590					0.93 B				0.65 B	0.44 B					
Cadmium	7440-43-9	7.5	4.3	9.3	0.27 BJ	0.82 B	1.4 B	0.23 B	0.18 B	0.51 B	0.15 BJ	0.48 B	0.2 BJ	0.11 BJ	0.23 J	0.28 J	0.29	0.71	0.79
Calcium	7440-70-2	NA	NA	NA					6,200 B				19,000 B	12,000 B					
Chromium, trivalent	16065-83-1	NA	180	1,500	13 B	19 B	15 B	5.9 B	6.5 B	7.9 B	7.2 B	6.6 B	8.8 B	11 B	9	11	11	12	31
Cobalt	7440-48-4	NA	NA	NA					19 B				7 B	4.6 B					
Copper	7440-50-8	1,720	270	270					100 B				45 B	30 B					
Iron	7439-89-6	NA	NA	NA					11,000 B				9,100 B	5,200 B					
Lead	7439-92-1	450	400	1,000	47	130	260	44	260	320	120	64	310	260	290	110	270	26	110
Magnesium	7439-95-4	NA	NA	NA					2,100 B				4,900 B	920 B					
Manganese	7439-96-5	2,000	2,000	10,000					79				780	99					
Total Mercury	7439-97-6	0.73	1	2.8	0.09	0.28	1.8 A	B 0.37	0.63	2.4	AB 0.26	0.31	1.2	AB 1.2 AE	3 0.55	0.32	0.27	U	0.27
Nickel	7440-02-0	130	310	310					23 B				10 B	9.7					
Potassium	9/7/7440	NA	NA	NA					460 B				680 B	450 B					
Selenium	7782-49-2	4	180	1,500	U	U	U	U	U	U	U	U	1.1 J	1.7 J	2.2	U	1.3	1.2	5.6
Silver	7440-22-4	8.3	180	1,500	U	U	U	U	U	U	U	U	U	U	U	U	U	U	2.9
Sodium	7440-23-5	NA	NA	NA					130 B				180 B	210 B					
Thallium	7440-28-0	NA	NA	NA					U				U	U					
Vanadium	7440-62-2	NA	NA	NA					17 B				19 B	26 B					
Zinc	7440-66-6	2,480	10,000	10,000					120 B				150 B	72 B					

Values are in milligrams per kilogram (mg/kg) or parts per million (ppm)

Soil Cleanup Objectives (SCOs) referenced in 6 NYCRR Part 375-6, Remedial Program Soil Cleanup Objectives, dated December 14, 2006

B = Trace Concentration Below Reporting Limit And Equal To Or Above Detection Limit

J - Estimated Value

NA = Not Available

U = Not Detected

A = Exceeds Protection of Groundwater SCO

B = Exceeds Restricted Residential Use SCOC = Exceeds Restricted Commercial Use SCO

151 Mt. Hope Avenue Rochester, NY

Groundwater Elevation Data for June 4, 2010

r			
WELL ID	TOP OF PVC RISER ELEVATION (FT) ⁽¹⁾	STATIC WATER LEVEL (FT) ⁽²⁾	GROUNDWATER ELEVATION (FT)
MW10-1	516.87	12.26	504.61
MW10-2	515.41	11.35	504.06
MW10-3	514.32	16.41	497.91
MW-1R	513.06	14.75	498.31
MW-7	516.54	12.49	504.05
TWMW-09	513.88	14.21	499.67
TWMW-10	513.35	15.74	497.61

Note: SWL measurements collected using a Heron H01.L oil/water interface probe. Evidence of non-aqueous phase liquid not detected.

(1) = datum provided/surveyed by the City of Rochester as referenced on the Department of Environmental Services, Bureau of Engineering Services, Office of Maps and Surveys, FB 1887, PG $\,$

14

(2) = Data from top of PVC riser.

151 Mt. Hope Ave, Rochester, NY

Summary of VOCs Groundwater Samples

	MW10-1	MW10-2	MW10-3
	6/4/10	6/4/10	6/4/10
Total VOCs	U	U	U

Laboratory Detection limits for STARS and TCL VOCs reported at 5 ug/l or part per billion

U = Not Detected

VOCs = Volatile Organic Compounds

151 Mt. Hope Ave, Rochester, NY

Summary of Detected SVOCs Groundwater Samples

DETECTED SVOCS	TOGS 1.1.1 Groundwater Standards or Guidance Values ¹	MW10-1 6/4/10	MW10∹ 6/4/10		MW10-3 6/4/10		
Acenaphthene	20	U	1.7	J	U		
Fluorene	50	U	1.5	J	U		
Total SVOCs	NA	U	3.2	J	U		

Values are in micrograms per Liter (ug/L) or parts per billion (ppb)

1 = Ambient Water Quality Standards and Guidance Values referenced in the Division of Water Technical and Operation Guidance Series (TOGS) 1.1.1

SVOC = Semi-Volatile Organic Compound

J = Estimated Value

NA = Not Available

U = Not Detected

151 Mt. Hope Avenue, Rochester, NY

Summary of Detected Metals Groundwater Samples

METALS	TOGS 1.1.1 Groundwater Standards or Guidance Values ¹	MW10-1 6/4/10		MW10-2 6/4/10		MW10-3 6/4/10	
Arsenic	25	U		U		U	
Barium	1000	150	J	210		38	J
Cadmium	5	U		U		U	
Chromium, trivalent	50	U		U		U	
Lead	25	U		U		U	
Total Mercury	0.7	U		U		U	
Selenium	10	U		U		U	
Silver	50	U		U		U	

Values are in micrograms per Liter (ug/L) or parts per billion (ppb)

1 = Ambient Water Quality Standards and Guidance Values referenced in the Division of Water Technical and Operation Guidance Series (TOGS) 1.1.1

J - Estimated Value

U = Not Detected

APPENDIX A

City of Rochester New York Developer's Guide

City of Rochester New York Developers Guide

INTRODUCTION: The Development Process

Clean air, pure water, unpolluted land, accessible streets, and safe, sound and attractive buildings are among the expectations of the people of Rochester. Residents recognize that development and rehabilitation projects are both necessary and desirable. To meet these goals, the City encourages and assists prospective developers and enforces environmental, zoning and construction standards. This document describes permits required and review processes most frequently involved with major construction and rehabilitation projects in the City of Rochester. The document is organized by department and agency, with the permits and reviews each administers, listed and explained. The City has simplified its development review and approval process by creating a Centralized Permit Office located in Room 121B of City Hall. In this one location, a developer may apply for a variety of permits, thus reducing the number of offices to be visited.

Included in this document is a flowchart which graphically represents the overall review process from beginning to end. To expedite this process, all steps on the same horizontal level should be completed simultaneously. Referring to the chart, all areas (except STATE & COUNTY ENVIRONMENTAL REVIEWS) make use of the Central Permit Office and applications for each step of the process may be obtained there. A department directory appears at the end of this document. You can use either the chart or the table of contents below to follow the development process with the City of Rochester.

For information on development possibilities, contact the Department of Economic Development (industrial) at (585) 428-6965 or the Bureau of Buildings and Zoning at (585) 428-6526.

DEVELOPMENT PROCESS IN THE CITY OF ROCHESTER, NEW YORK

Г

OPTIONAL DEVELOPMENT CONFERENCE WITH BUREAU AND AGENCY REPRESENTATIVES							
APPLICATION FOR CERTIFICATE OF ZONING COMPLIANCE							
STATE & ENVIRONMEN Monroe Count Monroe County De NYS Department of Env	CITY ZONING AND ENVIRONMENTAL REVIEWS Division of Zoning						
ISSUANCE OF CERTIFICATE OF ZONING COMPLIANCE							
BUILDING AND CONSTRUCTION REVIEWS							
DEPARTMENT OF COMMUNITY DEVELOPMENT Building Code Review Plumbing Code Review Electrical Permits Elevator Permits	DEPARTMENT OF ENVIRONMENTAL SERVICES Engineering Services Permits	FIRE DEPARTMENT Fire Safety Division					
ISSUANCE OF BUILDING PERMIT							
INSPECTION OF CONSTRUCTION & ISSUANCE OF CERTIFICATE OFOCCUPANCY BY THE BUILDING INSPECTION DIVISION							

DEVELOPER'S GUIDE TABLE OF CONTENTS

Introduction: The Development Process Flowchart

ZONING AND ENVIRONMENTAL REVIEWS

Bureau of Buildings and Zoning/Division of Zoning Certificate of Zoning Compliance Site Plan Review Zoning Variance Rezoning (Zoning Map Amendment) Special Permits Certificate of Appropriateness Subdivisions Official Map Amendments Environmental Assessment Monroe County Pure Waters Monroe County Department of Health NYS Department of Environmental Conservation (DEC) NYS Department of Health

BUILDING CONSTRUCTION

Department of Environmental Services (DES) New Streets Street Opening Permits Stake Outs Excavation Permits Other Permits Department of Community Development, Plan Review and Inspection Division Building Permits Plumbing Permits Electrical Permits Fire Safety Permits Elevator Permits Demolition Permits Certificate of Occupancy

Department of Community Development Bureau of Buildings and Zoning/Division of Zoning Room 125B, City Hall (585) 428-7043

Certificate of Zoning Compliance (Zoning Code: Section 120-189)

Prior to applying for building permits, the developer submits plans and completes an application for a Certificate of Zoning Compliance (CZC). If the project complies with all zoning standards, the application is approved and the developer may then proceed with application for building and construction permits. If the application is denied, the developer may choose to revise the plans or pursue one or more of the following special processes: site plan review, variance, special permit, certificate of appropriateness, etc. Most of these processes would require the filing of an Environmental Assessment Form (EAF).

Site Plan Review (Zoning Code: Section 120-191D)

Site Plan Review is the examination of the design elements of development proposals to ensure that a project does not adversely affect the site or adjacent properties. It is also a vehicle to assist applicants by alerting them to any deficiencies which should be corrected prior to development. Most major projects are subject to this review. Typically, the process requires submission of detailed site plans, landscape plans, building elevations, an Environmental Assessment Form and possible other information about the project, as required by the Director of Zoning.

If a proposal requires site plan review as well as another zoning special process such as a variance, special permit or Certificate of Appropriateness, the site plan review process precedes the public process. The Director of Zoning must issue Preliminary Site Plan Findings and Notice of Environmental Determination prior to the application for the special process.

The preliminary findings identify zoning requirements, project deficiencies and recommended modifications. These findings will accompany the required special process application for the Boards/Commission's review. The Final Site Plan Decision will incorporate any Board/Commission conditions.

Zoning Variance (Zoning Code, Section 120-195B)

A variance is a procedure by which waivers of certain requirements of the Zoning Code are considered by the Zoning Board of Appeals. There are two types of variances: use variance and area variance.

The application should include floor plans, site plan, elevations and a copy of the preliminary site plan findings as issued by the Director of Zoning when site plan review is required. After plans and applications are submitted, the Zoning Board conducts a public hearing at which the applicant's attendance is required. The Board then votes to grant or deny the variance. A decision letter will be issued within ten (10) days of the Board's determination. Due to public notification requirements, the applicant should allow 6 - 8 weeks from the date the application is filed for the Board's decision. If the project requires site plan review, the applicant must wait for the Final Site Plan Approval letter issued by the Director of Zoning. The applicant must post a sign provided by the City, at least twenty (20) days prior to the meeting date.

Rezoning (Zoning Map Amendment) (Zoning Code: Section 120-190C)

This process involves a revision of an area's zoning classification and requires City Council approval.

After the application is submitted, the City Planning Commission holds a public informational meeting, at which the applicant's presence is required. The Commission then makes a recommendation to City Council. City Council conducts a public hearing and votes on the proposal to amend the Zoning Map. The applicant should allow 10-12 weeks for the entire process. The applicant must post a sign provided by the City, at least twenty (20) days prior to the meeting date.

Special Permits (Zoning Code: Section 120-192B)

For certain permissible uses which may have a special impact, the developer must obtain a special permit. A site plan review is required for every special permit application. The application typically includes site plans, floor plans, landscape plans, building elevations, an Environmental Assessment Form and a copy of the Preliminary Site Plan Findings issued by the Director of Zoning. After the plans and a completed application are submitted, the City Planning Commission conducts a public hearing which the applicant or designated representative must attend. Subsequent to the public hearing the Planning Commission makes a decision. A decision letter will be issued within one (1) week of the Planning Commission's determination. Due to the public notification requirements, the applicant should allow 6 - 8 weeks for the entire process. If the project requires site plan review, the applicant must wait for the Final Site Plan Approval letter issued by the Director of Zoning. The applicant must post a sign provided by the City, at least twenty (20) days prior to the meeting date.

Certificate of Appropriateness (Zoning Code: Section 120-194A)

If the project will involve exterior work on a Landmark or on property within a Preservation District, a Certificate of Appropriateness must be approved by the Rochester Preservation Board.

A typical application includes site plans, floor plans, landscape plans, building elevations, material samples, color charts, photographs and possibly a completed Environment Assessment Form. After submission of the plans and application, the Board holds a public hearing which the applicant or designated representative must attend. The Board usually makes its decisions within 4 - 5 weeks of the date the application is submitted unless the Board requests additional information pertaining to the application. If the project requires site plan review, the applicant must wait for the Final Site Plan Approval letter issued by the Director of Zoning. The applicant must post a sign provided by the City, at least twenty (20) days prior to the meeting date.

Subdivisions (Land Subdivision Regulations - Chapter 128 of the Municipal Code)

Some projects which involve the conveyance of land or the use of more than one (1) lot, must be reviewed as a subdivision or resubdivision and be approved by either the City Planning Commission or the Director of Zoning. Site plan review is required for every subdivision application.

There are three types of subdivisions: exempt subdivision, subdivision and resubdivision.

Exempt Subdivision - A subdivision of fewer than five (5) lots with the Director of Zoning having approval authority. Lots must have street frontage and access to qualify.

Resubdivision - Revision of an existing filed plat (map) including subdivisions and minor transfer of land. A minor transfer of land is the procedure by which two (2) or more lots are combined or lot lines are altered such that it does not result in an increase in the number of lots.

Subdivision - Procedure by which one (1) or more lots is divided, thereby increasing the total number of lots. The City Planning Commission has approval authority of subdivisions of five (5) or more lots and other non-exempt subdivisions.

If the project creates one (1) or more new tax accounts or lots, the applicant must submit a subdivision or re-subdivision map (scaled to not less than two (2) inches equaling one (1) mile) prepared by a licensed surveyor. If five (5) or more lots are created, an Environmental Assessment Form must be submitted.

Certification of approval by the Monroe County Department of Health must also be submitted in the case of realty subdivisions created as defined pursuant to Article III of the Monroe County Sanitary Code. In order to receive approval by Monroe County Department of Health, an applicant must show methods of obtaining and furnishing adequate and satisfactory water supply and sewage facilities to the subdivision. The applicant must also supply information regarding the nature and condition of the soil to absorb sewage, the depth to ground water and bedrock, the topography of the land, and the arrangements for proper drainage and disposal of surface water. Applicants should contact the Monroe County Department of Health directly for a complete set of requirements for approval. Prepaid tax certificates from the County and City are required as part of the submission.

The applicant should allow 6 - 8 weeks following submittal of a complete subdivision application for the processing of a case requiring a hearing. If no hearing is necessary, a decision should be available in 1 - 3 weeks.

Official Map Amendment (Zoning Code: Section 115-37)

The Official Map is a subsidiary part of the Comprehensive Plan and indicates the location and width of >streets and the location of parks as laid out and adopted. An amendment to the Official Map may be initiated by filing a completed application with the Division of Zoning, which coordinates a review process involving several agencies, and schedules a City Planning Commission informational meeting. Typical examples of Official Map Amendments include street dedications and abandonments, right-of-way changes, street naming and dedication of city parks.

Amendments to the Official Map can be made only by City Council by the adoption of an ordinance after a Public Hearing. The City Planning Commission makes a recommendation to the City Council on all Official Map Amendment applications. The applicant should allow 10 -12 weeks for the entire process.

Environmental Assessment (New York State Environmental Quality Review (SEQR) Act and Chapter 48 of the Municipal Code)

The decision making body (i.e. Director of Zoning, Zoning Board, Planning Commission, Preservation Board, etc.) has the responsibility for making determinations and administering the local environmental Code as well as SEQR Act of New York. Most projects require Environmental Review.

The first step is completion of an Environmental Assessment Form (EAF) by the applicant. On the basis of the EAF, an environmental assessment is prepared: this is reviewed by the decision making body. If the decision making body determines that the project will not have a significant environmental impact, a Determination of Environmental non-significance is issued and the remaining project reviews continue (i.e. variance, special permit, Certificate of Appropriateness, etc.)

If the decision making body determines that the project may significantly and adversely affect the environment, an Environmental Impact Statement (EIS) is required. The developer prepares and submits a "Draft EIS" following a Public Hearing, the "Final EIS" is prepared. This is used by the decision making body in making is final decision. The EIS process, if applicable, takes a minimum of 12 - 16 weeks.

Monroe County Pure Waters 350 E. Henrietta Road (585) 274-7838

Rochester Pure Waters District Permit

If the proposed project will result in additional storm or sanitary discharge, new connections to sewers and all sanitary combination storm sewer extensions must be approved and a permit obtained from Pure Waters. Initially, one set of complete plans and forms are required, and shall include:

A site plan showing existing and proposed utilities and street sewers (minimum plan size 17" x 22");

Interior plumbing plans, including sizes of pipes for industrial and commercial projects;

Other drawings as required to describe the project.

All required forms as per requirement and any special pre-treatment (if applicable) for all privately constructed sewer in the Rochester Pure Waters District.

The applicant should allow 15 days for initial review of plans. Prior to final approval, four additional sets of plans shall be submitted. These will be stamped and two (2) sets will be returned to the applicant for distribution as the project is reviewed by the Bureau of Buildings and Zoning. The other two (2) sets will remain in Pure Waters files. (Rochester Pure Waters District will administer the sewer construction of the proposed extension.)

Permits will be issued to licensed plumbers when the following conditions have been met:

Applications for new connections have been approved by the Rochester Pure Waters District and a stamped copy of the drawing has been submitted to the Permit Office.

Submission of an acceptable certificate of insurance meeting the District's requirements.

Submittal of an acceptable \$5,000.00 plumbers permit bond meeting the District's requirements.

Payment of all applicable permit fees.

Permits shall be signed by the licensed plumber or his/her authorized designee. Sewer connection permits shall be in effect for a one year period commencing on the date of issuance.

Monroe County Department of Health 111 Westfall Road (585) 274-6811

Health Department Permits

If the proposed project will include:

Food service establishments; Temporary residences (children's camps and mass gatherings); Sanitary or combined sewer extensions; Water main extensions; Realty subdivision; On-site sewage disposal; Public swimming pools; Water supply-cross-connection protection; Development on a former waste/fill site,

The developer should contact the Division of Environmental Health of the Monroe County Department of Health. The Health Department reviews construction plans to ensure that minimum health standards are met.

In the case of subdivisions, water main extensions and sewer extensions, the Department acts on behalf of the State Departments of Health and Environmental Conservation as required by Part 5 of the State Sanitary Code and Health and Environmental Conservation Laws.

New York State Departments of Environmental Conservation (NYSDEC) and Health (NYSDOH)

The Bureau of Planning can usually inform the developer of NYSDEC or NYSDOH permits which may apply to the project. It is the developer's responsibility, however, to contact those agencies and apply for and receive the necessary permits. Application forms are available from any NYSDEC or NYSDOH office.

NYSDEC Permits6274 East Avon-Lima Road (585) 226-2466

Permits are required if the proposed project includes:

Sources of air contamination within the City boundary; Disposal, storage and treatment of solid and hazardous waste; Any work in a protected freshwater wetland; Dredging and filling in protected rivers, creeks and lakes; Transport of hazardous and non-hazardous wastes; Pesticide application.

New York State Department of Health Permits (NYSDOH) 42 S. Washington Street (585) 423-8070

Permits are required if the project includes:

Laboratory facilities; Health or medical facilities

As noted under the Monroe County Department of Health "Health Department Permits" section, certain NYSDEC permits and NYSDOH permits -- Realty Subdivision Approval, Water Supply Approval -- are obtained through the Monroe County Department of Health, which has been delegated authority to issue these permits by these agencies.

BUILDING AND CONSTRUCTION

Department of Environmental Services (DES)Permits OfficeRoom 121B, City Hall(585) 428-6848

New subdivision and re-subdivision applications require the review and approval of the City Engineer prior to any permits being issued.

New Streets - Any new subdivisions, including the construction of a new street, will require the following:

Submission of three (3) sets of professional licensed engineer stamped plans; New street permit; Certificate of Liability and Worker's Compensation Insurance; Letter of Credit (amount to be determined by the City Engineer).

Upon final acceptance by the City Engineer, the applicant must submit a separate two (2) year Guarantee Bond or Letter of Credit in the amount of twenty-five (25) percent of the estimated cost of the public work; as determined by the City Engineer.

Street Opening Permit - If the project involves a sanitary/combination sewer, sewer or water service connection, an approved contractor must obtain all necessary street opening permits in conjunction with the utility service connection permits.

Connection permits may be obtained from:

Monroe County Pure Waters - Sewers - 274-8100 City of Rochester Water Bureau - Water Dispatch - 428-7500 D.E.S. Permit Office - Excavations - 428-6848

Stake Outs - New York State Industrial Code Rule 53 The DES Permit Office maintains the Central Registry for the City of Rochester. The Central Registry is a master list of all operators or owners of underground facilities within the City. The City maintains this list in accordance with New York State Industrial Code Rule 53. All excavators are responsible for notifying all utility operators with facilities n the area to be excavated at least two (2) full working days before digging.

The Central Registry can be inspected at the DES Permit Office or a copy may be obtained for a nominal charge. The DES Permit Office is located at:

Department of Environmental Services Permit Office, Room 121B City Hall 30 Church Street Rochester, New York 14614 All operators of underground facilities in the area should be notified to request stake outs. Contractors should refer to the Central Registry listing. Their names and the areas where their facilities are located are listed in the Central Registry. Contractors can telephone UFPO at 1-800-962-7962 to request a stake out from these major agencies:

City of Rochester Water Bureau City of Rochester Street Lighting System Rochester Gas and Electric Corporation Rochester Telephone Corporation Greater Rochester Cablevision Monroe County Water Authority Rochester District Heating Monroe County Department of Transportation - Signal Division Eastman Kodak Company The University of Rochester

Excavation Permits The DES Permit Office will issue separate excavation permits in conjunction with Monroe County Pure Waters for any work within the City of Rochester right-of-way. The following conditions must be met to obtain a permit:

Submission of three (3) sets of stamped plans;

A minimum security deposit of \$1,000 in the form of a letter of credit, certified check or cash. The security deposit requirement may increase when determined to be appropriate by the City Engineer.

Certificate of Liability Insurance, Worker's Compensation and Disability Coverage naming the City of Rochester as additional insured.

The excavation permit fee.

Other Permits Permit applicants are responsible for obtaining all other required permits such as Monroe County Pure Waters, NYSDOT, U.S. Army Corps of Engineers, Railroads.

The Rochester Water Bureau requires Hydrant Use Permits be obtained by the permit holder prior to using any hydrant as a source of water supply. The permit requires the use of a water meter and backflow preventer. The Water Bureau will supply a hydrant wrench, water meter, meter setting and backflow preventer. These permits are available at the City of Rochester Water Bureau, Customer Service Office, 10 Felix Street, Rochester, New York. The telephone number is (585) 428-7506

Department of Community Development Bureau of Buildings and Zoning Plan Review and Inspection Division 125B, City Hall (585) 428-6526

Building Permits A building permit must be obtained before any plans to construct, reconstruct, add to, alter, remodel, demolish or change use of a structure may be carried out.

Prior to applying for a building permit, the developer shall have all necessary approvals from the Division of Zoning as well as Monroe County Department of Health, the New York State Department of Environmental Conservation and Rochester Pure Waters District. In addition, the permit will not be issued until required permits and approvals have been obtained from the City Plumbing Division, Department of Environmental Services and Fire Safety Division of the Fire Department.

The building permit application must be accompanied by:

Three sets of detailed construction plans if project cost is \$100,000 or more, (two (2) sets if under \$100,000), certified by a licensed engineer, architect or owner-designed;

One copy of a site plan approved by the Division of Zoning;

A current certificate of insurance detailing worker's compensation and disability coverage (naming the City as Certificate Holder).

Processing of completed applications usually occurs within fifteen (15) working days, but may be longer for major projects.

If the building permit application is denied, the developer may choose to revise the plans or pursue the process of appeal by submitting a petition to the New York State Board of Review. The applicant should allow a minimum of 12 weeks for a Board of Review Decision.

Plumbing Permits After obtaining all approvals from the Water Bureau, Engineering Bureau, and Pure Waters, a licensed plumber must obtain a permit from the City of Rochester Permit Office in order to perform interior and exterior plumbing work or site work. If the interior structure will be affected by the new plumbing the applicant shall submit one set of mechanical plumbing plans with the application. Connection permits must also be obtained from the Rochester Pure Waters District, City of Rochester Water Bureau and the City's Department of Environmental Services Engineering Permit Office prior to making any connections. Work performed will be inspected and approved by a City of Rochester Plumbing Inspector. **Electrical Permits** If electrical work is required for the project, the developer must hire an electrician licensed by the City of Rochester.

Prior to the commencement of work, the licensed electrician is required to apply for an electrical permit from the City. Upon completion of the job and all necessary inspections from the City of Rochester Electrical Inspector, the electrician obtains a certificate of compliance. Work performed will be inspected and approved by a City of Rochester Electrical Inspector.

- **Fire Safety Permits** The Fire Safety Division of the Fire Department reviews plans for construction of all new commercial and multiple dwelling structures, installation of fire alarm systems and fire suppression systems. To expedite the review process, joint plan reviews are conducted by the Fire Safety Division and the Division of Buildings. Where potentially harmful conditions exist, the Fire Safety Division also reviews permits to maintain, change use of, or remodel a structure.
- **Elevator Permits** Prior to the installation or modification of any conveyance, an elevator permit must be obtained from the City. Applications must be applied for by a licensed installer or maintenance company. Inspections are performed by a licensed inspection agency. Plans and specifications must accompany the application.
- **Demolition Permits** Prior to the razing, disassembly or removal of any structure, essential element of any structure or the removal of any debris, a permit shall be obtained from the Permit Office.

The permit application must be accompanied by:

Site plan or tape location map. Building material disposal plan. Photographs of all exterior elevations. Environmental Assessment Form. Certificate of Worker's Compensation specifically stating that demolition work is covered Certificate of rodent control. Performance Guarantee. Proposal for site development. Approved safe school route and pedestrian access plan. Construction photos of any pre-existing damage to the public right-of-way. Maintenance and Protection of Traffic plan when work will obstruct the rightof-way.

Certificate of Occupancy (Zoning Code: Section 120 and Building Code:

Chapter 39, Section 214-219) Once construction has been completed, the developer must obtain a Certificate of Occupancy. This procedure involves: A written application, filed at the time of permit application; An inspection of the property by the Building Construction Inspector; Final electrical, plumbing and/or elevator inspection approvals; Fire safety approval.

Following the inspection, the applicant should allow 10 days to receive the Certificate

- City Hall 30 Church Street Rochester, New York 14614
- Bureau of Buildings and Zoning Permit Office, Department of Community Development Room 121-B, City Hall (585) 428-6526
- Bureau of Buildings and Zoning Division of Zoning, Department of Community Development Room 125-B, City Hall (585) 428-7043
- Bureau of Buildings and Zoning Plan Review and Inspection Division, Department of Community Development Room 125-B, City Hall (585) 428-6561
- Bureau of City Planning Department of Community Development Room 010-A, City Hall (585) 428-6924
- Department of Environmental Services Permit Office Room 121-B, City Hall (585) 428-6848
- Department of Environmental Services Water Bureau10 Felix Street Rochester, New York 14613 (585) 428-7567
- Department of Economic Development Room 005-A, City Hall (585) 428-6808
- New York State Department of Environmental Conservation (NYSDEC) 6274 East Avon-Lima Road Avon, New York 14414 (585) 226-2466
- New York State Department of Health (NYSDOH) 42 S. Washington Street Rochester, New York 14608 (585) 423-8070
- Monroe County Department of Health Division of Environmental Health111 Westfall Road Rochester, New York 14692 (585) 274-6811
- Monroe County Pure Waters Permit Office 350 E. Henrietta Road Building 15 Rochester, New York 14620 (585) 753-7600
- Rochester Pure Waters District Office of Development Review 350 E. Henrietta Road Rochester, New York 14620 (585) 753-7600

APPENDIX B

Pre-Development Assessment Geotechnical Report

151 MT. HOPE AVENUE ROCHESTER, NEW YORK

PRE-DEVELOPMENT GEOTCHNICAL ASSESSMENT

Prepared for

DAY Environmental, Inc.

By:

Jeffrey D. Netzband, P.E. Vice President

September 2010 3394.0

335 Colfax Street, Rochester, NY 14606 • Tel: 585 458-0824 • Fax: 585 458-3323 • foundationdesignpc.com

151 MT. HOPE AVENUE ROCHESTER, NEW YORK

PRE-DEVELOPMENT GEOTECHNICAL ASSESSMENT

1.0 INTRODUCTION

This report outlines our Pre-Development Assessment for the 151 Mt. Hope Avenue parcel in Rochester, New York (site). We base this evaluation on our review of U.S.G.S. and N.Y.S.D.O.T. topographic mapping; historic EDR/Sanborn Fire Insurance mapping; old soils data made available for our review; new test boring and test pit exploration; previously generated laboratory test results; and consultation with the design team. For this assessment, we have assumed that the future buildings would likely consist of three to four story wood-framed residential housing, or steel-framed residential/office/commercial mixed use structures. We have also assessed the possibility of installing a basement/below-grade parking.

We intend this report for the use exclusively in assessing geotechnical cost impacts on developing the parcel and conceptual layout of new building(s) on the parcel. A more detailed geotechnical evaluation is required for specific building layouts, designs, and loadings. This study is limited to the geotechnical aspects of the site development; the environmental aspects are being addressed by others.

DAY Environmental, Inc. retained Foundation Design, P.C. as part of their contract with the City of Rochester to provide the services outlined in our October 9, 2009 *Geotechnical Services Proposal, P2645.0.* Our services included reviewing the existing information; observing the test boring and test pit exploration; evaluating the data; and developing a list of geotechnical impacts that could be considered premium costs associated with developing this parcel as compared to a 'green' site. We agreed to submit this report outlining our findings and conclusions.

Attached to the end of this text is an ASFE paper entitled *Important Information about Your Geotechnical Engineering Report* that you should read. It describes how we intend this report to be used and discusses risks and risk allocation. We will continue to work cooperatively with you and other interested parties to achieve win/win solutions.

2.0 SITE CONDITIONS/HISTORY

151 Mt. Hope Avenue lies in the City of Rochester's South Wedge Community. The existing Time Warner complex lies to the north. City parkland, then planned Erie Harbor development lie to the south. The Genesee Gateway Park, Genesee Valley Trail, and Genesee River lie to the west. Commercial property lines the east side of Mt. Hope Avenue. A *General Location Plan* is included in Appendix A.

The site is adjacent to the Genesee River. Historically, the river was prone to flooding until the water levels of the river were regulated by the Mt. Morris Dam and the RG&E Dam. The Genesee River levels are now maintained between elevations 500 and 512.

The site has seen several uses over the years, as shown on the EDR/Sanborn mapping included on Figures 3-7 in the DAY report. A north-south trending canal that added water to and allowed traffic into the original Erie Canal (to the north) once paralleled Mount Hope Avenue. Boat turning basins were located between the river and feeder canal. Portions of these historic water features were located on this site.

After the Erie Canal was relocated south of the City in the 1920's, the basins and the feeder canal were filled. A 54-inch diameter sewer (currently abandoned) had been installed in the abandoned feeder canal. The site was re-developed by the Erie-Lackawanna Railroad. The rail yard development included several small support structures and an overhead trellis. The rail yard was abandoned and the associated buildings were demolished around 1973. A 20 foot deep, 78-inch diameter sewer was installed along the east side of the property during this period.

The site has been undeveloped and grass covered since the 1970's. A few moderate size pine trees line the Genesee Gateway Park/Genesee Valley Trail that parallels the east side of the river. The site is fairly flat with less than five feet of grade change across the parcel.

3.0 EXPLORATION AND TESTING

As part of this study, we observed new exploration and reviewed prior subsurface data developed on the parcel. Outlined below are the test holes we reviewed. Their locations are plotted on the DAY Environmental, Inc. Figures 2-8 included in the DAY report.

- 2010 DAY Environmental, Inc. test borings MW10-1 through MW10-3 (DAY report -Appendix C).
- 2010 Foundation Design, P.C. test pits TP10-1 through TP10-23 (Appendix B).
- 2004 Target Drilling test borings B04-1 and B04-5 (Appendix C).
- 2004 Foundation Design, P.C. test pits TP04-1 through TP04-4 (Appendix C).
- 2004 Basic Foundations, Inc. laboratory test report (Appendix C).
- 2004 DAY Environmental, Inc. geo-probes TW-1 through TW(MW)-10 (Appendix D).
- 2001 DAY Environmental, Inc. geo-probes TB-101 through TB-104, TB-122 through TB-125, TB-A, and TB-B (Appendix D).
- 2000 DAY Environmental, Inc. geo-probes TB-1, TB-2, TB-5, TB-9, TB-36, MW-1, and MW-7 (Appendix D).

Finally, we reviewed the results of a 2001 Geomatrix electromagnetic survey using a Geonics EM61 high sensitivity, high resolution, time-domain metal detector of the southeast corner of the parcel. Refer to Figure 8 in the DAY report.

4.0 SOIL, BEDROCK, AND GROUNDWATER CONDITIONS

The following interpretations of the soil, bedrock, and groundwater conditions are based on widely spaced test boring, test pit, and geo-probe data; our site observations; and prior work in the area. Generalized soil profiles (Figures 1, 2, and 3) are attached in Appendix A; refer to Figure 2 (*Test Location Plan*) in the DAY report for the subsurface profile locations. Variations from the inferred subsurface profile are possible, especially on this historically developed site. See the enclosed boring, test pit, and geo-probe logs for soil/bedrock descriptions at the test locations. Call us immediately if such variations are found so we may evaluate the impact on our conceptual findings.

We observed a subsurface profile consisting of topsoil over mixed fills, organic and/or clayey silt, glacial till, then dolomite bedrock. The topsoil thickness, where definable from the underlying fill, ranged from four to eighteen inches. The underlying fill consists of mixed earth (silt, sand, gravel, cobbles, boulders), topsoil, ash, coal, slag, glass, wire, brick, concrete fragments, and other deleterious material. Large pockets or zones within the fill consist primarily of incinerator waste, i.e., ash and cinders. The fill extends four to sixteen feet below the surface.

Stantec Consulting Services, Inc. provided oversight of an environmental clean-up in the southeast corner of the site in 2007. Soil was excavated to depths of 10 to 18 feet below grade as part of this clean-up work. The excavation was backfilled in compacted lifts using salvaged environmentally clean soil and imported gravel fill. Limits and depths of this excavation work are plotted on Figure 8 in the DAY report.

Remnants of the pre-existing structures were encountered in several of the test pits. Test pits TP10-14, TP10-16, TP10-17, and TP10-18 all terminated within four feet of the surface, encountering refusal on old concrete foundations (possibly associated with the old railroad scales and/or toll house). Old foundations were also encountered in the western portion of the Stantec environmental clean-up excavation (refer to Figure 8 in the DAY report); these foundations were left in-place. Old foundations are possible in other old building/trestle locations.

The upper, natural soils consist of loose to firm silt with a trace to some clay, trace to little sand, and trace organic. Typical N-values in this formation were in the 4 to 10 blows per foot range; with isolated pockets recorded as low as 1 to 2. Thin pockets of more highly organic soil (peat, marl, etc.) were also noted in the sampling. Tested samples contained 1.0 to 31.4 percent organic matter, with associated moisture contents ranging from 14.2 to 32.7 percent.

Compact to dense glacial till or river deposited sand and gravel underlies the organic silt. The tested till samples classify as silty sand (SM). Moisture contents of the tested till samples range from eight to nine percent. Large boulders were encountered near the top of the bedrock.

Based on reviewing the data collected, we believe that the bedrock surface lies between elevations 490 and 495, roughly 25 feet below the surface. We believe that the borings that encountered refusal above these elevations likely terminated on boulders/rock slabs contained within the till deposit slightly above the bedrock surface. The drillers found the upper three to five feet of the bedrock highly fractured. This made differentiating boulders from the fractured rock difficult.

RQD measurements, an indication of the rock quality, were poor in the upper three to six feet of the bedrock (likely due to boulders and slabrock), but improved with depth. The percent recovered in the 'better', deeper rock was between 60 and 85 percent. RQD measurements in this zone were between 50 and 70 percent. Geologic mapping shows bedrock as the Lockport Group of Formations. These formations consist of horizontally bedded dolomites. The percent rock core recovered and RQD measurements, even for the 'better' rock, were low for this formation.

Groundwater was generally encountered below ten feet at the test locations. Water flowed into two of the test pits around ten feet below the surface; we believe that this is water trapped in the fills at the two locations. We recorded the groundwater elevations at the observation wells installed as tabulated below:

Boring	Surface	12 S. 10 M.	16 X 77 X	18 Sec. 9	Date	2.2 18 1	The coal is	Same
Number	Elevation	6/7/2001	8/2/2001	3/3/2004	3/16/2004	6/17/2004	7/7/2004	4/6/2010
B04-1	516.8		Charles and a second	504.4	505.0	504.6	502.6	 E. Startford
MW-1	1.2 2.1	-16.45	-17.54		100	02.151 Pro.	na irr	THE COMPLET
MW-1R	513.1							498.3
MW-7	516.9					A COLOR	1. 10 100	504.1
TW(MW)-9	514.2	and the state of the		5 al 1 al	A. C	두 백자금 것이	1 2 S	499.7
TW(MW)-10	513.7		25 Z	$\sim 10^{-10}$			10 to 10 th	497.6
MW10-1	517.1		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1				1. 1. 200 - 1	504.6
MW10-2	515.7		5 of 0, 5 o	2.42	Sec. March	192		504.1
MW10-3	514.6		- 6-1	1999 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	harder State	a na thairtean		497.9

Table No. 1 – Groundwater Levels

5.0 CONCLUSIONS

From a geotechnical standpoint, we foresee several issues that will make developing the parcel challenging, but not to the point that the difficulties are insurmountable.

Based on these findings, we draw the following general conclusions:

5.1 Foundation Approaches

It is our opinion that the in-place fill material and underlying organic silt/clay deposit are not suitable to support new construction. The in-place fill contains sporadic areas where highly compressible ash and cinders have been deposited. This material would consolidate and compress under new structural loads, leading to unacceptable settlement of the structure and floor slabs. The underlying organic material will slowly decompose over time, leading to more consolidation and settlement.

For preliminary estimating, assume that a deep foundation system and structural floor slab will be required for the new building. The deep foundation system that will ultimately be utilized is highly dependent on building loads, and load distribution with the structure. Outlined below are some of the foundation approaches that may prove viable on this site.

Driven Piles

Driven steel H-piles and pipe piles have been utilized locally to support similar structures. Allowable pile capacities of 100 to 200 tons have been achieved on end-bearing piles driven to the dolomite bedrock surface. For conceptual estimating, assume that the bedrock surface can support a HP 12 x 74 pile, providing an allowable capacity of 150 tons.

Drilled Shafts/Caissons

Drilled shafts that extend to the bedrock surface could be utilized to support the new structure. The old City of Rochester Building Code allowed for the use of a presumptive bearing pressure of 25 tons per square foot on the Lockport Dolomite; this could be increased to 50 tons per square foot if probes where used to verify that no mud seams were present in the underlying rock within five feet of the bearing grade.

Vibro-compacted Concrete Columns

Vibro-compacted concrete columns may prove viable to support the structure. These foundation systems entail pre-augering a hole that is then backfilled with dry-mix concrete compacted in lifts. The compacted column is then used to support the structure. Locally, allowable column capacities of 35 to 45 tons have been achieved using columns bearing on the bedrock surface.

Vibro-compacted Aggregate Columns

Vibro-compacted aggregate columns (VCA columns))may also prove viable to support the structure. This form of ground improvement consists of pre-augering a hole that is then backfilled with aggregate (crusher-run stone or gravel) compacted in lifts. The compacted column is then used to support the structure utilizing standard spread footings bearing on the compacted columns. Structural floor slabs would be designed to span between adjacent aggregate columns. Spread footings designed to bear on the VCA columns can likely be sized based on allowable bearing pressures in the 4,000 to 8,000 psf range.

Mini-Piles

Mini-piles may consist of driven small diameter steel pipe (3 to 4-inch diameter), small diameter auger cast concrete piles, or helical piles. Generally, this type of pile system tends to yield lower allowable pile capacities, typically in the 30 to 60 kip range (15 to 30 tons). However, higher capacity mini-piles are available that may achieve allowable pile capacities in the 60 to 100 tons range.

Dependent on the type of system that is selected, we foresee some issues that may arise during installation. The amount of spoils generated during the different pile installations vary; displacement piles limit the spoils to the material excavated to install pile caps and grade beams. Augered shafts would generate significant spoil volumes that would require handling and potentially off-site disposal.

Old foundations and floor slabs left in-place and debris in the fill may obstruct the deep foundation installations operations; some pre-excavating and/or pre-augering could be required regardless of the system utilized. Large boulders/rock slabs are present within the

till over the bedrock surface that could prevent the deep foundation from achieving full depth penetration. Extra dynamic/load testing of piles may be required to assess the pile capacity where piles hang up on rock slabs within the till.

Groundwater lies in pockets within the fill and in the soil over the bedrock. Groundwater levels will fluctuate with the level of nearby Genesee River. Water will tend to migrate into open excavations; temporary casings will be required to control water flow into augered shafts created by drilled shaft and vibro-compaction techniques. Depending on the system selected, the site designer may need to designate areas where water that accumulates in the open shafts can be pumped to and stored on a temporary basis during the foundation installation work.

5.2 Basement Considerations

We understand that the future buildings may have a basement or below-grade parking. We have concerns about below grade construction due to the close proximity of the Genesee River, which fluctuates between elevation 500 and 512 and has a base flood level around elevation 513 (2008 FEMA *Flood Insurance Rate Map*). The top of the river wall, at elevation 514.1, should keep flood water from overtopping onto the site. Surface grades on the parcel are between 514 and 518. We suspect that below grade construction would have to be designed above elevation 513 to stay above the potential base flood elevation. This constraint limits how far into the ground the new structure may extend.

If below-grade structures are required, we see two approaches. Explore the possibility of a below-grade structure that has a floor grade around elevation 513 and is half below and half above grade. This would allow windows for well lit lower floor areas. Approved fill material removed to create the below-grade space could be used to berm around the perimeter.

Deeper below-grade structures will require extensive waterproofing to keep the space dry. Structures below elevation 513 should either be designed with permanent wall and subfloor drainage systems that are pumped into the stormwater system or should be designed as a waterproof box that can resist the hydrostatic uplift forces acting on it during high water levels. If a pumped system is utilized, the pump should have an emergency back-up generator or other system that can keep the depression dry during prolonged power outages (likely to occur during flood events).

Depending on the lower floor grade established, the subgrade exposed may not be capable of supporting construction equipment such as pile driving equipment and/or concrete trucks. This is especially true for any below grade construction. As much as 30-inches of imported crusher run stone and a geogrid may be required to provide a working surface for the foundation installation and concrete truck traffic.

5.3 Structural Fill and Backfill Materials

The in-place fill would not be reusable as structural fill. Environmental approved material may be used in landscaped areas, but should not be placed under foundations and floor slabs if their design depends on fill for structural support. Where new fill is required in structural areas, plan to import a material close in gradation to N.Y.S.D.O.T. Item 203.07, select granular fill.

5.4 Seismic Considerations

New York State Building Code contains provisions for seismic design. The 2007 Code identifies the downtown Rochester area as having a short period spectral acceleration (S_s) of 0.206g and a 1-second period spectral response acceleration (S_1) of 0.058g. We recommend assuming a seismic site classification of D (stiff soil) in your conceptual estimating.

5.5 Underground Utilities

Underground utilities will lie primarily in the in-place fill. We expect this material will consolidate under its own weight over the life of the structure. Plan to hang sub-floor utilities where they are installed below the structural floor slab. DIPRA test results indicate the fills are corrosive to ductile-iron piping; assess whether/where protection of underground utilities is required.

Similar fill conditions are expected outside the building. Extra subbase may be required to provide adequate pipe support where debris is removed from below the pipe. Plan for large diameter pipes and/or steeper slopes on gravity flowing utility lines (sanitary and storm sewers). Allow for flexible connections where transitioning from the pipe bearing on the fill (that will settle) to where utility services tie into the new building (that will not settle).

5.6 Pavement/Sidewalk Measures

Where asphalt pavements are placed over the in-place fill, developers should expect less time before cracking, waviness, 'bird-baths', and potholes start to form and maintenance is required. Due to the potential exorbitant costs of removing and replacing this material, we recommend that developers/future owners accept these risks. The in-place Time Warner pavements adjacent to the site were constructed over the in-place fill; we expect similar long-term settlement and pavement performance as this asphalt surface.

For your preliminary estimating, we suggest budgeting for a slightly thicker than "normal" pavement, say 1.5 inches of asphalt top, 2.5 inches of asphalt binder, and 15 inches of crusher-run stone subbase. To extend the life and improve expected pavement performance, budget to install a geogrid similar, to Mirafi BXG-12, under the pavement and sidewalk subbase layers. Some undercutting and/or reworking of unsuitable fill will be required to remove the large debris from within the top 12 inches of the pavement subgrade; plan to backfill areas undercut with suitable on-site soil.

Plan for pavement slopes of at least 2.0 percent. Install weeps at low points in the pavement to facilitate drainage out of the granular subbase and into the stormwater system. Plan for higher maintenance costs associated with these pavements.

5.7 Bedrock Considerations

The bedrock surface lies between elevations 490 and 495, roughly 25 feet below grade. Unless extremely deep excavations are planned, we do not envision bedrock impacting development.

5.8 Premium Cost Items

The following is a list of premium cost items for redevelopment of this parcel as compared to construction on a 'green' site. As you develop your cost estimates, allot money to address each of these aspects of the project.

Structural/Design Costs

Removal/hoe-ramming of existing buried foundations Off-site disposal of excavated materials (foundations/utility trenches) Import of soil for foundation/utility trench backfill Deep foundation system (piles, caissons, geo-pier, vibro-compacted concrete columns, etc) Structural floor slab Large diameter pipes/steeper slopes for underground utilities Extra stone base under utility lines Corrosion protection/wrapping of underground piping Extra stone base through fill areas Thicker sidewalk sections including geogrid Thicker pavement sections including geogrid

Geotechnical Construction Oversight Costs

Full-time site presence during deep foundation installation Periodic site presence during new structural fill placement Periodic site visits during the pavement/sidewalk subgrade preparation work

6.0 CLOSURE

The conclusions outlined in this Pre-Development Geotechnical Assessment are provided with our limited information on the final uses of this parcel. We point out that additional geotechnical exploration, testing, and/or engineering analysis will be required after the building locations, sizes, design loads, and site grading have been established. Call if you have questions regarding our interpretations of the soil, bedrock, and groundwater conditions as you develop concepts to develop this parcel. We look forward to hearing from you again as potential developers assess options for developing this parcel.

Important Information about Your Geotechnical Engineering Report

Subsurface problems are a principal cause of construction delays, cost overruns, claims, and disputes.

While you cannot eliminate all such risks, you can manage them. The following information is provided to help.

Geotechnical Services Are Performed for Specific Purposes, Persons, and Projects

Geotechnical engineers structure their services to meet the specific needs of their clients. A geotechnical engineering study conducted for a civil engineer may not fulfill the needs of a construction contractor or even another civil engineer. Because each geotechnical engineering study is unique, each geotechnical engineering report is unique, prepared *solely* for the client. No one except you should rely on your geotechnical engineering report without first conferring with the geotechnical engineer who prepared it. *And no one — not even you* — should apply the report for any purpose or project except the one originally contemplated.

Read the Full Report

Serious problems have occurred because those relying on a geotechnical engineering report did not read it all. Do not rely on an executive summary. Do not read selected elements only.

A Geotechnical Engineering Report Is Based on A Unique Set of Project-Specific Factors

Geotechnical engineers consider a number of unique, project-specific factors when establishing the scope of a study. Typical factors include: the client's goals, objectives, and risk management preferences; the general nature of the structure involved, its size, and configuration; the location of the structure on the site; and other planned or existing site improvements, such as access roads, parking lots, and underground utilities. Unless the geotechnical engineer who conducted the study specifically indicates otherwise, do not rely on a geotechnical engineering report that was:

- not prepared for you,
- not prepared for your project,
- not prepared for the specific site explored, or
- · completed before important project changes were made.

Typical changes that can erode the reliability of an existing geotechnical engineering report include those that affect:

 the function of the proposed structure, as when it's changed from a parking garage to an office building, or from a light industrial plant to a refrigerated warehouse,

- elevation, configuration, location, orientation, or weight of the proposed structure,
- composition of the design team, or
- project ownership.

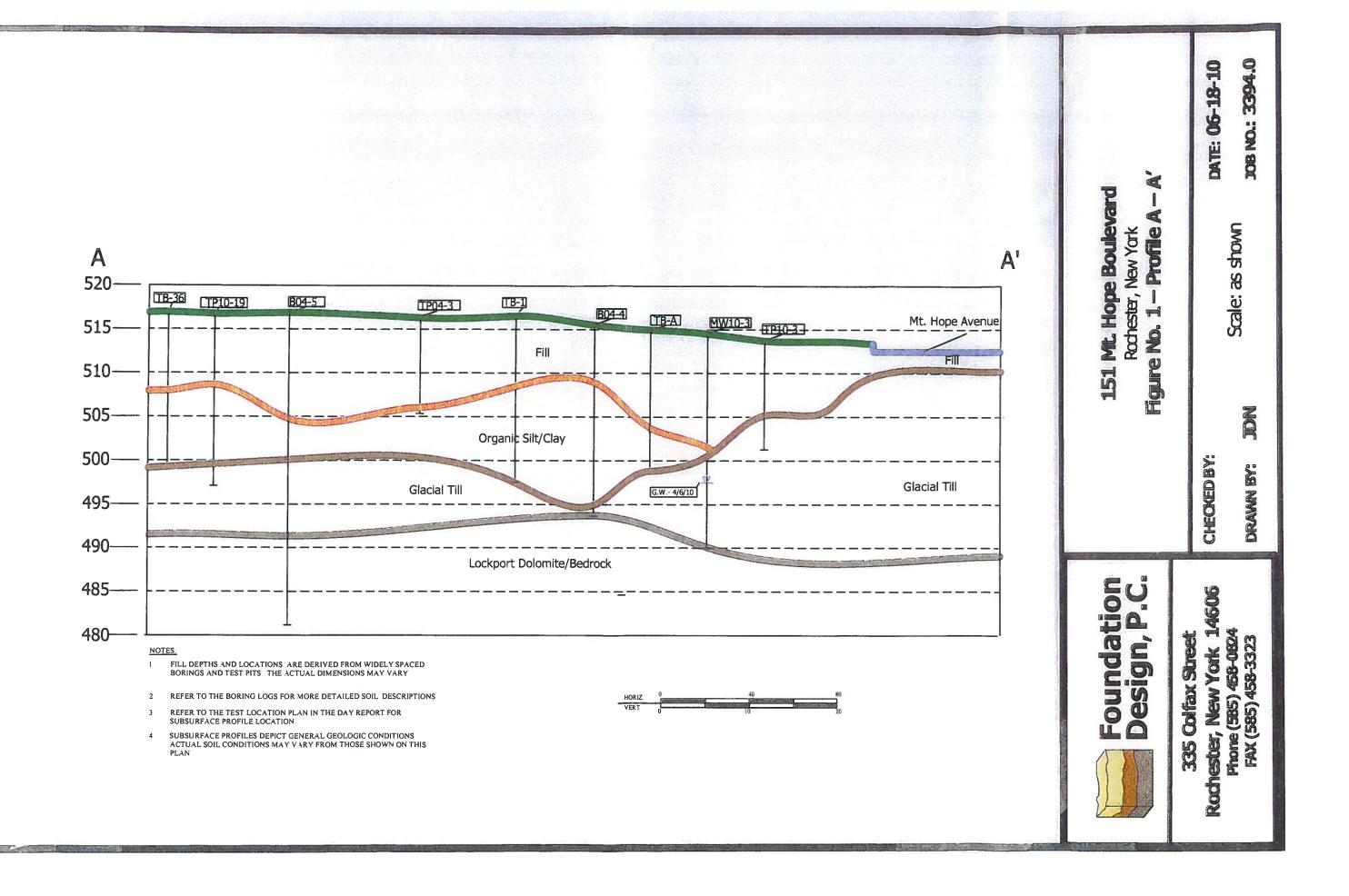
As a general rule, *always* inform your geotechnical engineer of project changes—even minor ones—and request an assessment of their impact. *Geotechnical engineers cannot accept responsibility or liability for problems that occur because their reports do not consider developments of which they were not informed.*

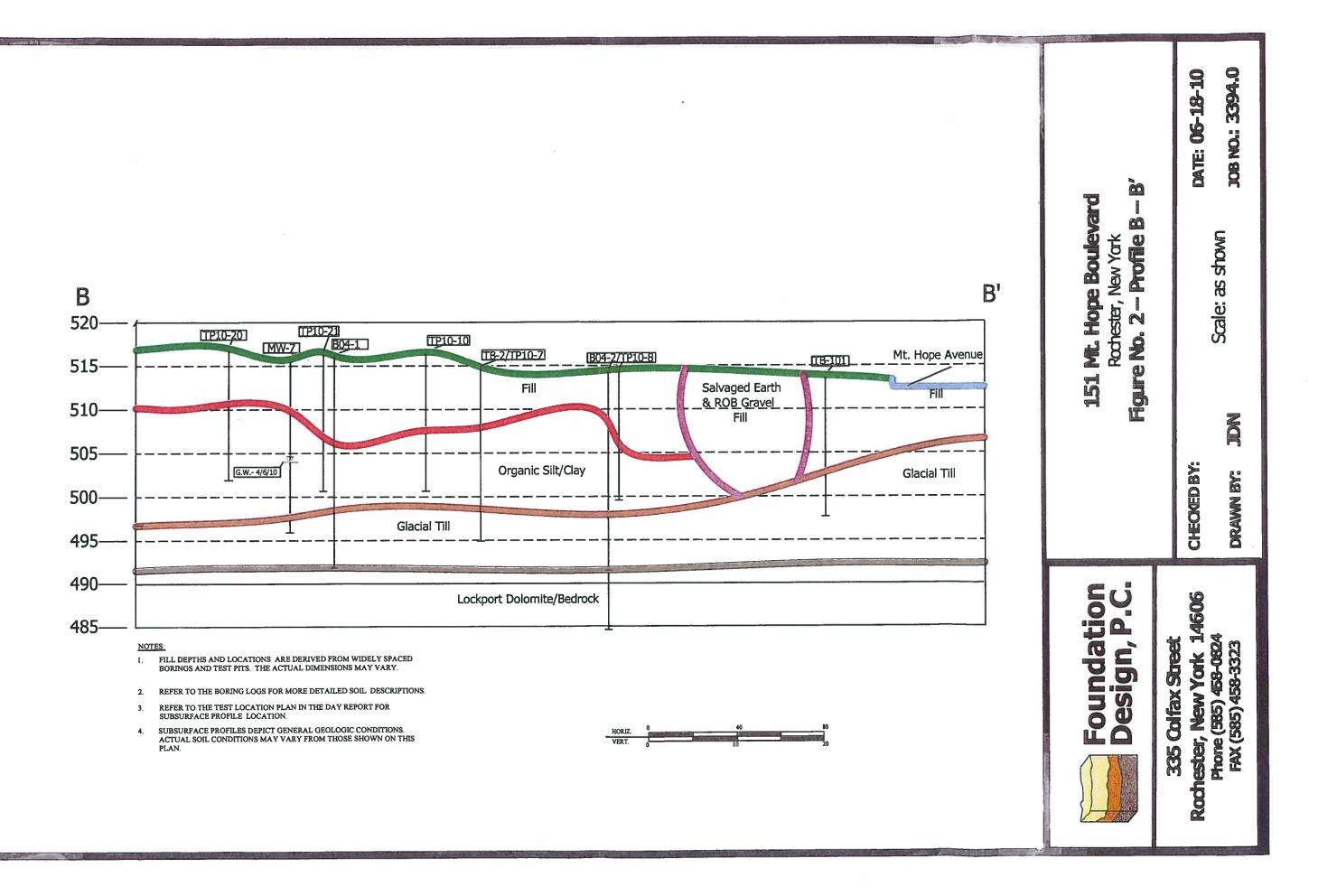
Subsurface Conditions Can Change

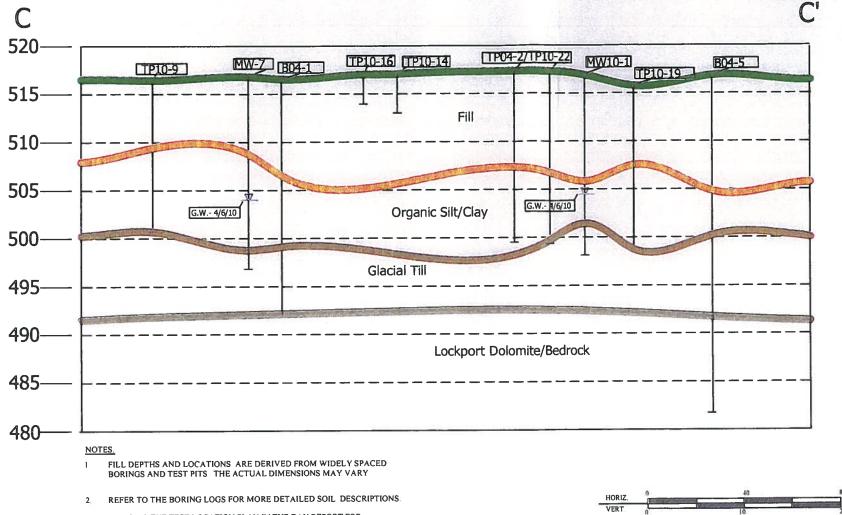
A geotechnical engineering report is based on conditions that existed at the time the study was performed. *Do not rely on a geotechnical engineering report* whose adequacy may have been affected by: the passage of time; by man-made events, such as construction on or adjacent to the site; or by natural events, such as floods, earthquakes, or groundwater fluctuations. *Always* contact the geotechnical engineer before applying the report to determine if it is still reliable. A minor amount of additional testing or analysis could prevent major problems.

Most Geotechnical Findings Are Professional Opinions

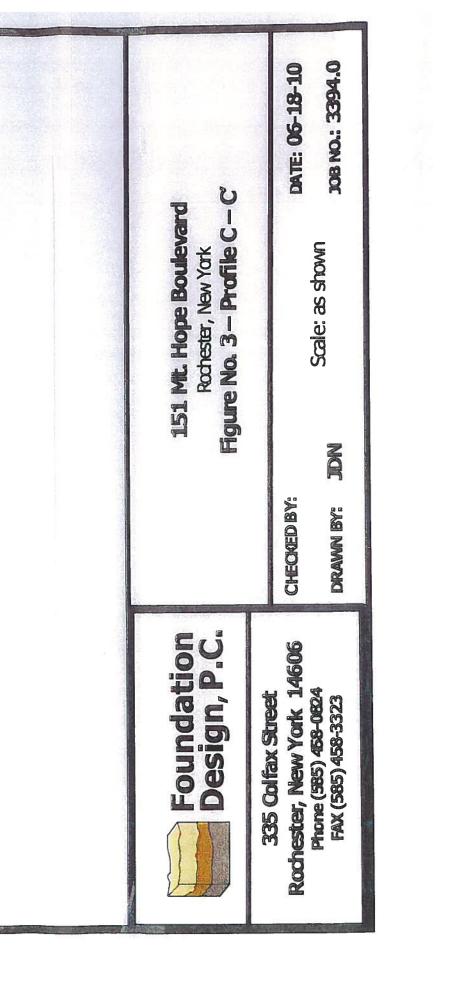

Site exploration identifies subsurface conditions only at those points where subsurface tests are conducted or samples are taken. Geotechnical engineers review field and laboratory data and then apply their professional judgment to render an opinion about subsurface conditions throughout the site. Actual subsurface conditions may differ—sometimes significantly—from those indicated in your report. Retaining the geotechnical engineer who developed your report to provide construction observation is the most effective method of managing the risks associated with unanticipated conditions.


A Report's Recommendations Are *Not* Final


Do not overrely on the construction recommendations included in your report. *Those recommendations are not final*, because geotechnical engineers develop them principally from judgment and opinion. Geotechnical engineers can finalize their recommendations only by observing actual



APPENDIX A



- 3 REFER TO THE TEST LOCATION PLAN IN THE DAY REPORT FOR SUBSURFACE PROFILE LOCATION
- 4 SUBSURFACE PROFILES DEPICT GENERAL GEOLOGIC CONDITIONS ACTUAL SOIL CONDITIONS MAY VARY FROM THOSE SHOWN ON THIS PLAN

APPENDIX B

SOIL DESCRIPTIONS

COHESIVE SOIL

Very fine grained soil. Plastic soil that can be rolled into a thin thread if moist. Clays and silty clays show cohesion.

NON-COHESIVE SOIL

Soil composed of silt, sand and gravel, showing no cohesion or very slight cohesion.

DESCRIPTION

Very Soft Soft Medium Stiff Hard Extrude between fingers when squeezed Molded by light finger pressure Molded by strong finger pressure Indented by thumb with effort Indented by thumb nail with difficulty

DESCRIPTION

Loose	
Firm	
Compact	
Dense	
Very Dense	

SOIL COMPOSITION

DESCRIPTION and some little trace

ESTIMATED PERCENTAGE

50 30-49 11-29 0-10

MOISTURE CONDITIONS

dry, damp, moist, wet, saturated

Groundwater measured in the boring or test pit may not have reached equilibrium

SOIL STRATA

TERM layer

seam

parting

varved

DESCRIPTION

Soil deposit more than 6" thick Soil deposit less than 6" thick Soil deposit less than ½" thick Horizontal uniform layers or seams of soil

GRAIN SIZE

• · · · · · · · · · · · · · · · · · · ·		
MATERI	AL	SIEVE SIZE
Boulder	. 8	Larger than 12"
Cobble		3" to 12"
Gravel	- coarse	1" to 3"
5 G	- medium	³⁄8" to 1"
	- fine	No. 4 to 3⁄8"
Sand	- coarse	No. 10 to No. 4
	- medium	No. 40 to No. 10
	- fine	No. 200 to No. 40
Silt and	Clay	Less than No. 200

TP10-1 Test Pit No.

J. Deere 160D excavator R. Baker E. Ashley Operator Equipment Technician Day Environmental, Inc., 40 Commercial Street, Rochester, NY 514.3 Weather Overcast/snow Teo Overcast/snow 02.19.10 3394.0 Page 1 151 Mt. Hope Avenue, Rochester, NY Completed
 Elevation
 514.3
 Weather

 Date Started
 02.19.10
 Completed

 Backhoe Subcontractor
 Trec Environmental
 Page Project No. Project Name Client

Depth	Geotech.	Depth	DIG	Soil and Rock Classifications
Surface	Number	Sample	(mqq)	Remarks
Я			0.0	TOPSOIL FILL: Compact brown-black-red moist SILT, SAND, some gravel, little to trace brick, ash, metal, railroad tie, glass, tile, slag, few cobbles (asphalt 'slab' noted on east end of test pit
4				3'9"
Q			0.0	FILL: Firm grey-yellow moist ASH, little sand, trace brick, glass, nails
Ø				7'7" Soft black moist to wet organic SILT, little clay, little sand,
10			0.0/ 0.0(HS)	grades to soft dark grey moist to wet SILT, some clay, little sand, little organic below 9'
12				Grades to grey-green moist to wet, some sand below 12'

Site Pictures

TP10-1

Spoil Pile

E. Ashley R. Baker J. Deere 160D excavator Test Pit No. TP10-1 **Operator** Equipment Technician Project No.3394.0Page2of2TeProject Name151 Mt. Hope Avenue, Rochester, NYClientDay Environmental, Inc., 40 Commercial Street, Rochester, NYClientDay Environmental, Inc., 40 Commercial Street, Rochester, NYDate Started02.19.10OpticationDate Started02.19.10OpticationBackhoe SubcontractorTrec EnvironmentalEqu

Soil and Rock Classifications Remarks			17'0" Refusal at 17'0"		Notes: 1. Sides vertical.	 Water seepage below 11'2" on west end of test pit. Staked locations provided by others. Sample numbers reflect geotechnical sampling only. PID measurements recorded by DAY Environmental. (HS) = Head space sample.
(mqq) UIq			0.0			
Depth of Sample						
Geotech. Sample Number						
Depth Below Surface	14	16	18	20	22	24

					excavator
TP10-2			E. Ashley	R. Baker	J. Deere 160D
Test Pit No.		NΥ	Technician	Operator	Equipment
2		Street, Rochester,	st/snow	10	
1 of	chester, NY	0 Commercial	er Overca	ted 02.19.	Ital
Page	be Avenue, Roc	imental, Inc., 4	Weathe	Completed	rec Environmer
3394.0	151 Mt. Hop	Day Environ	514.1	02.19.10	ntractor T
Project No.	Project Name	Client	levation	ate Started	ackhoe Subco

Depth	Geotech.	Depth	DID	Soil and Rock Classifications
Below Surface	Sample Number	of Sample	(mqq)	Remarks
				TOPSOIL 016"
2			0.0	FILL: Compact brown moist SAND and GRAVEL, some silt, pocket of 'shot rock', trace brick west side of tp from 1'8" to 5'6", cobbles and pieces of broken rock moves and pieces of the second process of the second s
4			0.0	rith: compact brown most same and graver, some sur, trace brick, slag, coal, glass, cinders, organic, wood, pipe, pocket of brick north end of t.p., numerous pieces of slab rock
ى			0.0	5'6" Tan moist medium SAND, little silt, trace clay, few boulders
ω	S-1	7'6"	0.0/ (HS)	6'8" Firm red-brown moist mottled silty medium SAND, trace clay, few boulders
10	S-2	10'0"	0.0	9'6" Compact brown moist SAND and GRAVEL, little silt, few cobbles and pieces of slab rock
12				11'6" Refusal at 11'6" on possible boulder

Site Pictures

TP10-2

Spoil Pile

E. Ashley R. Baker J. Deere 160D excavator Test Pit No. TP10-2 Operator Equipment Technician Project No.3394.0Page2of2TeProject Name151 Mt. Hope Avenue, Rochester, NYClientDay Environmental, Inc., 40 Commercial Street, Rochester, NYClientDay Environmental, Inc., 40 Commercial Street, Rochester, NYDate Started02.19.10OrDate Started02.19.10OrBackhoe SubcontractorTree EnvironmentalErection

Soil and Rock Classifications Remarks					Notes: 1. Sides sloughed and caved on west side of test pit from 1' to 5' (possible rock foundation wall.) 2. Pipe at 5'5" on east side of test pit.	 Bry on completion. Staked locations provided by others. Sample numbers reflect geotechnical sampling only. PID measurements recorded by DAY Environmental. (HS) = Head space sample.
(mqq) UIq						
Depth of Sample						
Geotech. Sample Number						
Depth Below Surface	14	16	18	20	22	24

		F			<u>+</u>
) excavat
0-3			shley	. Baker	eere 1600
TP10-3			E. Ashley	Ч. В	Г П
Test Pit No.			nician	perator	pment
Test		ΥV	Tech	Ope	Equi
		ochester			
2		treet, Ro	/snow		
of	Ν	nercial SI	Dvercast	02.19.10	
1	chester,	O Comm	r.	ted	Ital
Page	nue, Roc	, Inc., 4	Neathe	Comple	ironmer
-	pe Aver	nmental	-	- 	Trec Env
3394.0	1 Mt. Hc	y Enviro	513.8	02.19.10	ţ
33(15.	Da	51:	02.	ontrac
No.	Name		n	arted	e Subc
Project	Project	Client	Elevati	Date SI	Backho

Depth	Geotech.	Depth	DID	Soil and Rock Classifications
below Surface	Sample Number	of Sample	(mqq)	Remarks
2			0.0	TOPSOIL 0'5" 0'5" 0'5" FILL: Compact brown moist silty SAND, some gravel, numerous pieces of slab rock, little cobbles, little organic, trace plastic, wood, brick, lumber, glass Possible concrete footing at 2'6" on south end of the test pit
4			0.0	
9				
8			0.0	
10			0.0/ 0.0(HS)	Compact brown moist SAND and GRAVEL, little silt, little cobbles, few boulders
12			0.0	

Site Pictures

TP10-3

Spoil Pile

	I	I	I	I	
TP10-3			E. Ashley	R. Baker	J. Deere 160D excavator
est Pit No.			nician	ator	ment
Test I		Z,	Techr	Operat	Equip
2		set, Rochester, N	Mon		
oť	r, NY	nmercial Stre	Overcast/s	02.19.10	
2	cheste	40 Cor	er	eted	ental
Page	pe Avenue, Ro	nmental, Inc.,	Weath	Compl	rec Environme
3394.0	151 Mt. Ho	Day Enviror	513.8	02.19.10	ntractor 1
Project No.	Project Name	Client	Elevation	Date Started	Backhoe Subco

Depth	Geotech.	Depth	DID	Soil and Rock Classifications
below Surface	Sample Number	or Sample	(mqq)	Remarks
				12'5" 12'5"
				Ketusal at 12'5"
14				
16				
18				
20				
22				Notes: 1. Sides sloughed below 8'.
				 Dry on completion. Staked locations provided by others. Sample numbers reflect geotechnical sampling only. PID measurements recorded by DAY Environmental.
24				 o. (HS) = Head space sample.

TP10-4			E. Ashley	R. Baker	J. Deere 160D excavator
Test Pit No.		ΝΥ	Technician	Operator	Equipment
of 2	r, NY	nmercial Street, Rochester,	Overcast/snow	02.19.10	
Page 1	Avenue, Rocheste	iental, Inc., 40 Con	Weather	Completed	c Environmental
3394.0	151 Mt. Hope	Day Environm	514.8	02.19.10	ontractor Tre
Project No.	Project Name	Client	Elevation	Date Started	Backhoe Subco

Depth Below	Geotech. Sample	Depth of	DId	Soil and Rock Classifications
Surface	Number	Sample	(mqq)	Remarks
				TOPSOIL (frozen) 0'7"
2	S-1	2'0"	0.0/ 0.0(HS)	FILL: Compact brown moist SAND, some silt, some gravel, few large pieces of slab rock, large piece of concrete (footing), trace to little brick, wire, wood, slag, plastic, black ash, cinder
4			0.0	
v			0.0(HS)	
> a				
10	S-2	10'0"	0.0	8'0" FILL: Compact grey-yellow ASH, with brick, glass, metal ceramic, slag, sand, roofing shingles, wood 9'8"
12			0.0/ 0.0(HS)	FILL: Firm black moist SILT, some organic, trace wood, brick, ash, metal 11'10"

Site Pictures

TP10-4

Spoil Pile

. TP10-4			E. Ashley	R. Baker	J. Deere 160D excavator
Test Pit No		ir, NY	Technician	Operator	Equipment
of 2	r, NY	nmercial Street, Rocheste	Overcast/snow	02.19.10	
Page 2	ppe Avenue, Rocheste	inmental, Inc., 40 Cor	Weather	Completed	Trec Environmental
3394.0	151 Mt. Hc	Day Enviro	514.8	02.19.10	ntractor
Project No.	Project Name	Client	Elevation	Date Started	Backhoe Subco

Depth	Geotech.	Depth	DID	Soil and Rock Classifications
Below Surface	Sample	or Sample	(mqq)	Remarks
				Soft grey moist silty CLAY, little fine sand, little organic
	S-1	13'0"		
14				
16				
ç			0.0	18,0"
OT				Test pit terminated at 18'0"
20				
, c				Notes: 1. Sides vertical.
				 Dry on completion. Staked locations provided by others. Sample numbers reflect geotechnical sampling only. PID measurements recorded by DAY Environmental. (HS) = Head space sample.
1				

					tor
) excava
-5			ley	Baker	J. Deere 160D
TP10-5			E. Ashley	R. Ba	J. De
Test Pít No.			nician	ator	ment
Test I		NΥ	Techr	Operati	Equip
		chester,			
2		eet, Roo	Snow		
of	۲	ercial Str	vercast/	2.18.10	
1	lester, N	Comme	0	ed 0	at
age	Je, Roch	Inc., 40	<i>l</i> eather	omplet	ronment
ã	e Avenu	mental,	~	Ŭ	rec Envil
4.0	Mt. Hop	Environ	.6	02.18.10	-
3394.0	151	Day	515.6	02.1	ontract
No.	Name		Ę	arted	e Subco
Project	Project	Client	Elevatio	Date St	Backho

Depth	Geotech.	Depth	DIG	Soil and Rock Classifications
Below	Sample	of		
Surface	Number	Sample	(mqq)	Remarks
				TOPSOIL 0'4" FILL: Compact red-brown moist silty SAND, trace to little pravel
7				17" 11. Compact dark brown moict cilly CAND 11440 arrival
			1.0	trace metal, glass, slag, asphalt, wood, brick few cobbles and boulders 2'8"
4				Fill: Compact Diack moist SANU, some slit, some gravel, some coal fragments and cinders 4'0"
				FILL: Firm grey moist ASH with gravel, little sand, trace to little slag, brick, wood, rock pieces
9				
			0.8	
Ø			0.0	7'6" Zoft-medium moist to wet silty CLAY, little very fine sand
10				
			0.0	
12				

Site Pictures

TP10-5

Spoil Pile

TP10-5			E. Ashley	R. Baker	J. Deere 160D excavator
Test Pit No.		NY	Technician	Operator	Equipment
of 2	, NY	mercial Street, Rochester	Overcast/snow	02.18.10	
Page 2	Avenue, Rochester,	ental, Inc., 40 Com	Weather	Completed	rec Environmental
3394.0	151 Mt. Hope	Day Environm	515.6	02.18.10	ontractor Tre
Project No.	Project Name	Client	Elevation	Date Started	Backhoe Subco

Soil and Rock Classifications Remarks		Test pit terminated at 14'0"			Notes: 1. Sides vertical.	 Water seepage at 7'6". Staked locations provided by others. Sample numbers reflect geotechnical sampling only. PID measurements recorded by DAY Environmental.
(mqq)						
Depth of Sample						
Geotech. Sample Number						
Depth Below Surface	14	16	18	20	22	24

					excavator
TP10-6			E. Ashley	R. Baker	J. Deere 160D
Test Pit No.		NΥ	Technician	Operator	Equipment
2		Street, Rochester,	st/snow	0	
1 of	hester, NY	0 Commercial	r Overcas	ted 02.18.1	Ital
Page	e Avenue, Roc	mental, Inc., 4	Weathe	Comple	rec Environmer
3394.0	151 Mt. Hop	Day Environ	515.4	02.18.10	ntractor T
oject No.	oject Name	ient	evation	ite Started	ickhoe Subco

Depth	Geotech.	Depth	PID	Soil and Rock Classifications
Below Surface	Sample Number	of Sample	(mqq)	Remarks
				TOPSOIL Ni6"
				FILL: Compact red-brown moist silty fine to very fine SAND, trace to little gravel
N				wn moist silty SAND, little gravel, tra I (railroad ties) few cobbles few bou
			0.1	
4			0.0 2.1(HS)	3'5" FILL: Compact black moist SAND, some silt, some gravel, trace to little cinders, concrete, ash, brick
				2,0,
c			0.3/ 13.1(HS	FILL: Firm grey moist ASH with gravel, little sand, little cobbles, brick, asphalt shingles, glass, organic 5'10" FILL: Black moist to wet SAND, some gravel, little metal,
				ash, wood, silt, shoe, brick, glass
0				
			2.0/ 37.5(HS)	
10				
				11'0"
12			0.1	Soft grey-black moist to wet silty CLAY, little very fine sand, little organic, trace wood (possible peat layer at 11')

Site Pictures

TP10-6

Spoil Pile

. TP10-6			E. Ashley	R. Baker	J. Deere 160D excavator
Test Pit No		r, NY	Technician	Operator	Equipment
of 2	ter, NY	ommercial Street, Rocheste	Overcast/snow	02.18.10	
Page 2	pe Avenue, Roches	mental, Inc., 40 C	Weather	Completed	rec Environmental
3394.0	151 Mt. Ho	Day Enviror	515.4	02.18.10	ontractor T
Project No.	Project Name	Client	Elevation	Date Started	Backhoe Subco

Soil and Rock Classifications	Remarks			18'0"	Test pit refusal at 18'0"	Notes: 1. Sides caved below 11'. 2. Water seepage/flow at 7'6". Petroleum odor and rainbow	Sheen noted by DAY Environmental. 3. Staked locations provided by others. 4. Sample numbers reflect geotechnical sampling only. 5. PID measurements recorded by DAY Environmental.
DIA	(mqq)						
Depth of	Sample						
Geotech. Sample	Number						
Depth Below	Surface	14	16	8	20	22	

hoe Subcontractor Trec Environmental Equipment J. Deere 160D excavator
--

Depth	Geotech.	Depth	DID	Soil and Rock Classifications
Below Surface	Sample Number	of Sample	(mqq)	Remarks
2			0.0	TOPSOIL 0'6" 0'6" 0'6" 0'6" 0'6" 0'6" 0'6" 0'6"
4			0.0	3'2" FILL: Compact black moist SAND, with coal, trace brick, wood, gravel, railroad tie, glass
۰ س			0.0	vD, some gravel, little silt,
			0.0/ 0.0(HS)	FILL: Firm grey-white moist ASH, little slag, glass, metal
10			0.0	8'3" Soft grey-black moist to wet organic SILT, little tree branches, trace sand, trace gravel
12			0.0	10'3" Soft dark grey-green moist to wet SILT, some clay, little fine sand, little organic

Site Pictures

TP10-7

					xcavator
TP10-7			E. Ashley	R. Baker	J. Deere 160D e:
Test Pit No.		, NY	Technician	Operator	Equipment
2		eet, Rochester	snow		
of	r, NY	nmercial Str	Overcast/	02.19.10	
2	Rochester	., 40 Con	ther	mpleted	nental
Page	ope Avenue, I	onmental, Inc	Weat	Com	Trec Environr
3394.0	151 Mt. H	Day Envir	515.0	02.19.10	ontractor
Project No.	Project Name	Client	Elevation	Date Started	Backhoe Subc

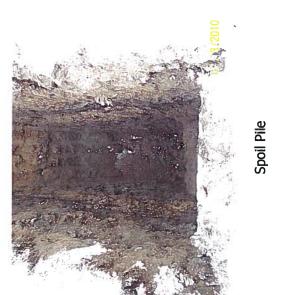
PID Soil and Rock Classifications	(ppm) Remarks			Test pit refusal at 17'3"	3	Notes: 1. Sides vertical.	 Water seepage flow at 8'3". Staked locations provided by others. Sample numbers reflect neotechnical sampling only.
Ľ	(p						
Depth	Sample						
Geotech. Sample	Number						
Depth Below	Surface	14	16	18	20	22	

TP10-8			E. Ashley	R. Baker	J. Deere 160D excavator
Test Pit No.		-, NΥ	Technician	Operator	Equipment
of 2	ster, NY	commercial Street, Rochester	Overcast/snow	i 02.19.10	
Page 1	ppe Avenue, Roche	nmental, Inc., 40 (Weather	Complete	Trec Environmenta
3394.0	151 Mt. H	Day Enviro	514.5	02.19.10	Intractor
Project No.	Project Name	Client	Elevation	Date Started	Backhoe Subco

Depth Geotech. Below Sample Surface Number 2	ech. ber	Depth of	QId	Soil and Rock Classifications
	per	5		
7		Sample	(mqq)	Remarks
2	<u></u>		0.0	TOPSOIL 0'5" 0'5" 0'5" FILL: Compact brown moist SAND, some silt, some gravel, trace brick, few cobbles 1'7"
				FILL: Firm black moist SAND and GRAVEL, little silt organics, trace wire. wood. brick. ash. glass
4			0.0/ 0.0(HS)	Metal railroad rail at 1'10" on east side of test pit. Wood railroad ties e-w direction at 2'. Ends at 8' north from test location stake. Ash layer noted on east side of test pit below the track
ى		8	0.0	5'0" Firm red-brown mottled moist silty m-f SAND, trace gravel
œ				ž
10			0.0	<u>Black moist organic SILT</u> Soft dark grey-green SILT, some clay, little organic, fine little sand
12				

J. Deere 160D excavator E. Ashley R. Baker TP10-8 Operator Equipment Test Pit No. Technician Project No.3394.0Page2of2TeProject Name151 Mt. Hope Avenue, Rochester, NYClientDay Environmental, Inc., 40 Commercial Street, Rochester, NYClientDay Environmental, Inc., 40 Commercial Street, Rochester, NYDate Started02.19.10OperationDate Started02.19.10OperationBackhoe SubcontractorTree EnvironmentalEnvironmental

Depth	Geotech.	Depth	DID	Soil and Rock Classifications
Below Surface	Sample Number	of Sample	(mqq)	Remarks
14				
16				15'4" Refusal at 15'4"
18				
20				
22				Notes: 1. Sides vertical. 2. Dry on completion.
24				 Staked locations provided by others. Sample numbers reflect geotechnical sampling only. PID measurements recorded by DAY Environmental. Creosote odor noted 2' to 3' by DAY Environmental. (HS) = Head space sample.



Site Pictures

TP10-9			E. Ashley	R. Baker	J. Deere 160D excavator
Test Pit No.		er, NY	Technician	Operator	Equipment
age <u>1</u> of 2	Je, Rochester, NY	Inc., 40 Commercial Street, Rocheste	/eather Overcast/snow	ompleted 02.18.10	ronmental
3394.0 Pa	ne 151 Mt. Hope Avenu	Day Environmental,	516.5 W	ed 02.18.10 Co	ubcontractor Trec Envir
Project No.	Project Nai	Client	Elevation	Date Starte	Backhoe St

Depth	Geotech.	Depth	PID	Soil and Rock Classifications
Below Surface	Sample Number	of Sample	(mqq)	Remarks
2			0.0	TOPSOIL 0'6" FILL: Firm brown moist SILT, SAND and GRAVEL, trace wood, organic, plastic, brick, fabric few cobbles
4			0.0	3'3" FILL: Firm black moist SAND and GRAVEL, little silt, some slag, some coal fragments and pieces
9				4'6" FILL: Firm grey moist ASH with sand, brick, slag, cinders, metal Firm red-brown moist silty SAND, some gravel
ω			0.0	7 ^{:0"} Medium-soft grey-black moist to wet SILT, some clay, some organic, little fine sand
10				Grades to grey-green, trace organic below 9'7"
12			0.0	

TP10-9

No. TP10-9			an E. Ashley	r R. Baker	ant J. Deere 160D excavator
Test Pit No.		ter, NY	Technici	Operato	Equipmer
of 2	١٧	ercial Street, Roches	Vercast/snow	02.18.10	
Page 2	pe Avenue, Rochester, I	mental, Inc., 40 Comm	Weather	Completed	ec Environmental
3394.0	151 Mt. Hop	Day Environ	516.5	02.18.10	Intractor Tr
Project No.	Project Name	Client	Elevation	Date Started	Backhoe Subco

Soil and Rock Classifications Remarks		15'7" Refusal at 15'7"			Notes: 1. Sides vertical.	 Water seepage at 15'7". Staked locations provided by others. Sample numbers reflect geotechnical sampling only. PID measurements recorded by DAY Environmental.
(wdd) QId						
Depth of Sample						
Geotech. Sample Number						
Depth Below Surface	14	16	18	20	22	24

Test Pit No. TP10-10			echnician E. Ashley	perator R. Baker	iquipment J. Deere 160D excavator
Ť		ster, NY	F	0	ш
of 2	r, NY	nmercial Street, Roche	Overcast/snow	02.19.10	
1	ochester	40 Con	ter	leted	ental
Page	ope Avenue, Ro	onmental, Inc.,	Weath	Compl	Trec Environme
3394.0	151 Mt. H	Day Envir	516.7	02.19.10	Intractor
roject No.	roject Name	lient	levation	ate Started	ackhoe Subco

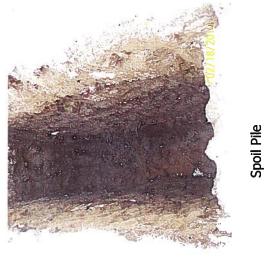
Depth	Geotech.	Depth	DID	Soil and Rock Classifications
Below Surface	Sample Number	of Sample	(mqq)	Remarks
7			0.0	TOPSOIL 0'5" FILL: Firm brown moist SAND, some silt, some gravel, little organic, trace metal, wood, wire, brick, rebar, sheet metal, few cobbles, few pieces of slab rock
4	~		0.0	3'2" FILL: Firm grey-white ASH intermixed with black sand and coal ash, trace brick, glass, slag
و				"0,9
œ			0.0	Firm red-brown moist m-f SAND, some silt, little gravel, few cobbles, trace organic
10			0.0/ 0.0(HS)	9'0" Soft black moist organic SILT
12				11'8" Soft grey-green SILT, some clay, some to little fine sand, trace organic, trace wood

Site Pictures

TP10-10

E. Ashley R. Baker J. Deere 160D excavator Test Pit No. TP10-10 Operator Equipment Technician 3394.0Page2of2Te151 Mt. HopeAvenue, Rochester, NYDay Environmental, Inc., 40 Commercial Street, Rochester, NY516.7WeatherOvercast/snowTe02.19.10Completed02.19.10Op Elevation 516.7 Weather Overcast/snow Date Started 02.19.10 Completed 02.19.10 Backhoe Subcontractor Trec Environmental 02.19.10 Project No. Project Name Client

Soil and Rock Classifications Remarks		"16'1	Refusal at 16'1"		Notes: 1. Sides vertical. 2. Water seepage at 15'1" with running sand conditions.	 Staked locations provided by others. Sample numbers reflect geotechnical sampling only. PID measurements recorded by DAY Environmental. Tar-type odor noted at 9' by DAY Environmental. (HS) = Head space sample.
(mqq) CIIq						
Depth of Sample						
Geotech. Sample Number						
Depth Below Surface	14	16	18	20	22	24



No. TP10-11			ian E. Ashley	r R. Baker	ent J. Deere 160D excavator
Test Pit No.		ster, NY	Technic	Operato	Equipme
of 2	r, NY	nmercial Street, Roches	Overcast/snow	02.18.10	
Page 1	pe Avenue, Rocheste	nmental, Inc., 40 Con	Weather	Completed	Trec Environmental
3394.0	151 Mt. Ho	Day Enviro	516.1	02.18.10	ontractor
Project No.	Project Name	Client	Elevation	Date Started	Backhoe Subco

Depth Below	Geotech. Samula	Depth of	DID	Soil and Rock Classifications
Surface	Number	Sample	(mqq)	Remarks
				TOPSOIL
Я				Firm grey moist CRUSHER-RUN STONE 0'11" FILL: Compact brown moist SAND, some silt, some gravel, trace brick, tile, organic, few pieces slab rock, few cobbles
			0.0	
4				3'8" FILL: Black moist compact ASH with sand, some gravel,
				some slag, cinders, ash, coal, little silt, trace wood, glass, tile, ceramic pieces, metal, shingles, bottles
9				
ω			4.1/ 110(HS)	
10				
			1.2/ 42(HS)	"11'11
12				Medium-soft grey-green moist to wet silty CLAY, little very fine sand, trace marl, wood

Site Pictures

TP10-11

Test Pit No. TP10-11		ester, NY	Technician E. Ashley	Operator R. Baker	Equipment J. Deere 160D excavator
of 2	er, NY	nmercial Street, Roch	Overcast/snow	02.18.10	
Page 2	lope Avenue, Rocheste	onmental, Inc., 40 Co	Weather	Completed	Trec Environmental
3394.0	151 Mt. H	Day Envir	516.1	02.18.10	ontractor
Project No.	Project Name	Client	Elevation	Date Started	Backhoe Subco

Soil and Rock Classifications Remarks			17 ¹⁹ "	Refusal at 17'9"	Notes: 1. Sides vertical. 2. Water seepage/flow at 9'0".	 Staked locations provided by others. Sample numbers reflect geotechnical sampling only. PID measurements recorded by DAY Environmental. Asphalt odor noted 6' to 7' by DAY Environmental. (HS) = Head space sample.
(mqq)		0.4	0.1			
Depth of Sample				5		
Geotech. Sample Number						
Depth Below Surface	14	16	18	20	22	24

Site Lictures	TP10-12			Spoil Pile		02/1
	3394.0 Page 1 of 2 Test Pit No. TP10-12 151 Mt. Hope Avenue, Rochester, NY Day Environmental, Inc., 40 Commercial Street, Rochester, NY Technician E. Ashley 02.18.10 Overcast/snow Technician E. Ashley 02.18.10 Operator R. Baker actor Trec Environmental J. Deere 160D excavator	Soil and Rock Classifications Remarks	TOPSOIL 0'6" 0'6" 0'6" 0'6" 0'6" 0'6" 0'6" 0'6"	FILL: Compact black moist SAND, some silt, some cinders and coal fragments 4'8" FILL: Compact black moist SAND, some gravel, little to some coal, cinders, slag, concrete, brick, ash Large concrete piece noted at south end of test pit at 5'3"	10'0"	Soft to medium grey-black silty CLAY, little medium-fine sand, trace marl, wood
-	Page 1 ope Avenue, Rochester onmental, Inc., 40 Con Weather Completed Trec Environmental	(mqq)	0.1		0.0/	
	3394.0 Page 1 151 Mt. Hope Avenue, Rochester, N Day Environmental, Inc., 40 Comme 516.1 Weather 02.18.10 Completed 02.18.10 Trec Environmental	Depth of Sample				
		Geotech. Sample Number				
	Project No. Project Name Client Elevation Date Started Backhoe Subc	Depth Below Surface	м	4 0	œ	10

Site Pictures

Test Pit Log

Foundation Design, P.C.

12

					excavator
TP10-12			E. Ashley	R. Baker	J. Deere 160D
Test Pit No.		, NY	Technician	Operator	Equipment
of 2		ial Street, Rochester,	cast/snow	8.10	
age 2	iue, Rochester, NY	, Inc., 40 Commerci	Neather Over	Completed 02.18.1	ironmental
3394.0	151 Mt. Hope Aver	Day Environmental	516.1	02.18.10	tractor Trec Env
Project No.	Project Name	Client	Elevation	Date Started	Backhoe Subcont

					ator
					0D excava
TP10-13			shley	3aker	. Deere 160
TP			E. A	R. B.	л П
est Pit No.			nician	ator	uipment
Test		NΥ	Tech	Operat	Equip
-		chester,			
2		eet, Ro	Snow		
ď	Υ	ercial Str	vercast/	2.18.10	
Ţ	iester, N	Comme	•	ed 0	la
age	ie, Roch	Inc., 40	leather	omplet	onment
ã	e Avenu	nental,	3	ŏ	ec Envir
0.	Mt. Hop	Environ	2	2.18.10	
3394.0	151	Day	516.6	02.1	ntracto
40.	Vame		c	Inted	Subco
roject l	roject	lient	levatio	ate Sta	ackhoe
2	4	σ	ш	Õ	ä

Depth	Geotech.	Depth	DIG	Soil and Rock Classifications
below Surface	sample Number	or Sample	(mqq)	Remarks
				TOPSOIL 0'6"
			0	Compact grey moist CRUSHER-RUN STONE 1'0" FILL: Compact brown moist SILT, SAND and GRAVEL, little
2			0.0	slab rock, trace to little concrete pleces, trace brick, rebar, wire. organic. plastic
				Steel H-beam noted at southeast corner of test pit at 2'5"
				316"
4				FILL: Compact black moist SAND, some gravel, silt, cinder, ash
				FILL: Firm red-brown moist SILT, some sand, trace clay 5'6" FILL: Firm grey moist ASH, little sand, little gravel
ų			0.0	6'10"
				FILL: Firm black moist to wet SAND, SILT and GRAVEL, trace to little brick, wood pulp, metal strips
œ				8
1			0.0 10.5	
12			0.0/ 0.2(HS)	Soft to medium grey-green moist to wet silty CLAY, little medium-fine sand

Site Pictures

Project No. Project Name Client	3394.0 151 Mt. H Dav Envir	100 Avenue, Rochest	er, NY	2 treat Dochacter	Test Pit No.	TP10-13
Elevation	516.6	Weather	Overcast	L'Snow	Technician	E. Ashlev
Date Started	02.18.10	Completed	02.18.10		Operator	R. Baker
Backhoe Subcontrac	ntractor	Trec Environmental			Equipment	J. Deere 160D excavator

Sample (ppm)



		I	1	1	
TP10-14			E. Ashley	R. Baker	J. Deere 160D excavator
oit No.			ician	tor	ment
Test Pit N		٨Y	Techr	Operato	Equip
1 of 1	tochester, NY	, 40 Commercial Street, Rochester, I	her Overcast/snow	oleted 02.18.10	nental
Page	pe Avenue, F	nmental, Inc.	Weat	Comple	rec Environn
3394.0	151 Mt. Hc	Day Enviro	517.1	02.18.10	ontractor
Project No.	Project Name	Client	Elevation	Date Started	Backhoe Subco

Number Sample Number 0.0 0.0(HS) 0.0((HS))	Depth Bolow	Geotech.	Depth	DID	Soil and Rock Classifications
0.0 0.0(HS) 0.0(HS)	Surface	Number	Sample	(mqq)	Remarks
0.0 0.0(HS) 0.0(HS) 0.0(HS)					TOPSOIL 0'6"
0 ⁰ 0'	2			0.0	FILL: Compact brown moist SILT, some sand, some gravel, little organic, trace brick, wood, concrete, wire, plastic, fabric, cinders, coal, steel cable, few cobbles, slab rock and boulders wood railroad ties at 2'
	Y				"U14
	r			0.0/ 0.0(HS)	Refusal on concrete at 4'0" north end, 5'2" south end
	9				
	ø				
<u>, , , , , , , , , , , , , , , , , , , </u>	ç				Notes: 1. Sides vertical.
-	1				 Dry on completion. Staked locations provided by others. Sample numbers reflect geotechnical sampling only. PID measurements recorded by DAY Environmental. (HS) = Head space sample.

Site Pictures

TP10-14

					D excavator
TP10-15		C .	E. Ashley	R. Baker	J. Deere 160
Test Pit No.		NY	Technician	Operator	Equipment
2		eet, Rochester,	snow		
of	er, NY	mmercial Str	Overcast/	02.18.10	
Page 1	enue, Rochesto	al, Inc., 40 Co	Weather	Completed	nvironmental
3394.0	151 Mt. Hope Ave	Day Environment	516.8	02.18.10	ractor Trec Er
oject No.	oject Name	ent	evation	ite Started	ickhoe Subcont

Sample Option Remarks Number Sample (ppm) TOPSOIL TOPSOIL Compact arey moist CRUSHER-RUN STONE FILL: Compact brown moist SILT and SAND, some gravit Intersection 0.0 FILL: Compact brown moist SILT and SAND, some gravit Intersection 0.0 FILL: Firm black moist SILT, some sand, some gravel, lit organic, trace wood, railroad spike, coal, slag, few cobbit Intersection 2.2 FILL: Firm grey moist ASH Intersection 2.2 FILL: Firm grey moist ASH Intersection D.0 Black moist to wet organic SILT, with numerous wood branches, some sand, some gravel Intersection 0.0 FILL: Firm grey moist ASH	Depth	Geotech.	Depth	DID	Soil and Rock Classifications
TOPSOIL TOPSOIL 0.0 FILL: Compact grey moist CRUSHER-RUN STONE 0.0 TALE: Compact grey moist CRUSHER-RUN STONE 1 Concrete slab noted on west end of test pit at 2'8" 1 0.0 1 D.0 1 D.1 1 D.1	Surface	Sample Number	or Sample	(mqq)	Remarks
O.0 Compact grey moist CRUSHER-RUN STONE 0.0 Tace brick, metal, wood, few cobbles and slab rock 1					
Concrete slab noted on west end of test pit at 2'8" Concrete slab noted on west end of test pit at 2'8" FILL: Firm black moist SILT, some sand, some gravel, lit organic, trace wood, railroad spike, coal, slag, few cobbl 2.2 FILL: Firm grey moist ASH 2.2 Black moist to wet organic SILT with numerous wood branches, some sand and gravel 0.0 52.2 FILL: Firm grey moist ASH	И			0.0	Compact grey moist CRUSHER-RUN STONE 1'1" FILL: Compact brown moist SILT and SAND, some gravel, trace brick, metal, wood, few cobbles and slab rock
0.0 FILL: Firm black moist SILT, some sand, some gravel, lit organic, trace wood, railroad spike, coal, slag, few cobbl 2.2 FILL: Firm grey moist ASH 2.2 Black moist to wet organic SILT with numerous wood 0.0 Black moist to wet organic SILT with numerous wood 1 0.0 1 Black moist to wet organic SILT with numerous wood 1 0.0 1 Soft to medium black-grey-green moist to wet silty CLAY					Concrete slab noted on west end of test pit at 2'8"
0.0 FILL: Firm black moist SILT, some sand, some gravel, lit organic, trace wood, railroad spike, coal, slag, few cobbl 2.2 FILL: Firm grey moist ASH 2.2 Black moist to wet organic SILT with numerous wood branches, some sand and gravel	4			8	
2.2 FILL: Firm grey moist ASH 2.2 Black moist to wet organic SILT with numerous wood branches, some sand and gravel 0.0 Soft to medium black-grey-green moist to wet silty CLAY little very fine sand	ى ب		41	0.0	4.0" FILL: Firm black moist SILT, some sand, some gravel, little organic, trace wood, railroad spike, coal, slag, few cobbles
0.0 Soft to medium black-grey-green moist to wet organic SILT with numerous wood branches, some sand and gravel	00			2.2	6'4" FILL: Firm grey moist ASH
Soft to medium black-grey-green moist to wet silty CLAY little very fine sand	10				Black moist to wet organic SILT with numerous wood branches, some sand and gravel
	12			0.0	20ft to medium black-grey-green moist to wet silty CLAY, little very fine sand

Site Pictures

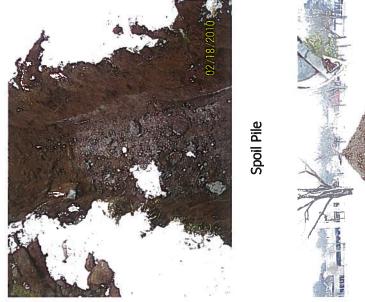
TP10-15

Spoil Pile

5 . G

TP10-15			E. Ashley	R. Baker	 Deere 160D excavator
Test Pit No.		, NY	Technician	Operator	Equipment
of 2	er, NY	mmercial Street, Rochester,	Overcast/snow	02.18.10	
Page 2	pe Avenue, Rocheste	nmental, Inc., 40 Cor	Weather	Completed	rec Environmental
3394.0	151 Mt. Ho	Day Enviro	516.8	02.18.10	ontractor
Project No.	Project Name	Client	Elevation	Date Started	Backhoe Subco

Soil and Rock Classifications Remarks		16'0"	Test pit terminated at 16'0"	2	Notes: 1. Sides vertical.	 Water flowing at 11'. Staked locations provided by others. Sample numbers reflect geotechnical sampling only. PID measurements recorded by DAY Environmental.
(mqq)		0.0				
Depth of Sample						
Geotech. Sample Number						
Depth Below Surface	14	16	8	20	22	



est Pit No. TP10-16			inician E. Ashley	erator R. Baker	uipment J. Deere 160D excavator
Test		٨	Tech	Opei	Equi
of 1	er, NY	mmercial Street, Rochester,	Overcast/snow	02.18.10	
11	sochest	, 1 0 C	her	oleted	nental
Page	Hope Avenue, F	ironmental, Inc.	Weat	Comp	Trec Environn
3394.0	151 Mt.	Day Env	517.1	02.18.1(Intractor
Project No.	Project Name	Client	Elevation	Date Started	Backhoe Subco

Depth Below	Geotech. Samula	Depth of	DID	Soil and Rock Classifications
Surface	Number	Sample	(mqq)	Remarks
2			0.0	TOPSOIL FILL: Compact brown moist SILT, some sand, some gravel, trace brick, plastic, trace organic, trace metal wire, few cobbles and small boulders
4		a	0.0	3'3" CONCRETE SLAB Refusal on concrete at 3'7"
و				Υ,
ω				
10				Notes: 1. Sides vertical.
12				 Dry on completion. Staked locations provided by others. Sample numbers reflect geotechnical sampling only. PID measurements recorded by DAY Environmental.

Site Pictures

TP10-16

lo. TP10-17			in E. Ashley	R. Baker	nt J. Deere 160D excavator
Test Pit No.		, NΥ	Technicia	Operator	Equipmer
of 1	NY	nercial Street, Rochester	Overcast/snow	02.18.10	
Page 1	pe Avenue, Rochester,	nmental, Inc., 40 Comr	Weather	Completed	Frec Environmental
3394.0	151 Mt. Ho	Day Enviro	517.1	02.18.10	ntractor
Project No.	Project Name	Client	Elevation	Date Started	Backhoe Subcol

Soil and Rock Classifications	Remarks	TOPSOIL 0'6" PILL: Compact brown moist SILT, SAND and GRAVEL, trace organic, brick, wood, plastic, few cobbles	2'0"	Refusal on concrete at 2'0"			Notes: 1. Sides vertical.	 Dry on completion. Staked locations provided by others. Sample numbers reflect geotechnical sampling only. PID measurements recorded by DAY Environmental.
PID	(mqq)	0.0						
Depth	Sample						ä	
Geotech. Samule	Number							
Depth	Surface		7	4	9	ω	9	12

Site Pictures

TP10-17

TP10-18			E. Ashley	R. Baker	J. Deere 160D excavator
Test Pit No.		NΥ	Technician	Operator	Equipment
Page 1 of 1	venue, Rochester, NY	ntal, Inc., 40 Commercial Street, Rochester,	Weather Overcast/snow	Completed 02.18.10	Environmental
act No. 3394.0	ect Name 151 Mt. Hope A	Day Environmer	ation 517.0	Started 02.18.10	hoe Subcontractor Trec
Project No.	Project Name	Client	Elevation	Date Started	Backhoe Subcon

Depth Bolow	Geotech.	Depth	PID	Soil and Rock Classifications
Surface	Number	Sample	(mqq)	Remarks
				TOPSOIL
7			0.0	FILL: Compact brown moist SILT, SAND and GRAVEL, trace brick, trace coal, few cobbles and small boulders,
4			0.0	4'0"
				Refusal on concrete slab at 4'0"
9				
8				
				ž.
10				1. Sides vertical.
				 Dry on completion. Staked locations provided by others. Sample numbers reflect geotechnical sampling only. PID measurements recorded by DAY Environmental.
12				

Site Pictures

TP10-18

I					<u>_</u>]
					excavato
61			λ.	-	Deere 160D (
TP10-19			E. Ashley	R. Baker	J. Deer
ó			cian	or	nent
Test Pit N		١٢	Techni	Operato	Equipmer
		hester, N			
2		eet, Roc	Mons		
of	۲	ercial Str	vercast/	2.18.10	
1	nester, N) Comme	0	ed 0	म
age	ue, Roch	, Inc., 4(Veathei	Complet	ironmen
•	pe Aven	nmental,	>	0	rec Envi
3394.0	L Mt. Ho	V Enviro	8.0	18.10	ro L
335	151	Day	516	02.	contract
t No.	t Name		u	tarted	oe Subc
Project	Project	Client	Elevati	Date S	Backho

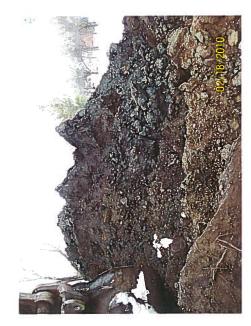
Below Sam Surface Num 2	Sample Number	of		
7	╞	Sample	(mqq)	Remarks
7				TOPSOIL
			0.0	FILL: Compact brown moist SILT, SAND and GRAVEL, little cobbles, trace brick, coal
				"0;E
4				FILL: Compact black moist SAND, liftle silt, slag, gravel 4'1"
			0.0	FILL: Compact brown-black SAND, SILT and GRAVEL, trace to little wood, brick, organic, few cobbles and slab rock
6				
			0.0/ 0.0(HS)	6'0" FILL: Firm grey moist ASH, little sand, trace ceramic, metal, wood
ω				8'2" Soft to medium black to grey-green silty CLAY, little medium- fine sand, trace wood
10				
12				Grades to some sand

Site Pictures

TP10-19

E. Ashley R. Baker J. Deere 160D excavator Test Pit No. TP10-19 Operator Equipment Technician Project No.3394.0Page2of2TeProject Name151 Mt. Hope Avenue, Rochester, NYClientDay Environmental, Inc., 40 Commercial Street, Rochester, NYClientDay Environmental, Inc., 40 Commercial Street, Rochester, NYDate Started02.18.10OiDate Started02.18.10OiBackhoe SubcontractorTree EnvironmentalEnvironmental

Soil and Rock Classifications	Remarks				Loose saturated sand pockets noted	Refusal at 171"		Notes: 1. Sides vertical.	 Water seepage/flow at 7'6". Staked locations provided by others. Sample numbers reflect geotechnical sampling only. PID measurements recorded by DAY Environmental. (HS) = Head space sample.
DIG	(mqq)	0.0							
Depth of	Sample								
Geotech. Sample	Number								
Depth Below	Surface		14	16		18	20	2	24


Test Pit No. TP10-20			inician E. Ashley	perator R. Baker	luipment J. Deere 160D excavator
Test		NΥ	Tech	Opei	Equi
of 2	er, NY	mmercial Street, Rochester,	Overcast/snow	02.18.10	
1	ocheste	40 Cor	ler	eted	ental
Page	lope Avenue, Rc	onmental, Inc.	Weath	Complet	Trec Environme
3394.0	151 Mt. F	Day Envil	516.9	02.18.10	Intractor
Project No.	Project Name	Client	Elevation	Date Started	Backhoe Subco

Depth	Geotech.	Depth	PID	Soil and Rock Classifications
Below Surface	Sample Number	of Sample	(mqq)	Remarks
				TOPSOIL
7				0'10" Broken CONCRETE SLAB FILL: Compact black moist SAND and GRAVEL, little silt, ash,
			0.0	
4				3'6" 3'6" 4'2" 4'2" 4'2"
				Ity SAND, some gravel,
Q				FILL: Grey moist ASH, trace to little cinders, coal fragments 5'11"
			0.0/ 0.0(HS)	FILL: Compact black-dark grey moist SAND, some silt, some gravel, trace organic, brick
00			0.0	Medium-soft Compact black moist SILT, some clay, little fine sand, trace organic
10	S-1	10'0"		
				Grades to grey-green, moist to wet below 11'4"
77				

Site Pictures

TP10-20

ect No. 3394.0 Page 2 of 2 ect Name 151 Mt. Hope Avenue, Rochester, NY tt Day Environmental, Inc., 40 Commercial Street, Roches ation 516.9 Weather Overcast/snow started 02.18.10 Completed 02.18.10	Test Pit No. Ler, NY Dechnician Operator	TP10-20 E. Ashley R. Baker
choe Subcontractor Trec Environmental	Equipment	 Deere 160D excavator

Depth Below	Geotech. Sample	Depth	DID	Soil and Rock Classifications
Surface	Number	Sample	(mqq)	Remarks
14			0.0	
16	2			15'6" Test pit terminated at 15'6"
18				-
20				
22				Noces: 1. Sides vertical. 2. Dry on completion. 3. Grey pvc conduit/wires encountered/broken at 1'6"(RGE abandoned line) Moved test pit ± 15' east.
24				 Staked locations provided by others. Sample numbers reflect geotechnical sampling only. PID measurements recorded by DAY Environmental. (HS) = Head space sample.

					b
) excava
-21			ley	ker	ere 160D
TP10-21			E. Ashley	R. Baker	J. Dec
bit No.			ician	itor	ment
Test Pit N		٨	Techr	Operato	Equip
		chester,			
2		eet, Roo	snow		
of	۲	ercial Sti	vercast/sn	2.19.10	
1	nester, N) Comme	0	io pa	la
age	ue, Roch	Inc., 4(/eather	omplet	ronment
6	be Aveni	imental,	2	С 	rec Envi
4.0	Mt. Hop	Environ	.1	02.19.10	or I
3394.0	151	Day F	517.1	02.1	ontract
No.	Name		Ĕ	arted	e Subci
Project	Project	Client	Elevatio	Date St	Backho

Depth	Geotech.	Depth	DID	Soil and Rock Classifications
Surface	Number	Sample	(mqq)	Remarks
			0.0	TOPSOIL 0'5" FILL: Firm brown moist SAND, some silt, some gravel, little organic, trace brick, few cobbles
2				
4			0.0	FILL: Firm black moist SAND, some gravel, slag, coal ash, coal fragments and pieces
ف			0.0	Compact red-brown moist SAND, some silt, some , trace wood, ash pockets noist ASH layer, trace to little cinders, coal fragm
			0.0	noted 5'10" Soft black to dark grey moist to wet organic SILT, little sand, trace to little tree limbs
ø				
10				
			0.0	Soft grey-green moist SILT, some clay, little sand, trace wood/organic
12				

Site Pictures

Soil and Rock Classifications Remarks		16'0"	Test pit terminated at 16'0"		Notes: 1. Sides vertical.	 Dry on completion. Staked locations provided by others. Sample numbers reflect geotechnical sampling only. PID measurements recorded by DAY Environmental.
(udd) CIId						
Depth of Sample						
Geotech. Sample Number						
Depth Below Surface	14	16	18	20	22	24

					excavator
TP10-22			E. Ashley	R. Baker	J. Deere 160D
Test Pit No.		NΥ	Technician	Operator	Equipment
2		treet, Rochester,	t/snow	0	
1 of	ester, NY	Commercial S	Overcas	od 02.19.10	10
Page	e Avenue, Roch	nental, Inc., 40	Weather	Complete	ec Environment
3394.0	151 Mt. Hope	Day Environr	517.0	02.19.10	ntractor Tr
Project No.	Project Name	Client	Elevation	Date Started	Backhoe Subco

Depth	Geotech.	Depth	PID	Soil and Rock Classifications
below Surface	Sample Number	Sample	(mqq)	Remarks
			0.0	TOPSOIL 0'5" 0'5" 0'5" FILL: Compact brown moist SAND, some silt, some gravel, trace brick, concrete, tile, organic, few cobbles and slab rock
2				
T			0.0	3'4" FILL: Firm black moist SAND, some gravel, little silt, coal ash,
P				Red 'concrete like' slab noted from 3'6" to 3'11" on west end of test pit 4'10" FILL: Compact red-brown moist SAND, some silt, some
Q				gravel, trace wood, few cobbles
œ			0.0	7'0" FILL: Firm grey-white-black moist ASH with glass, tile, cinders, slag
10				9'5" Soft black moist organic STLT, little organic 10'0"
			0.0	Soft grey-green moist to wet SILT, some clay, little fine sand, trace organic
12				

Site Pictures

TP10-22

TP10-22			. Ashley	. Baker	. Deere 160D excavator
Test Pit No.		, NΥ	Technician	Operator R	Equipment J
of 2	ΝΥ	mercial Street, Rochester	Overcast/snow	02.19.10	
Page 2	pe Avenue, Rochester	nmental, Inc., 40 Com	Weather	Completed	Frec Environmental
3394.0	151 Mt. Hc	Day Enviro	517.0	02.19.10	ontractor _
Project No.	Project Name	Client	Elevation	Date Started	Backhoe Subc

Soil and Rock Classifications Remarks			17'0" Soft red-brown mottled moist SILT, little clay, some fine sand Test pit terminated at 17'8"		Notes: 1. Sides vertical.	 Water seepage at 9'5". Staked locations provided by others. Sample numbers reflect geotechnical sampling only. PID measurements recorded by DAY Environmental.
(wdd) CIId			0.0			
Depth of Sample						
Geotech. Sample Number						
Depth Below Surface	14	16	18	20	22	24

				:	xcavator
TP10-23			E. Ashley	R. Baker	J. Deere 160D e
Test Pit No.		NΥ	Technician	Operator	Equipment
2		eet, Rochester,	snow		
of	er, NY	mmercial Str	Overcast/	02.19.10	
Page 1	pe Avenue, Rochest	nmental, Inc., 40 Co	Weather	Completed	rec Environmental
3394.0	151 Mt. Ho	Day Enviror	515.6	02.19.10	ontractor 1
Project No.	Project Name	Client	Elevation	Date Started	Backhoe Subc

Depth	Geotech.	Depth	DID	Soil and Rock Classifications
Below Surface	Sample Number	of Sample	(mqq)	Remarks
			0.0	TOPSOIL 0'4" FILL: Compact red-brown moist SAND, some silt, some gravel, little cobbles, trace brick, wood, plastic, glass, metal
7				ιτις
			0.0	Firm black moist SAND, some gravel, little silt, trace to little coal, wood, charred wood
4				4'0"
				Compact red-brown moist silty SAND, some gravel
9				5'8" Firm black-grey moist SAND and GRAVEL, few cobbles
8				
			0.0/ 11.2(HS)	Soft black moist to wet organic SILT
10				Soft grey-green moist SILT, some clay, little organic, little fine sand
12				

Site Pictures

TP10-23

Deere 160D excavator TP10-23 E. Ashley R. Baker Test Pit No. Operator Equipment Technician Project No.3394.0Page2of2TeProject Name151 Mt. Hope Avenue, Rochester, NYProject Name151 Mt. Hope Avenue, Rochester, NYClientDay Environmental, Inc., 40 Commercial Street, Rochester, NYElevation515.6Date Started02.19.10Date Started02.19.10Backhoe SubcontractorTree EnvironmentalElevationTree Environmental

Depth Below	Geotech. Sample	Depth of	DId	Soil and Rock Classifications
Surface	Number	Sample	(mqq)	Remarks
V.			0.0	13'5" Test pit terminated at 13'5"
9				
18				
20				
5				Notes: 1. Sides vertical. 2. Water flow at 8'0". Petroleum odor note by DAY Environmental.
24				 Staked locations provided by others. Sample numbers reflect geotechnical sampling only. PID measurements recorded by DAY Environmental. (HS) = Head space sample.

APPENDIX C

SOIL DESCRIPTIONS

COHESIVE SOIL

Very fine grained soils. Plastic soils that can be rolled into a thin thread if moist. Clays and silty clays show cohesion.

NON-COHESIVE SOIL

Soils composed of silt, sand and gravel. showing no cohesion or very slight cohesion

DESCRIPTION	STP-BLOWS/FOOT	* ^	DESCRIPTION	STP-BLOWS/FOOT
Very Soft Soft Medium Stiff Hard	0-2 3-5 6-15 16-25 26 or more	:	Loose Firm Compact Dense Very Dense	0-10- 11-25 26-40 41-50 51 or more
SOIL COMPOSIT	1.0.1			

SOIL COMPOSITION	DESCRIPTION	ESTIMATED PERCENTAGE	23
	and some little – trace	50 30-49 11-29 0-10	2
MOISTURE CONDITIONS	Dry Damp Moist W	at Someral	

Dry, Damp, Moist, Wet, Saturated Groundwater measured in the boring or test pit may not have reached equilibrium

2011					
SOIL STRATA:	TERM varved	DESCRIPTION Horizontal uniform layers or seams of so			
	layer	Soil deposit more than 6" thick			
	seam	Soil deposit less than 6" thick			
	parting	Soil deposit less than 1/8" thick			

EXPLANATION OF CLASSIFICATIONS AND TERMS

Boulder Cobble Gravel - coar - med - fine Sand - coar - med - fine Silt and Clay	ium 3/8 to 1 inch 4.76mm to 3/8 inch se 2.00mm to 4.76mm ium 0.42mm to 2.00mm	#10 sieve #40 sieve #200 sieve
Standard Pener Split Spoon Sa Refusal:	impler: Typically a 2-foot long, two down the tube lengt Depth in the boring whe	quired to drive a split spoon sampler into the soil with a 140 30 inches. The number of blows required for each 6-inches of The number of blows required for the second and third 6-inches the penetration resistance, or the "N" value 2-inch diameter hollow steel tube that breaks apart or splits in h. re more than 100 blows per six-inches are needed to advance the
_	sample spoon.	the second per six-inclies are needed to advance the

Test Boring No.:	B04-1
Job No	4442
Page:	1 OF 1
Report Date:	2/20/2004

 Project:
 TIME WARNER, MOUNT HOPE AVE.ROCHESTER

 Client:
 FOUNDATION DESIGN, PC

 Elevation:
 576-8
 Geologist:

 Water Level - Casing In:
 Driller:
 S. KAHN

 Below Surface - Casing Out:
 Start:
 2/20/2004

 Completed:
 2/20/2004

Seasonal and climatic changes may alter observed water levels.

		Blo	ows on	Samp	ler					
	С					N		Sample	Soil and Rock Information	
0		0"/6"		12"/18	18"/24"		No.	depth		
		3	6					¥2	MISC. FILL MATERIAL C/O TOPSOIL, BRICK,	
	\square		1.07	10	13	16	1	0'0"-2'0"	ASH, GLASS, SLAG, SILT, SAND AND GRAVEL	
	\square	14	17	10					MICO SUL MATERIAL MOIST (MOOR NOTER)	
5	\vdash	30	20	16	20	33	2	2'0"-4'0"	MISC. FILL MATERIAL MOIST (WOOD NOTED)	
		- 30	20	17	12	37	3	4'0"-6'0"	MISC. FILL (CONCRETE NOTED)	
		8	7	11	12	- 01		40 00		
	H			6	10	13	4	6'0"-8'0"	MISC. FILL MOIST BLACK	
	H	13	10				10			
10	\square		_	13	7	23	5	8'0"-10'0"	MISC. FILL MOIST	10'0"
		2	2							
				4	6	6	6	10'0"-12'0"	MEDIUM GREEN GREY MOIST ORGANIC SILT	
									LITTLE CLAY, TRACE VF SAND	
45	\vdash									
15		3	2							
	\vdash	3		4	2	6	7	15'0"-17'0"	MEDIUM GREEN GREY SATURATED	
	┝┤		3					130-170		17'6"
	\vdash								(VERY BUMPY FROM 17'6"-19'0")	
20										
		27	30							
				50/5		80/11	8	20'0"-21'5"		
	\Box								SOME C-F GRAVEL, LITTLE SILT	
									AUGERS GRINDING	24'3"
25	5			[AUGER REFUSAL @	243
	\square									
	\vdash							30	BORING TERMINATED @ 24'3"	
	\vdash							(
30	\vdash									
	\vdash								NOTES: ELEVATIONS PROVIDED BY OTHERS	
	H							1	INSTALLED 2" PVC OBSERVATION WELL TO 24'0"	
	H							1	WITH 3' STICKUP (10' SCREEN)	
35									1	
		Blows to	2"	Spoon	Statement of the local division of the local	with	140			
N=No.	of	Blows to	Drive	Spoon		with		. Ib. wt	Ea. Blow	

Test Boring No.:	B04-2	
Job No.	4442	
Page:	1 OF 1	
Report Date:	2/23/2004	 5

Project: TIME WARNER, MOUNT HOPE AVE.ROCHESTER											
Client: FOUNDATION DESIGN, PC Elevation: 514.6 Geologist:											
			1.6 Ising In:						S. KAHN		
)) it:					2/23/2004		
Delow	ou			<u>, ul.</u>					2/23/2004		
Seaso	nal	and cli	matic ch	andes i	mav alte	r obs		d water level			
			ows on					······································			
	C					Ň	e e	Sample	Soil and Rock Information		
0	Ĭ	0"/6"	6"/12"	12"/18	18"/24"		No.	depth			
		11	10						MISC. FILL MATERIAL C/O TOPSOIL, CINDERS		
				12	13	22	1	1'0"- 2 '0"	ASH, BRICK, SILT, SAND , GRAVEL ETC.		
		18	18								
_				16	14	34	2	2'0"-4'0"	MISC, FILL MATERIAL MOIST (CONCRETE)		
5		13	10			47			MICO FUL MATERIAL MOIST	6'0"	
		4	3	7	5	17	3	4'0"-6'0"	MISC, FILL MATERIAL MOIST		
	-+	4		3	5	6	4	6'0"-8'0"	MEDIUM GREEN GREY MOIST ORGANIC SILT,		
	+	7	7						LITTLE CLAY		
10	\neg			6	6	13	5	8'0"-10'0"	MEDIUM GREEN GREY MOIST		
						ļ					
15	-+										
15	-+	2	2	2	2	4		13'6"-15'6"	NO RECOVERY		
	-+				~~~~~			100-100	AUGERS GRINDING AND BUMPY FROM 16'6"-18'0"		
						[AUGER REFUSAL @	<u>18'6"</u>	
								RUN # 1	(CORE BLOCKED 6" INTO RUN)	1	
20											
									HIGHLY FRACTURED IN UPPER 4'6" OF BEDROCK		
				ļ					AND UNIFORM CORING AT APPROX. 23'0" TO 29'8"		
			İ			<u> </u>		RQD=50%			
25					<u> </u>				STYLOLITIC FEATURES, SHALEY PARTINGS		
									NOTED.		
						ļ					
20				ļ		 				29'8"	
30		M 19							BORING TERMINATED @ 29'8"		
	\vdash										
	+				<u> </u>	<u> </u>			NOTES: CORED WITH SERIES "M" DOUBLE TUBE		
								В	BARREL AND DIAMOND BIT		
35									ELEVATIONS PROVIDED BY OTHERS		
		Blows to		Spoon	- Contraction of the local division of the l	-	140		<u>)" </u>		
N=No.	of E	Blows to	Drive	Spoon		with		lb. wt			

Test Boring No.:	B04-3
Job No	4442
Page:	1 OF 1
Report Date:	2/20/2004

11'0"

12'0"

15'6"

25'6"

		NOU! I		IX 144	1.44					
									Report Date: 2/20/2004	
Proje	ct:	TIME V	VARNER	, MOUI	NT HOP	PE A	/E.R(OCHESTER		
Client: FOUNDATION DESIGN, PC										
Eleva	Itio	n: 51.	5,7		•			Geologist:		
			asing In:						S. KAHN	
			Casing (2/20/2004	
Completed: 2/20/2004										
Seas	ona	al and cli	imatic ch	anges i	may alte	er obs	erve	d water leve		
	T		ows on			1		<u>u nator 1010</u>		
			0003 011	oamp				S	Cail and Book Information	
				1		N		Sample	Soil and Rock Information	
0 🛫		0"/6"		12"/18	18"/24"		No.	depth		
		4	7						MISC. FILL MATERIAL C/O TOPSOIL, BRICK,	
				10	8	17	1	0'0"-2'0"	ASH, GLASS, SILT, SAND AND GRAVEL	
		23	16							
_				13	21	29	2	2'0"-4'0"	MISC. FILL MATERIAL C/O BRICK, CONCRETE	
5		23	10			3			ASH, GLASS, SILT, SAND AND GRAVEL	
			ļ	8	7	18	3	4'0"-6'0"	MISC. FILL (ODOR NOTED)	
		2	2							
			<u> </u>	2	3	4	4	6'0"-8'0"	MISC. FILL SATURATED (MOSTLY ASH)	
4.5		3	2						MOOD STUL ONTIDATED (OONODETE MOOD CLASS)	
10				2	2	4	5	8'0"-10'0"	MISC. FILL SATURATED (CONCRETE, WOOD, GLASS)	
		1	1							
				3	5	4	6	10'0"-12'0"	SOFT GREEN GREY SATURATED CLAYEY ORGANIC	
		6	7							
45	\vdash		<u> </u>	8	6	15	7	12'0"-14'0"	FIRM GREY GREEN WET SILT, LITTLE VERY FINE	
15		2	2		10			4 4101 4 0101		
			ļ	2	18	4	8	14'0"-16'0"	LOOSE GREEN GREY SATURATED (WOOD AND	
		22	18		477			401011 401011	MARL NOTED) DENSE RED BROWN WET F-VF SAND, SOME C-F	
			40	23	17	41	9	16'0"-18'0"	GRAVEL, LITTLE SILT	
20		13	13	25	30	38	10	100" 200"	COMPACT RED BROWN MOIST	
20		05		25	30	30	10	100-200		
	H	35	25	37	30	62	11	2010" 2210"	VERY DENSE RED BROWN MOIST	
	Н	37	57	3/	30	94	12		VERY DENSE RED BROWN MOIST	
	Н	- 31	57			94	12	220-235	AUGERS GRINDING	
25	Н					 				
	+								AUGER REFUSAL @	
	Н									
	\vdash						<u> </u>		BORING TERMINATED @ 25'6"	
	Н						1			
30	Н		· · ·					ł		
								1	NOTES: ELEVATIONS PROVIDED BY OTHERS	
	\vdash						<u> </u>	1		
	H		<u> </u>				<u> </u>	1		
			<u> </u>	1		<u> </u>	†	1		
35			<u> </u>	1		1		1		
	of	Blows to	2"	Spoon	12"	with	140	3()"Ea. Blow	
N=No.	of	Blows to	Drive	Spoon		with		lb. wt	Ea. Blow	
						-	_	-		

B04-4
4442
1 OF 1
2/19/2004

Project: TIME WARNER, MOUNT HOPE AVE.ROCHESTER Client: FOUNDATION DESIGN, PC										
				DESIG	N, PC					
		<u>1: 515</u>		-				Geologist:		
			asing In:		<u> </u>				S. KAHN	
Below	5	urrace -	Casing (JUC					2/19/2004	
Soass			matic ob	20000	may alto	r obc		d water leve		×
Jeast										
		BIC	ows on	Samp	ner				Opil and Deals Information	
	C			1		Ν	<u> </u>	Sample	Soil and Rock Information	
0		0"/6"	1	12"/18	18"/24"		No.	depth		
		25	39			8			MISC. FILL MATERIAL C/O TOPSOIL, BRICK,	
			<u> </u>	14	10	53	1	0'0"-2'0"	ASH, GLASS, SLAG, CONCRETE SILT, SAND AND GRAVEL	
		6	7	15	50/1	22	2	2'0"-3'7"	MISC. FILL MATERIAL MOIST	
5		12	9	15	50/1		<u></u>	20-37		
		144		6	7	15	3	4'0"-6'0"	MISC. FILL MATERIAL MOIST	
		6	5	<u> </u>	· · · ·		<u> </u>			6'6"
	-			7	7	12	4	6'0"-8'0"	MEDIUM GREEN GREY MOIST ORGANIC SILT,	
		2	4						LITTLE CLAY, TRAVE VF SAND	
10				4	8	8	5	8'0"-10'0"	MEDIUM GREEN GREY MOIST	
										4 010/1
		_								12'0"
45		1	2	<u> </u>			6	42101 1510	LOOSE GREEN GREY WET TO SATURATED SILT,	
15				2	2	4	0	130-150	AND VF SAND	
			ļ							
				<u> </u>						
		2	2	<u> </u>						<u>19'0"</u>
20				8		10	7	18'6"-20'0"	LOOSE GREY SATURATED M-VF SAND, SOME	
		27		1			Ì		ORGANICS, LITTLE SILT	19'8"
									LOOSE GREY SATURATED ROCK FRAGMENTS	0414.08
							ļ		AUGER REFUSAL @	21'10"
~ -				ļ					BORING TERMINATED @ 21'10"	
25				ļ			 		BORING ICRIMINATED @ 2110	
									NOTES: ELEVATIONS PROVIDED BY OTHERS	
				<u> </u>						
30				<u> </u>		<u> </u>				
						1			1	
		8								
							ļ			
35	ليا				40"	11.141	140		0"Ea. Blow	
		Blows to		Spoon		-	140	 Ib. wt		
N=NO.	UT	Blows to	Drive	Spoon		with		· · ·		

Test Boring No.:	B04-5	
Job No	4442	
Page:	1 OF 1	
Report Date:	2/19/2004	

Project: TIME WARNER, MOUNT HOPE AVE. ROCHESTER

Client:	FOUNDATION D	DESIGN, PC
Elevation	576.9	
Water Le	vel - Casing In:	10'0"
Below Su	Irface - Casing <u>O</u>	ut:

Geologist: Driller: S. KAHN Start: 2/19/2004 Completed: 2/20/2004

Seasonal and climatic changes may alter observed water levels.

		Blows on Sampler								
C		0"/6" 6"/12" 12"/18 18"/24"			Ν	_	Sample	Soil and Rock Information		
0		0"/6"		12"/18	18"/24"		No.	depth		1'6"
		5	6							10
				7	7	13	1	0'0"-2'0"	MISC. FILL MATERIAL C/O ASH, CINDERS, BRICK	
1									SILT, SAND AND GRAVEL	
_									(HEAVY FILLS- GRINDING)	
5		13	8						ANDO SUL MATERIAL MOUST CONCRETE (SLAG)	
				8	7	16	2	4'0"-6'0"	MISC. FILL MATERIAL MOIST(CONCRETE / SLAG)	
		7	8						MIDD FILL MATERIAL MOJET (MOOR)	
1				6	4	14	3	6'0"-8'0"	MISC. FILL MATERIAL MOIST(WOOD)	
40		2	1		3	3	4	8'0"-10'0"	FILL MATERIAL SATURATED (ODOR NOTED)	
10				2	3	3	4	80-100		
		1	2					401011 401011	NO RECOVERY (SOUPY)	12'0"
				1	2	3		10.012.0.	LOOSE BLACK SATURATED SILT, TRACE MARL	13'0"
		1	2			-		401011 44101	LOOSE GREEN GREY SATURATED SILT, THACK MARKE	100
45		1.1.11		1	3	3	5	120-140	VERY FINE SAND	
15										
										16'6"
						1000				100
		40				<u> </u>				
20		42	22	27		49	6	18'6"-20'0"	DENSE RED BROWN SATURATED F-VF SAND AND	
20		27	l	21		49	U	100 200	C-F GRAVEL, LITTLE SILT & COBBLE FRAGMENTS	
		21								
									(VERY BUMPY)	
					<u> </u>					
25		27	52			79	7	23'6"-24'6"	VERY DENSE RED BROWN MOIST	
2.5		21				10	· · · ·	RUN#1	AUGER REFUSAL @	25'6"
	\vdash								MEDIUM HARD GREY DOLOMITIC LIMESTONE	
				 					(HIGHLY FRACTURED ZONE FROM 27'-28'6")	
2	Н				 				STYLOLITIC FEATURES, SHALEY PARTINGS	
30	\vdash							RUN # 2	AND VUGGS NOTED, RUN # 3 SLIGHTLY FRACTURED	
00								1	· ·	
8	Н							RUN#3	UPPER 3' OF BEDROCK REGIME	
	Η		 							
	Н								BARREL AND DIAMOND BIT	
35	\vdash	-					-	RQD=66%		
	of	Blows to	2"	Spoon	12"	with	140		"Ea. Blow BORING TERMINATED	@ 35'6"
		Blows to		Spoon		with	-		Ea. Blow	

SOIL DESCRIPTIONS

COHESIVE SOIL

NON-COHESIVE SOIL

Very fine grained soils. Plastic soils that can be rolled into a thin thread if moist. Clays and silty clays show cohesion.

Soils composed of silt, sand and gravel,

showing no cohesion or very slight cohesion

DESCRIPTION

Very Soft	Extrude between fingers when squeezed
Soft	Molded by light finger pressure
Medium	Molded by strong finger pressure
Stiff	Indented by thumb with effort
Hard	Indented by thumb nail with difficulty

DESCRIPTION

Loose Firm Compact Dense Very Dense

SOIL COMPOSITION	DESCRIPTION and some little trace	ESTIMATED PERCENTAGE 50 30-49 11-29 0-10
MOISTURE CONDITIONS	Dry, Damp, Moist, Wet, S Groundwater measured ir equilibrium	Saturated I the boring or test pit may not have reached
<u>SOIL STRATA</u> :	<u>TERM</u> layer seam parting varved	DESCRIPTION Soil deposit more than 6" thick Soil deposit less than 6" thick Soil deposit less than 1/8" thick Horizontal uniform layers or seams of soil

GRAIN SIZE

MATERIAL

Boulder		Larger than 12 inches			
Cobble		3 inches to 12 inches			
Gravel	- coarse	1 inch to 3 inches			
	- medium	3/8 inch to 1 inch			
	- fine	No. 4 to 3/8 inch			
Sand	- coarse	No. 10 to No. 4			
	- medium	No. 40 to No. 10			
	- fine	No. 200 to No. 40			
Silt and	Clay	Less than No. 200			

SIEVE SIZE

Project No.	2746.0	Page 1	of 1	Test Pit No.	
Project Name	Time Warner Cable	Expansion, 151	Mt. Hope Boulevar	d, Rochester, Ne	w York
Client	Time-Warner Cable c	o SWBR Archite	cts, P.C., 387 East Ma	in St., Eastman Pla	ce, Rochester, NY
Elevation	516.1	Weather	cloudy, 28°	Technician	E. Ashley
Date Started	2-24-04	Completed	2-24-04	Operator	Ken
Backhoe Subco	ontractor K.W. Fe	nnell Excavating	3	Equipment	Cat 318 Excavator
		8			

Depth		Depth	Soil and Rock Classifications
Below	Sample	of	Remarks
Surface	Number	Sample	Firm brown moist TOPSOIL, trace wood, concrete, brick, 2-pieces of slab rock to 2' x 1' x 1' (FILL)
2			
			2'11" Loose to firm black moist ASH, trace wood, brick, wire, 1 boulder to 2' in diameter (FILL)
4		s. 3	
6			
		di.	
8			
			8'8"8'8"
10			Loose to in migrey wet OKCANIC SIET
	¹		12'5"
12			Test pit terminated at 12'5"
14			 Notes: 1. Sides vertical. 2. Water was flowing at 9'2". 3. Elevations provided by F.D.P.C. using a finished floor elevation of as the benchmark.

Project No.	2746.0	Page 1	of 2	Test Pit No.		
Project Name	vard, Rochester, Ne	ew York				
Client Time-Warner Cable c/o SWBR Architects, P.C., 387 East Main St., Eastman Place, Rochester, NY						
Elevation	517.4	Weather	cloudy, 28°	Technician	E. Ashley	
Date Started	2-24-04	Completed	2-24-04	Operator	Ken	
Backhoe Subco	ontractor K.W. F	Equipment	Cat 318 Excavator			

Surface Number Sample Remarks Firm brown moist TOPSOIL, little silt, little gravel, trace brick, file, concrete, few cobbles, few boulders to 18" in diameter (FILL) Pocket of crusher-run stone at the north end of the test pit from 1' to 2'6" 2	Depth		Depth	Soil and Rock Classifications
2 Firm brown moist TOPSOIL, little silt, little gravel, trace brick, tile, concrete, few cobbles, few boulders to 18" in diameter (FILL) Pocket of crusher-run stone at the north end of the test pit from 1' to 2'6" 4 Loose black moist ASH (FILL) 6 S 6 Firm black moist ASH, trace to little wood, metal, glass, brick, few cobble 8 Ioose to firm grey-black mottled wet ORGANIC SILT, some sand	Below	Sample	0f Sample	Remarks
4	Surface	Number	Sample	Firm brown moist TOPSOIL, little silt, little gravel, trace brick, tile, concrete, few cobbles, few boulders to 18" in diameter (FILL)
4 Loose black moist ASH (FILL) 6	2	8		
6	4			
0	ć			Compact brown moist SAND, some silt, some gravel, few cobbles (FILL)
10 Image: Imag	0			6'5" Firm black moist ASH, trace to little wood, metal, glass, brick, few cobbles
Loose to firm grey-black mottled wet ORGANIC SILT, some sand	8			
	10			10'6"
	12			
14	14		e.	Test pit terminated at 13'4"

Project No.	2746.0	Page 2	of 2	Test Pit No.		
Project Name	Time Warner Cable	Expansion, 151	Mt. Hope Bou	levard, Rochester, Ne	ew York	
Client Time-Warner Cable c/o SWBR Architects, P.C., 387 East Main St., Eastman Place, Rochester, N						
Elevation	517.4	Weather	cloudy, 28°	Technician	E. Ashley	
Date Started	2-24-04	Completed	2-24-04	Operator	Ken	
Backhoe Subc	ontractor K.W. Fe	actor K.W. Fennell Excavating			Cat 318 Excavator	

Depth Below	Sample	Depth of	Soil and Rock Classifications
Surface	Number	Sample	Remarks
16			a 5.
			40
18			
20			2
22			
24			
26		27	
28			 Notes: Sides vertical. Water encountered at 11'7". Water level at 12'8" after 15 min. 2" diameter steel pipe encountered at the south end of the test pit at 4'. Elevations provided by F.D.P.C. using a finished floor elevation of as the benchmark.

Test Pit Log

Project No.	2746.0		of _1	Test Pit No.	
Project Name	Time Warner Cable	Expansion, 151	Mt. Hope Boulevar	d, Rochester, Ne	w York
Client	Time-Warner Cable of	:/o SWBR Archite	ects, P.C., 387 East Mai	n St., Eastman Pla	ice, Rochester, NY
Elevation	516.2	Weather	cloudy, 28°	Technician	E. Ashley
Date Started	2-24-04	Completed	2-24-04	Operator	Ken
Backhoe Subco	ontractor K.W. Fe	ennell Excavatin	g	Equipment	Cat 318 Excavator

Depth		Depth	Soil and Rock Classifications	
Below Surface	Sample Number	of Sample	Remarks	
			Compact brown moist SILT, some sand, some gravel, trace brick, few pi of concrete to 2' x 2' x 10" (FILL)	ieces
2				
				_3'0"
4			Firm black moist ASH	40
	2		Compact brown moist SILT, little sand, little gravel (FILL)	4'0' 4'6'
			Firm black moist ASH, trace metal, slag, brick, gravel	
6				
0				
8				
10				10'
			Loose to firm grey-black moist ORGANIC SILT, little fine sand	10.
				11'
12			Test pit terminated at 11'0"	
			 Notes: 1. Sides vertical. 2. Dry on completion. 3. Elevations provided by F.D.P.C. using a finished floor elevation of the benchmark. 	f as
14			the benchinark.	

Test Pit Log

Project No.	2746.0	Page 1	of 2	Test Pit No.	TP04-4
Project Name	Time Warner Cable	Expansion, 151	Mt. Hope Boule	vard, Rochester, Ne	w York
Client	Time-Warner Cable c/	o SWBR Archite	cts, P.C., 387 East 1	Main St., Eastman Pla	ce, Rochester, NY
Elevation	514.5	Weather	cloudy, 28°	Technician	E. Ashley
Date Started	2-24-04	Completed	2-24-04	Operator	Ken
Backhoe Subco	ontractor K.W. Fe	Equipment	Cat 318 Excavator		

Depth	Samela	Depth	Soil and Rock Classifications
Below Surface	Sample Number	of Sample	Remarks
			TOPSOIL
			1'0"
			Firm brown moist SILT, some topsoil, some sand, little gravel, trace brick, ash, few cobbles, few boulders
2			
4		-	
6			6'0"
			Loose to firm grey-black moist to wet ORGANIC SILT with organic layers
8			
10			
5			
12			4
14			

Test Pit Log

-Project No.	2746.0	Page 2	of 2	Test Pit No.	
Project Name	Time Warner Cable	Expansion, 151	Mt. Hope Bouley	vard, Rochester, No	ew York
Client	Time-Warner Cable c/	o SWBR Archite	cts, P.C., 387 East N	vlain St., Eastman Pl	ace, Rochester, NY
Elevation	514.5	Weather	cloudy, 28°	Technician	E. Ashley
Date Started	2-24-04	Completed	2-24-04	Operator	Ken
Backhoe Subco	ontractor K.W. Fe	Equipment	Cat 318 Excavator		

Depth		Depth	Soil and Rock Classifications	
Below Surface	Sample Number	of Sample	Remarks	
Guirace	Trumber		14'0	'n
	20		Test pit terminated at 14'0"	
16				
	9 <u>9</u>			
18				
			4	
20				
22			4	
24				
	11 11		1	
26				
			Notes: 1. Sides vertical.	
			 Dry on completion. Elevations provided by F.D.P.C. using a finished floor elevation of a 	is
			3. Elevations provided by F.D.P.C. using a finished field elevation of a the benchmark.	
28				

44B State Street • Holley, New York 14470 Ph: (585) 638-0134 • Fax: (585) 638-0135

Client: Foundation Design 335 Colfax Street Rochester, NY 14606 Project: Time Warner Cable (#2746.0)

Date: 3/4/04 Project No.: 04-128 Report No.: 215

Sample Location: (Sampled by Client)

Dear Mr. Netzband:

Attached are the results of laboratory tests completed by our representative on 3/2/04 for the above referenced project. The samples were provided by Foundation Design and delivered to our representative on 3/4/04.

Samples were logged in, stored and tested, consistent with applicable ASTM standards. All samples were labeled by your office and designations are noted in the attachments. Any special conditions, procedures or irregularities noted during laboratory analysis are listed below.

Sample B04-1, S-2 was reduced in the laboratory by the quartering method prior to analysis.

Basic Foundations appreciates the opportunity to do business with you. Our goal is to provide outstanding service in a timely fashion. If you have any questions, need additional information or if we can be of further assistance in any manner, please do not hesitate to call.

Sincerely,

BASIC FOUNDATIONS, INC.

William Kernan President

Attachments: Table 1 – Water Content Table 2 – Organic Content Figure 1 – Particle Size Distribution

This report and/or enclosed test data is the confidential property of the client to whom it is addressed and pertains to the specific process and/or material evaluated. As such, information contained herein shall not be reproduced in part or full and/or any part thereof be disclosed without Basic Foundation, Inc.'s written authorization.

Basic Foundations, Inc. Project Number 04-128 Report Number 215

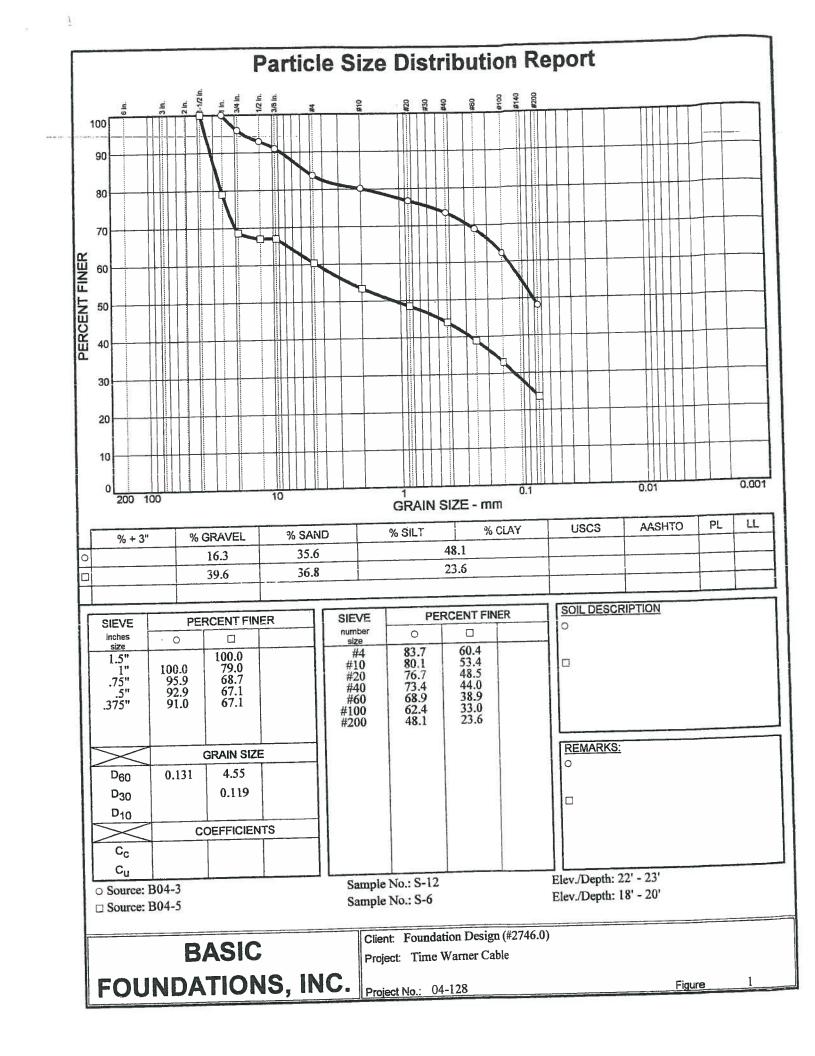
1115

Table 1 Water Content

Time Warner Cable

Source	Sample	Depth	Water Content (%)
B04-3 B04-5	S-12 S-6	22' - 23' 18' - 20'	8.9 9.3
31			

Table 2 Organic Content


Time Warner Cable

Source	Sample	Depth	Ash Content (%)	Organic Content (%)	Moisture Content (%)
B04-1 B04-1 B04-1 B04-2 B04-2 B04-5	S-2 S-5 S-7 S-5 S-5 S-5 S-5	2' - 4' 8' - 10' 15' - 17' 8' - 10' 8' - 10' 12' - 14'	68.6 97.6 96.6 93.4 95.4 99.0	31.4 2.4 3.4 6.6 4.6 1.0	20.6 13.4 25.4 29.7 22.9 17.3

Note:

- All tests performed at 440° Celsius.

Ash & Organics are calculated as a percentage of "oven dried" sample.
Moisture content calculated as percentage of "as-received" sample.

APPENDIX D

BORING NUMBER: TW-1

Project: Mt. Hope Ave., Rochester, NY	Project No: 33749-03	
DAY Representative: D. Peck	Boring Location: See Site Plan	
Drilling Contractor: Marcor of NY	Ground Surface Elevation: NA	Datum: NA
Drilling Rig: Geoprobe 5400	Start Date: 1/08/04	Completion Date: 1/08/04
Sampling Method: Direct Push	Borehole Diameter: 2.0"	Borehole Depth: 20.0'
Completion Method: Backfilled with cuttings	Water Level: Approximately 10.0'	

Depth (feet)	Blows per 0.6	Number	Depth (feet)	% Recovery	N-Value or RQD %	Peetk PID Reading (ppm)	Weth Instatiation Log	Sample Description
1 1 2 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	NA	8- 1	0-4	80	NA	0.0 0.0		Brown and Black Intermixed Silt, Sand and Gravel, little Ash and Cinders, moist (FILL)
1 2 3 4 6 6 7 8 9	NA	8-2	4-8	60	NA	0.0		Gray-Yellow Cinders/Ash, moist (FILL)
10-11-11-11-11-11-11-11-11-11-11-11-11-1	NA	8-3	ð-12	80	NA	0.0 0.0		Gray Silty SAND, wet black, organic odor
12 13 13 14 14 15 17 17 17 17 17 17 17 17 17 17 17 17 17	NA	8-4	12-16	70	NA	0.0 0.0		Tan/Gray fine SAND, little rounded Gravel, wet
16 17 18 19 19	NA	8-5	16-20	80	NA	0.0		
20 21 21 22 23								BOH @ 20.0

File: 3374w1.log

BORING NUMBER: TW-2

 Project: Mt. Hope Ave., Rochester, NY
 Project

 DAY Representative: D. Peck
 Boring

 Drilling Contractor: Marcor of NY
 Ground

 Drilling Rig: Geoprobe 5400
 Start Di

 Sampling Method: Direct Push
 Boreho

 Completion Method: Backfilled with cuttings
 Water L

Project No: 33745-03 Boring Location: See Site Plan Ground Surface Elevation: NA Start Date: 1/06/04 Borehole Diameter: 2.0° Water Level: Approximately 11.0'

Datum: NA Completion Date: 1/08/04 Borehole Depth: 20.0

Depth (feet)	Blows per 0.5	Number	Depth (feet)	% Recovery	N-Vetue or RQD %	Peetk PID Reading (ppm)	Well Installation Log	Sample Description
1 1 2 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	NA	8-1	0-4	80	NA	0.0		Intermixed Silt, Send, Gravel, Bricks, motst (FILL)
1 2 3 4 5 6 7 8 9 10 10	NA	8-2	4-8	70	NA	0.0 0.0		Yellow/Gray Ash and Cinders, moist (FILL)
11	NA	8-3	8-12	60	NA	0.0 0.0		Gray fine SAND, wet
12 13 14 15 16	NA	84	12-16	80	NA	0.0 680 3.3		Approximately 3" seam with black stain and petroleum odor
17 17 18 19 19	NA	8-5	16-20	90	NA	29.8 0.0		running fine SAND at 16-17.5'
20 21 22 23	74w2.log							BOH @ 20.6

Project: Mt. Hope Ave., Rochester, NY DAY Representative: D. Peck Drilling Contractor: Marcor of NY Drilling Rig: Geoprobe 5400 Sampling Method: Direct Push Completion Method: Backfilled with cuttings

BORING NUMBER: TW-3

Project No: 33743-03 Boring Location: See Site Plan Ground Surface Elevation: NA Datu: Start Date: 1/06/04 Com Borehole Diameter: 2.0" Bore Water Level: Approximately 13.0

Datum: NA Completion Date: 1/08/04 Borehole Depth: 20.0*

Depth (feet)	Blows per 0.5	Number	Depth (feet)	% Recovery	N-Value or RQD %	Peatk PID Reading (ppm)	Well Installation Log	Sample Description
1	NA	8-1	0-4	80	NA	0.0 0.0		Reworked Silt, Sand, Gravel, Bricks, moist (FILL)
	NA	8-2	48	80	NA	0.0		littie, intermixed Ash
8 9 10 11 11	NA	8-3	8-12	70	NA	0.0 11.3 18.1		slight petroleum odor
12 13 13 14 14 15 11 15 11 1	NA	8-4	12-16	80	NA	8.7 38.4		Tan/Gray fine SAND, wet, slight petroleum odor 8" rock fragments (boulder?)
16 17 18 19	NA	8-5	16-20	90	NA	191 13.9		running SAND 16-17.5*
20 21 22 23								BOH @ 20.0'

BORING NUMBER: TW-4

 Project: Mt. Hope Ave., Rochester, NY
 Project No: 3374S-03

 DAY Representative: D. Peck
 Boring Location: See Site Plan

 Drilling Contractor: Marcor of NY
 Ground Surface Elevation: NA
 Datum: NA

 Drilling Rig: Geoprobe 5400
 Start Date: 1/08/04
 Completion Date: 1/08/04

 Sampling Method: Direct Push
 Borehole Diameter: 2.0*
 Borehole Depth: 20.0*

 Completion Method: Backilled with cuttings
 Water Level: Approximately 11.0*

Depth (feet)	Blows per 0.5	Number	Depth (feet)	% Recovery	N-Vatue or RQD %	Peetk PID Reading (ppm)	Well Installation Log	Sample Description
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	NA	8-1	0-4	90	NA	0.0 0.0		Reworked Silt, Sand and Gravel, moist (FILL)
1 2 3 4 5 7 7 8 9 10 10	NA	8-2	48	90	NA	0.0		trace Bricks
11	NA	8-3	8-12	80	NA	0.0 0.0		Tan the SAND, wet becoming gray
12 13 14 15 15	NA	8-4	12-16	70	NA	0.0 0.0		
16 17 17 18 19	NA	8-5	16-20	80	NA	0.0 0.0		
20 21 22 23								BOH @ 20.0

BORING NUMBER: TW-5

 Project: Mt. Hope Ave., Rochester, NY
 Project No: 33748-03

 DAY Representative: D. Peck
 Boring Location: See Site Plan

 Drilling Contractor: Marcor of NY
 Ground Surface Elevation: NA
 Datum: NA

 Drilling Rig: Geoprobe 5400
 Start Date: 1/08/04
 Completion Date: 1/08/04

 Sampling Method: Direct Push
 Borehole Diameter: 2.0"
 Borehole Depth: 12.0'

 Completion Method: Backillied with cuttings
 Water Level: Approximately 7.0'

Depth (feet)	Bitows per 0.5	Number	Depth (feet)	* Recovery	N-Vatue or RQD %	Peak PID Reading (ppm)	Well Installation Log	Sample Description
1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	NA	8-1	0-4	80	NA	0.0 25.8		Tan reworked Silt, Sand and Gravel, molet (FILL)
1 2 3 4 5 6 7 7 7	NA	8-2	48	70	NA	0.0		slight petroleum odor at approximatiey 3.5-4.0' no odor wei
8 9 10 11 mm	NA	8-3	8 -12	80	NA	3.0 47.6 711		bleck stained Sand and Gravel (FILL) with petroleum odor
13-13-14-1 14-1								BOH @ 12.0'
15 16 17 18 17 18 18								
19 20 21 21 22								
23-								

File: 3374w5.log

BORING NUMBER: TW-6

 Project: Mt. Hope Ave., Rochester, NY
 Project No: 3374S-03

 DAY Representative: D. Peck
 Boring Location: See Site Plan

 Drilling Contractor: Marcor of NY
 Ground Surface Elevation: NA
 Datum: NA

 Drilling Rig: Geoprobe 5400
 Start Date: 1/08/04
 Completion Date: 1/08/04

 Sampling Method: Direct Push
 Borehole Dlameter: 2.0*
 Borehole Depth: 20.0*

 Completion Method: Backfilled with cuttings
 Water Level: Approximately 12.5*

Depth (feet)	Btows per 0.6	Number	Depth (feet)	% Recovery	N-Vetue or ROD %	Peatk PID Reading (ppm)	Well Installation Log	Sample Description
1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1	NA	8-1	0-4	70	NA	0.0 0.0		Reworked Sill, Sand and Gravel, moist (FiLL)
1 2 3 4 5 6 7 8 9 10 11 m	NA	8-2	4-8	30	NA	0.0		some intermixed Ash (FILL)
9 9 10 11 11	NA	8-3	8-12	50	NA	0.0 0.0		Gray Silty SAND, little Gravel, molst black, organic odor
12 13 14 15	NA	8-4	12-16	70	NA	0.0 0.0		Tan SAND, little Gravel, wot
18 17 18 19	NA	8-6	16-20		NA	0.0 0.0		running SAND at 16.0-17.0'
20 21 21 22 23								BOH @ 20.0'

BORING NUMBER: TW-7

Project: Mt. Hope Ave., Rochester, NY Project No: 33748-03 DAY Representative: D. Peck Drilling Contractor: Marcor of NY **Drilling Rig: Geoprobe 5400** Sampling Nethod: Direct Push **Completion Method: Backfilled with cuttings**

Boring Location: See Site Plan Ground Surface Elevation: NA Start Date: 1/06/04 Borehole Diameter: 2.0" Water Level: Approximately 13.0'

Datum: NA Completion Date: 1/08/04 Borehole Depth: 20.0'

Depth (feet)	Blows per 0.5	Number	Dapth (feet)	% Recovery	N-Value or RQD %	Peak PID Reading (ppm)	Well Instellation Log	Semple Description
11111111111111111111111111111111111111	NA	8-1	0-4	80	NA	0.0 0.0		Reworked Silt, Sand and Gravel, moist (FILL)
1 1 2 1 1 2 1 1 2 1 1 1 2 1 1 1 1 2 1	NA	8-2	4-8	70	NA	0.0 0.0		some intermited Ash and Bricks
	NA	8-3	8 -12	60	NA	11,4 1196		Sand and Gravel (FILL) Tan fine to medium SAND, moist, strong petroleum odor
12	NA	8-4	12-16	60	NA	1041 1223		wet
16 17 18 19 19	NA	8-5	16-20	40	NA	853 58.2		
20 21 22 23	74-172							BOH @ 20.0'

File: 3374w7.log

Project: ML Hope Ave., Rochester, NY DAY Representative: D. Peck Drilling Contractor: Marcor of NY Drilling Rig: Geoprobe 5400 Sampling Method: Direct Push Completion Method: Backilled with cuttings

BORING NUMBER: TW-8

Project No: 3374S-03 Boring Location: See Site Plan Ground Surface Elevation: NA i Start Date: 1/08/04 Borehole Diameter: 2.0" Water Level: Not Encountered

Datum: NA Completion Date: 1/08/04 Borehole Depth: 10.0'

Depth (feet)	Blows per 0.5	Number	Depth (feet)	% Recovery	N-Vetue or ROD %	Peak PID Reading (ppm)	Well Instellation Log	Semple Description
1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	NA	8-1	0-4	80	NA	0.0 0.0		Reworked Silt, Sand and Gravel, moist (FILL)
1 1 2 3 4 5 6 7 8 9 9	NA	8-2	4-8	80	NA	0.5		Gray Silt, little Sand, moist (FILL) organic odor
9 9 10	NA	8-3	8-10	5 0	NA	0.0		Concrete Refusal @ 10.0'
10 11 11 12 13 13						5.		
14 15 16 17 17 18								
17 17 17 18 19 17 19 19 19 19 19 19								
20 21 21 22 22						ŭ		
23-	374w8 log			_				

File: 3374w8.log

BORING NUMBER: TW-MW-9

Project: Mt. Hope Avs., Rochester, NY DAY Representative: D. Pect Drilling Contractor: Marcer of NY Drilling Rig: Geoprobe 6400 Sampling Method: Direct Push Completion Method: 1" PVG Well Project No: 33745-03 Boring Location: See Site Plan Ground Surface Elevation: NA. Start Date: 1/08/04

Water Level: 12.8" on January 26, 2004

Borshole Diamster: 2.0"

Datum: NA Completion Date: 1/02/04 Borehole Depth: 20.0*

3 PD Read Ĵ K Recovery (head) (thead) N-Vetue or ROD % Indian Sample Description R Number The Blows 0.5 3 Reworked Slit, Sand and Gravel, moist (FILL) 1 2 3 4 5 6 7 9 9 0.0 NA 8-1 0-4 80 NA 0.0 0.0 Gray SILT, trae Sand, moist NA 8-2 4-8 70 NA 0.0 ... organic odor 0.0 10 NA 8-3 8-12 60 NA 11 ... wet 0.0 12-18-0.0 ... SILT and CLAY -NA 84 12-16 70 NA 14 -15 0.0 16--0.0 17 1 1 NA 8-6 16-20 60 NA 18 ... fine SAND, little Gravel 1 0.0 19 20-BOH @ 20.0" -21 22 -23

File: 3374w9.log

Project: Mt. Hape Ave., Rochester, NY DAY Representative: D. Peck Drilling Contractor: Mareer of HY Drilling Rig: Geoprobe 6400 Sampling Method: Direct-Pash Completion Method: 1" PVC Well

-

BORING NUMBER: TW-MW-10

Preject Ne: 33749-03 Bering Location: See Sile Plan Ground Surface Elevation: NA Start Date: 1/08/04 Borehole Diameter: 2.0"

Datum: NA Completion Date: 1/08/04 Borehole Depth: 20.0'

Water Level: 15.4" on January 28, 2004

Dopth (herd)	Etows per 0.5	Number	Depth (feed)	% Recovery	N-Vetue or ROD %	Peett PID Reading (ppm)	Well Installation Log	Sample Description
11	NA	8-1	0-4	90	NA	0.0 0.0		Reworked Silt, Send and Gravel, moist (FILL)
4 5 7		8-2	4-8	80	NA	0.0 0.0		
9 9 10 11	МА	8-3	8-12	60	NA	0.0		
12 13 14 15	NA	84	12-16	60	NA	0.0 0.0		Tan/Gray fine SAND, little Gravel, wet
18-11-11-11-11-11-11-11-11-11-11-11-11-1	NA	84	16-20		NA			
20 31 32 22								BOH @ 20.0'

File: 3374w10.log

BORING NUMBER: TB-101

	oject: Mt. Hop						Project No: 2506S-00 Boring Location: See Site Plan				
	Y Represent Iling Contra						-	ation: See Site Plan rface Elevation: NA Datum: NA			
	ling Rig: Ch		on Drilling				Start Date:				
	mpling Meth		cetate sleev	/e				iameter: 3 inches Borehole Depth: 16.2 feet			
	mpletion Me				8		Water Level: Not encountered				
	1					· · · · · · · · · · · · · · · · · · ·					
Depth (feet)	Blows per 0.5'	Number	Depth (feet)	% Recovery	N-Value or RQD %	Peak PID Reading (ppm)	Well Installation Log	Sample Description			
1-						0.0 0.0		Tan Sand, Sill, Gravel, Roots, Cinders, damp (FILL)			
2-		S-1	0-4	90	NA	0.0	200 34	u			
3-	1.				**	9.7		Brown Sand, Slit, Gravel, Cinders, Brick, damp (FILL)			
-					8	22.4		slight weathered patroleum odor			
3-4-						29.3 .					
5-						208		· ·			
° -		S-2	4-8	90	NA	240		dark steining with strong petroleum odor			
8						110					
7		ĺ				38.8		Reddish brown Silty SAND, some Gravel, damp to moist			
8-						29.5	8				
9-						33.0					
-		S-3	8-11	70	NA	57					
10-						402		seam of Rock (ragments			
11-				ļ		186	$\frac{1}{2}$				
12-						90.7					
1 1 1		S-4	11-14	60	NA	60.6		grades to Silty SAND and GRAVEL			
13						23.8		Rock fragments			
14-						18.1		odors decreasing t			
15-		S-5	14-16.2	50	NA	7.3		angular Rock fragments			
16					1	0.6					
1111								Refusal @ 16.2'			
17-											
18-											
19-											
20-											

File: 2506S-01.LOG

BORING NUMBER: TB-102

DAY Drill Drill Sam	ect: Mt Hop Represent ing Contrac ing Rig: CM upling Meth upletion Me	ative: J stor: Ly 1E 55 od: 4' a	I. Dorety on Drilling cetate sleev		5	Bi Gi Si Bi	oring Loc round Su art Date: orehole D	: 2506S-00 :ation: See Site Plan inface Elevation: NA Datum: NA 05/04/01 Completion Date: 05/04/01 Diameter: 3 inches Borehole Depth: 18.0 feet el: Not encountered
Depth (feet)	Blows per 0.5'	Number	Depth (feet)	% Recovery	N-Value or RQD %	Peak PID Reading (ppm)	Well Installation Log	Sample Description
1 2 3		S-1	0-4	75	NA	0.0 0.0 0.0 0.0 0.0		Tan Sand, Silt, Gravel, Roots, damp (FILL) seam of Gravel Darkbrown Sand, Silt, Gravel, Ash, Brick, Coal, damp (FILL)
4 5 6 7 7	,	S-2	4-8	50	ŇA	0.0 0.0 . 0.0 : 0.0 :	đ	
8 9 10 11 11 11		S-3	8-12	70	NA	0.0 0.0 7.2 29.3 140		Black Sand, Gravel, Cinders, Silt, Ash, Rock fragments, moist (FILL)
12 13 13 14 15 17 19		S-4	12-16	60	NA	224 2003 461 ± 103		Reddish brown to gray Sill, SAND and GRAVEL, trace Clay, moist #
16		S-5	16-18	50	NA	64.1 27.6 10.2		Rock fragmente
18 19 19 19								Refusal @ 18.0'

File: 2506102.LOG

BORING NUMBER: TB-103

DA	ject: Mt. Hop Y Represent ling Contrac	ative:	J. Dorety			B	oring Loc	: 2506S-00 cation: See Site Plan urface Elevation: NA Datum: NA					
	ling Rig: CM						tart Date:						
	npling Meth					-		Diameter: 3 inches Borehole Depth: 18.0 feet					
Cor	npletion Me	thod: E	Backfilled wi	th cutting	S	W	Water Level: Not encountered						
Depth (feet)	Blows per 0.5'	Number	Depth (faet)	% Recovery	N-Value or RQD %	Peak PID Reading (ppm)	Well Installation Log	Sample Description					
1 2 3 4		S-1	0-4	75	NA	0.0 0.0 0.0 0.0 0.0		Tan and Brown Send, Silt, Gravel, Wood, Organics, damp (FILL)					
5 6 7 8		ŝ-2	4-8	50	NA	0.0 ··· 0.0 ··· 0.0 ·· 1.7	3 	Tan Sand, Silt, Organics, Clay, moist (FILL) dark steining with slight weathered petroleum odor at 7.5'					
9 10 11 11		S-3	8-11	70	NA	1.3 7.9 3.2		, Brick fragments, coarse Sand, Cinders <u>,</u> wei strong patroleum odor					
12 12 13 13		S-4	11-14	60	NA	1.4 0.8 50.7 13.7		Tan Silly SAND, some Gravel, damp Reddish Brown Silty SAND and GRAVEL, trace Clay, moist					
14 15 16 17 17	1	S-5	f 14-18	50	NA	3.5 1.7 0.3 0.1 0.1		(angular Rock fragments					
18 19 19 20								Refusal @ 18.0' -					

File: 2506S-03.LOG

BORING NUMBER: TB-104

		(71	6) 292-	1090								
DAY Drill Drill Sarr	ect: <u>ML Hope</u> Represent: ing Contrac ing Rig: CM Ipling Metho Ipletion Met	ative: J. tor: Lyo E 55 pd: 4' ac	Dorety In Drilling setate sleeve		5	Bi Gi St Bi	Project No: 2506S-00 Boring Location: See Site Plan Ground Surface Elevation: NA Start Date: 05/04/01 Borehole Diameter: 3 inches Borehole Diameter: 3 inches Water Level: Not encountered					
Depth (feet)	Blows per 0.5'	Number	Depth (feet)	% Recovery	N-Value or RQD %	Peak PIO Reading (ppm)	Well Installation Log	Sample Description				
1 1 2 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		S-1	0-4	90	NA	0.0 0.0 0.0 0.0 12.4		Tan Sill, Sand, Gravel, Roots, Glass, Cinders, damp (FILL) Brown Silt, Sand, Gravel, Clay, Organics, Brick, Ash, damp (FILL) wealhared petroleum odor				
4 5 6 7 7 111		S-2	4-8	90	NA	58.6 . 12.8 . 67.9 53.1	2	seem of Gravel				
8 9 10 11 11	6	5-3	8-12	80	NA	57.8 47.1 77.8 74.1		, dark staining , intermixed Ash, Brick, Wood				
12		S-4	12-14	60	NA	217 131						
14 + 15 16 16		S-5	14-18	50	NA	1 38.4 19.0 1.3		f f Reddish brown Silly SAND and GRAVEL, moist petroleum odors decreasing Refusal @ 16.3*				
17-								8				

File: 2506S-04.LOG

18-

19-

20 -

Depth (feet)

Project: ML Hope Project DAY Representative: J. Dorety Drilling Contractor: Lyon Drilling Drilling Rig: CME 55 Sampling Method: 4' acetate sleeve Completion Method: Backfilled with cuttings

BORING NUMBER: TB-122

Project No: 2506S-00 Boring Location: See Site Plan Ground Surface Elevation: NA Start Date: 05/04/01 Borehole Diameter: 3 inches Water Level: Approximately 14 feet

Datum: NA Completion Date: 05/07/01 Borehole Depth: 18.1 feet

Depth (feet)	Blows per 0.5'	Number	Depth (feet)	% Recovery	N-Value or RQD %	Peak PID Reading (ppm)	Well Installation Log	Sample Description
						0.0		Tan Sand, Silt, Gravel, Rools, Cinders, damp (FILL)
1-						0.0		Brown Sand, Silt, Gravel, Cinders, Ash, Asphalt, damp (FILL)
2		S-1	0-4	60	NA	0.0		
3		-				0.0		Tan and brown Silt, Sand, Gravel, Clay, Cinders, Ash, molst (FiLL)
						0.0		
						0.0 .		
5-			_			0.0		
611		S-2	4-8	40	NA	۰۰ ۵.0		
7-1						0.0		Reddish Brown Sand, Ash, Slag, Coal, Cinders, Brick, damp (FILL)
6-						0.0	•	
9					2	0.0		
10-		S-3	8-12	70	NA	0.0		Dark Brown Slit, Organics, fine Sand, Clay, moist (FILL)
11-						0.0		Olive Gray Silty CLAY, little fine Sand, moist
12						0.0	-	
13								
14		S-4	12-16	50	NA	0.0		
		ł		l		0.0		Wet
15						0.0		
16-						0.0	-	Reddish gray Silty SAND and GRAVEL, trace Clay, damp
17		S-5	16-18.1	40	NA	0.0 0.0		
18-								
19-								Refusal @ 16.1'
20- File: 2	506S-G.L]		<u> </u>	<u> </u>	_l	

BORING NUMBER: TB-123

DAY Drill Drill San	ject: <u>Mt. Hop</u> Y Represent ling Contrac ling Rig: CM npling Meth npletion Me	ative: J stor: Lyd IE 55 od: 4' ad	. Blanchard on Drilling cetate sleeve		S	Bo Gr St Bo	oring Loc round Su art Date: prehole D	2506S-00 eation: See Site Plan rface Elevation: NA Datum: NA 05/09/01 Completion Date: 05/09/01 Diameter: 3 inches Borehole Depth: 18.0 feet ol: Approximately 13.4 feet
Depth (feet)	Blows per 0.5'	Number	Depth (feet)	% Recovery	N-Value or RQD %	Peak PID Reading (ppm)	Well Installation Log	Sample Description
1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-		S-1	0-4	80	NA	0.0		Brown Sand and Cobbles, little Stag, damp (FILL)
3 4 5 8		5-2	4-8	70	NA	0.0 ·		Brown to lan Silt and Clay, little Slag and Wood, damp (FILL)
7 111 8 111 9				-	12	: 0.0		layer of Slag
10 11 11 12		S-3	8-12	85	NA	0.0		Gray, CLAY, little Silt, moist
13 14 14 15		S-4	12-16	100	NA	0.0 0.0 0.0	*	wet t Nittle Cobbles
16 17 17 18 18		S-5	16-18	100	NA	0.0 0.0 0.0		Refusal @ 18.0'
19 19 11 20								

File: 2506S-H.LOG

ŧ

Project: Mt. Hope Project DAY Representative: J. Blanchard

Drilling Contractor: Lyon Drilling

Drilling Rig: CME 55

Sampling Method: 4' acetate sleeve

Completion Method: Backfilled with cuttings

BORING NUMBER: TB-124

Project No: 2506S-00 Boring Location: See Site Plan Ground Surface Elevation: NA Start Date: 05/09/01 Borehole Diameter: 3 inches

Water Level: Approximately 15.6 feet

Datum: NA Completion Date: 05/09/01 Borehole Depth: 19.0 feet

Depth (feet)	Blows per 0.5'	Number	Depth (feet)	% Recovery	N-Value or RQD %	Peak PID Reading (ppm)	Well Installation Log	Sample Description
1-		S-1	0-4	100		0.0		Brown Sand, Silt and Gravel, little Cobbles and Brick, trace Siag, damp (FILL)
3-4-	2	G =1	64	100	NA	0.0		(?
5-	e.	S-2	4-8	70	NA	0.0 ·· 0.0		Brown Sand, little Silt, little Clay, litle Slag, trace glass, damp (FILL)
8 9 9						0.0	*	little Clay
10 11 11 12	a R	S-3	8-12	85	NA	0.0		Brown SAND and GRAVEL, little Clay, trace Cobbles, moist
13		S-4	12-16	100	NA	0.0		
15				4		0.0		Brown to gray SAND, moist to wet
17 - 17 - 17 - 17 - 17 - 17 -		S-5	16-19	100	NA	0.0		little Gravet
19	506S-1.LO					0.0		Refusal @ 19.0'

File: 2506S-I.LOG

NIIMDED. TD.425

	(716) 292-1090						BORING NUMBER: 18-125					
DAY Drill Drill San	Project: Mt. Hope Project DAY Representative: J. Blanchard Drilling Contractor: Lyon Drilling Drilling Rig: CME 55 Sampling Method: 4' acetate sleeve Completion Method: Backfilled with cuttings						oring Loc round Su lart Date: orehole D	2506S-00 ation: See Site Plan rface Elevation: NA 05/09/01 Nameter: 3 inches N: Approximately 17,4 feet	Datum: NA Completion Date: 05/09/01 Borehole Depth: 20.0 feet			
Depth (feet)	Blows per 0.5'	Number	Depth (feet)	% Recovery	N-Value or RQD %	Peak PID Reading (ppm)	Well Installation Log		Sample Description			
-								Brown Sand and Gravel, lit	tie Cobbies, damp (FiLL)			
1-						0.0						
2-1		S-1	0-4	100	NA	0.0						
3 3 4 5					:	0.0		little Clay	÷			
4	~						10					
5						0.0 .			2			
6-]		S-2	4-8	70	NA	0.0 💀		08				
7						: 0.0						
71111				8		0.0						
87							-	trace Slag				
9						0.0						
10-1 10-1		S-3	8-12	100	NA	0.0 ·		trace Brick				
						0.0						
11-1						0.0		Brown SAND and SILT, II	tle Clay, trace Cobbles, damp			
12-	<u> </u>						-	Brown CLAY, little Gravel	, trace Cobbles, damp			
13-						0.0						
14		s-4	12-16	100	NA	0.0						
14 -				×				Brownicable and ODAV	El some Cabbles molst			
15-	ŧ		+			0.0		Brown ⁱ SAND and GRAV	-r' anite connies' moist			
16					┼───	+	-					

... wel

BOH @ 20.0'

File: 2506S-J.LOG

90

70

16-18

18-20

S-5

S-6

NA

NA

0.0

0.0

0.0

17-

18-

19-

20-]

BORING NUMBER: TB-A

Project: M		MO10 87 18					: 2506S-00 cation: See Site Plan	5. 4. server = 5		
Drilling Co Drilling Ri Sampling Completio	g: NA Method: Ge		th cutting	s	S B	tart Date: Iorehole I	Irface Elevation: NA : 05/24/01 Diameter: 3 inches el: Approximately 10.6 feet	Datum: NA Completion Date: 05/24/01 Borehole Depth: 16.3/eet		
						Bo	*			

Depth (feet)	Blows per 0.5'	Number	Depth (feet)	% Recovery	N-Value or RQD %	Peak PID Reading (ppm)	Well Installation Log	Sample Description
		s-1	0-4	95	NA	0.0 0.0 0.0		Brown, Sand, Silt, Brick, Asphalt, Ash, Siag, molat
31						0.0 <u>.</u> 0.0 -		
5 6 11		[.] 5-2	4-8	70	NA	0.0 0.0 :		Light Tan Brick, Ash, Slag, Coal, Clay, Sand, moist (FILL)
8	v					0.0		
9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		S-3	8-12	60	NA	0.0 . 0.0		seam of rust coloring wet
11						0.0	-	Dark Brown Silty SAND, some Clay, some Gravet, wet
13		S-4	12-16.3	60	NA	0.0		
* 15 * 15 16						0.0		4 N
17								Refusal @ 16.3*
19							*:	
20-	5064210				<u> </u>	<u> </u>		

File: 2506A2.LOG

BORING NUMBER: TB-B

DAY Drill Drill San	ect: Mt. Hop (Represent ling Contrac ling Rig: CM apling Methon npletion Me	ative: A tor: Lyo E 55 od: Geo	. Farreli In Drilling Probe Samp		i	Bo Gr St Bo	2506S-00 ation: See Site Plan rface Elevation: NA Datum: NA 05/24/01 Completion Date: 05/24/01 iameter: 3 inches Borehole Depth: 20.0 feet I: Approximately 12 feet	
Depth (feet)	Blows per 0.5'	Number	Depth (feet)	% Recovery	N-Value ar RQD %	Peak PID Reading (ppm)	Well Installation Log	Sample Description
1 1 2 3 1 1 1		S-1	0-4	90	NA	0.0 0.0 0.0 0.0		Brown, Silt, Sand, Asphait, Brick, Ash, Moist (FILL) Dark Brown to Red coarse Sand, some Gravel, Molst (FILL)
4 5 6 7	2	S-2	4-8	60	NA	0.0 . 0.0 · 0.0 · 0.0 ·	5 2 3	Dark Brown Silly coarse SAND, some Gravel, moist
9 9 10 11		S-3	8-12	20	NA	0.0 0.0 0.0 0.0	10	wet
12 13 14 14		S-4	12-16	5 0	NA	0.0 0.0 0.0 0.0		seam of fractured rock
16 17 17 18 19		S-5	16-20	30	NA	0.0 0.0 0.0 0.0		
20 1			2				<i>\$</i> 2	BOH @ 20.0'

File: 2506S-B.LOG

Project: Mt. Hope Avenue, Rochester, New York DAY Representative: Dennis M. Peck Drilling Contractor: Nothnagle Drilling

Drilling Rig: CME-75

Sampling Method: Macro Core

Completion Method: Backfilled with cuttings

BORING NUMBER: TB-1

Project No: 2395S-00 Boring Location: See Site Plan Ground Surface Elevation: NA Start Date: 8/23/00 Borehole Diameter: 3 inches Water Level: Approximately 12 feet

Datum: NA Completion Date: 8/23/00 Borehole Depth: 19.1 feet

Depth (feet)	Blows per 0.5'	Number	Depth (feet)	% Recovery	N-Value or RQD %	Peak PtD Reading (ppm)	Well Installation Log	Sample Description
1					ł			Grass, opsoil.
1 11111	NA	S-1	0-4	80	NA	0.3 .	8	Tan Fine Sand and Gravel, moist (FILL). Black Cinders and Coal (FILL).
		ļ				0.3		
4								
5 11111		S-2	4-8	60		0.4		yelfow/black Ash,
7-1					34 J.			black line cinders, moist.
							. (Green/Gray SiLT, little Sand, trace Clay, moist, black streaks, swampy odor.
9 . 10 1 . 11 .		S-3	9-12	50		0.5		
12			· .					GRAVEL wet.
13 _							-	Green/Gray fine SAND, wel.
14	4	5-4	12-16	60		0.4	4	+ 4
15			20					
16		1.45						color change to tan at approximately 15.8'-16.0'.
17		S-5	16-19.12			0.5		medium SAND, wood. Rock Fragmenis. Equipment Refusal.
19.			[<u> </u>	• • • • • • • • • • • • • • • • • • •	BOH at 19.1'.
20	 55001.lo	i	e 1					17 18 Therease a second s

Project: Mt. Hope Avenue, Rochester, New York DAY Representative: Dennis M. Peck Drilling Contractor: Nothnagle Drilling Drilling Rig: CME-75 Sampling Method: Macro Core Completion Method: Backfilled with cuttings

Project No: 2395S-00 Boring Location: See Site Plan Ground Surface Elevation: NA Start Date: 8/23/00 Borehole Diameter: 3 inches Water Level: Approximately 12 feet

BORING NUMBER: TB-2

Datum: NA Completion Date: 8/23/00 Borehole Depth: 20 feet

Depth (feet)	Blows per 0.5'	Number	Depth (feet)	% Recovery	N-Value or RQD %	Peak PID Reading (ppm)	Well Installation Log	Sample Description
								Grass and topsoll.
1-1			<u>ت</u>					Brown Sand and Gravel, trace bricks, moist (FILL).
']						۹.		
2	NA	S-1	0-4	70	NA	6,4		
7						ļ		
3-								
ang dan								Black fine to medium cinders, moist [FILL].
4								
5-				}				
Ŧ		8						
6		S-2	4-8	60		0.2		2
1				1				a
7					1			Gray fine SAND and SILT, trace Gravel, damp.
				1				
8 +			`] .	
9								
Ĩ								
10 -		S-3	8-12	20		0.1		
-								
11-				2	ļ		1	
1								
12							7	wet at approximately 12 feet.
13			ļ	{				
1								Gray to Black (13'-14').
14		S-4	12-16	90		0,5		Green/Gray fine SAND.
			}	200				
15								
4								
15 -					- -		-1	
Ę		ŀ						
17 -		ļ						SILT and SAND, trace Clay.
, ["]		S-5	16-20	Ì		1		
18 -		0-3	10-20		1	i		
 19 -							i	SAND and GRAVEL
1						1		
20 -			<u> </u> .					BOH at 20',
		1 2	1	}	i.	ļ		

BORING NUMBER: TB-5

Project: Mt. Hope Avenue, Rochester, New York DAY Representative: Dennis M. Peck Drilling Contractor: Nothnagle Drilling Drilling Rig: CME-75

Sampling Method: Macro Core Completion Method: Backfilled with cuttings Project No: 2395S-00 Boring Location: See Site Plan Ground Surface Elevation: NA Start Date: 8/23/00 Borehole Diameter: 3 inches Water Level: Approximately 14 feet

Datum: NA Completion Date: 8/23/00 Borehole Depth: 18.9 feet

Blows per 0.5' Number N-Value or Plo Reading (ppm) eak Plo Reading (ppm) histallation Log	
Grass and topsoil. Brown Sand and Gravel, little Silt, moist (FILL).	
NA S-1 0-4 BO NA 4,5	
S-2 4-8 60 7.3	
	1
	,2
S-3 8-12 30 28.3 Gravel and Black coarse Cinders, (FiLL), petroleum odor, damp.	
Cratis and Stain toarse Cinders, (ritt), petroleum odor, damp.	
24.5 Gray fine SAND, little Gravel (GLACIAL TILL), damp, slight petro	
	leum odor.
6-4 12-16 +90 +	
S-5 15-18.9 80 - 14 7	
S-5 16-18.9 80 - 11.7 slight petroleum odor.	
Equipment refusal	
BOH at 18.9	
005.log	

BORING NUMBER: TB-9

Project: Mt. Hope Avenue, Rochester, New YorkProject No: 2395S-00DAY Representative: Dennis M. PeckBoring Location: See Site PlanDrilling Contractor: Nothnagle DrillingGround Surface Elevation: NADatum: NADrilling Rig: CME-75Start Date: 8/23/00Completion Date: 8/23/00Sampling Method: Macro CoreBorehole Diameter: 3 inchesBorehole Depth: 20 feetCompletion Method: Backfilled with cuttingsWater Level: Approximately 14 feet

1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	NA	S-1	0-4	80	÷.		Grass and topsoll. Gravel (FILL).
111111	(8				NA	0.0	Black coarse Cinders and Ash (FILL).
71111	2	S-2	4-8	80		0.0	Gray SILT, little Gravel, trace Sand, moist
8	2	S-3	8-12	80		0.0	Gray/Green SILT, some Clay, black streaks, damp.
12 13 13 13 14 14 14 14 14 14 14 14 14 14 14 14 14		5-4	12-16	80		. 0.0	SILT and CLAY, trace wood.
16		S-5	16-20 .			0.0	medium SAND lenses.

File: 2395S009.log

BORING NUMBER: TB-36

Project: Mt. Hope Avenue, Rochester, New York DAY Representative: Dennis M. Peck
Drilling Contractor: Nothnagle Drilling
Drilling Ríg: CME-75

Sampling Method: Macro Core
 Completion Method: Backfilled with cuttings

Project No: 23955-00 Boring Location: See Site Plan Ground Surface Elevation: NA Start Date: 8/28/00 Borehole Diameter: 3 inches Water Level: approximately 12 feet

Datum: NA Completion Date: 8/28/00 Borehole Depth: 17.8 feet

Depth (feet)	Blows per 0.5'	Number	Depth (feet)	% Recovery	N-Value of RQD %	Peak PID Reading (ppm)	Well Installation Log	Sample Description Grass and Topsoil.
1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	NA	5-1	0-4	70	NA	0.0		Brown Silt and Gravel (FILL), moist Bricks. Rock Fragments. Coarse Cinders 3-6 feet.
4 5 6 7	e S	5-2	4-8	40		0.1		Brown Silt, little fine Sand, little Bricks (FILL), molst.
8 - 9 - 10 -		5-3	8-12	90		0.0		Tan-Gray SILT and CLAY, damp.
12 13 14 15		S-4	12-1/5	90	4	0.0		SILT, little Clay, little Sand, damp/wet.
1		S-5	16-17.B	90	*			Equipment Refusal. BOH at 17.8'.
2	- - - - - - - - - - - - - - - - - - -		12 		 	:	 	

BORING NUMBER: MW-1

Project: Mt. Hope Avenue, Rochester, New York
DAY Representative: Dennis M. Peck
DAT Representative Bennie III. I ook
Drilling Contractor: Nothnagle Drilling
Drilling Rig: CME-75
Sampling Method: Split Spoon

Completion Method: 2" PVC Well

. .

į.

•

8

(i.)

* 3

) ;

÷ .

÷

 Project No: 2395S-00

 Boring Location: See Site Plan

 Ground Surface Elevation: NA
 Datum: NA

 Start Date: 8/29/00
 Completion Date: 8/29/00

 Borehole Diameter: 8"
 Borehole Depth: 20 feet

 Water Level: 16.17 BTC at 0730 - 8/30/00

Depth (feet)	Blows per 0.5	Number	Depth (feet)	% Recovery	N-Value or RQD %	Peak PID Reading (ppm)	Well Installation Log	Sample Description
1111	7 11 18 21	S-1	0-2	50	29	Q.9		Grass and topsoll. Brown Silt and Gravel, moist (FILL).
3	57 100-3	S-2	2-2.8	20	100+	0.6		Note: rock in sample tip.
4 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 5 5 4 4	S-3	4-6	30	9	3.2		
6 7 7	3 3 2 3	S-4	6-8	40	5	16.0		black staining, petroleum odor, moist.
6 60 60	1 4 7 4	S-5	8-10	40	11	911		Sand, little Silt, strong petroleum odor, damp/wet.
10	3 11 18 23	S-6	10-12	40	29	714		Rock Fragments.
12 -	21 17 18 15	S-7	12-14 ::	40	35	79.0		Gray SILT and fine SAND, (GLACIAL TILL) trace Gravel, wet, odors decreasing, black streaks.
+14- 15_	7 14 18 24	S-8	14-16	60	32	14.2		
16- 17-	34 29 25 26	S-9	16-18	90	÷ 54	6.7		fine SAND, trace Gravel, wet. medium to coarse SAND, wet.
18- 19-	29 24 32 40	S-10	18-20	90	56	5.7		fine SAND and GRAVEL.
20	.	i				(i)		BOH at 20'.

ł

File: 2395SMW1.log

BORING NUMBER: MW-7

Project: Mt. Hope Avenue, Rochester, New York DAY Representative: Dennis M. Peck

Drilling Contractor: Nothnagle Drilling Drilling Rig: CME-75

Sampling Method: Split Spoon

÷.

Completion Method: 2" PVC Monitoring Well

Project No: 2395S-00 Boring Location: See Sile Plan Ground Surface Elevation: NA Start Date: 8/31/00 Borehole Diameter: 8"

Water Level:

Datum: NA Completion Date: 8/31/00 Borehole Depth: 20 feet

Depth (feet)	Blows per 0.5'	Number	Depth (feet)	% Recovery	N-Value or RQD %	Peak PID Reading (ppm)	Well Installation Log	Sample Description
1111	3 10 7 7	S-1	0-2	30	17	0.4		Grass and lopsoil. Brown Silt, little Gravel (FILL).
3	7 10 12 12	S-2	2-4	40	22	0.5		Black fine to coarse Cinders, moist (FILL).
4 5 11111	6 10 5 5	S-3	4-6	30	15	0.5		Brown Slit, little Gravel, trace Bricks, molst (FILL).
6 7 7 1	8 6 5 2	S-4	6-8	40	11	0.5		Gray/Brown fine SAND, some Silt, trace Gravel, damp.
8 9 9	1 2 2 2	S-5	8-10	40	4	0.4		Gray/Green SILT and CLAY, damp.
10	2 2 4 5	S-6	10-12	60	6	0.6		
	4 4 4 4	S-7	12-14	60	8	0.6		
14-	WH WH WH 1	S-8	14-16	* 80	0	0.7		fine SAND and CLAY, wel.
16 	6 6 12 12	S-9	16-18	60	18	0.7		Medium SAND, some Sill, little Gravel, wet.
18- 19-	3 8 16 26	S-10	18-20	60	24	-		
20 -				i a e e	1		: <u>::::C</u> ::	BOH at 20'.

File: 2395SMW7.log

APPENDIX C

Test Boring Logs and Well Construction Diagrams

da	Ŋ									ENVIRONMENTAL CONSULTANTS
			ITAL, IN	C.					AN AFFI	LIATE OF DAY ENGINEERING, P.C.
Project #: 4302S-09 Project Address: 151 Mt. Hope Avenue						TEST BORING MW10-1				
Rochester, NY			Ground Elevation: 517.06' Datum: 514.18'		Page 1 of 2					
	DAY Representative: C. Hampton			Date Started: 5/5/2010 Date Ended: 5/5/2010 Percebala Dapth: 18.9' Percebala Diamator: 9" Percebala Diamator: 9 Per		-				
-	Drilling Contractor: Nothnagle Sampling Method: 2" Split Spoon/Rotary Auger			ger		Borehole Depth: <u>18.8'</u> Borehole Diameter: <u>8"</u> Completion Method: ■ Well Installed □Backfilled with Grout □ Bac	ckfilled with C	uttings		
								Water Level (Date): 10.12' BTOC (5-18-10)		
Depth (ft)	Blows per 0.5 ft.	Sample Number	Sample Depth (ft)	% Recovery	N-Value or RQD%	Headspace PID (ppm)	PID Reading (ppm)	Sample Description		Notes
	3						0.0	TOPSOIL		
1	7	S-1	0-2	95	24	0.0	0.0	Dense, Dark Brown, Sandy Silt, little coarse to fine Gravel, Glass, Brick, Concrete,	_	
	17						0.0	Ash, Organics, Damp (FILL)		
2	18								_	
-	7						0.0			
3	6	S-2	2-4	60	11	0.0	0.0	Medium Dense		
Ŭ	5						0.0			
4	6							Loose, Black, ASH, moist (FILL)	_	
-	6						0.0	Medium Dense, Light Brown, Silty Sand, little fine Gravel, Coal Fragments,		
5	7	S-3	4-6	95	15	0.1	0.1	moist (FILL)	_	
Ũ	8						0.0			
6	8								_	
Ū	4						0.0	Loose, Gray, ASH, moist (FILL)		
7	4	S-4	6-8	75	8	0.2	0.0	Loose, Black, Silty Sand, Mottled, Concrete fragments, trace med. gravel, moist (FILL)		
-	4						0.0	Loose, Gray, ASH, moist (FILL)		
8	3								-	
-	2						0.0	Loose, Light Brown, Sandy Silt, Brick, Ash, little coarse to fine Gravel, moist (FILL)		
9	4	S-5	8-10	65	8	0.4	0.0	Black		
· ·	4						0.0			
10	2								-	
	1						0.0	Gray/Black, Ash, Sand, Wood, wet (FILL)		
11	2	S-6	10-12	80	4	0.4	0.0	Very Loose, Gray, fine to very fine SAND and SILT, little organics, trace Clay,		
	2						0.0	trace Roots, Marl, Wood, moist		
12	4									
	2						0.0	Loose, wet		
13	2	S-7	12-14	85	5	0.4	0.0		-	
	3						0.0			
14	4								-	
	1						0.0			
15			3	0.3 0.0			-			
	2						0.0	Soft, Brown, SILT, some very fine Sand, little Clay		
16	2				<u> </u>	<u> </u>			-	
Net	4) 147 -	100-1		at th - "			lion			
Notes:								ed. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions. ns may be gradual.		
						tandard m	easured i	n the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lamp.		
	4) NA = Not Available or Not Applicable TEST BORING MW10-1 5) Headspace PID readings may be influenced by moisture									
	MMERC									274 MADISON AVENUE, ROOM 1104
			ORK 146	14-1008	3					NEW YORK, NEW YORK 10165-1617
	454-0210 585) 454							www.dayenvironmental.com		(212) 986-8645 FAX (212) 986-8657
	<i>1</i> +04	0020						www.aayonwionmontal.com		1 77 (212) 300-0031

da	V								1	ENVIRONMENTAL CONSULTANTS
		ONMEN	ITAL, IN	C.					AN AFFIL	IATE OF DAY ENGINEERING, P.C.
Projec Projec	t #: t Addres	s:	4302S-0 151 Mt. I		enue					TEST BORING MW10-1
		Rochester, NY						Ground Elevation: <u>517.06'</u> Datum: <u>514.18'</u>		Page 2 of 2
	Represen g Contrac		C. Hamp Nothnag					Date Started: 5/5/2010 Date Ended: 5/5/2010 Borehole Depth: 18.8' Borehole Diameter: 8"		-
	ing Meth		2" Split S		otary Au	ger			ackfilled with C	uttings
								Water Level (Date): 10.12' BTOC (5-18-10)		
Depth (ft)	Blows per 0.5 ft.	Sample Number	Sample Depth (ft)	% Recovery	N-Value or RQD%	Headspace PID (ppm)	PID Reading (ppm)	Sample Description		Notes
	2						0.0			
17	2	S-9	16-18	90	4	0.1	0.0			
	2						0.0		-	
18	2									
10	8	S-10	18-18.6	100	NA		0.0		-	
10	50/1							Rock fragments, trace Silt and Sand in base of sampler		-Augered 18.6'-18.8'
19								Split Spoon Refusal @ 18.6'	-	
								Auger Refusal @ 18.8'		
20									-	
21									-	
22										
22									-	
23									-	
24									-	
25									-	
26										
20									_	
27									-	
28									-	
29									-	
30									-	
31									_	
32									-	
Notes:								d. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions.	· · · · · · · · · · · · · · · · · · ·	
2) Stratification lines represent approximate boundaries. Transitions may be gradual. 3) PID readings are referenced to a benzene standard measured in the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lamp.										
	4) NA = N	lot Availa	ble or Not	Applicab	e					TEST BORING MW10-1
5) Headspace PID readings may be influenced by moisture 40 COMMERCIAL STREET 274 MADISON AVENUE, ROOM 1104										
			ORK 146	14-1008	5					NEW YORK, NEW YORK 10165-1617
	454-0210									(212) 986-8645
FAX (585) 454	-0825						www.dayenvironmental.com		FAX (212) 986-8657

da	V								E	ENVIRONMENTAL CONSULTANTS
		ONME	NTAL, IN	IC.						IATE OF DAY ENGINEERING, P.C.
Projec	t #: t Addres		4302S-0 151 Mt.		enue					TEST BORING MW10-2
i iojec			Rochest		ende			Ground Elevation: 515.74' Datum: 514.18'		Page 1 of 2
DAY F	Represer	ntative:	C. Hamp					Date Started: 5/5/2010 Date Ended: 5/5/2010		
	g Contra		Nothnag					Borehole Depth: 25.0' Borehole Diameter: 8"		-
Samp	ing Meth	nod:	2" Split S	Spoon/R	otary Au	ger		Completion Method: Well Installed Backfilled with Grout B Water Level (Date): 8.94' BTOC (5-18-10)	ackfilled with Cu	uttings
						-			-	
	نړ	ř	(¥)		%0	Headspace PID (ppm)	(ud			
	0.51	qur	epth	2	RQ	e PIC	d) Gu	Sample Description		Notes
(£	sper	le N	le De	Recovery	ne ol	spac	eadi			
Depth (ft)	Blows per 0.5 ft.	Sample Number	Sample Depth (ft)	% Re	N-Value or RQD%	lead	PID Reading (ppm)			
	3			0.		-	0.0	TOPSOIL		
	5	S-1	0-2	80	14	0.2	0.0	Medium Dense, Red/Brown Silt and Sand, little Gravel, trace Roots, moist (FILL)	1	
1	9						0.0	Medium Dense, Dark Brown, Silt, some very fine Sand, Coal fragments, Organics,		
	11									
2	11						0.0	Brick, Concrete, moist (FILL)	-	
	11	S-2	2-4	85	19	0.4	0.0			
3	8	02		00		0.1	0.0			
							0.0	Brown/Black		
4	8								-	
	1						3.3			
5	8	S-3	4-6	55	15	57.1				
	7						21.6		Black Stainir	ig, Petroleum-type odor
6	6									
	3									
7	3	S-4	6-8	5	6	73.0	NA			
,	3								Ē	
	3									
0	1						10.5	Loose, Black, Ash, wet (FILL)		
9	4	S-5	8-10	70	5	10.1	8.1	Soft, Black, Clayey SILT, little very fine SAND, Wood, Organics, wet	-Sheen/Black	staining/Petroleum-type odor
9	1						6.2			
	2									
10	2						3.9	Gray, mottled	-	
	2	S-6	10-12	55	4	6.4				
11	2						4.2		-	
	2									
12	1								-	
	2	S-7	12-14	0	4	NA	NA			
13	2	0.		ů	•				-	
14	3 1						4.0		-	
					-		1.3	Very Loose, Gray/Black, Silty very fine SAND, trace to little Clay, wet	_	
15	1	S-8	14-16	95	2	2.9	2.5	Very Loose, Black/Gray SAND, wet	+	
	1						2.4			
16	1								-	
N. i	4) 147 -		<u> </u>		<u> </u>			d Photosting of second value levels .		
Notes:								A. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions. ns may be gradual.		
	3) PID r	eadings a	are referen	ced to a b	enzene s			n the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lamp.		
			able or Not) readings			by moiet	re			TEST BORING MW10-2
40 CC	MMERC			ay De ll	ucriceu	Sy moistu				274 MADISON AVENUE, ROOM 1104
			ORK 146	614-1008	3					NEW YORK, NEW YORK 10165-1617
	454-021									(212) 986-8645
FAX (585) 454	-0825						www.dayenvironmental.com		FAX (212) 986-8657

da	V								E	ENVIRONMENTAL CONSULTANTS
			ITAL, IN	IC.					AN AFFIL	IATE OF DAY ENGINEERING, P.C.
Projec Projec	t #: t Addres	is:	4302S-0 151 Mt.	Hope Av	renue					TEST BORING MW10-2
	lepreser	ntative:	Rochest C. Hamp					Ground Elevation: 515.74' Datum: 514.18' Date Started: 5/5/2010 Date Ended: 5/5/2010		Page 2 of 2
	g Contrac		Nothnag					Borehole Depth: 25.0' Borehole Diameter: 8"		-
Sampl	ing Meth	nod:	2" Split S	Spoon/R	otary Au	ger			ackfilled with Cu	uttings
			1	1	1	-		Water Level (Date): <u>8.94' BTOC (5-18-10)</u>	-	
Depth (ft)	Blows per 0.5 ft.	Sample Number	Sample Depth (ft)	% Recovery	N-Value or RQD%	Headspace PID (ppm)	PID Reading (ppm)	Sample Description		Notes
	11						0.2			
17	11	S-9	16-18	95	27	7.3	0.5		_	
	16						0.6	Medium Dense, Gray/Black GRAVEL with Rock fragments, trace Sand, trace Silt, wet		
18	22	-					-		-	
	27						0.0			
19	23	S-10	18-20	25	51	2.5		Very Dense	-	
	28 28						0.0			
20	16									
	29	S-11	20-22	0	61	NA	NA	Very Dense, Red/Brown, Silty SAND with Gravel, wet		
21	32	0.11	20 22	ů	01				-	
	42									
22	13						0.0		-	
	22	S-12	22-24	95	58	0.4	0.0			
23	36						0.0		-	
24	40									
	23	S-13	24-25	100	NA	0.9	0.0		-Augered 24.	7' - 25'
25	50/2									
								Split Spoon Refusal @ 24.7'		
26								Auger Refusal @ 25.0'	-	
27									-	
28									-	
29									-	
30									-	
31									-	
32									_	
Notes:								ed. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions. ns may be gradual.		
	3) PID readings are referenced to a benzene standard measured in the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lamp. 4) NA = Not Available or Not Applicable 5) Headspace PID readings may be influenced by moisture									
40 COMMERCIAL STREET 274 MADISON AVENUE, ROOM 1104										
	ESTER, 454-0210		ORK 146	614-1008	3					NEW YORK, NEW YORK 10165-1617 (212) 986-8645
	585) 454							www.dayenvironmental.com		FAX (212) 986-8657

da	V									ENVIRONMENTAL CONSULTANTS
			NTAL, IN							LIATE OF DAY ENGINEERING, P.C.
DAT			NTAL, IN	0.						LATE OF DAT ENGINEERING, F.C.
Projec Projec	t #: t Addres	ss:	4302S-0		/enue					TEST BORING MW10-3
			Rochest	er, NY				Ground Elevation: <u>514.63'</u> Datum: <u>514.18'</u>		Page 1 of 2
	Represer		C. Hamp					Date Started: 5/5/2010 Date Ended: 5/5/2010		_
	g Contra ing Meth		Nothnag 2" Split \$		otany Au	aer		Borehole Depth: 24.1 Borehole Diameter: 8" Completion Method: Well Installed Backfilled with Grout □	Backfilled with C	uttings
Gampi	ing wea	100.		opoonin	otary / to	igei		Water Level (Date): 16.45' BTOC (5-18-10)		utungo
Depth (ft)	Blows per 0.5 ft.	Sample Number	Sample Depth (ft)	% Recovery	N-Value or RQD%	Headspace PID (ppm)	PID Reading (ppm)	Sample Description		Notes
Dep	Blov	Sam	Sam	% В	Ň-N	Hea	DID			
	9						0.0	TOPSOIL		
	11	S-1	0-2	95	23	0.0	0.0	Medium Dense, Brown, Sandy Silt, little Gravel, Brick, Coal, Concrete, Organics,		
1	12						0.0	damp (FILL)	-	
	12									
2							0.0	-		
	6						0.0			
3	6	S-2	2-4	50	11	0.0	0.0		-	
	5						0.0			
	5									
4	2						0.0	Loose, moist	-	
	3	S-3	4-6	45	7	0.2	0.0			
5	4					•	0.0		-	
							0.0			
6	4									
	2						0.0			
_	2	S-4	6-8	55	4	0.0	0.0			
7	2						0.0		-	
	3									
8	3						0.0		-	
								Gray ASH fragments		
9	3	S-5	8-10	15	6	0.1	0.0		-	
	3						0.0			
10	3									
10	1						0.0	Loose, Gray, Ash, Some Brick, little Silt, little Sand, moist (FILL)		
	2	S-6	10-12	55	4	0.0	0.0		-	
11	2						0.0			
	3						2.0			
12										
	5						0.0	Soft, Brown, SILT, little fine Sand, little Clay, little Gray Ash, moist (FILL)		
13	2	S-7	12-14	75	4	0.0	0.0	Soft, Brown, SILT, little fine Sand, little Clay, moist		
	2						0.0			
l	4									
14	6						0.0	Very Stiff, Red/Brown, Sandy SILT, trace fine to medium Gravel, moist		
	12	S-8	14-16	60	26	0.0	0.0			
15	14						0.0		-	
							0.0			
16	16				<u> </u>	<u> </u>		4	-	
Notes:								ed. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions.		
								in the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lamp.		
			able or Not							TEST BORING MW10-3
			O readings	may be ir	nfluenced	by moistu	re			
	MMERC				-					274 MADISON AVENUE, ROOM 1104
	454-021		ORK 146	514-1008	8					NEW YORK, NEW YORK 10165-1617
	+54-02 n 585) 454							www.dayenvironmental.com		(212) 986-8645 FAX (212) 986-8657

da	V								ENVIRONMENTAL CONSULTANTS
			ITAL, IN	IC.				A	N AFFILIATE OF DAY ENGINEERING, P.C.
Projec	t #:		4302S-0	19					TEST BORING MW10-3
Projec	t Addres	s:	151 Mt. Rochest		renue			Ground Elevation: 514.63' Datum: 514.18'	Page 2 of 2
DAY F	epreser	ntative:	C. Hamp					Bround Elevation: 514.03 Data Date Started: 5/5/2010 Date Ended: 5/5/2010	rage 2 01 2
	g Contra		Nothnag					Borehole Depth: 24.1 Borehole Diameter: 8"	
Sampl	ing Meth	nod:	2" Split S	Spoon/R	otary Au	ger		Completion Method: ■ Well Installed □ Backfilled with Grout □ Backfill Water Level (Date): 16.45' BTOC (5-18-10) 16.45' BTOC (5-18-10)	ed with Cuttings
			1			2			
Depth (ft)	Blows per 0.5 ft.	Sample Number	Sample Depth (ft)	% Recovery	N-Value or RQD%	Headspace PID (ppm)	PID Reading (ppm)	Sample Description	Notes
	22						0.0		
17	13	S-9	16-18	95	27	0.1	0.0		
	14						0.0		
18	12							Dense, Gray, Silty SAND, little fine to medium Gravel, wet	
	8						0.0	Red/Brown, Rock fragments	
19	21	S-10	18-20	95	43	0.0	0.0		
	22						0.0		
20	24								
	15						0.0		
21	16	S-11	20-22	95	28	0.0	0.0	Medium Dense	
	12						0.0		
22	12							-	
	16						0.0		
23	17	S-12	22-24	100	40	0.0	0.0	Dense	
	23						0.0		
24	26 50/1	S-13	24-24.1	100	NA	NA	0.0		
25								Split Spoon Refusal @ 24.1'	
25								Auger Refusal @ 24.1'	
26								_	
27								-	
28									
29									
30								-	
31								-	
32								<u> </u>	
Notes:	Notes: 1) Water levels were made at the times and under conditions stated. Fluctuations of groundwater levels may occur due to seasonal factors and other conditions. 2) Stratification lines represent approximate boundaries. Transitions may be gradual.								
	3) PID readings are referenced to a benzene standard measured in the headspace above the sample using a MiniRae 2000 equipped with a 10.6 eV lamp.								
			able or Not) readings			by moistu	re		TEST BORING MW10-3
5) Headspace PID readings may be influenced by moisture 40 COMMERCIAL STREET 274 MADISON AVENUE, ROOM 1104									
			ORK 146	614-1008	3				NEW YORK, NEW YORK 10165-1617
	454-0210 585) 454							www.dayenvironmental.com	(212) 986-8645 FAX (212) 986-8657

day					ENVIRONMENTAL CONSULTANTS
	RONMENTAL, INC.			AN AF	FILIATE OF DAY ENGINEERING, P.C.
			WELL CONSTRUCTION	I DIAGRAM	
Project #: Project Addre	4302S-09 ess: 151 Mt. Hope Avenue	_			MONITORING WELL MW10-1
DAY Represe Drilling Contra		Ground Elevation: Date Started: Water Level (Date):	517.06' 5/5/2010 10.12' BTOC (5-18	Datum: Date Ended: 3-10)	514.18' 5/5/2010
Refer to Test Boring Log TB-MW10-1 for Soil Description		Backfill Type G 5.5 Depth to Top of 7.7 Depth to Top of 8.7 Depth to Top of 8.0 Diameter of Bo Backfill Type S 2.0 Inside Diameter Type of Pipe Screen slot size	of Riser Pipe (ft) om of Cement Surface Grout (Portland) of Bentonite Seal (ft) om of Bentonite Seal (ft) of Well Screen (ft) orehole (in) and er of Well (in) <u>chedule 40 PVC</u> 0		
Notos: 1) Wat	or levels were made at the times and u	nder conditions stated. Elustrat	tions of groundwater levels r	may acquir due to concernal fr	actors and other conditions
	er levels were made at the times and u = Not Available or Not Applicable	nuer conunions stated. Fluctuat	ions of groundwater levels f	nay occur que to seasonal fa	
					MONITORING WELL MW10-1

CAH0262

40 COMMERCIAL STREET ROCHESTER, NEW YORK 14614-1008 (585) 454-0210 FAX (585) 454-0825 274 MADISON AVENUE, ROOM 1104 NEW YORK, NEW YORK 10165-1617 (212) 986-8645 FAX (212) 986-8657

www.dayenvironmental.com

day					ENVIRONMENTAL CONSULTANTS
DAY ENVIRC	ONMENTAL, INC.			AN AF	FILIATE OF DAY ENGINEERING, P.C.
			WELL CONSTRUCTION	DIAGRAM	
Project #: Project Address	4302S-09 s: 151 Mt. Hope Avenue	-			MONITORING WELL MW10-2
DAY Representa Drilling Contract		Ground Elevation: Date Started: Water Level (Date):	515.74' 5/5/2010 8.94' BTOC (5-18-	Datum: Date Ended: 10)	514.18' 5/5/2010
Refer to Test Boring Log TB-MW10-2 for Soil Description		Backfill Type <u>G</u>	of Riser Pipe (ft) m of Cement Surface F Grout (Portland) of Bentonite Seal (ft) om of Bentonite Seal (ft) of Well Screen (ft) orehole (in) Sand er of Well (in) edule 40 PVC 10 om of Well Screen (ft)	t)	
Notes: 1) Water I	r levels were made at the times and u	inder conditions stated. Fluctuat	tions of aroundwater levels r	nav occur due to seasonal fa	actors and other conditions.
	Not Available or Not Applicable				
					MONITORING WELL MW10-2

CAH0262

40 COMMERCIAL STREET ROCHESTER, NEW YORK 14614-1008 (585) 454-0210 FAX (585) 454-0825 274 MADISON AVENUE, ROOM 1104 NEW YORK, NEW YORK 10165-1617 (212) 986-8645 FAX (212) 986-8657

www.dayenvironmental.com

day					ENVIRONMENTAL CONSULTANTS
DAY ENVIRON	NMENTAL, INC.			AN AF	FILIATE OF DAY ENGINEERING, P.C.
			VELL CONSTRUCTION	DIAGRAM	
Project #: Project Address:	4302S-09 151 Mt. Hope Avenue	_			MONITORING WELL MW10-3
DAY Representati Drilling Contractor		Ground Elevation: Date Started: Water Level (Date):	514.63' 5/6/2010 16.45' BTOC (5-18-	Datum: Date Ended: 10)	514.18' 5/6/2010
Refer to Test Boring Log TB-MW10-3 for Soil Description		<u>9.1</u> Depth to Top o <u>8.0</u> Diameter of Bo Backfill Type <u>Sa</u> <u>2.0</u> Inside Diamete	f Riser Pipe (ft) m of Cement Surface I rout (Portland) f Bentonite Seal (ft) m of Bentonite Seal (ft) f Well Screen (ft) orehole (in) and er of Well (in) edule 40 PVC		
Notes: 1) Water lev	rels were made at the times and u	nder conditions stated. Fluctuation	ons of aroundwater levels m	nav occur due to seasonal fa	actors and other conditions
	Available or Not Applicable				
					MONITORING WELL MW10-3

CAH0262

40 COMMERCIAL STREET ROCHESTER, NEW YORK 14614-1008 (585) 454-0210 FAX (585) 454-0825 274 MADISON AVENUE, ROOM 1104 NEW YORK, NEW YORK 10165-1617 (212) 986-8645 FAX (212) 986-8657

www.dayenvironmental.com

APPENDIX D

Well Development Logs and Monitoring Well Sampling Logs

WELL DEVELOPMENT DATA MW10-1

SITE LOCATION: 151 Mt. Hope Avenue, Rochester, New York

JOB#: <u>4302S-09</u>

	-		W I UIK				J	
DATE/ TIME	5-18-10 9:05	5-18-10 9:20	5-18-10 9:30	5-18-10 9:40	5-18-10 9:50			
EVACUATION METHOD	Bailer	Bailer	Bailer	Bailer	Bailer			
PID/FID (PPM)	1.6	NA	NA	NA	NA			
DEPTH OF WELL (FT)	18.45	18.45	18.45	18.46	18.48	18.49		
STATIC WATER LEVEL (SWL) FT	10.12	10.19	11.70	12.42	13.98			
VOLUME EVACUATED (GAL)	0	2	2	2	1			
TOTAL VOLUME EVACUATED (GAL)	0	2	4	6	7			
TEMPERATURE (^o C)	10.5	9.8	9.9	10.2	9.9			
рН	6.52	6.63	6.68	6.85	6.82			
ORP (mV)	-123	-125	-121	-118	-119			
CONDUCTIVITY (s/m)	0.140	0.130	0.133	0.133	0.132			
TURBIDITY (NTU)	152.0	>800	>800	>800	>800			
VISUAL OBSERVATION	Slightly cloudy with little odor	Very cloudy, strong odor	Very cloudy, strong odor	Very cloudy, strong odor	Very cloudy, strong odor			

LEGEND: NC = Not Collected

D = Not Detected

*= Not Measurable

Day Environmental, Inc. 40 Commercial Street Rochester, New York 14614

WELL DEVELOPMENT DATA **MW10-2**

SITE LOCATION: 151 Mt. Hope Avenue, Rochester, New York

JOB#: <u>4302S-09</u>

THE LOCATION. 13	T MIL HOPE AVEI	lue, Rochester, Ne	W IUIK				J	ODπ. <u>43023-09</u>
DATE/ TIME	5-18-10 10:20	5-18-10 10:30	5-18-10 10:40	5-18-10 10:55	5-18-10 11:05	5-18-10 11:15	5-18-10 11:25	5-18-10 11:30
EVACUATION METHOD	Bailer	Bailer	Bailer	Bailer	Bailer	Bailer	Bailer	Bailer
PID/FID (PPM)	5.1	NA	NA	NA	NA	NA	NA	NA
DEPTH OF WELL (FT)	23.89	23.91	23.91	23.97	23.99	24.01	24.01	24.02
STATIC WATER LEVEL (SWL) FT	8.94	9.06	9.26	9.60	9.75	9.98	10.15	10.21
VOLUME EVACUATED (GAL)	0	2	2	2	2	2	2	1
TOTAL VOLUME EVACUATED (GAL)	0	2	4	6	8	10	12	13
TEMPERATURE (^o C)	10.2	10.5	10.3	10.1	10.3	10.0	9.8	10.0
pH	6.96	7.32	7.43	7.15	7.39	7.28	7.23	7.35
ORP (mV)	-149	-126	-115	-127	-127	-128	-134	-138
CONDUCTIVITY (s/m)	0.173	0.172	0.170	0.168	0.168	0.171	0.170	0.165
TURBIDITY (NTU)	170.0	>800	>800	>800	>800	>800	>800	>800
VISUAL OBSERVATION	Clear with Odor	Cloudy with Odor	Cloudy with Odor	Cloudy, Slight Sheen, Odor				
OBSERVATION EGEND: NC = Not Col		Odor	Odor	Sheen, Odor	Sheen, Odor	Sheen, Odor		Day E

D = Not Detected

*= Not Measurable

Day Environmental, Inc. 40 Commercial Street Rochester, New York 14614

WELL DEVELOPMENT DATA MW10-3

SITE LOCATION: 151 Mt. Hope Avenue, Rochester, New York

JOB#: <u>4302S-09</u>

DATE/ TIME	5-18-10 11:50	5-18-10 12:00	5-18-10 12:15	5-18-10 12:25		
EVACUATION METHOD	Bailer	Bailer	Bailer	Bailer		
PID/FID (PPM)	0.5	NA	NA	NA		
DEPTH OF WELL (FT)	23.86	23.89	23.89	23.89		
STATIC WATER LEVEL (SWL) FT	16.45	18.36	19.71	21.95		
VOLUME EVACUATED (GAL)	0	2	2	2		
TOTAL VOLUME EVACUATED (GAL)	0	2	4	6		
TEMPERATURE (⁰ C)	11.8	11.7	10.8	11.8		
рН	7.16	7.24	7.21	7.41		
ORP (mV)	-57	-80	-79	-62		
CONDUCTIVITY (s/m)	0.349	0.366	0.391	0.368		
TURBIDITY (NTU)	557	>800	>800	>800		
VISUAL OBSERVATION	Cloudy with Slight Odor	Cloudy with Slight Odor	Cloudy with Slight Odor	Cloudy with Slight Odor		

LEGEND:

D = Not Detected

NC = Not Collected *= Not Measurable

Day Environmental, Inc. 40 Commercial Street Rochester, New York 14614

DAY ENVIRONMENTAL, INC.

LOW-FLOW GROUNDWATER PURGING AND SAMPLING LOG

WELL MW10-1

SECTION 1 - SITE AND WE	ELL INFORMATION
SITE LOCATION 151 Mt. Hope Avenue, Rochester, NY	JOB #4302S-09
PROJECT NAME: 151 Mt. Hope Avenue	DATE: <u>6/4/10</u>
SAMPLE COLLECTOR(S): <u>K. Crandall</u>	WEATHER: _ ~ 70° F, partly cloudy
PID READING IN WELL HEADSPACE (PPM): <u>NC</u>	MEASURING POINT: Top of PVC
CASING TYPE: <u>PVC</u>	WELL DIAMETER (INCHES): 2.0
SCREENED INTERVAL [FT]: 8.7 – 18.7	INITIAL WATER LEVEL (SWL) [FT]:SWL / Date Measured 12.26 / 6-4-10
WELL DEPTH [FT]: <u>18.7</u> (Do <u>NOT</u> Measure Well depth Prior To Purging And Sampling)	DEPTH OF PUMP INTAKE [FT]: 15.5
LNAPL: None DNAPL: NC	OTHER OBSERVATIONS: None

SECTION 2 – SAMPLING EQUIPMENT										
CONTROL BOX: <u>QED MP-10</u>	TUBING TYPE: <u>1/4" Water , 1/8" Air</u>									
WATER QUALITY METER: <u>Horiba U-22</u>	WATER LEVEL METER: <u>Solinist Mini</u>									
PUMP TYPE: <u>34" Bladder</u>	PURGE GAS: <u>Air</u>									
CONTROL BOX DISCHARGE RATE: 10.0	CONTROL BOX REFILL RATE: <u>5.0</u>									
STABILIZED PUMP RATE (ml/min):	TABILIZED DRAWDOWN WATER LEVEL [FT]: <u>12.51</u>									

		SECTIO	DN 3 – WA '	TER QUA	LITY DATA	A MONITORI	NG		
Time	Pumping Rate (ml/min)	Water Level (ft)	DO (mg/L)	ORP (mv)	Turbidity (NTU)	Conductivity (S/m)	pН	Temp. (C ⁰)	Total Vol. Pumped (ml)
13:20	75	12.51	0.0	-142	219	0.141	6.68	14.2	500
13:23	75	12.51	0.0	-143	204	0.139	6.67	14.7	725
13:26	75	12.51	0.0	-144	195	0.139	6.64	14.3	950
13:29	75	12.51	0.0	-144	193	0.138	6.65	14.1	1175
13:32	75	12.51	0.0	-145	192	0.137	6.65	14.3	1400
13:35	75	12.51	0.0	-145	187	0.137	6.65	14.7	1625
13:38	75	12.51	0.0	-147	187	0.136	6.65	15.0	1850
13:41	75	12.51	0.0	-147	182	0.137	6.65	15.0	2075
13:44	75	12.51	0.0	-148	187	0.137	6.65	14.9	2300
	SAMPLE O	BSERVATIO	NS: Clea	r					
	SECTION 4	- SAMPLE IDF	NTIFICAT	TION AND	ANALYTIC	CAL LABORA'	FORY PAR	AMETERS	
	220110111								

SAMPLE ID #	DATE / TIME	SAMPLING METHOD	ANALYTICAL SCAN(S)
MW10-01	6-4-10 / 13:45	Bladder Pump	8260 TCL STARS VOCs, 8270 TCL STARS SVOCs, 6010/7470 RCRA Metals

S:\Project PDFs\4302S-09Rocity\Final Pre-development Report (September 2010)\Appendix D (Well Development Logs and Monitoring Well Sampling Logs)\cah0267-Low-Flow Sampling Log (4302s-09)(6-4-10).doc

DAY ENVIRONMENTAL, INC.

LOW-FLOW GROUNDWATER PURGING AND SAMPLING LOG

WELL MW10-2

SECTION 1 - SITE AND WE	ELL INFORMATION
SITE LOCATION 151 Mt. Hope Avenue, Rochester, NY	JOB #4302S-09
PROJECT NAME: 151 Mt. Hope Avenue	DATE: <u>6/4/10</u>
SAMPLE COLLECTOR(S): <u>K. Crandall</u>	WEATHER: _ ~ 75° F, partly cloudy
PID READING IN WELL HEADSPACE (PPM): <u>NC</u>	MEASURING POINT: <u>Top of PVC</u>
CASING TYPE: <u>PVC</u>	WELL DIAMETER (INCHES): <u>2.0</u>
SCREENED INTERVAL [FT]: 10 – 25	INITIAL WATER LEVELSWL / Date Measured(SWL) [FT]:11.35 / 6-4-10
WELL DEPTH [FT]: <u>25.0</u> (Do <u>NOT</u> Measure Well depth Prior To Purging And Sampling)	DEPTH OF PUMP INTAKE [FT]: <u>18.5</u>
LNAPL: None DNAPL: NC	OTHER OBSERVATIONS: None

SECTION 2 – SAMPLING EQUIPMENT										
CONTROL BOX: <u>QED MP-10</u>	TUBING TYPE: <u>1/4" Water , 1/8" Air</u>									
WATER QUALITY METER: <u>Horiba U-22</u>	WATER LEVEL METER: Solinist Mini									
PUMP TYPE: <u>34" Bladder</u>	PURGE GAS: <u>Air</u>									
CONTROL BOX DISCHARGE RATE: 1	CONTROL BOX REFILL RATE: 5.0									
STABILIZED PUMP RATE (ml/min): <u>150</u> S	TABILIZED DRAWDOWN WATER LEVEL [FT]: <u>11.63</u>									

		SECTIO	DN 3 – WA	FER QUA	LITY DATA	A MONITORI	NG			
Time	Pumping Rate (ml/min)	Water Level (ft)	DO (mg/L)	ORP (mv)	Turbidity (NTU)	Conductivity (S/m)	pН	Temp. (C ⁰)	Total Vol. Pumped (ml)	
14:55	150	11.63	0.0	-141	151	0.137	6.69	14.5	500	
14:58	150	11.63	0.0	-143	150	0.139	6.67	14.6	950	
15:01	150	11.63	0.0	-142	152	0.141	6.67	14.7	1400	
15:04	150	11.63	0.0	-142	147	0.141	6.69	14.7	1850	
15:07	150	11.63	0.0	-141	142	0.139	6.68	14.5	2300	
15:10	150	11.63	0.0	-143	143	0.140	6.68	14.6	2750	
15:13	150	11.63	0.0	-142	144	0.141	6.69	14.6	3200	
	SAMPLE O	<u>BSERVATIO</u>	NS: Clear	*						
	SECTION 4	- SAMPLE IDE	ONTIFICAT	ION AND	ANALYTIC	CAL LABORA	FORY PAR	AMETERS		
SAMI	PLE ID #	DATE / '	ГІМЕ	SA	MPLING M	ETHOD	ANALYTICAL SCAN(S)			

S:\Project PDFs\4302S-09Rocity\Final Pre-development Report (September 2010)\Appendix D (Well Development Logs and Monitoring Well Sampling Logs)\cah0267-Low-Flow Sampling Log (4302s-09)(6-4-10).doc

Bladder Pump

6-4-10 / 15:15

MW10-02

8260 TCL STARS VOCs, 8270 TCL

STARS SVOCs, 6010/7470 RCRA Metals

DAY ENVIRONMENTAL, INC.

LOW-FLOW GROUNDWATER PURGING AND SAMPLING LOG

WELL MW10-3

	SECTION 1 - SITE AND WELL INFORMATION										
SITE LO	DCATION 1	51 Mt. Hope Av	enue, Rochest	ter, NY	J	DB #4302S	-09				
DDAIE	CT NAME:	151 Mt. Hope	A vonuo		р	ATE: 6/4/1	n				
IKOJE		-				AIL, <u>0/4/10</u>	0				
SAMPL	E COLLECTOR	(S): <u>K. Cr</u>	andall		W	EATHER:	~ 65° F, cloud	ly			
PID REA	ADING IN WEL	L HEADSPACE	C (PPM):	MEA	SURING POIN	VT: _	Top of PVC				
CASINO	G TYPE: <u>PV(</u>	2			WEL	L DIAMETER	(INCHES):	2.0			
SCREE	NED INTERVAL	. (FT):			INIT	IAL WATER L	EVEL	SWL / Date	Magurad		
501000			- 24.1			.) [FT]:		16.41 / 6			
	DEPTH [FT]:	24.1			DEP	TH OF PUMP I	INTAKE [FT]: <u>20.0</u>			
(Do <u>NO</u>	(Do NOT Measure Well depth Prior To Purging And Sampling)										
LNAPL	LNAPL: None DNAPL: NC OTHER OBSERVATIONS: Yellow/brown tint to water										
	SECTION 2 – SAMPLING EQUIPMENT										
CONTR	CONTROL BOX: <u>QED MP-10</u> TUBING TYPE: <u>1/4" Water , 1/8" Air</u>										
WATER QUALITY METER: <u>Horiba U-22</u> WATER LEVE							TER: <u>5</u>	Solinist Mini			
PUMP 1	ГҮРЕ: <u>¾" ВІ</u>	adder			PURGE GAS: <u>Air</u>						
CONTR	OL BOX DISCH	ARGE RATE:	5.0		CONT	ROL BOX REI	FILL RATE:	10.0			
STABIL	JZED PUMP RA	TE (ml/min):	_ 75	:	STABILIZED	DRAWDOWN	N WATER L	EVEL [FT]:	16.53		
-		SECTIO	ON 3 – WAT	TER QUA	LITY DATA	MONITORI	NG				
	Pumping	Water	DO	ORP	Turbidity	Conductivity		Temp.	Total Vol.		
Time	Rate (ml/min)	Level (ft)	(mg/L)	(mv)	(NTU)	(S/m)	pН	(\mathbf{C}^0)	Pumped (ml)		
10:45	75	16.53	0.0	-55	161.0	0.373	6.58	14.9	500		
10:48	75	16.53	0.0	-55	172.0	0.371	6.53	14.8	725		
10:51	75	16.53	0.0	-55	175.0	0.371	6.51	14.7	950		
10:54	75	16.53	0.0	-56	182.0	0.371	6.49	14.6	1175		
10:57 11:00	75 75	<u>16.53</u> 16.53	0.0	<u>-56</u> -55	180.0 166.0	0.371 0.374	6.48 6.48	14.6 14.6	1400 1625		
11:00	75	16.53	0.0	-55	162.0	0.374	6.48	14.0	1850		
11:05	75	16.53	0.0	-56	161.0	0.373	6.51	14.7	2075		
11:09	75	16.53	0.0	-57	157.0	0.373	6.54	15.1	2300		
11:11	75	16.53	0.0	-57	158.0	0.371	6.55	15.4	2525		
11:14	75	16.53	0.0	-57	151.0	0.371	6.50	15.2	2750		
	SAMPLE O	BSERVATIO	NS: Clear	•							
	SECTION 4	- SAMPLE IDI	ENTIFICAT	ION AND	ANALYTIC	CAL LABORA	TORY PAR	AMETERS			
SAME	PLE ID #	DATE /			MPLING M			.YTICAL S			
М	W10-03	6-4-10 /			Bladder Pur		8260 TCL	STARS VOC			

S:\Project PDFs\4302S-09Rocity\Final Pre-development Report (September 2010)\Appendix D (Well Development Logs and Monitoring Well Sampling Logs)\cah0267-Low-Flow Sampling Log (4302s-09)(6-4-10).doc

APPENDIX E

Study-Derived Wastes Disposal Documentation

lease pr	int or type. (Form designe	o for use on ente (12-	plich) typewriter.)									ed. OM		
W	FORM HAZARDOUS		17679 Att: AND) 2 Ve spau	2. Page 1 of 58				0	010	494	65	G	BF
30 (RO	CHURCH ST. ROC CHURCH ST. ROC CHESTER NY 14 rator's Phone: 5 8 5	M 300B	3		• 151	YOF RO I MT. HO CHESTE	PEA	VE.	than mailing addr	ess}				
6. Tra	insporter 1 Company Name								U.S. EPA ID) Number				
Ne	W York Envir	onmental Te	chnologi	es. In	Ç,				NYD	98698	3229			
7. Tra	nsporter 2 Company Name								U.S. EPA ID	Number		~		
8. De	signated Facility Name and S	te Address CYCL	E CHEN,	TNG.					U.S. EPA ID) Number				
55	Ø INDUSTRIAL													
LE	WISBERRY, PA	17339							1	_			υ.	
Facilit	ys Phone: (717)						0.0			967991	1			
9a. HM	9b. U.S. DOT Description (and Packing Group (if any)		g Name, Hazard Cla	ss, ID Number,	,		0. Cont	Type	Quantity	12. Unit Wt.Nol.	1	13. Waste	Codes	
	Q NA3077, HAZA		E SOLID, NO)S (Lead)	, 9, PGIII			- ijpe		T D	800	1		
	RQ: D008)		,											
Z						90.	4	рм	01000	P				
	2.													
5														
	3.									1				
	4.								+	-		+	-	
												_		
									1		4		1	
1											1			
14. Sp	ecial Handling Instructions ar 714311-2-LJ			Jol	b #R4547	/ PO#	348	09			1	1		
a. 15. G	714311-2-LJ SENERATOR'S/OFFEROR'S narked and labeled/placarded exporter, I certify that the control certify that the waste minimiz	(ERG #171) CERTIFICATION: I here and are in all respects i onts of this consignment ation statement identified	(55g) eby declare that the n proper condition for conform to the terms i in 40 CFR 262.27(c	contents of this or transport acts	s consignment are cording to applicat ed EPA Acknowlec ge quanti genera Signal	fully and accu the international gment of Cons tor) or (b) (if 1 ure	rately d l and na sent. am a sn	described abo ational govern nall quantity g	mental regulation: enerator) is true.	s. Il export si	nipment an	d I am ine	Day	Year
a. 15. G n E I Gerera	714311-2-JJ ENERATOR'S/OFFEROR'S narked and labeled/placarded exporter, I certify that the conto certify that the waste minimiz alor's/Offeror Arinled/Typed	(ERG #171) CERTIFICATION: 1 here and are in all respects i ants of this consignment ation statement identified Name	(55g) eby declare that the n proper condition for conform to the terms	contents of this or transport acts	s consignment are cording to applicat ed EPA Acknowlec ge quantify genera Signal	fully and accu ke internationa ignent of Cons tor) or (b) (if 1 ure	rately d l and na sent. am a sn	described abo ational govern nall quantity g	mental regulations	s. Il export si	nipment an		Day	Year
a. 15. G n E I Genera	714311-2-JJ SENERATOR'S/OFFEROR'S narked and labeled/placar/ded exporter, I certify that the cont certify that the waste minimiz alor's/Offerons/Arinled/Typed Multiple emational Shipments	(ERG #171) CERTIFICATION: I here and are in all respects i onts of this consignment ation statement identified Name Import to U.S.	(55g) eby declare that the n proper condition for conform to the terms i in 40 CFR 262.27(c	contents of this or transport acts	s consignment are cording to applicat ed EPA Acknowlec ge quanti genera Signal	fully and accurve international sector of Constitution of Constitution of (b) (if 1 and the constitution of the constitution o	arately d land na sent. am a sn Port of e	described abo ational govern nall quantity g	mental regulation: enerator) is true.	s. Il export si	nipment an	d I am ine	Day	Year
a. 15. G I Gerera 76. https://www.mail.org/ Transf	714311-2-JJ ENERATOR'S/OFFEROR'S narked and labeled/placarded exporter, I certify that the conto certify that the waste minimiz alor's/Offeror Arinled/Typed	(ERG #171) CERTIFICATION: 1 here, and are in all respects i ants of this consignment attory statement identified Name Dimport to U.S. nty):	(55g) eby declare that the n proper condition for conform to the terms i in 40 CFR 262.27(c	contents of this or transport acts	s consignment are cording to applicat ed EPA Acknowlec ge quantify genera Signal	fully and accurve international sector of Constitution of Constitution of (b) (if 1 and the constitution of the constitution o	arately d land na sent. am a sn Port of e	described abor ational govern nall quantity g	mental regulation: enerator) is true.	s. Il export si	nipment an	d I am ine	Day	Year
a. 15. G n E Genera 76. https://www.sci.org/ Transp 17. Tra	714311-2-LJ SENERATOR'S/OFFEROR'S narked and labeled/placar/ded exporter, I certify that the cont certify that the waste minimiz ator's/Offerons Arinted/Typed mational Shipments porter signature (for exports o	(ERG #171) CERTIFICATION: I here and are in all respects i onts of this consignment ation statement identified Name Dimport to U.S. nty): Receipt of Malerials	(55g) eby declare that the n proper condition for conform to the terms i in 40 CFR 262.27(c	contents of this or transport acts	s consignment are cording to applicat ed EPA Acknowlec ge quantify genera Signal	fully and accurate international generation of Constitution of the function of	arately d land na sent. am a sn Port of e	described abor ational govern nall quantity g	mental regulation: enerator) is true.	s. Il export si		d I am ine	Day	Year
a. 15. G I Genera 16. htte Transp 17. Tra	714311-2-LJ SENERATOR'S/OFFEROR'S aarked and labeled/placarded certify that the cont certify that the waste minimiz ator's/Offeror Arinted/Typed arrationel Shipments porter signature (for exports o nsporter Acknowledgment of I orter 1 Printed/Typed Name	(ERG #171) CERTIFICATION: I here and are in all respects i and are in all respects i antion statement identified Name Import to U.S. nly): Receipt of Materials	(55g) eby declare that the n proper condition for conform to the terms i in 40 CFR 262.27(c	contents of this or transport acts	s consignment are cording to applicat ed EPA Acknowlec ge quantify genera Signat	tutly and accurve international generation of Constitution of Constitution of (b) (if 1 and the constitution of (b) (if 1 and the constitution of constitution	arately d land na sent. am a sn Port of e	described abor ational govern nall quantity g	mental regulation: enerator) is true.	s. Il export si			Day	Year Year
a. 15. G n E I Genera 76. htte Transp 17. Tra	714311-2-LJ SENERATOR'S/OFFEROR'S harked and labeled/placarded exporter, I certify that the cont certify that the waste minimiz ator's/Offerons Arighed/Typed mational Shipments porter eignature (for exports o nsporter Acknowledgment of	(ERG #171) CERTIFICATION: I here and are in all respects i onts of this consignment ation statement identified Name Dimport to U.S. nty): Receipt of Malerials	(55g) eby declare that the n proper condition for conform to the terms i in 40 CFR 262.27(c	contents of this or transport acts	s consignment are cording to applicat ed EPA Acknowled ge quantify genera Signal	tutly and accurve international generation of Constitution of Constitution of (b) (if 1 and the constitution of (b) (if 1 and the constitution of constitution	arately d land na sent. am a sn Port of e	described abor ational govern nall quantity g	mental regulation: enerator) is true.	s. Il export si			Day	Year
a . 15. G 15. G 16. htt 17. Transp Transp Transp	714311-2-JJ SENERATOR'S/OFFEROR'S narked and labeled/placar/ded exporter, I certify that the cont certify that the waste minimiz alor's/Offeron Arinted/Typed mational Shipments porter signature (for exports of nsporter Acknowledgment of I orter 1 Printed/Typed Name orter 2 Printed/Typed Name	(ERG #171) CERTIFICATION: I here and are in all respects i and are in all respects i antion statement identified Name Import to U.S. nly): Receipt of Materials	(55g) eby declare that the n proper condition for conform to the terms i in 40 CFR 262.27(c	contents of this or transport acts	s consignment are cording to applicat ed EPA Acknowlec ge quantify genera Signat	tutly and accurve international generation of Constitution of Constitution of (b) (if 1 and the constitution of (b) (if 1 and the constitution of constitution	arately d land na sent. am a sn Port of e	described abor ational govern nall quantity g	mental regulation: enerator) is true.	s. Il export si			Day	Year Year
a . 15. G 15. G 15. G 15. G 16. htt 16. htt 17. Transp Transp 18. Dis	714311-2-JJ SENERATOR'S/OFFEROR'S harked and labeled/placar/ded exporter, I certify that the cont certify that the waste minimiz ator's/Offerons Arinted/Typed anational Shipments borter eignature (for exports of nsporter Acknowledgment of I orter 1 Printed/Typed Name orter 2 Printed/Typed Name	(ERG #171) CERTIFICATION: I here and are in all respects i and are in all respects i antion statement identified Name Import to U.S. nly): Receipt of Materials	(55g) eby declare that the n proper condition for conform to the terms i in 40 CFR 262.27(c	contents of this or transport acts	s consignment are cording to applicat ed EPA Acknowlec ge quantify genera Signat	tutly and accurve international generation of Constitution of Constitution of (b) (if 1 and the constitution of (b) (if 1 and the constitution of constitution	arately d land na sent. am a sn Port of e	described abor ational govern nall quantity g	enerator) is true.	4 2ex			Day Day Day	Year Year Year
a . 15. G 15. G 16. me 16. me Transp 17. Tra Transp 18. Dis	714311-2-JJ SENERATOR'S/OFFEROR'S narked and labeled/placar/ded exporter, I certify that the cont certify that the waste minimiz alor's/Offeron Arinted/Typed mational Shipments porter signature (for exports of nsporter Acknowledgment of I orter 1 Printed/Typed Name orter 2 Printed/Typed Name	(ERG #171) CERTIFICATION: I here and are in all respects i and are in all respects i antion statement identified Name Import to U.S. nly): Receipt of Materials	(55g) eby declare that the n proper condition for conform to the terms i in 40 CFR 262.27(c	contents of this or transport acts	s consignment are cording to applicat ed EPA Acknowlec ge quantify genera Signat	tutly and accurve international generation of Constitution of Constitution of (b) (if 1 and the constitution of (b) (if 1 and the constitution of constitution	arately d l and na sent. Ama a sn Port of e hate lea	described abor ational govern nall quantity g	mental regulation: enerator) is true.	4 2ex			Day	Year Year Year
a . 15. G 15. G 15. G 15. G 16. htt 16. htt 17. Transp Transp 18. Dis	714311-2-JJ SENERATOR'S/OFFEROR'S harked and labeled/placar/ded exporter, I certify that the cont certify that the waste minimiz ator's/Offerons Arinted/Typed mational Shipments borter eignature (for exports of nsporter Acknowledgment of I orter 1 Printed/Typed Name orter 2 Printed/Typed Name	(ERG #171) CERTIFICATION: I here, and are in all respects i inits of this consignment ation statement identified Name Import to U.S. hty): Receipt of Materials	(55g) eby declare that the n proper condition for conform to the terms i in 40 CFR 262.27(c	contents of this or transport acc s of the attached a) (if I am a ten of the attached of the a	s consignment are cording to applicat ed EPA Acknowlec ge quantify genera Signat	tully and accurve international generation of Constant	rately d I and na sent. ann a sn Port of e hate lea	described abor ational govern mall quantity g ontry/exit: vring U.S.:	enerator) is true.	4 2ex			Day Day Day	Year Year Year
A . 15. C n E 1 Generation Transp Transp Transp Transp 18. Dis 18a. Di	714311-2-LJ SENERATOR'S/OFFEROR'S marked and labeled/placarded certify that the cont certify that the waste minimiz ator's/Offeror Arinted/Typed matter is shipments porter signature (for exports of nsporter Acknowledgment of I orter 1 Printed/Typed Name order 2 Printed/Typed Name crepancy screpancy Indication Space	(ERG #171) CERTIFICATION: I here and are in all respects i intion statement identified Name Import to U.S. hy): Receipt of Materials	(55g) eby declare that the n proper condition for conform to the terms i in 40 CFR 262.27(c	contents of this or transport acc s of the attached a) (if I am a ten of the attached of the a	s consignment are cording to applicat ed EPA Acknowlec ge quantify genera Signat	tully and accurve international generation of Constant	rately d I and na sent. ann a sn Port of e hate lea	described abor ational govern nall quantity g	enerator) is true.	4 Section			Day Day Day	Year Year Year Year
A . 15. C n E I Generation Transp Transp Transp 18. Dis 18a. Di	714311-2-JJ SENERATOR'S/OFFEROR'S harked and labeled/placar/ded exporter, I certify that the cont certify that the waste minimiz ator's/Offerons Arinted/Typed mational Shipments borter eignature (for exports of nsporter Acknowledgment of I orter 1 Printed/Typed Name orter 2 Printed/Typed Name	(ERG #171) CERTIFICATION: I here and are in all respects i intion statement identified Name Import to U.S. hy): Receipt of Materials	(55g) eby declare that the n proper condition for conform to the terms i in 40 CFR 262.27(c	contents of this or transport acc s of the attached a) (if I am a ten of the attached of the a	s consignment are cording to applicat ed EPA Acknowlec ge quantify genera Signat	tully and accurve international generation of Constant	rately d I and na sent. ann a sn Port of e hate lea	described abor ational govern mall quantity g ontry/exit: vring U.S.:	enerator) is true.	4 Section			Day Day Day	Year Year Year
A . 15. Content 15. Content 15. Content 16. Mile Transp 17. Transp 17. Transp 17. Transp 18. Dis 18a. Di 18b. Alt	714311-2-JJ SENERATOR'S/OFFEROR'S narked and labeled/placar/ded exporter, I certify that the conti- certify that the waste minimiz alor's/Offeron Arinted/Typed mational Shipments porter signature (for exports of nsporter Acknowledgment of I orter 1 Printed/Typed Name orter 2 Printed/Typed Name crepancy iscrepancy Indication Space	(ERG #171) CERTIFICATION: I here and are in all respects i intion statement identified Name Import to U.S. hy): Receipt of Materials	(55g) eby declare that the n proper condition for conform to the terms i in 40 CFR 262.27(c	contents of this or transport acc s of the attached a) (if I am a ten of the attached of the a	s consignment are cording to applicat ed EPA Acknowlec ge quantify genera Signat	tully and accurve international generation of Constant	rately d I and na sent. ann a sn Port of e hate lea	described abor ational govern mall quantity g ontry/exit: vring U.S.:	enerator) is true.	4 Section			Day Day Day	Year Year Year Year
A . 15. G n E 1 Genera 16. htte Transp 17. Tra Transp 18. Dis 18a. Di 18b. All Facility	714311-2-LJ SENERATOR'S/OFFEROR'S marked and labeled/placarded certify that the cont certify that the waste minimiz ator's/Offeror Arinted/Typed matter is shipments porter signature (for exports of nsporter Acknowledgment of I orter 1 Printed/Typed Name order 2 Printed/Typed Name crepancy screpancy Indication Space	(ERG #171) CERTIFICATION: I here, and are in all respects i ants of this consignment ation statement identified Name Import to U.S. nty): Receipt of Materials Quantity	(55g) eby declare that the n proper condition for conform to the terms i in 40 CFR 262.27(c	contents of this or transport acc s of the attached a) (if I am a ten of the attached of the a	s consignment are cording to applicat ed EPA Acknowlec ge quantify genera Signat	tully and accurve international generation of Constant	rately d I and na sent. ann a sn Port of e hate lea	described abor ational govern mall quantity g ontry/exit: vring U.S.:	enerator) is true.	4 Section			Day Day Day	Year Year Year Year
a . 15. Contemporation of the second	714311-2-LJ ENERATOR'S/OFFEROR'S narked and labeled/placar/ded Exporter, I certify that the contro- certify that the waste minimiz alor's/Offeron Arinted/Typed mational Shipments porter signature (for exports of nsporter Acknowledgment of I orter 1 Printed/Typed Name orter 2 Printed/Typed Name crepancy iscrepancy Indication Space ternate Facility (or Generator) 's Phone: gnature of Alternate Facility (or	(ERG #171) CERTIFICATION: I here, and are in all respects i ints of this consignment attion statement identified Narie Import to U.S. nty): Receipt of Materials Quantity r Generator)	(55g) aby declare that the n proper condition fo conform to the terms in 40 CFR 262.27(e bakad M: ke	contents of this or transport acc s of the attacht a) (if I am a lan a) (if I am a lan a) (if I am a lan b) (if I am a lan b) (if I am a l	s consignment are cording to applicat ed EPA Acknowled ge quantif genera Signat Export from U.S Signat	fully and accu ke internationa gment of Cons tor) or (b) (ff1 ure babb re ure ure Manifest R	rately d I and na sent. am a sn Port of e bate lea	described abor ational govern mall quantity g output entry/exit: ving U.S.: ce Number:	enerator) is true.	4 Section			Day Day Day Day	Year Year Year
a . 15. Contemporation of the second	714311-2-JJ ENERATOR'S/OFFEROR'S narked and labeled/placarded Exporter, I certify that the contu- certify that the waste minimiz ator's/Offeror Arinted/Typed Multiple ator's/Offeror Arinted/Typed porter signature (for exports of nsporter Acknowledgment of I orter 1 Printed/Typed Name orter 2 Printed/Typed Name crepancy iscrepancy Indication Space ternate Facility (or Generator) 's Phone:	(ERG #171) CERTIFICATION: I here, and are in all respects i ints of this consignment attion statement identified Narie Import to U.S. nty): Receipt of Materials Quantity r Generator)	(55g) aby declare that the n proper condition fo conform to the terms in 40 CFR 262.27(e bakad M: ke	contents of this or transport acc s of the attacht a) (if I am a lan a) (if I am a lan a) (if I am a lan b) (if I am a lan b) (if I am a l	s consignment are cording to applicat ed EPA Acknowled ge quantif genera Signat Export from U.S Signat	fully and accu ke internationa gment of Cons tor) or (b) (ff1 ure babb re ure ure Manifest R	rately d I and na sent. am a sn Port of e bate lea	described abor ational govern mall quantity g output entry/exit: ving U.S.: ce Number:	enerator) is true.	4 Section			Day Day Day Day	Year Year Year
A . 15. Content 15. Content 15. Content 16. Mile Transp 17. Transp 17. Transp 17. Transp 18. Dis 18a. Dis 18b. Alt Facility 18c. Sig	714311-2-LJ ENERATOR'S/OFFEROR'S narked and labeled/placar/ded Exporter, I certify that the contro- certify that the waste minimiz alor's/Offeron Arinted/Typed mational Shipments porter signature (for exports of nsporter Acknowledgment of I orter 1 Printed/Typed Name orter 2 Printed/Typed Name crepancy iscrepancy Indication Space ternate Facility (or Generator) 's Phone: gnature of Alternate Facility (or	(ERG #171) CERTIFICATION: I here, and are in all respects i ints of this consignment attion statement identified Narie Import to U.S. nty): Receipt of Materials Quantity r Generator)	(55g) aby declare that the n proper condition fo conform to the terms in 40 CFR 262.27(e bakad M: ke	contents of this or transport acc s of the attacht a) (if I am a lan a) (if I am a lan a) (if I am a lan b) (if I am a lan b) (if I am a l	s consignment are cording to applicat ed EPA Acknowled ge quantif genera Signat Export from U.S Signat	fully and accu ke internationa gment of Cons tor) or (b) (ff1 ure babb re ure ure Manifest R	rately d I and na sent. am a sn Port of e bate lea	described abor ational govern mall quantity g output entry/exit: ving U.S.: ce Number:	enerator) is true.	4 Section			Day Day Day Day	Year Year Year
a . 15. G 15. G 15. G 15. G 15. G 16. htt 16. htt 17. Transp 17. Transp 17. Transp 18. Dis 18a. Di 18a. Di 18b. All Facility 18c. Sig 19. Haz 1.	714311-2-LJ ENERATOR'S/OFFEROR'S aarked and labeled/placar/ded Exporter, I certify that the cont certify that the waste minimiz ator's/Offerors/Finited/Typed amational Shipments porter signature (for exports of nsporter Acknowledgment of I orter 1 Printed/Typed Name orter 2 Printed/Typed Name crepancy iscrepancy Indication Space ternate Facility (or Generator) 's Phone: gnature of Alternate Facility (or tardous Waste Report Manag HH144	(ERG #171) CERTIFICATION: I here and are in all respects i ints of this consignment tidon statement identified Name Import to U.S. nty): Receipt of Malerials Automatic Quantity r Generator) ement Method Codes (I.	(55g) aby declare that the n proper condition for conform to the terms in 40 CFR 262.27(c balaa Mike a., codes for hazard	contents of this or transport acc s of the attached a) (if I am a transport of Type	s consignment are cording to applicat ed EPA Acknowled ge quantify genera Signat Export from U.S Signat	tully and accurve international gment of Constant of C	rately d I and na sent. ann a sn Port of e Port of e Por	described abor ational govern mall quantity g output entry/exit:	enerator) is true.	4 Section			Day Day Day Day	Year Year Year
a . 15. C n E I Generation Transp Transp Transp Transp Transp 18. Dis 18a. Di 18b. All Facility 19. Haz 1. 20. Des	714311-2-LJ SENERATOR'S/OFFEROR'S marked and labeled/placarded certify that the waste minimiz ator's/Offeror Arinted/Typed matter signature (for exports of nsporter Signature (for exports of nsporter Acknowledgment of I orter 1 Printed/Typed Name orter 2 Printed/Typed Name crepancy iscrepancy Indication Space ternate Facility (or Generator) 's Phone: gnature of Alternate Facility (or tardous Waste Report Manag HHJHH	(ERG #171) CERTIFICATION: I here and are in all respects i ints of this consignment tidon statement identified Name Import to U.S. nty): Receipt of Malerials Automatic Quantity r Generator) ement Method Codes (I.	(55g) aby declare that the n proper condition for conform to the terms in 40 CFR 262.27(c balaa Mike a., codes for hazard	contents of this or transport acc s of the attached a) (if I am a transport of Type	s consignment are cording to applicat ed EPA Acknowled ge quantify genera Signat Export from U.S Signat Signat	international generation of Cons (arr) or (b) (iff a ture ture ture ture Manifest R Manifest R Manifest R	rately d I and na sent. ann a sn Port of e Port of e Por	described abor ational govern mall quantity g output entry/exit:	enerator) is true.	4 Section			Day Day Day Day Day Day	Year Year Year Year
A . 15. C n E I Generation Transp Transp Transp Transp Transp Transp 18. Dis 18a. Di 18b. Alt Facility 19. Haz 1. 20. Des	714311-2-LJ SENERATOR'S/OFFEROR'S narked and labeled/placar/ded Exporter, I certify that the conti- certify that the waste minimiz alor's/Offeron Arinled/Typed mational Shipments porter Signature (for exports of nsporter Acknowledgment of I orter 1 Printed/Typed Name orter 2 Printed/Typed Name orter 2 Printed/Typed Name crepancy iscrepancy Indication Space ternate Facility (or Generator) 's Phone: gnature of Alternate Facility (or cardous Waste Report Manage HH J HH Lignated Facility Owner or Op Typed Name	(ERG #171) CERTIFICATION: I here and are in all respects i ints of this consignment tidon statement identified Name Import to U.S. nty): Receipt of Malerials Automatic Quantity r Generator) ement Method Codes (I.	(55g) aby declare that the n proper condition for conform to the terms in 40 CFR 262.27(c balaa Mike a., codes for hazard	contents of this or transport acc s of the attached a) (if I am a transport of Type	s consignment are cording to applicat ed EPA Acknowled ge quantify genera Signat Export from U.S Signat	international generation of Cons (arr) or (b) (iff a ture ture ture ture Manifest R Manifest R Manifest R	rately d I and na sent. ann a sn Port of e Port of e Por	described abor ational govern mall quantity g output entry/exit:	enerator) is true.	4 Section		Month I Month	Day Day Day Day	Year Year Year Year

	N	ON-HAZARDOUS	1. Generator ID Number		×.	2. Page 1 of	3. Emergen	cy Respons	a Phona	4. Waste T	2.0			
Î	N	ASTE MANIFEST	NYROOO			1	800.80	7.455	14 JH	than mailing addre) - 7 9 :	2	
	C 3 R	nerator's Name and Mailin TY OF ROCHES OCHURCH ST. I OCHESTER NY rator's Phone: 585	STER ROOM 300B / 14614	Att:	ANNE SPA	ULDING	CITY OF 151 MT. ROCHE	ROCH	ESTER AVE.			ŝ	, ¢	
		insporter 1 Company Nam								U.S. EPA ID				
		IEW YORK EN	VIRONMENTAL	TECHNC	LOGIES,	INC,				U.S. EPA ID		6983	322	9
										110 504 10	Mumbar			
	C 54 Ll	signated Facility Name and YCLE CHEM, IN 50 INDUSTRIAL EWISBERRY PA	IC. DR. A 17339							U.S. EPAID		7098	382	2
	Facin	y's Phone: 717 93						10. Cont	ainers	11. Total	12. Unit			
		9. Waste Shipping Name	e and Description			-		No.	Туре	Quantity	Wt./Vol.		S. S	
GENERATOR -			ON DOT LIQUIDS,	NOS (DE	CON WATE	ER)	0	04	DM	00200	G			
GEN		2.												
		3.												
		4.												
	13. S	1 Special Handling Instruction	ns and Additional Information						4				1	
	A 14. G		~OW (55G)	described abov	JOB #R4				reporting pro	per disposal of Ha	zardous Wa	1510.		-
V	Gene	ator /Offeror's Printeder	ped Name . Unster	Øh	bela	ef of	enature	éra	tor	Allie	nste	× 08	Day	1
INTL		porter Signature (for expor	Import to U.S.		L,	Exportion	v.s.	Port of e Date lea	ntry/exit: ving U.S.:					
		ansporter Acknowledgmer					/	11		An		1		Verd
TRANSPORTER		porter 1 Printed/Typed Nar porter 2 Printed/Typed Nar	Kevin	Mi	kel	1	gnature gnature	lev	N	Ma	bel	Mon	n	Year 120 Year
TRAI	Halis	poner 2 1 milear types that				1								
	17. Di	screpancy				•								
Î	17a. D	Discrepancy Indication Spa	ace Quantity		П Туре			esiduə		Partial Re	jection		Full Reje	ction
	1	H					Manifes	Reference	Number:	U.S. EPA ID	Number			
FACILITY		Mernate Facility (or Gener	ator)		÷						2			
		y's Phone; Signature of Alternate Facil	lity (or Generator)			- Tributo p. 2010 - 2010			and an inclusion of the second			Mon	th Day	Year
- DESIGNAT							Λ							Year Year Ction Year
			or Operator: Certification of ree	ceipt of material	Is covered by the			am 17a				Mari	th Day	Year
¥	Printe	DECE	STEHLE	1		Sk	dil	S	fell	ez		Moni	20	1
69	-BLS	-C 5 11979 (Rev.	8/06)		,	CV			. D	ESIGNATE	DFAC	ILITY TO	GENER	ATOR

, ,

The second second

APPENDIX F

Environmental Analytical Laboratory Reports

Report Date: 05-Mar-10 09:47

Final Repo	ort
Re-Issued	Report
Revised R	eport

A DIVISION OF SPECTRUM ANALYTICAL, INC. Featuring HANIBAL TECHNOLOGY *Laboratory Report*

> Work Order: J0281 Project : 151 Mt. Hope Ave. Project #:

Day Environmental Inc. 40 Commercial Street Rochester, NY 14614-1008

Attn: Jeff Danzinger

Labo	oratory ID	Client Sample ID		· · ·	Matrix	Date Sampled	Date Received
	J0281-01	TP10-1 (8.5')			Soil	19-Feb-10 10:15	23-Feb-10 11:04
	J0281-02	TP10-4 (2')			Soil	19-Feb-10 09:20	23-Feb-10 11:04
•	J0281-03	TP10-4 (11')			Soil	19-Feb-10 09:45	23-Feb-10 11:04
	J0281-04	TP10-6 (3.5')			Soil	18-Feb-10 08:35	23-Feb-10 11:04
	J0281-05	TP10-6 (5-5.8')			Soil	18-Feb-10 08:45	23-Feb-10 11:04
	J0281-06	TP10-6 (9')	e		Soil	18-Feb-10 08:40	23-Feb-10 11:04
	J0281-07	TP10-7 (6.5')			Soil	19-Feb-10 11:20	23-Feb-10 11:04
	J0281-08	TP10-8 (2.5')			Soil	19-Feb-10 10:45	23-Feb-10 11:04
	J0281-09	TP10-11 (7')			Soil	18-Feb-10 10:40	23-Feb-10 11:04
	J0281-10	TP10-13 (11')	· · · · · · · · · · · · · · · · · · ·		Soil	18-Feb-10 11:25	23-Feb-10 11:04
	J0281-11	TP10-15 (7')			Soil	18-Feb-10 14:40	23-Feb-10 11:04
	J0281-12	TP10-20 (6.5')			Soil	18-Feb-10 13:15	23-Feb-10 11:04
	J0281-13	TP10-22 (8')		11 - A - A	Soil	19-Feb-10 12:50	23-Feb-10 11:04
1	J0281-14	TP10-23 (8')	· · · · · · · · · · · · · · · · · · ·		Soil	19-Feb-10 13:25	23-Feb-10 11:04
	J0281-15	TB021910			Aqueous	19-Feb-10 00:00	23-Feb-10 11:04

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. The results relate only to the samples(s) as received.

All applicable NELAC or USEPA CLP requirments have been meet.

Mitkem Laboratories is accredited under the National Environmental Laboratory Approval Program (NELAP) and is certified by several States, as well as USEPA and US Department of Defense. The current list of our laboratory approvals and certifications is available on the Certifications page our web site at www.mitkem.com.

Please contact the Laboratory or Technical Director at 401-732-3400 with any questions regarding the data contained in the laboratory report.

Department of Defense	N/A	ACCORD.	ACRO STALL		Authorized by:
Connecticut	PH-0153		/.*		
Delaware	N/A	월 🛯 🗋 김 (0 월			1
Maine	2007037		14 tr 1 1 1		1 TD
Massachusetts	M-RI907				VICK
New Hampshire	2631				
New Jersey	RI001		S Same		0
New York	11522		ACC OPA		Yihai Ding
North Carolina	581				Laboratory Director
Pennsylvania	68-00520		國基督士的主國		
Rhode Island	LAI00301			1 A.	Technical Reviewer's Initials:
Texas	T104704422-08-TX				reeninear reeviewer's initials. L
USDA	P330-08-00023				
USEPA - ISM	EP-W-09-039		Clares of		
USEPA - SOM	EP-W-05-030		and shares and a second se		

Analytical Data Package for Day Environmental Inc.

Client Project: 151 Mt. Hope Ave.

Mitkem Work Order ID: J0281

March 5, 2010

Prepared For:

Day Environmental Inc. 40 Commercial Street Rochester, NY 14614 Attn: Mr. Jeff Danzinger

Prepared By:

Mitkem Laboratories 175 Metro Center Boulevard Warwick, RI 02886 (401) 732-3400 **Client: Day Environmental Inc.**

Client Project: 151 Mt. Hope Ave.

Lab Project ID: J0281

Date samples received: 02/23/10

Project Narrative

This data report includes the analysis results for fifteen (15) samples that were received from Day Environmental Inc. on February 23, 2010. Analyses were performed per specification on the Chain of Custody form. For reference, a copy of the Mitkem Sample Log-In form is included for cross-referencing the client sample ID and the laboratory sample ID.

Percent recoveries for surrogate standards for volatiles analysis were within the QC limits with the exception of high recovery of bromofluorobenzene in sample TP10-6 (9'). The recoveries for the volatile laboratory control samples were within the QC limits with the exception of low recovery of tetrachloroethene and marginally high recovery of 1,1,2,2-tetrachloroethane in LCS-49473 and -49496 and their associated duplicates. Methylene chloride and naphthalene were detected in method blank MB-49473 and methylene chloride was detected in method blank MB-49496 at a concentration above the MDL but below the reporting limits. Methylene chloride or naphthalene will be flagged with "B" on data reporting forms if methylene chloride or naphthalene is detected in the associated samples. No other unusual observations were made during sample analysis.

Percent recoveries for surrogate standards for semivolatiles analysis were within the QC limits with the exception of high recovery of 2-fluorobiphenyl in sample TP10-6 (9'), high recovery of 2,4,6-tribromophenol in sample TP10-11 (7') and some surrogates diluted out in the diluted analysis for sample TP10-11 (7'). The recoveries for semivolatile laboratory control samples were within the QC limits. Due to the high concentration of target analytes, the following samples were re-analyzed at dilution: TP10-11 (7') (20x) and TP10-15 (7') (4x). Both the initial and diluted analysis have been reported for these two samples. No other unusual observations were made during sample analysis.

Spike recoveries for the laboratory control sample for metals were within the QC limits. Matrix spike was performed on sample TP10-4 (2') for RCRA8 metals. Spike recoveries were within the QC limits with the exception of marginally low recovery of selenium. A post digest spike was performed for selenium with spike recovery within the QC limits. Percent RPD was within the QC limits. Serial dilution was performed on sample TP10-4 (2') for arsenic, barium, cadmium, chromium, lead, selenium and silver and sample TP10-22 (8') for potassium, sodium, aluminum, calcium, iron and magnesium. Percent RPD was within the QC limits with the exception of arsenic, barium, cadmium, chromium, lead and silver for sample TP10-4 (2') and aluminum, calcium, iron and

magnesium in sample TP10-22 (8'). Please note that antimony, barium, beryllium, cadmium, chromium, cobalt, copper, nickel, nickel and zinc were detected in method blank MB-49458 at a concentration above the MDL but below the reporting limits. These elements are flagged with "B" on data reporting forms. No other unusual observations were made during sample analysis.

The pages in this report have been numbered consecutively, which starts with the title page and ends with the page labeled as "Last Page of data Report".

This data report has been reviewed and is authorized for release as evidenced by the signature below.

agnes Auntho

Agnes Huntley (CLP Project Manager

Client: Day Environmental Inc.

Client Sample ID: TP10-6 (9')

Lab ID: J0281-06

Date: 02-Mar-10

 Project:
 151 Mt. Hope Ave.

 Collection Date:
 02/18/10 8:40

Analyses	Result Qual	RL Units	DF Date Analyzed	Batch ID
SW846 8260 VOC by GC-MS	· ·		SW82	260_LOW_S
Dichlorodifluoromethane	ND	17 µg/Kg	1 02/26/2010 14:33	49496
Chloromethane	ND	17 µg/Kg	1 02/26/2010 14:33	49496
Vinyl chloride	ND	17 µg/Kg	1 02/26/2010 14:33	49496
Bromomethane	ND	17 µg/Kg	1 02/26/2010 14:33	49496
Chloroethane	ND	17 µg/Kg	1 02/26/2010 14:33	49496
Trichlorofluoromethane	ND	17 µg/Kg	1 02/26/2010 14:33	49496
1,1-Dichloroethene	ND	17 µg/Kg	1 02/26/2010 14:33	49496
Acetone	82	17 µg/Kg	1 02/26/2010 14:33	49496
lodomethane	ND	17 µg/Kg	1 02/26/2010 14:33	49496
Carbon disulfide	ND	17 µg/Kg	1 02/26/2010 14:33	49496
Methylene chloride	9.4 BJ	17 µg/Kg	1 02/26/2010 14:33	49496
trans-1,2-Dichloroethene	ND	17 µg/Kg	1 02/26/2010 14:33	49496
Methyl tert-butyl ether	ND	17 µg/Kg	1 02/26/2010 14:33	49496
1,1-Dichloroethane	ND	17 µg/Kg	1 02/26/2010 14:33	49496
Vinyl acetate	ND	17 µg/Kg	1 02/26/2010 14:33	49496
2-Butanone	ND	17 µg/Kg	1 02/26/2010 14:33	49496
cis-1,2-Dichloroethene	ND	17 µg/Kg	1 02/26/2010 14:33	49496
2,2-Dichloropropane	ND	17 µg/Kg	1 02/26/2010 14:33	49496
Bromochloromethane	ND	17 µg/Kg	1 02/26/2010 14:33	49496
Chloroform	ND	17 µg/Kg	1 02/26/2010 14:33	49496
1,1,1-Trichloroethane	ND	17 µg/Kg	1 02/26/2010 14:33	49496
1,1-Dichloropropene	ND	17 µg/Kg	1 02/26/2010 14:33	49496
Carbon tetrachloride	ND	17 µg/Kg	1 02/26/2010 14:33	49496
1,2-Dichloroethane	ND	17 µg/Kg	1 02/26/2010 14:33	49496
Benzene	ND	17 µg/Kg	1 02/26/2010 14:33	49496
Trichloroethene	ND	17 µg/Kg	1 02/26/2010 14:33	49496
1,2-Dichloropropane	ND	17 µg/Kg	1 02/26/2010 14:33	49496
Dibromomethane	ND	17 µg/Kg	1 02/26/2010 14:33	49496
Bromodichloromethane	ND	17 µg/Kg	1 02/26/2010 14:33	49496
cis-1,3-Dichloropropene	ND	17 µg/Kg	1 02/26/2010 14:33	49496
4-Methyl-2-pentanone	ND	17 µg/Kg	1 02/26/2010 14:33	49496
Toluene	ND	17 µg/Kg	1 02/26/2010 14:33	49496
trans-1,3-Dichloropropene	ND	17 µg/Kg	1 02/26/2010 14:33	49496
1,1,2-Trichloroethane	220	17 µg/Kg	1 02/26/2010 14:33	49496
1,3-Dichloropropane	ND	17 µg/Kg	1 02/26/2010 14:33	49496
Tetrachloroethene	ND	17 µg/Kg	1 02/26/2010 14:33	49496
2-Hexanone	350	17 µg/Kg	1 02/26/2010 14:33	49496
Dibromochloromethane	ND	17 µg/Kg	1 02/26/2010 14:33	49496
1,2-Dibromoethane	ND	17 µg/Kg	1 02/26/2010 14:33	49496

Qualifiers: ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Client: Day Environmental Inc.

Client Sample ID: TP10-6 (9')

Lab ID: J0281-06

Date: 02-Mar-10

Project: 151 Mt. Hope Ave. **Collection Date:** 02/18/10 8:40

Analyses	Result	Qual	RL	Units	DF Date Analyzed	Batch ID
SW846 8260 VOC by GC-MS					SW82	260_LOW_S
Chlorobenzene	ND		17	µg/Kg	1 02/26/2010 14:33	49496
1,1,1,2-Tetrachloroethane	ND		17	µg/Kg	1 02/26/2010 14:33	49496
Ethylbenzene	ND		17	µg/Kg	1 02/26/2010 14:33	49496
m,p-Xylene	6.0	J	17	µg/Kg	1 02/26/2010 14:33	49496
o-Xylene	ND		17	µg/Kg	1 02/26/2010 14:33	49496
Xylene (Total)	6.0	J	17	µg/Kg	1 02/26/2010 14:33	49496
Styrene	. ND		17	µg/Kg	1 02/26/2010 14:33	49496
Bromoform	ND		17	µg/Kg	1 02/26/2010 14:33	49496
Isopropylbenzene	ND		17	µg/Kg	1 02/26/2010 14:33	49496
1,1,2,2-Tetrachloroethane	ND		17	µg/Kg	1 02/26/2010 14:33	49496
Bromobenzene	ND		17	µg/Kg	1 02/26/2010 14:33	49496
1,2,3-Trichloropropane	ND		17	µg/Kg	1 02/26/2010 14:33	49496
n-Propylbenzene	ND		17	µg/Kg	1 02/26/2010 14:33	49496
2-Chlorotoluene	ND		17	µg/Kg	1 02/26/2010 14:33	49496
1,3,5-Trimethylbenzene	ND		17	µg/Kg	1 02/26/2010 14:33	49496
4-Chlorotoluene	ND		17	µg/Kg	1 02/26/2010 14:33	49496
tert-Butylbenzene	42		17	µg/Kg	1 02/26/2010 14:33	49496
1,2,4-Trimethylbenzene	15	J	17	µg/Kg	1 02/26/2010 14:33	49496
sec-Butylbenzene	94		17	µg/Kg	1 02/26/2010 14:33	49496
4-Isopropyltoluene	ND		17	µg/Kg	1 02/26/2010 14:33	49496
1,3-Dichlorobenzene	ND		17	µg/Kg	1 02/26/2010 14:33	49496
1,4-Dichlorobenzene	ND		17	µg/Kg	1 02/26/2010 14:33	49496
n-Butylbenzene	59		17	µg/Kg	1 02/26/2010 14:33	49496
1,2-Dichlorobenzene	ND		17	µg/Kg	1 02/26/2010 14:33	49496
1,2-Dibromo-3-chloropropane	ND		17	µg/Kg	1 02/26/2010 14:33	49496
1,2,4-Trichlorobenzene	ND		17	µg/Kg	1 02/26/2010 14:33	49496
Hexachlorobutadiene	ND		17	µg/Kg	1 02/26/2010 14:33	49496
1,2,3-Trichlorobenzene	ND		17	µg/Kg	1 02/26/2010 14:33	49496
Naphthalene	20		17	µg/Kg	1 02/26/2010 14:33	49496
Surrogate: Dibromofluoromethane	106		65-132	%REC	1 02/26/2010 14:33	49496
Surrogate: 1,2-Dichloroethane-d4	106		65-128	%REC	1 02/26/2010 14:33	49496
Surrogate: Toluene-d8	97.6		85-115	%REC	1 02/26/2010 14:33	49496
Surrogate: Bromofluorobenzene	137	S	77-111	%REC	1 02/26/2010 14:33	49496

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits

E - Value above quantitation range

Date: 02-Mar-10

Client: Day Environmental Inc.

Client Sample ID: TP10-11 (7')

Lab ID: J0281-09

Project: 151 Mt. Hope Ave. **Collection Date:** 02/18/10 10:40

Analyses	Result Qual	RL Units	DF Date Analyzed	Batch ID
SW846 8260 VOC by GC-MS			SW82	260_LOW_S
Dichlorodifluoromethane	ND	12 µg/Kg	1 02/26/2010 15:07	49496
Chloromethane	ND	12 µg/Kg	1 02/26/2010 15:07	49496
Vinyl chloride	ND	12 µg/Kg	1 02/26/2010 15:07	49496
Bromomethane	ND	12 µg/Kg	1 02/26/2010 15:07	49496
Chloroethane	ND	12 µg/Kg	1 02/26/2010 15:07	49496
Trichlorofluoromethane	ND	12 µg/Kg	1 02/26/2010 15:07	49496
1,1-Dichloroethene	ND	12 µg/Kg	1 02/26/2010 15:07	49496
Acetone	40	12 µg/Kg	1 02/26/2010 15:07	49496
lodomethane	ND	12 µg/Kg	1 02/26/2010 15:07	49496
Carbon disulfide	ND	12 µg/Kg	1 02/26/2010 15:07	49496
Methylene chloride	8.0 BJ	12 µg/Kg	1 02/26/2010 15:07	49496
trans-1,2-Dichloroethene	ND	12 µg/Kg	1 02/26/2010 15:07	49496
Methyl tert-butyl ether	ND	12 µg/Kg	1 02/26/2010 15:07	49496
1,1-Dichloroethane	ND	12 µg/Kg	1 02/26/2010 15:07	49496
Vinyl acetate	ND	12 µg/Kg	1 02/26/2010 15:07	49496
2-Butanone	ND	12 µg/Kg	1 02/26/2010 15:07	49496
cis-1,2-Dichloroethene	ND	12 µg/Kg	1 02/26/2010 15:07	49496
2,2-Dichloropropane	ND	12 µg/Kg	1 02/26/2010 15:07	49496
Bromochloromethane	ND	12 µg/Kg	1 02/26/2010 15:07	49496
Chloroform	ND	12 µg/Kg	1 02/26/2010 15:07	49496
1,1,1-Trichloroethane	ND	12 µg/Kg	1 02/26/2010 15:07	49496
1,1-Dichloropropene	ND	12 µg/Kg	1 02/26/2010 15:07	49496
Carbon tetrachloride	ND	12 µg/Kg	1 02/26/2010 15:07	49496
1,2-Dichloroethane	ND	12 µg/Kg	1 02/26/2010 15:07	49496
Benzene	ND	12 µg/Kg	1 02/26/2010 15:07	49496
Trichloroethene	ND	12 µg/Kg	1 02/26/2010 15:07	49496
1,2-Dichloropropane	ND	12 µg/Kg	1 02/26/2010 15:07	49496
Dibromomethane	ND	12 µg/Kg	1 02/26/2010 15:07	49496
Bromodichloromethane	ND	12 µg/Kg	1 02/26/2010 15:07	49496
cis-1,3-Dichloropropene	ND	12 µg/Kg	1 02/26/2010 15:07	49496
4-Methyl-2-pentanone	ND	12 µg/Kg	1 02/26/2010 15:07	49496
Toluene	3.4 J	12 µg/Kg	1 02/26/2010 15:07	49496
trans-1,3-Dichloropropene	ND	12 µg/Kg	1 02/26/2010 15:07	49496
1,1,2-Trichloroethane	ND	12 µg/Kg	1 02/26/2010 15:07	49496
1,3-Dichloropropane	ND	12 µg/Kg	1 02/26/2010 15:07	49496
Tetrachloroethene	ND	12 µg/Kg	1 02/26/2010 15:07	49496
2-Hexanone	ND	12 µg/Kg	1 02/26/2010 15:07	49496
Dibromochloromethane	ND	12 µg/Kg	1 02/26/2010 15:07	49496
1,2-Dibromoethane	ND	12 µg/Kg	1 02/26/2010 15:07	49496

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Date: 02-Mar-10

Client: Day Environmental Inc.

Client Sample ID: TP10-11 (7')

Lab ID: J0281-09

Project: 151 Mt. Hope Ave. **Collection Date:** 02/18/10 10:40

Analyses	Result Qual	RL Units	DF Date Analyzed	Batch ID
SW846 8260 VOC by GC-MS			SW82	260_LOW_S
Chlorobenzene	ND	12 µg/Kg	1 02/26/2010 15:07	49496
1,1,1,2-Tetrachloroethane	ND	12 µg/Kg	1 02/26/2010 15:07	49496
Ethylbenzene	ND	12 µg/Kg	1 02/26/2010 15:07	49496
m,p-Xylene	13	12 µg/Kg	1 02/26/2010 15:07	49496
o-Xylene	6.4 J	12 µg/Kg	1 02/26/2010 15:07	49496
Xylene (Total)	19	12 µg/Kg	1 02/26/2010 15:07	49496
Styrene	ND	12 µg/Kg	1 02/26/2010 15:07	49496
Bromoform	ND	12 µg/Kg	1 02/26/2010 15:07	49496
Isopropylbenzene	6.8 J	12 µg/Kg	1 02/26/2010 15:07	49496
1,1,2,2-Tetrachloroethane	ND	12 µg/Kg	1 02/26/2010 15:07	49496
Bromobenzene	ND	12 µg/Kg	1 02/26/2010 15:07	49496
1,2,3-Trichloropropane	ND	12 µg/Kg	1 02/26/2010 15:07	49496
n-Propylbenzene	ND	12 µg/Kg	1 02/26/2010 15:07	49496
2-Chlorotoluene	ND	12 µg/Kg	1 02/26/2010 15:07	49496
1,3,5-Trimethylbenzene	4.5 J	12 µg/Kg	1 02/26/2010 15:07	49496
4-Chlorotoluene	ND	12 µg/Kg	1 02/26/2010 15:07	49496
tert-Butylbenzene	5.0 J	12 µg/Kg	1 02/26/2010 15:07	49496
1,2,4-Trimethylbenzene	19	12 µg/Kg	1 02/26/2010 15:07	49496
sec-Butylbenzene	27	12 µg/Kg	1 02/26/2010 15:07	49496
4-Isopropyltoluene	ND	12 µg/Kg	1 02/26/2010 15:07	49496
1,3-Dichlorobenzene	ND	12 µg/Kg	1 02/26/2010 15:07	49496
1,4-Dichlorobenzene	ND	12 µg/Kg	1 02/26/2010 15:07	49496
n-Butylbenzene	31	12 µg/Kg	1 02/26/2010 15:07	49496
1,2-Dichlorobenzene	ND	12 µg/Kg	1 02/26/2010 15:07	49496
1,2-Dibromo-3-chloropropane	ND	12 µg/Kg	1 02/26/2010 15:07	49496
1,2,4-Trichlorobenzene	ND	12 µg/Kg	1 02/26/2010 15:07	49496
Hexachlorobutadiene	ND	12 µg/Kg	1 02/26/2010 15:07	49496
1,2,3-Trichlorobenzene	ND	12 µg/Kg	1 02/26/2010 15:07	49496
Naphthalene	130	12 µg/Kg	1 02/26/2010 15:07	49496
Surrogate: Dibromofluoromethane	101	65-132 %REC	1 02/26/2010 15:07	49496
Surrogate: 1,2-Dichloroethane-d4	102	65-128 %REC	1 02/26/2010 15:07	49496
Surrogate: Toluene-d8	97.5	85-115 %REC	1 02/26/2010 15:07	49496
Surrogate: Bromofluorobenzene	94.7	77-111 %REC	1 02/26/2010 15:07	49496

Qualifiers: ND - Not D

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits

E - Value above quantitation range

Client: Day Environmental Inc.

Client Sample ID: TP10-13 (11')

Lab ID: J0281-10

Date: 02-Mar-10

Project: 151 Mt. Hope Ave. Collection Date: 02/18/10 11:25

Analyses	Result Qual	RL Units	DF Date Analyzed	Batch ID
SW846 8260 VOC by GC-MS			SW82	260_LOW_S
Dichlorodifluoromethane	ND	7.3 µg/Kg	1 02/25/2010 16:58	49473
Chloromethane	ND	7.3 µg/Kg	1 02/25/2010 16:58	49473
Vinyl chloride	ND	7.3 µg/Kg	1 02/25/2010 16:58	49473
Bromomethane	ND	7.3 µg/Kg	1 02/25/2010 16:58	49473
Chloroethane	ND	7.3 µg/Kg	1 02/25/2010 16:58	49473
Trichlorofluoromethane	ND	7.3 µg/Kg	1 02/25/2010 16:58	49473
1,1-Dichloroethene	ND	7.3 µg/Kg	1 02/25/2010 16:58	49473
Acetone	21	7.3 µg/Kg	1 02/25/2010 16:58	49473
lodomethane	ND	7.3 µg/Kg	1 02/25/2010 16:58	49473
Carbon disulfide	ND	7.3 µg/Kg	1 02/25/2010 16:58	49473
Methylene chloride	2.9 BJ	7.3 µg/Kg	1 02/25/2010 16:58	49473
trans-1,2-Dichloroethene	ND	7.3 µg/Kg	1 02/25/2010 16:58	49473
Methyl tert-butyl ether	ND	7.3 µg/Kg	1 02/25/2010 16:58	49473
1,1-Dichloroethane	ND	7.3 µg/Kg	1 02/25/2010 16:58	49473
Vinyl acetate	ND	7.3 µg/Kg	1 02/25/2010 16:58	49473
2-Butanone	ND	7.3 µg/Kg	1 02/25/2010 16:58	49473
cis-1,2-Dichloroethene	ND	7.3 µg/Kg	1 02/25/2010 16:58	49473
2,2-Dichloropropane	ND	7.3 µg/Kg	1 02/25/2010 16:58	49473
Bromochloromethane	ND	7.3 µg/Kg	1 02/25/2010 16:58	49473
Chioroform	ND	7.3 µg/Kg	1 02/25/2010 16:58	49473
1,1,1-Trichloroethane	ND	7.3 µg/Kg	1 02/25/2010 16:58	49473
1,1-Dichloropropene	ND	7.3 µg/Kg	1 02/25/2010 16:58	49473
Carbon tetrachloride	ND	7.3 µg/Kg	1 02/25/2010 16:58	49473
1,2-Dichloroethane	ND	7.3 µg/Kg	1 02/25/2010 16:58	49473
Benzene	ND	7.3 µg/Kg	1 02/25/2010 16:58	49473
Trichloroethene	ND	7.3 µg/Kg	1 02/25/2010 16:58	49473
1,2-Dichloropropane	ND	7.3 µg/Kg	1 02/25/2010 16:58	49473
Dibromomethane	ND	7.3 µg/Kg	1 02/25/2010 16:58	49473
Bromodichloromethane	ND	7.3 µg/Kg	1 02/25/2010 16:58	49473
cis-1,3-Dichloropropene	ND	7.3 µg/Kg	1 02/25/2010 16:58	49473
4-Methyl-2-pentanone	ND	7.3 μg/Kg	1 02/25/2010 16:58	49473
Toluene	ND	7.3 µg/Kg	1 02/25/2010 16:58	49473
trans-1,3-Dichloropropene	ND	7.3 µg/Kg	1 02/25/2010 16:58	49473
1,1,2-Trichloroethane	ND	7.3 µg/Kg	1 02/25/2010 16:58	49473
1,3-Dichloropropane	ND	7.3 µg/Kg	1 02/25/2010 16:58	49473
Tetrachloroethene	ND	7.3 µg/Kg	1 02/25/2010 16:58	49473
2-Hexanone	ND	7.3 µg/Kg	1 02/25/2010 16:58	49473
Dibromochloromethane	ND	7.3 µg/Kg	1 02/25/2010 16:58	49473
1,2-Dibromoethane	ND	7.3 µg/Kg	1 02/25/2010 16:58	49473

Qualifiers: ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Date: 02-Mar-10

Client: Day Environmental Inc.

Client Sample ID: TP10-13 (11')

Lab ID: J0281-10

Project: 151 Mt. Hope Ave. **Collection Date:** 02/18/10 11:25

Analyses	Result Qual	RL Units	DF Date Analyzed	Batch ID
SW846 8260 VOC by GC-MS			SW8	260_LOW_S
Chlorobenzene	ND	7.3 µg/Kg	1 02/25/2010 16:58	49473
1,1,1,2-Tetrachloroethane	ND	7.3 µg/Kg	1 02/25/2010 16:58	49473
Ethylbenzene	ND	7.3 µg/Kg	1 02/25/2010 16:58	49473
m,p-Xylene	ND	7.3 µg/Kg	1 02/25/2010 16:58	49473
o-Xylene	ND	7.3 µg/Kg	1 02/25/2010 16:58	49473
Xylene (Total)	ND	7.3 µg/Kg	1 02/25/2010 16:58	49473
Styrene	ND	7.3 µg/Kg	1 02/25/2010 16:58	49473
Bromoform	ND	7.3 µg/Kg	1 02/25/2010 16:58	49473
Isopropylbenzene	ND	7.3 µg/Kg	1 02/25/2010 16:58	49473
1,1,2,2-Tetrachloroethane	ND	7.3 µg/Kg	1 02/25/2010 16:58	49473
Bromobenzene	ND	7.3 µg/Kg	1 02/25/2010 16:58	49473
1,2,3-Trichloropropane	ND	7.3 µg/Kg	1 02/25/2010 16:58	49473
n-Propylbenzene	ND	7.3 µg/Kg	1 02/25/2010 16:58	49473
2-Chlorotoluene	ND	7.3 µg/Kg	1 02/25/2010 16:58	49473
1,3,5-Trimethylbenzene	ND	7.3 µg/Kg	1 02/25/2010 16:58	49473
4-Chlorotoluene	ND	7.3 µg/Kg	1 02/25/2010 16:58	49473
tert-Butylbenzene	ND	7.3 µg/Kg	1 02/25/2010 16:58	49473
1,2,4-Trimethylbenzene	ND	7.3 µg/Kg	1 02/25/2010 16:58	49473
sec-Butylbenzene	ND	7.3 µg/Kg	1 02/25/2010 16:58	49473
4-Isopropyltoluene	ND	7.3 µg/Kg	1 02/25/2010 16:58	49473
1,3-Dichlorobenzene	ND	7.3 µg/Kg	1 02/25/2010 16:58	49473
1,4-Dichlorobenzene	ND	7.3 µg/Kg	1 02/25/2010 16:58	49473
n-Butylbenzene	ND	7.3 µg/Kg	1 02/25/2010 16:58	49473
1,2-Dichlorobenzene	ND	7.3 µg/Kg	1 02/25/2010 16:58	49473
1,2-Dibromo-3-chloropropane	ND	7.3 μg/Kg	1 02/25/2010 16:58	49473
1,2,4-Trichlorobenzene	ND	7.3 μg/Kg	1 02/25/2010 16:58	49473
Hexachlorobutadiene	ND	7.3 µg/Kg	1 02/25/2010 16:58	49473
1,2,3-Trichlorobenzene	ND	7.3 µg/Kg	1 02/25/2010 16:58	49473
Naphthalene	4.5 BJ	7.3 µg/Kg	1 02/25/2010 16:58	49473
Surrogate: Dibromofluoromethane	99.5	65-132 %REC	1 02/25/2010 16:58	49473
Surrogate: 1,2-Dichloroethane-d4	104	65-128 %REC	1 02/25/2010 16:58	49473
Surrogate: Toluene-d8	94.7	85-115 %REC	1 02/25/2010 16:58	49473
Surrogate: Bromofluorobenzene	101	77-111 %REC	1 02/25/2010 16:58	49473

Qualifiers: ND -

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Client: Day Environmental Inc.

Client Sample ID: TP10-15 (7')

Lab ID: J0281-11

Date: 02-Mar-10

Project: 151 Mt. Hope Ave. **Collection Date:** 02/18/10 14:40

Analyses	Result Qual	RL Units	DF Date Analyzed	Batch ID
SW846 8260 VOC by GC-MS			SW82	260_LOW_S
Dichlorodifluoromethane	ND	5.8 µg/Kg	1 02/25/2010 17:33	49473
Chloromethane	ND	5.8 µg/Kg	1 02/25/2010 17:33	49473
Vinyl chloride	ND	5.8 µg/Kg	1 02/25/2010 17:33	49473
Bromomethane	ND	5.8 µg/Kg	1 02/25/2010 17:33	49473
Chloroethane	ND	5.8 µg/Kg	1 02/25/2010 17:33	49473
Trichlorofluoromethane	ND	5.8 µg/Kg	1 02/25/2010 17:33	49473
1,1-Dichloroethene	ND	5.8 µg/Kg	1 02/25/2010 17:33	49473
Acetone	26	5.8 µg/Kg	1 02/25/2010 17:33	49473
lodomethane	ND	5.8 µg/Kg	1 02/25/2010 17:33	49473
Carbon disulfide	ND	5.8 µg/Kg	1 02/25/2010 17:33	49473
Methylene chloride	3.3 BJ	5.8 μg/Kg	1 02/25/2010 17:33	49473
trans-1,2-Dichloroethene	ND	5.8 µg/Kg	1 02/25/2010 17:33	49473
Methyl tert-butyl ether	ND	5.8 µg/Kg	1 02/25/2010 17:33	49473
1,1-Dichloroethane	ND	5.8 µg/Kg	1 02/25/2010 17:33	49473
Vinyl acetate	ND	5.8 µg/Kg	1 02/25/2010 17:33	49473
2-Butanone	ND	5.8 µg/Kg	1 02/25/2010 17:33	49473
cis-1,2-Dichloroethene	ND	5.8 µg/Kg	1 02/25/2010 17:33	49473
2,2-Dichloropropane	ND	5.8 µg/Kg	1 02/25/2010 17:33	49473
Bromochloromethane	ND	5.8 µg/Kg	1 02/25/2010 17:33	49473
Chloroform	ND	5.8 µg/Kg	1 02/25/2010 17:33	49473
1,1,1-Trichloroethane	ND	5.8 µg/Kg	1 02/25/2010 17:33	49473
1,1-Dichloropropene	ND	5.8 µg/Kg	1 02/25/2010 17:33	49473
Carbon tetrachloride	ND	5.8 µg/Kg	1 02/25/2010 17:33	49473
1,2-Dichloroethane	ND	5.8 µg/Kg	1 02/25/2010 17:33	49473
Benzene	ND	5.8 µg/Kg	1 02/25/2010 17:33	49473
Trichloroethene	ND	5.8 µg/Kg	1 02/25/2010 17:33	49473
1,2-Dichloropropane	ND	5.8 µg/Kg	1 02/25/2010 17:33	49473
Dibromomethane	ND	5.8 µg/Kg	1 02/25/2010 17:33	49473
Bromodichloromethane	ND	5.8 µg/Kg	1 02/25/2010 17:33	49473
cis-1,3-Dichloropropene	ND	5.8 µg/Kg	1 02/25/2010 17:33	49473
4-Methyl-2-pentanone	ND	5.8 µg/Kg	1 02/25/2010 17:33	49473
Toluene	1.5 J	5.8 µg/Kg	1 02/25/2010 17:33	49473
trans-1,3-Dichloropropene	ND	5.8 µg/Kg	1 02/25/2010 17:33	49473
1,1,2-Trichloroethane	ND	5.8 µg/Kg	1 02/25/2010 17:33	49473
1,3-Dichloropropane	ND	5.8 µg/Kg	1 02/25/2010 17:33	49473
Tetrachloroethene	ND	5.8 µg/Kg	1 02/25/2010 17:33	49473
2-Hexanone	ND	5.8 µg/Kg	1 02/25/2010 17:33	49473
Dibromochloromethane	ND	5.8 µg/Kg	1 02/25/2010 17:33	49473
1,2-Dibromoethane	ND	5.8 µg/Kg	1 02/25/2010 17:33	49473

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Date: 02-Mar-10

Client: Day Environmental Inc.

Client Sample ID: TP10-15 (7') Lab ID: J0281-11 **Project:** 151 Mt. Hope Ave. **Collection Date:** 02/18/10 14:40

Analyses	Result Qual	RL Units	DF Date Analyzed	Batch ID
SW846 8260 VOC by GC-MS			SW8	260_LOW_S
Chlorobenzene	ND	5.8 µg/Kg	1 02/25/2010 17:33	49473
1,1,1,2-Tetrachloroethane	ND	5.8 µg/Kg	1 02/25/2010 17:33	49473
Ethylbenzene	ND	5.8 µg/Kg	1 02/25/2010 17:33	49473
m,p-Xylene	5.1 J	5.8 µg/Kg	1 02/25/2010 17:33	49473
o-Xylene	2.3 J	5.8 µg/Kg	1 02/25/2010 17:33	49473
Xylene (Total)	7.4	5.8 µg/Kg	1 02/25/2010 17:33	49473
Styrene	ND	5.8 µg/Kg	1 02/25/2010 17:33	49473
Bromoform	ND	5.8 µg/Kg	1 02/25/2010 17:33	49473
isopropylbenzene	ND	5.8 µg/Kg	1 02/25/2010 17:33	49473
1,1,2,2-Tetrachloroethane	ND	5.8 µg/Kg	1 02/25/2010 17:33	49473
Bromobenzene	ND	5.8 µg/Kg	1 02/25/2010 17:33	49473
1,2,3-Trichloropropane	ND	5.8 µg/Kg	1 02/25/2010 17:33	49473
n-Propylbenzene	ND	5.8 µg/Kg	1 02/25/2010 17:33	49473
2-Chlorotoluene	ND	5.8 µg/Kg	1 02/25/2010 17:33	49473
1,3,5-Trimethylbenzene	ND	5.8 µg/Kg	1 02/25/2010 17:33	49473
4-Chlorotoluene	ND	5.8 µg/Kg	1 02/25/2010 17:33	49473
tert-Butylbenzene	ND	5.8 µg/Kg	1 02/25/2010 17:33	49473
1,2,4-Trimethylbenzene	2.1 J	5.8 µg/Kg	1 02/25/2010 17:33	49473
sec-Butylbenzene	ND	5.8 µg/Kg	1 02/25/2010 17:33	49473
4-isopropyitoluene	ND	5.8 µg/Kg	1 02/25/2010 17:33	49473
1,3-Dichlorobenzene	ND	5.8 µg/Kg	1 02/25/2010 17:33	49473
1,4-Dichlorobenzene	ND	5.8 µg/Kg	1 02/25/2010 17:33	49473
n-Butylbenzene	ND	5.8 µg/Kg	1 02/25/2010 17:33	49473
1,2-Dichlorobenzene	ND	5.8 µg/Kg	1 02/25/2010 17:33	49473
1,2-Dibromo-3-chloropropane	ND	5.8 µg/Kg	1 02/25/2010 17:33	49473
1,2,4-Trichlorobenzene	ND	5.8 µg/Kg	1 02/25/2010 17:33	49473
Hexachlorobutadiene	ND	5.8 µg/Kg	1 02/25/2010 17:33	49473
1,2,3-Trichlorobenzene	ND	5.8 µg/Kg	1 02/25/2010 17:33	49473
Naphthalene	5.9 B	5.8 µg/Kg	1 02/25/2010 17:33	49473
Surrogate: Dibromofluoromethane	99.5	65-132 %REC	1 02/25/2010 17:33	49473
Surrogate: 1,2-Dichloroethane-d4	103	65-128 %REC	1 02/25/2010 17:33	49473
Surrogate: Toluene-d8	95.1	85-115 %REC	1 02/25/2010 17:33	49473
Surrogate: Bromofluorobenzene	96.3	77-111 %REC	1 02/25/2010 17:33	49473

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Client: Day Environmental Inc.

Client Sample ID: TP10-23 (8')

Lab ID: J0281-14

Date: 02-Mar-10

Project: 151 Mt. Hope Ave. **Collection Date:** 02/19/10 13:25

Analyses	Result Qual	RL Units	DF Date Analyzed	Batch ID
SW846 8260 VOC by GC-MS			SW82	260_LOW_S
Dichlorodifluoromethane	ND	6.2 µg/Kg	1 02/25/2010 18:08	49473
Chloromethane	ND	6.2 µg/Kg	1 02/25/2010 18:08	49473
Vinyl chloride	ND	6.2 µg/Kg	1 02/25/2010 18:08	49473
Bromomethane	ND	6.2 µg/Kg	1 02/25/2010 18:08	49473
Chloroethane	ND	6.2 µg/Kg	1 02/25/2010 18:08	49473
Trichlorofluoromethane	ND	6.2 µg/Kg	1 02/25/2010 18:08	49473
1,1-Dichloroethene	ND	6.2 µg/Kg	1 02/25/2010 18:08	49473
Acetone	20	6.2 µg/Kg	1 02/25/2010 18:08	49473
Iodomethane	ND	6.2 µg/Kg	1 02/25/2010 18:08	49473
Carbon disulfide	ND	6.2 µg/Kg	1 02/25/2010 18:08	49473
Methylene chloride	3.0 BJ	6.2 µg/Kg	1 02/25/2010 18:08	49473
trans-1,2-Dichloroethene	ND	6.2 µg/Kg	1 02/25/2010 18:08	49473
Methyl tert-butyl ether	ND	6.2 µg/Kg	1 02/25/2010 18:08	49473
1,1-Dichloroethane	ND	6.2 µg/Kg	1 02/25/2010 18:08	49473
Vinyl acetate	ND	6.2 µg/Kg	1 02/25/2010 18:08	49473
2-Butanone	ND	6.2 µg/Kg	1 02/25/2010 18:08	49473
cis-1,2-Dichloroethene	ND	6.2 µg/Kg	1 02/25/2010 18:08	49473
2,2-Dichloropropane	ND	6.2 µg/Kg	1 02/25/2010 18:08	49473
Bromochloromethane	ND	6.2 µg/Kg	1 02/25/2010 18:08	49473
Chloroform	ND	6.2 µg/Kg	1 02/25/2010 18:08	49473
1,1,1-Trichloroethane	ND	6.2 µg/Kg	1 02/25/2010 18:08	49473
1,1-Dichloropropene	ND	6.2 µg/Kg	1 02/25/2010 18:08	49473
Carbon tetrachloride	ND	6.2 µg/Kg	1 02/25/2010 18:08	49473
1,2-Dichloroethane	ND	6.2 µg/Kg	1 02/25/2010 18:08	49473
Benzene	ND	6.2 µg/Kg	1 02/25/2010 18:08	49473
Trichloroethene	ND	6.2 µg/Kg	1 02/25/2010 18:08	49473
1,2-Dichloropropane	ND	6.2 µg/Kg	1 02/25/2010 18:08	49473
Dibromomethane	ND	6.2 µg/Kg	1 02/25/2010 18:08	49473
Bromodichloromethane	ND	6.2 µg/Kg	1 02/25/2010 18:08	49473
cis-1,3-Dichloropropene	ND	6.2 µg/Kg	1 02/25/2010 18:08	49473
4-Methyl-2-pentanone	ND	6.2 µg/Kg	1 02/25/2010 18:08	49473
Toluene	ND	6.2 µg/Kg	1 02/25/2010 18:08	49473
trans-1,3-Dichloropropene	ND	6.2 µg/Kg	1 02/25/2010 18:08	49473
1,1,2-Trichloroethane	ND	6.2 µg/Kg	1 02/25/2010 18:08	49473
1,3-Dichloropropane	ND	6.2 µg/Kg	1 02/25/2010 18:08	49473
Tetrachloroethene	ND	6.2 µg/Kg	1 02/25/2010 18:08	49473
2-Hexanone	ND	6.2 µg/Kg	1 02/25/2010 18:08	49473
Dibromochloromethane	ND	6.2 µg/Kg	1 02/25/2010 18:08	49473
1,2-Dibromoethane	ND	6.2 µg/Kg	1 02/25/2010 18:08	49473

Qualifiers: ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Client: Day Environmental Inc.

Client Sample ID: TP10-23 (8')

Lab ID: J0281-14

Date: 02-Mar-10

Project: 151 Mt. Hope Ave. **Collection Date:** 02/19/10 13:25

W846 8260 VOC by GC-MS			SW82	260_LOW_S
Chlorobenzene	ND	6.2 µg/Kg	1 02/25/2010 18:08	49473
1,1,1,2-Tetrachloroethane	ND	6.2 µg/Kg	1 02/25/2010 18:08	49473
Ethylbenzene	ND	6.2 µg/Kg	1 02/25/2010 18:08	49473
m,p-Xylene	ND	6.2 µg/Kg	1 02/25/2010 18:08	49473
p-Xylene	ND	6.2 µg/Kg	1 02/25/2010 18:08	49473
Xylene (Total)	1.7 J	6.2 µg/Kg	1 02/25/2010 18:08	49473
Styrene	ND	6.2 µg/Kg	1 02/25/2010 18:08	49473
Bromoform	ND	6.2 µg/Kg	1 02/25/2010 18:08	49473
Isopropylbenzene	ND	6.2 µg/Kg	1 02/25/2010 18:08	49473
1,1,2,2-Tetrachloroethane	ND	6.2 µg/Kg	1 02/25/2010 18:08	49473
Bromobenzene	ND	6.2 µg/Kg	1 02/25/2010 18:08	49473
1,2,3-Trichloropropane	ND	6.2 µg/Kg	1 02/25/2010 18:08	49473
n-Propylbenzene	ND	6.2 µg/Kg	1 02/25/2010 18:08	49473
2-Chlorotoluene	ND	6.2 µg/Kg	1 02/25/2010 18:08	49473
1,3,5-Trimethylbenzene	ND	6.2 µg/Kg	1 02/25/2010 18:08	49473
4-Chlorotoluene	ND	6.2 µg/Kg	1 02/25/2010 18:08	49473
ert-Butylbenzene	ND	6.2 µg/Kg	1 02/25/2010 18:08	49473
1,2,4-Trimethylbenzene	ND	6.2 µg/Kg	1 02/25/2010 18:08	49473
sec-Butylbenzene	ND	6.2 µg/Kg	1 02/25/2010 18:08	49473
1-Isopropyltoluene	ND	6.2 µg/Kg	1 02/25/2010 18:08	49473
1,3-Dichlorobenzene	ND	6.2 µg/Kg	1 02/25/2010 18:08	49473
1,4-Dichlorobenzene	ND	6.2 µg/Kg	1 02/25/2010 18:08	49473
n-Butylbenzene	ND	6.2 µg/Kg	1 02/25/2010 18:08	49473
1,2-Dichlorobenzene	ND	6.2 µg/Kg	1 02/25/2010 18:08	49473
1,2-Dibromo-3-chloropropane	ND	6.2 µg/Kg	1 02/25/2010 18:08	49473
1,2,4-Trichlorobenzene	ND	6.2 µg/Kg	1 02/25/2010 18:08	49473
Hexachlorobutadiene	ND	6.2 µg/Kg	1 02/25/2010 18:08	49473
1,2,3-Trichlorobenzene	ND	6.2 µg/Kg	1 02/25/2010 18:08	49473
Naphthalene	2.4 BJ	6.2 µg/Kg	1 02/25/2010 18:08	49473
Surrogate: Dibromofluoromethane	103	65-132 %REC	1 02/25/2010 18:08	49473
Surrogate: 1,2-Dichloroethane-d4	103	65-128 %REC	1 02/25/2010 18:08	49473
Surrogate: Toluene-d8	95.5	85-115 %REC	1 02/25/2010 18:08	49473
Surrogate: Bromofluorobenzene	96.1	77-111 %REC	1 02/25/2010 18:08	49473

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits

E - Value above quantitation range

Date: 02-Mar-10

Client: Day Environmental Inc. Client Sample ID: TB021910

Lab ID: J0281-15

Project: 151 Mt. Hope Ave. **Collection Date:** 02/19/10 0:00

Analyses	Result Qual	RL Units	DF Date Analyzed	Batch ID
SW846 8260 VOC by GC-MS				SW8260_W
Dichlorodifluoromethane	ND	5.0 µg/L	1 02/26/2010 11:54	49504
Chloromethane	ND	5.0 µg/L	1 02/26/2010 11:54	49504
Vinyl chloride	ND	5.0 μg/L	1 02/26/2010 11:54	49504
Bromomethane	ND	5.0 µg/L	1 02/26/2010 11:54	49504
Chioroethane	ND	5.0 µg/L	1 02/26/2010 11:54	49504
Trichlorofluoromethane	ND	5.0 μg/L	1 02/26/2010 11:54	49504
1,1-Dichloroethene	ND	5.0 μg/L	1 02/26/2010 11:54	49504
Acetone	ND	5.0 µg/L	1 02/26/2010 11:54	49504
lodomethane	ND	5.0 μg/L	1 02/26/2010 11:54	49504
Carbon disulfide	ND	5.0 µg/L	1 02/26/2010 11:54	49504
Methylene chloride	ND	5.0 µg/L	1 02/26/2010 11:54	49504
trans-1,2-Dichloroethene	ND	5.0 μg/L	1 02/26/2010 11:54	49504
Methyl tert-butyl ether	ND	5.0 μg/L	1 02/26/2010 11:54	49504
1,1-Dichloroethane	ND	5.0 μg/L	1 02/26/2010 11:54	49504
Vinyl acetate	ND	5.0 μg/L	1 02/26/2010 11:54	49504
2-Butanone	ND	5.0 μg/L	1 02/26/2010 11:54	49504
cis-1,2-Dichloroethene	ND	5.0 µg/L	1 02/26/2010 11:54	49504
2,2-Dichloropropane	ND	5.0 µg/L	1 02/26/2010 11:54	49504
Bromochloromethane	ND	5.0 µg/L	1 02/26/2010 11:54	49504
Chloroform	ND	5.0 μg/L	1 02/26/2010 11:54	49504
1,1,1-Trichloroethane	ND	5.0 μg/L	1 02/26/2010 11:54	49504
1,1-Dichloropropene	ND	5.0 µg/L	1 02/26/2010 11:54	49504
Carbon tetrachloride	ND	5.0 µg/L	1 02/26/2010 11:54	49504
1,2-Dichloroethane	ND	5.0 µg/L	1 02/26/2010 11:54	49504
Benzene	ND	5.0 µg/L	1 02/26/2010 11:54	49504
Trichloroethene	ND	5.0 μg/L	1 02/26/2010 11:54	49504
1,2-Dichloropropane	ND	5.0 µg/L	1 02/26/2010 11:54	49504
Dibromomethane	ND	5.0 µg/L	1 02/26/2010 11:54	49504
Bromodichloromethane	ND	5.0 µg/L	1 02/26/2010 11:54	49504
cis-1,3-Dichloropropene	ND	5.0 µg/L	1 02/26/2010 11:54	49504
4-Methyl-2-pentanone	ND	5.0 µg/L	1 02/26/2010 11:54	49504
Toluene	ND	5.0 µg/L	1 02/26/2010 11:54	49504
trans-1,3-Dichloropropene	ND	5.0 µg/L	1 02/26/2010 11:54	49504
1,1,2-Trichloroethane	ND	5.0 µg/L	1 02/26/2010 11:54	49504
1,3-Dichloropropane	ND	5.0 µg/L	1 02/26/2010 11:54	49504
Tetrachloroethene	ND	5.0 µg/L	1 02/26/2010 11:54	49504
2-Hexanone	ND	5.0 µg/L	1 02/26/2010 11:54	49504
Dibromochloromethane	ND	5.0 µg/L	1 02/26/2010 11:54	49504
1,2-Dibromoethane	ND	5.0 µg/L	1 02/26/2010 11:54	49504

Qualifiers: ND - Not Det

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Client: Day Environmental Inc.

Client Sample ID: TB021910

Lab ID: J0281-15

Date: 02-Mar-10

 Project:
 151 Mt. Hope Ave.

 Collection Date:
 02/19/10 0:00

Analyses	Result Qual	RL	Units	DF Date Analyzed	Batch ID
SW846 8260 VOC by GC-MS	-				SW8260_W
Chlorobenzene	ND	5.0	µg/L	1 02/26/2010 11:54	49504
1,1,1,2-Tetrachloroethane	ND	5.0	µg/L	1 02/26/2010 11:54	49504
Ethylbenzene	ND	5.0	µg/L	1 02/26/2010 11:54	49504
m,p-Xylene	ND	5.0	µg/L	1 02/26/2010 11:54	49504
o-Xylene	ND	5.0	µg/L	1 02/26/2010 11:54	49504
Xylene (Total)	ND	5.0	µg/L	1 02/26/2010 11:54	49504
Styrene	ND	5.0	µg/L	1 02/26/2010 11:54	49504
Bromoform	ND	5.0	µg/L	1 02/26/2010 11:54	49504
Isopropylbenzene	ND	5.0	µg/L	1 02/26/2010 11:54	49504
1,1,2,2-Tetrachloroethane	ND	5.0	µg/L	1 02/26/2010 11:54	49504
Bromobenzene	ND	5.0	µg/L	1 02/26/2010 11:54	49504
1,2,3-Trichloropropane	ND	5.0	µg/L	1 02/26/2010 11:54	49504
n-Propylbenzene	ND	5.0	µg/L	1 02/26/2010 11:54	49504
2-Chlorotoluene	ND	5.0	µg/L	1 02/26/2010 11:54	49504
1,3,5-Trimethylbenzene	ND	5.0	µg/L	1 02/26/2010 11:54	49504
4-Chlorotoluene	ND	5.0	µg/L	1 02/26/2010 11:54	49504
tert-Butylbenzene	ND	5.0	µg/L	1 02/26/2010 11:54	49504
1,2,4-Trimethylbenzene	ND	5.0	µg/L	1 02/26/2010 11:54	49504
sec-Butylbenzene	ND	5.0	µg/L	1 02/26/2010 11:54	49504
4-Isopropyltoluene	ND	5.0	µg/L	1 02/26/2010 11:54	49504
1,3-Dichlorobenzene	ND	5.0	µg/L	1 02/26/2010 11:54	49504
1,4-Dichlorobenzene	ND	5.0	µg/L	1 02/26/2010 11:54	49504
n-Butylbenzene	ND	5.0	µg/L	1 02/26/2010 11:54	49504
1,2-Dichlorobenzene	ND	5.0	µg/L	1 02/26/2010 11:54	49504
1,2-Dibromo-3-chloropropane	ND	5.0	µg/L	1 02/26/2010 11:54	49504
1,2,4-Trichlorobenzene	ND	5.0	µg/L	1 02/26/2010 11:54	49504
Hexachlorobutadiene	ND	5.0	µg/L	1 02/26/2010 11:54	49504
1,2,3-Trichlorobenzene	ND	5.0	µg/L	1 02/26/2010 11:54	49504
Naphthalene	ND	5.0	µg/L	1 02/26/2010 11:54	49504
Surrogate: Dibromofluoromethane	96.7	85-115	%REC	1 02/26/2010 11:54	49504
Surrogate: 1,2-Dichloroethane-d4	96.1	70-120	%REC	1 02/26/2010 11:54	49504
Surrogate: Toluene-d8	105	85-120	%REC	1 02/26/2010 11:54	49504
Surrogate: Bromofluorobenzene	93.0	75-120	%REC	1 02/26/2010 11:54	49504

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits

E - Value above quantitation range

Dry Environmental Inc. ANALYTICAL QC SUMMARY REPORT 1031 Sampline. Sampline. 1031 Sampline. Sampline. 1031 Sampline. Sampline. 1031 Sampline. MALYTICAL QC SUMMARY REPORT 1031 Sampline. Sampline. 1031 Sampline. Sampline. 1031 Bath ID: 4473 Units japid 1031 Bath ID: 4473 Selfor ID: 4474 1031 Bath ID: 4473 Selfor ID: 4474 1031 Bath ID: 4474 Selfor ID: 4474 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>										
151 NLL Hope Ave. SW946 62:60 – VOC by GC-MS 473 SampTypes: MBLK TestCode:: SW9560_LOW_S Perp Date: 202510 9:41 R 473 SampTypes: MBLK TestCode:: SW9560_LOW_S Amilysis Date: 202510 9:41 R 473 SampTypes: MBLK TestCode:: SW9560_LOW_S Amilysis Date: 202510 9:41 R 473 Bank POL Amilysis Date: 202510 9:41 R 473 Bank ND SPK value SPK rate value SPK rate value SPK rate value R 475 Dia SPK value SPK value SPK rate value	CLIENT:	Day Environmental Inc. 10281		CING	ANALY'	TICAL QC	SUMMARY F	REPORT		
H33 SampType: MBLK TestCode: SW7860_LOW_S Prep Date: 022670 514 R H33 Batch ID: 4473 Units: Ig/Kg Amalysis Date: 022670 1146 S Mater POL SPK ref Val Kref LoW_Init Hightmit Mater POL SPK ref Val Kref LoW_Init Hightmit Mater DU 5.0 Rep Date: 022670 1146 S Mater DU 5.0 SPK ref Val SFEC LowLinit Hightmit R Mater DU 5.0 SPK ref Val SFEC LowLinit Hightmit S Mater DU 5.0 SPK ref Val SFEC LowLinit Hightmit S Mater DU 5.0 SPK ref Val SFEC LowLinit Hightmit S Mater DU S.0 SPK ref Val SFEC LowLinit Hightmit S Mater DU S.0 S S S S S S S S S S S S S S S S S	Project:	151 Mt. Hope Ave.		SW8	46 8260 VO	C by GC-MS				
473 Batch ID: 4473 Units: jufyci Analysis Date: 222610 11:46 S Inaio NN 5.0 SPK value SPK raf Val &REC. LowLimit HighLimit Inaio NN 5.0 SPK value SPK raf Val &REC. LowLimit HighLimit Inaio NN 5.0 SPK value SPK raf Val &REC. LowLimit HighLimit Inaio NN 5.0 SPK raf Val SFK raf Val &REC. LowLimit HighLimit Inaio 5.0 SPK raf Val SFK raf Val SFK raf Val SFK raf Val Inaio 5.0 SPK raf Val SFK raf Val SFK raf Val SFK raf Val Inaio 5.0 S.0 S.0 SE SFK raf Val	Sample ID: MB-4		TestCod	e: SW8260_LOW_S		Prep Date:	02/25/10 9:41	Run ID: V6_100225A		
Result POL SPK Ret Val Sec. Low me ND 5.0 SPK met Val Sec. Acc. me ND 5.0 S.0 Sec. Sec. Sec. nD S.0 S.0 S.0 Sec.			Units	s: µg/Кg		Analysis Date:		SeqNo: 1214385		
Itale 5.0 Rate 3.113 Rate 5.0	Analyte		Result	PQL	SPK value	SPK Ref Val	%REC LowLimit HighLir		%RPD RPDLimit	Qual
and 5.0 and 5.0 ND<-Not Detected at the Reporting Limit	Dichlorodifluorome	thane	DN	5.0						
ane 5.0 no 5.0	Chloromethane		ND	5.0						
are 2.71 5.0 no 5.0 5.0 no 10 5.0 no 10 <td>Vinyl chloride</td> <td></td> <td>QN</td> <td>5.0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Vinyl chloride		QN	5.0						
and mode m 5.0 m m 5.0	Bromomethane			о ц о						
ND 5.0 ND 5.0 <td< td=""><td>Unioroetnane Trichlorofluoromet</td><td></td><td>UN UN</td><td>5.0</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	Unioroetnane Trichlorofluoromet		UN UN	5.0						
ND 5.0 ND 5.0 <td< td=""><td>1,1-Dichloroethene</td><td></td><td>DN</td><td>5.0</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	1,1-Dichloroethene		DN	5.0						
ND 5.0 ND 5.0 <td< td=""><td>Acetone</td><td></td><td>DN</td><td>5.0</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	Acetone		DN	5.0						
1717 5.0 itherie 3.717 5.0 itherie 80 5.0 <td>lodomethane</td> <td></td> <td>ND</td> <td>5.0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	lodomethane		ND	5.0						
3.713 5.0 thene ND 5.0 ND 5.0 ND 5.0 ND 5.0 ND 5.0 ND 5.0 ND 5.0 ND 5.0 ND 5.0 ND ND 5.0 ND ND ND 5.0 ND ND ND 5.0 ND	Carbon disulfide		ND	5.0						
Include ND 5.0 Include ND 5.0	Methylene chloride		3.717							Ŀ
Term NU 5.0 ne NU 5.0 nu 5.0 0 nu 0 0	trans-1,2-Dichloro	ethene	DN .	0						
ene ND 5.0 ND 5.0 ND 5.0 ND ND 5.0 ND	Methyl tert-butyl e	her		о•с ц						
ene ND 5.0 ene ND 5.0 ne ND 5.0 na ND 5.0	1,1-Dichloroethan			0.0 1.0						
ND 5.0 ND-Not Detected at the Reporting Limit 5.0	2-Butanone		QN	•						
e ND 5.0 ne ND 5.0 no 5.0 0 no 0 5.0 no	cis-1,2-Dichloroet	hene	UN	5.0						
Inc ND 5.0 ne ND 5.0 na S.0 S.0 na ND 5.0	2,2-Dichloropropa	le	QN	5.0						
ne ND 5.0 e ND 5.0 ND 5.0 ND 5.0 nane ND 5.0 0 no 5.0 0 0 no 5.0 0 0 no 5.0 0 0 no 5.0 0 0 ND<- Not Detected at the Reporting Limit	Bromochlorometh	ane	ON CN	0. C						
e ND 5.0 e ND 5.0 ND 5.0 ND	Chloroform		CIN CIN	0. r						
e ND 5.0	1, 1, 1-11IGRIOUCER		DN UN	5.0						
ND 5.0	Carbon tetrachlori	2 92	ND	•						
ND 5.0 ND-Not Detected at the Reporting Limit 5.0	1,2-Dichloroethan	0	UN	5.0						
ND 5.0	Benzene		DN	5.0						
ND 5.0 ND 5.0 ND 5.0 Pene ND ND 5.0 ND 5.0 ND 5.0 ND 5.0 ND 5.0	Trichloroethene		DN .	5.0						
ane ND 5.0 ane ND 5.0 pene ND 5.0 no ND 5.0 no ND 5.0 ND - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits	1,2-Dichloropropa	Те	UN UN	0.0						
nane ND 5.0 perce ND 5.0 ne ND 5.0 no 5.0 no 5.0 ND 5.0 ND 5.0 ND 5.0 ND 5.0 ND 5.0	Dibromomethane			0.0						
pene ND 5.0 ne ND 5.0 no 5.0 no 5.0 ND 5.0 ND 5.0 ND 5.0 ND 5.0 ND 5.0	Bromodichlorome	hane	CIN .	0. r						
ND - Not Detected at the Reporting Limit	cis-1,3-Dichloropr	ppene	UN UN	0. u						
Income ND 5.0 ne ND 5.0 ND<- Not Detected at the Reporting Limit	4-iMetnyi-∠-pentar Toli iene	OUE	ND	5.0						
ne ND 5.0 ND - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits	Strans-1.3-Dichloro	propene	UN	5.0						
ND - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits	21,1,2-Trichloroeth	ane	DN	5.0						
ND - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits	1.3-Dichloropropa	Je Je	UN	5.0						
ers: ND - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits	Tetrachloroethene		DN	5.0						
	Qualifiers:	ND - Not Detected at the Reporting Lim	it	S - Sp	ike Recovery outside	accepted recovery	limits	B - Analyte detected in	the associated Method	Blank
	TO SAT							•		

Work Order: J0231 Sw326 Project: 151 Mt. Hope Avc. SW346 Sample ID: MB-4973 SampType: MBLK TestCode: SW3260_LOW_S Sampto Et ID: MB-4973 SampType: MBLK TestCode: SW3260_LOW_S Client ID: MB-4973 Batch ID: 49473 Units: up/Kg Disromochloromethane ND 5.0 S Disromochloromethane ND S S Stynene ND ND S S Stynene ND ND S S </th <th></th> <th>Day Environmental Inc.</th> <th></th> <th></th> <th>AINALL</th> <th>ANALI HUAL VUUMMANI KELUKI</th> <th></th> <th>ANT NE</th> <th></th> <th></th> <th></th>		Day Environmental Inc.			AINALL	ANALI HUAL VUUMMANI KELUKI		ANT NE			
Project: ISI MI. Hope Ave. Swr946 8200 – VOC by GC-MIS R Proj R Sample (D. M6-4473) Samplyor MBLK Tend Code: SWR460_LOW.S Proj Des D226101944 S Sample (D. M6-4473) Samplyor MBLK Tend Code: SWR460_LOW.S Proj Des D226101146 S Sample (D. M6-4473) Samplyor MBLK Tend Code: SWR460_LOW.S Proj DS Analysis Date: D226101146 S Samplyor MBLK Tend Code: SWR460_LOW.S Proj S Analysis Date: D226101146 S S LOB Concollectation UNIX projectation UNIX projectation DD S Analysis Date: D226101146 S S List Concollectation UNIX projectation DD S S Analysis Date: D22610146 S DO List Concollectation UNIX projectation DD S S Analysis Date: D22610146 S DO DO DO DD		281		SWS	1260 LOW S	,					
Sample ID: MB-44/3 Samplyer Pag Date Q224/0 144 R Clent ID: MB-44/3 Batch ID: 44/3 Batch ID: 44/3 Date: Q254/0 1446 S Clent ID: MB-44/3 Batch ID: 44/3 Date: MP Clent ID: 45/1 Date: Q24/0 144 S Alteration MB 5/1 SYK value SYK Ref Val KREC Condumt High/Init Alteration NB 5/1 SYK value SYK Ref Val KREC Condumt High/Init Alteration NB 5/1 SYK value SYK Ref Val KREC Condumt High/Init Alteration NB 5/1 SYK value SYK Ref Value S		51 Mt. Hope Ave.		SWS	346 8260 <u>V</u> O	C by GC-MS	-				
Client (D. Mark 10, 4473 Data More Analysis Data Out SPK raf Val SART 01144 S variable Reault POL SPK raf Val SFK raf Val SFK raf Val SFK cloud mult Hgultmit Defonctioner No 5.0 SPK raf Val SFK cloud mult Hgultmit Defonctioner No 5.0 SPK raf Val SFK cloud mult Hgultmit Defonctioner No 5.0 SPK raf Val SFK cloud mult Hgultmit Defonctioner No 5.0 SPK raf Val SFK cloud mult Hgultmit Defonctioner No 5.0 SPK raf Val SFK cloud mult Hgultmit Defonctioner No 5.0 SPK raf Val SFK cloud mult Hgultmit Defonctioner No 5.0 SPK raf Val SFK cloud mult Hgultmit Defonctioner No 5.0 SPK raf Val SFK cloud mult Hgultmit Defonctioner No 5.0 SPK raf Val SFK cloud mult Hgultmit Defonctioner No SO SPK raf Val SFK raf Val SFK	Sample ID: MB-49473		TestCod	e: SW8260_LOW_S		Prep Date:	02/25/10 9:41		n ID: V6_100225A		
turble Read POL SPK rache SPK rache SPK column High limit Demonotionomethane 10 5.0 SPK rache SPK rach SPK rach			Unit	s: µg/Kg		Analysis Date:	02/25/10 11:4		qNo: 1214385		
Nil 5.0 5.0 2. Ditromotionentare 20 5.0 2. Ditromotionentare 20 5.0 1.1.1.2.*Teractionentare 20 5.0 1.1.1.2.*Teractionentare 20 5.0 1.1.1.2.*Teractionentare 20 5.0 1.1.1.2.*Teractionentare 20 5.0 2. Striptorentare 2.0 5.0	Analyte		Result	PQL	SPK value	SPK Ref Val	%REC LowLii	mit HighLimit	RPD Ref Val	%RPD RPDLimit	Qual
2. Dirocontentane 20 5.0 2. Dirocontentane 20 5.0 Dirocontentane 2.0 5.0	2-Hexanone		DN	5.0							
Discretation Discretation<	Dibromochloromethane		ND	5.0							
Discretation ID 5.0 Discretation ID 5.0 TripPinzaria ID 5.0 TripPinzaria ID 5.0 TripPinzaria ID 5.0 TripPinzaria ID 5.0 Viene (Tata) ID 5.0 Viene (Tata) ID 5.0 Somoform	1,2-Dibromoethane		UN .	5.0							
11.1.1.2.Teiracitoroethane 10 5.0 11.1.1.2.Teiracitoroethane 10 5.0 Ayliven (Teal) 10 5.0 Ayliven (Teal) 10 5.0 Ayliven (Teal) 10 5.0 Ayliven (Teal) 10 5.0 Stronolame 10 5.0 Stronolame 10 5.0 Stronolame 10 5.0 Stronolame 10 5.0 Chororolame 10 5.0 Chororolame 10 5.0 Cohoroclame	Chlorobenzene		ND	5.0							
Ethylenzeie ND 5-0 Ethylenzeie ND 5-0 Ap-Xjene ND 5-0 Ap-Xjene ND 5-0 Symet Total 5-0 Symet ND 5-0 Symet	1,1,1,2-Tetrachloroetha	ne	UN	5.0							
T(a) 5.0 A)(area 8.0 Spropherzene 8.0 Sopropherzene 8.0 Sopropherzene 8.0 Sopropherzene 8.0 Sopropherzene 8.0 (1,2,2-Trenshoronpara 8.0 <td>Ethylbenzene</td> <td></td> <td>QN</td> <td>5.0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Ethylbenzene		QN	5.0							
Sylene ND 5.0 Solocopherate ND 5.0 Solocopherate ND 5.0 Solocopherate ND 5.0 Prosylberate ND 5.0 Chorotoluene ND 5.0 Redunblerate ND 5.0 Chorotoluene ND 5.0 Redunblerate ND 5.0 <tr< td=""><td>m,p-Xylene</td><td></td><td>ND</td><td>5.0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr<>	m,p-Xylene		ND	5.0							
Ngree ND 5.0 Sylver Solo Solo Sylver ND 5.0 Sylver ND 5.0 Sylver ND 5.0 Sylver ND 5.0 Sonolyberzene ND 5.0 Sonolyberzene ND 5.0 Sonolyberzene ND 5.0 Al-Trinettylberzene ND 5.0 Colloodulene ND 5.0 Colloodulenzene ND 5.0 Colloodulenzene ND 5.0 Colloodulenzene ND 5.0 Colloodulenzene ND 5.0 </td <td>o-Xylene</td> <td></td> <td>UN</td> <td>5.0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	o-Xylene		UN	5.0							
Styrene ND 5.0 Storybherzene ND 5.0 Storybherzene ND 5.0 Storybherzene ND 5.0 Bornobherzene ND 5.0 Storybherzene ND 5.0 Progybherzene ND 5.0 Progybherzene ND 5.0 Affinehybenzene ND 5.0 <td< td=""><td>Xylene (Total)</td><td></td><td>DN</td><td>5.0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	Xylene (Total)		DN	5.0							
Bornoform ND 5.0 seconoplemate ND 5.0 seconoplemate ND 5.0 Bornoberate ND 5.0 Colorobuse ND 5.0 Colorobuse ND 5.0 Echolorobuse ND 5.0 Echolorobuse ND 5.0 Echolorobuse ND 5.0 L3-Timbylberate ND 5.0 L3-Dichloroberate ND 5.0 Surrogate	Styrene		ND	5.0							
socionylherizate ND 5.0 1,1,2,3-Trichloroprice ND 5.0 1,2,3-Trichloroprice ND 5.0 1,2,3-Trichloroprice ND 5.0 1,2,3-Trichloroprice ND 5.0 Propylerizate ND 5.0 Affinethylbenzete ND 5.0 4.5-Trimethylbenzete ND 5.0 6.5-Buylbenzete ND 5.0 7.2-Distonobenzete ND 5.0 8.40000buddete ND	Bromoform		ND	5.0							
1,1,2,2-Tetrachionoethane ND 5.0 Bornoberate ND 5.0 Bornoberate ND 5.0 Progylbenzene ND 5.0 Progylbenzene ND 5.0 Chlonobulene ND 5.0 Latinethylbenzene ND	Isopropylbenzene		DN	5.0							
ND 5.0 7.3.3*Trichtorenzene ND 5.0 7.3.5*Trichtorenzene ND 5.0 7.3.5*Trichtorenzene ND 5.0 7.5.7 2.4 13.5*Trichtorenzene ND 2.5 2.4 13.5*Trichtorenzene ND 2.5 2.4 13.5 13.5 1.3.5*Trinethylbenzene ND 5.0 2.4 13.5 13.5 1.3.5 13.5 13.5 1.3.5 13.5 13.5 1.3.5 13.5 13.5 1.3.5 13.5 13.5 1.3.5 13.5 13.5 1.3.5 13.5 13.5 1.3.5 13.5 13.5 1.3.5 13.5 13.5 1.3.5 13.5 13.5 1.3.5 13.5 13.5 1.3.5 13.5 13.5 1.3.5 13.5 13.5 1.3.5 13.5 13.5 1.3.5 5	1,1,2,2-Tetrachioroeths	Ine	QN	5.0							
2.3.Trichtoropropare ND 5.0 7-Propylemzene ND 5.0 7.9.5.Trimethylbenzene ND 5.0 4.0.thorotourene ND 5.0 4.1.1.4.Trimethylbenzene ND 5.0 4.1.1.4.Trimethylbenzene ND 5.0 4.1.1.4.Trimethylbenzene ND 5.0 4.1.1.1.4.Trimethylbenzene ND 5.0 1.2.1.2.4.Trinethylbenzene ND 5.0 1.2.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	Bromobenzene		ND	5.0							
-Propylbenzene ND 5.0 2-Chlorotoluene ND 5.0 2-Chlorotoluene ND 5.0 4.35-Trimethylbenzene ND 5.0 4.51-Trimethylbenzene ND 5.0 4.51-Trimethylbenzene ND 5.0 1.41-Trimethylbenzene ND 5.0 1.42-Trimethylbenzene ND 5.0 1.42-Trimethylbenzene ND 5.0 1.42-Dichorobenzene ND 5.0 1.4.10 5.0 0.00 0 1.4.10 5.0 0.00 0 0.03 1.4.10 5.0 5.0 0.00 0 0.03 5.128 1.4.10 5.0 5.0 5.0 0.00 0 0.3 5.128 </td <td>1,2,3-Trichloropropane</td> <td></td> <td>UN</td> <td>5.0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	1,2,3-Trichloropropane		UN	5.0							
Collocololene ND 5.0 C.5. Chlorotollene ND 5.0 C.4. Trimethylbenzene ND 5.0 C.4. Trimethylbenzene ND 5.0 C.4. Trimethylbenzene ND 5.0 Ext-Buylbenzene ND 5.0 K.2. Trimethylbenzene ND 5.0 Mappenpylouene ND 5.0 Alsoproyloutene ND 5.0 Alsopropropane ND 5.0 Alsopropolenzene ND 5.0 Alsopropolenzene ND 5.0 Alsopropolenzene ND 5.0 Surrogate: Diconolotanzene	n-Propylbenzene		ND	5.0							
1.5.5.Trimethylbenzene ND 5.0 1.5.5.Trimethylbenzene ND 5.0 Rr-Diotroluene ND 5.0 Rr-Diotrobenzene ND 5.0 1.2.4.Trimethylbenzene ND 5.0 Rr-Diotrobenzene ND 5.0 1.2.4.Trimethylbenzene ND 5.0 Alsoproyrbuene ND 5.0 1.2.Dichlorobenzene ND 5.0 Al-Dichlorobenzene ND 5.0 1.4.Dichlorobenzene ND 5.0 1.4.Dichlorobenzene ND 5.0 1.4.Dichlorobenzene ND 5.0 1.2.Dichlorobenzene ND 5.0 1.2.Dichlorobenzene ND 5.0 1.2.1.67 5.0 5.0 1.2.4.Trichlorobenzene ND 5.0 1.2.3.Trichlorobenzene ND 5.0 1.2.4.Trichlorobenzene ND 5.0 1.2.57 5.0 5.0 Surrogate: 1.2.Dichlorobenzene ND 9.1.0 Surrogate: Bromofluorobenzene ND 50.00 0	2-Chlorotoluene		ND	5.0							
4-Chlorotobuene ND 5.0 4.4-Trinethylbenzene ND 5.0 6.4.2-Trinethylbenzene ND 5.0 6.4.2-Trinethylbenzene ND 5.0 6.4.2-Trinethylbenzene ND 5.0 6.4.2-Trinethylbenzene ND 5.0 6.4.1000benzene ND 5.0 1.3-Dichlorobenzene ND 5.0 1.4.Dichorobenzene ND 5.0 1.2.Dichlorobenzene ND 5.0 1.2.Trichhorobenzene ND 5.0 1.2.Trichhorobenzene ND 5.0 1.2.Trichhorobenzene ND 5.0 1.2.3-Trichhorobenzene ND 5.0 1.2.6 5.0 5.0 7.1 1.2.7 5.0 5.0 7.1 8.2 1.2.6 5.0 5.0 7.1 8.2 2.1.6 5.0 <t< td=""><td>1,3,5-Trimethylbenzene</td><td></td><td>ND</td><td>5.0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	1,3,5-Trimethylbenzene		ND	5.0							
Lat-Butylbenzene ND 5.0 1,24-Trimethylbenzene ND 5.0 1,24-Trimethylbenzene ND 5.0 1,3-Dichlorobenzene ND 5.0 1,3-Dichlorobenzene ND 5.0 1,4-Dichlorobenzene ND 5.0 1,2-Dichlorobenzene ND 5.0 1,2-Trichlorobenzene ND 5.0 Nopthalene 1.873 5.0 1,2-Trichlorobenzene ND 5.0 1,2-Trichlorobenzene ND 5.0 Surrogate: Toluene-dS 5.0 5.0 Surrogate: Toluene-dS 5.0 0 0 Surrogate: Toluene-dS 5.0 0 0	4-Chlorotoluene		ON .	5.0							
1,2,4.Trimethylbenzene ND 5.0 sec.Butylbenzene ND 5.0 4.Sopropytoluene ND 5.0 1,3.Dictobenzene ND 5.0 1,3.Dictobenzene ND 5.0 n.Butylbenzene ND 5.0 1,3.Dictobenzene ND 5.0 n.Butylbenzene ND 5.0 1,2.Dichorobenzene ND 5.0 Naphthalene 1.873 5.0 50.00 Surrogate: 1,2.Dichoroentane-d4 51.57 5.0 50.00 0 103 65 113 Surrogate: 1,2.Dichoroentane-d4 55.00 0 104 65 128 Surrogate: 1,2.Dichoroentane-d4 55.00 0 97.1 81 Surrogate: 1,2.Dichoroenthane-d4 55.00 0	tert-Butylbenzene		QN .	5.0							
sec-Butylbenzene ND 5.0 4.sopropylioluene ND 5.0 4.sopropylioluene ND 5.0 1.4.Dichlorobenzene ND 5.0 A.Butylberzene ND 5.0 A.2-Dichorobenzene ND 5.0 A.2-Dichorobenzene ND 5.0 A.2-Trichlorobenzene ND 5.0 A.2-Trichlorobenzene ND 5.0 A.2-Trichlorobenzene ND 5.0 A.2-Trichlorobenzene ND 5.0 A.Trichlorobenzene 1.8 5.0 Surrogate: Toluene-d8 4.4.46 5.0 50.00 0 104 65 128 Surrogate: Bromofluorobenzene 4.4.46 5.0 50.00 0 104 65 128 Surrogate: Bromofluorobenze	1,2,4-Trimethylbenzene		ND	5.0							
4:Sopropytholuene ND 5.0 1,3-Dichlorobenzene ND 5.0 1,4-Dichlorobenzene ND 5.0 1,2-Dichlorobenzene ND 5.0 1,2-Dichlorobenzene ND 5.0 1,2-Dichlorobenzene ND 5.0 1,2-Dichlorobenzene ND 5.0 1,2-Trichlorobenzene ND 5.0 1,2-Trichlorobenzene ND 5.0 1,2-Trichlorobenzene ND 5.0 Naphthalene ND 5.0 1,2-Trichlorobenzene ND 5.0 Naphthalene 1.873 5.0 1,2-Trichlorobenzene ND 5.0 Surrogate: Dibromofluoromethane 5.1.57 5.0 50.00 0 103 65 123 Surrogate: Toluene-dS 5.0 5.0 50.00 0 104 65 128 Surrogate: Toluene-dS 48.55 5.0 50.00 0 97.1 85 115 Surrogate: Bromofluorobenzene 44.46 5.0 50.00 0 97.1 88.9 77	sec-Butylbenzene		ND	5.0							
1,3-Dichlorobenzene ND 5.0 1,4-Dichlorobenzene ND 5.0 -Butylbenzene ND 5.0 1,2-Dichlorobenzene ND 5.0 1,2-Dichlorobenzene ND 5.0 1,2-Dichlorobenzene ND 5.0 1,2-Dichlorobenzene ND 5.0 1,2-Tichlorobenzene ND 5.0 1,2-Tichlorobenzene ND 5.0 Naphthalene 1.873 5.0 1,2-S-Trichlorobenzene ND 5.0 Naphthalene 1.873 5.0 Surrogate: Dibromofluoromethane 1.873 5.0 Surrogate: Ichlorobenzene ND 5.0 0 Surrogate: Ichlorobenzene ND 5.0 0 0 Surrogate: Ichlorobenzene 84.55 5.0 50.00 0 97.1 85 115 Surrogate: Bromofluorobenzene 41.46 5.0 00.00 0 97.1 85 115 Surrogate: Bromofluorobenzene 41.46 5.0 50.00 0 97.1 85 115	4-isopropyltoluene		DN	5.0							
1,4-Diction constraine ND 5.0 1,2-Dichlorobenzene ND 5.0 1,2-Dichlorobenzene ND 5.0 1,2-Dichlorobenzene ND 5.0 1,2-Trichlorobenzene 1.873 5.0 1,2-Trichlorobenzene 1.873 5.0 1,2-Trichlorobenzene 1.873 5.0 Surrogate: Toluene-d8 48.55 5.0 50.00 0 104 65 115 Surrogate: Bromofluorobenzene 44.46 5.0 50.00 0 97.1 88.9 77 111 Mathialene . . 50.00 0 104 65	1,3-Dichlorobenzene										
12-DichlorobenzeneND5.012-DichlorobenzeneND5.012-DichlorobenzeneND5.012-TichlorobenzeneND5.012.3-TichlorobenzeneND5.012.3-TichlorobenzeneND5.012.3-TichlorobenzeneND5.0Naphthalene1.8735.0Surrogate: Dibromofluoromethane-d451.575.0Surrogate: Toluene-d844.465.00Surrogate: Bromofluorobenzene1.44.465.00Surrogate: Bromofluorobenzene65.00097.1Baptitiene8.05.0097.1Surrogate: Bromofluorobenzene8.05.0097.1Surrogate: Bromofluorobenzene8.05.0097.1Surrogate: Bromofluorobenzene8.05.000Surrogate: Bromofluorobenzene8.05.000Surrogate: Bromofluorobenzene8.000103Surrogate: Bromofluorobenzene8.05.000Surrogate: Bromofluorobenzene8.05.000Surrogate: Bromofluorobenzene8.977111Surrogate: ND - Not Detected at the Reporting LimitS-Spike Recovery outside accepted recovery limits	r,4-Dichilorobeitzerie		LIN LIN								
1,2-Dibrono-3-chloropropane ND 5.0 1,2-Ubrono-3-chloropropane ND 5.0 ND 5.0 ND 5.0 1,2,4-Trichlorobenzene ND 5.0 Naphthalene ND 5.0 1,2,3-Trichlorobenzene ND 5.0 Naphthalene 1.873 5.0 Surrogate: Dibromofluoromethane-d4 51.57 5.0 Surrogate: Toluene-d8 48.55 5.0 0 104 65 128 Surrogate: Toluene-d8 52.02 5.0 50.00 0 97.1 85 115 Surrogate: Bromofluorobenzene 44.46 5.0 50.00 0 88.9 77 111 Qualifiers: ND - Not Detected at the Reporting Limit S- Spike Recovery outside accepted recovery limits	1 2-Dichlorohanzana			5.0							
ND 5.0 1,2,4-Trichlorobenzene ND 5.0 Hexachlorobutadiene ND 5.0 Naphthalene ND 5.0 1,2,3-Trichlorobenzene ND 5.0 Naphthalene 1.873 5.0 Surrogate: Dibromofluoromethane 1.873 Surrogate: 1,2-000 0 103 65 Surrogate: 1,2-000 0 104 65 128 Surrogate: 1,0-000 0 104 65 128 Surrogate: 1,0-000 0 104 65 132 Surrogate: 1,0-000 0 104 65 131 Surrogate:	1,2-Dibromo-3-chloron	00306		5.0							
MD 5.0 1,2,3-Trichlorobenzene ND 5.0 Naphthalene 1.873 5.0 Naphthalene 1.873 5.0 Surrogate: Dibromofluoromethane 1.873 5.0 Surrogate: I,2-Dichloroethane-d4 51.57 5.0 50.00 0 103 65 132 Surrogate: 1,2-Dichloroethane-d4 52.02 5.0 50.00 0 97.1 85 115 Surrogate: Stromofluorobenzene 44.46 5.0 50.00 0 97.1 85 115 Surrogate: Bromofluorobenzene 44.46 5.0 50.00 0 88.9 77 111 Qualifiers: ND - Not Detected at the Reporting Limit S-Spike Recovery outside accepted recovery limits	1.2.4-Trichlorobenzene		ND	5.0							
ND 5.0 ND 5.0 Naphthalene 1.873 5.0 103 65 132 Naphthalene 1.873 5.0 50.00 0 103 65 132 Surrogate: Dibromofluoromethane 51.57 5.0 50.00 0 104 65 128 Surrogate: 1,2-Dichloroethane-d4 52.02 5.0 50.00 0 97.1 85 115 Surrogate: Toluene-d8 48.55 5.0 50.00 0 88.9 77 111 Surrogate: Bromofluorobenzene 44.46 5.0 50.00 0 88.9 77 111 Qualifiers: ND - Not Detected at the Reporting Limit S-Spike Recovery outside accepted recovery limits	Hexachlorobutadiene		DN	5.0							
Naphthalene 1.873 5.0 50.00 0 103 65 132 Surrogate: Dibromofluoromethane 51.57 5.0 50.00 0 103 65 128 Surrogate: Dibromofluoromethane-d4 52.02 5.0 50.00 0 104 65 128 Surrogate: Toluene-d8 48.55 5.0 50.00 0 97.1 85 115 Surrogate: Bromofluorobenzene 44.46 5.0 50.00 0 88.9 77 111 Qualifiers: ND - Not Detected at the Reporting Limit S- Spike Recovery outside accepted recovery limits S- Spike Recovery outside accepted recovery limits	1.2.3-Trichlorobenzene		UN	5.0							
Surrogate: Dibromofluoromethane 51.57 5.0 50.00 0 103 65 132 Surrogate: 1,2-Dichloroethane-d4 52.02 5.0 50.00 0 104 65 128 Surrogate: 1,2-Dichloroethane-d4 52.02 5.0 50.00 0 104 65 128 Surrogate: Toluene-d8 48.55 5.0 50.00 0 97.1 85 115 Surrogate: Bromofluorobenzene 44.46 5.0 50.00 0 88.9 77 111 Qualifiers: ND - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits S - Spike Recovery outside accepted recovery limits	Naphthalene		1.873	5.0							Ъ
Surrogate: 1,2-Dichloroethane-d4 52.02 5.0 50.00 0 104 65 128 Surrogate: Toluene-d8 48.55 5.0 50.00 0 97.1 85 115 Surrogate: Bromofluorobenzene 44.46 5.0 50.00 0 97.1 85 111 Qualifiers: ND - Not Detected at the Reporting Limit 5.0 50.00 0 88.9 77 111	Surrogate: Dibromof	uoromethane	51.57	5.0	50,00	0			0		
Surrogate: Toluene-d8 48.55 5.0 50.00 0 97.1 85 115 Surrogate: Bromofluorobenzene 44.46 5.0 50.00 0 97.1 85 111 Qualifiers: ND - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits S - Spike Recovery outside accepted recovery limits		roethane-d4	52.02	5.0	50.00	0			0		
Surrogate: Bromofluorobenzene 44.46 5.0 50.00 0 88.9 77 111 Qualifiers: ND - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits		8	48.55	5.0	50.00	0	.1		0		
Qualifiers: ND - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits		srobenzene	44.46	5.0	50.00	0			0		
ers: ND - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits											
		- Not Detected at the Renorting Limit		S - Sp	ike Recovery outside	accented recovery	imits	ш Ш	t - Analvte detected in	the associated Method	Blank
				10 - 0	micino franciany avre	acception records	200	<u>р</u>	ur nananan artar	uic association inicition	VIIIII

CLIENT:	Dav Environmental Inc.			ANALY	TICAL OC	ANALYTICAL OC SUMMARY REPORT	REPORT		
Work Order:	J0281		SWS	SW8260 LOW S	•				
Project:	151 Mt. Hope Ave.		8MS	SW846 8260 VOC by GC-MS	C by GC-MS				
Sample ID: MB-49496	9496 SampType: MBLK		TestCode: SW8260_LOW_S		Prep Date:	02/26/10 8:37	Run ID: V6_100226A		
Client ID: MB-49496	9496 Batch ID: 49496	Units	Units: µg/Kg		Anatysis Date:	02/26/10 11:03	SeqNo: 1214702		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC LowLimit HighLimit	hLimit RPD Ref Val	I %RPD RPDLimit	Qual
Dichlorodifluoromethane	thane	DN	5.0						
Chloromethane		DN	5.0						
Vinyl chloride		UN	5.0						
Bromomethane		UN	5.0						
Chloroethane		ND	5.0						
Trichlorofluoromethane	lane	ND	5.0						
1,1-Dichloroethene		ND	5.0						
Acetone		QN .	5.0						
lodomethane			0.0						
Carbon disulfide		UN ,	5.0						ł
Metnylene chloride	11	000.4 UN	о. С						C
trans-1, Z-Dicnioroetnene	inene		0.0						
Metnyi tert-butyi etner	her								
1, 1-UICNIOroethane									
VINVI acetate		CIN CIN							
cie_1_2_Dichloroothone			о. с						
2 2-Dichloronronane		DN ON	5.0						
Bromochloromethane	ue De	UN	5.0						
Chloroform		ND	5.0						
1,1,1-Trichloroethane	ne	ND	5.0						
1,1-Dichloropropene	le	ND	5.0						
Carbon tetrachloride	<u>e</u>	ND	5.0						
1,2-Dichloroethane		ND	5.0						
Benzene		DN	5.0						
Trichloroethene			0.0 0						
1, z-micnioropropane	<u>0</u>								
Dipromodichloromethane		CIN CIN							
cis-1.3-Dichloronronene		DN	5.0						
4-Methvi-2-pentanone	poince Sille	QN	5.0						
Toluene		ND	5.0						
trans-1,3-Dichloropropene	ropene	ND	5.0						
###1,1,2-Trichloroethane	ne	ND	5.0						
1,3-Dichloropropane	le	QN	5.0						
Tetrachloroethene		ND	5.0						
2-Hexanone		ΠŊ	5.0						
Oualifiers:	ND - Not Detected at the Reporting Limit	mit	S - Sp	S - Spike Recovery outside accepted recovery limits	accepted recovery	limits	B - Analyte detected	B - Analyte detected in the associated Method Blank	Blank
			2		(nonon of mure		
IDU-SML	J - Analyte detected below quantitation limits	ı limits	K - KI	R - RPD outside accepted recovery limits	ecovery limits				

Work Order: JO21 SW2366_LOW_S SW2366_LOW_S Prop.ex: I ML. Hope Ave. SW3266_LOW_S Prop Date R22610 fts3 R Emeric: I ML. Hope Ave. Samplyse IBLK TentCons. SW2366_LOW_S SW3266_LOW_S R Emeric: I ML. Hope Ave. Samplyse IBLK TentCons. SW2366_LOW_S SW346 S260 - VOC by GC-MS R Clear ID: Bacon ID: Bacon ID: Adolysis Disc. SW346 S260 - VOC by GC-MS R Clear ID: Bacon ID: Bacon ID: Adolysis Disc. SW46 Value SW46 Value SW46 ID ID I L12.7 Finandomontane R R Disc. SW Ret Value SW26 ID II I L2.6 Finandomontane R Disc. SW Ret Value SW46 ID II	CLIENT:	Dav Environmental Inc.	nental Inc.			ANALY	ANALYTICAL OC SUMMARY REPORT	C SUM	MARY	REPC	DRT		
Project: JSI MI. Hope Ave. SW846 8260 VOC by GC-MS Rample ID: MB-4466 Samplyse: MBLK TextCode: SW284_LOW_S Pero Date: 0223/10 6:37 R Client ID: MB-4466 Samplyse: MBLK TextCode: SW284_LOW_S Semplyse: MBLK TextCode: SW284_LOW_S R R Client ID: MB-4466 Batch ID: Aq466 Units: jaffwg Smmlyse: MBLK TextCode: SW284_LOW_S R <th< th=""><th>Work Order:</th><th>J0281</th><th></th><th></th><th>8W8</th><th>260_LOW_S</th><th>,</th><th></th><th></th><th></th><th></th><th></th><th></th></th<>	Work Order:	J0281			8W8	260_LOW_S	,						
Sumple D: MB-4466 Samp Type: MBLK TastCode: Sumple D: Amyses Date: O254/10 Tast Samp State: Date:	Project:	151 Mt. Hope	: Ave.		SW8	146 8260 VC	C by GC-MS						
Client (D: MB-0456) Batch (D: 4546) Unix pp/C Analysis Data 2025/01 11.13 X Aubyle Round Round POL SPK AniVa WREC Loudmit Heplituit Aubyle Round SPC Analysis Data SPK ReV Va WREC Loudmit Heplituit Aubyle Round SPC Analysis Data SPK ReV Va WREC Loudmit Heplituit Analysis Data SPC Analysis Data SPK ReV Va WREC Loudmit Heplituit Analysis Data SPC Analysis Data SPC Analysis Data SPC Analysis Data Analysis Data SPC Analysis Data SPC Analysis Data SPC Analysis Data SPC Analysis Data Analysis Data SPC Analysis Data	Sample ID: MB-49		SampType: MBLK	TestCode	s: SW8260_LOW_S		Prep Date:		8:37	Run IC	Run ID: V6_100226A		
aduption Read POL SPK ratures MeC Loudinant Hould Houl		496	Batch ID: 49496	Units	: µg/Kg		Analysis Date:		11:03	SeqNo	SeqNo: 1214702		
2. Differentiation 5.0 5.0 2. Differentiation 5.0 5.0 Offerentiation 5.0 5.0 Differentiation 5.0	Analyte			Result	PQL	SPK value	SPK Ref Val	%REC Lo	wLimit Hig	٦Limit	RPD Ref Val	%RPD RPDLimit	Qual
Non-onclutation No 5.0 Difformation No	Dibromochlorometh	ane		QN	5.0								
Disologenation No 5.0 Disologenation No 5.0 Disylenzane No 5.0 Sylene No 5.0 <td>1,2-Dibromoethane</td> <td></td> <td></td> <td>UN</td> <td>5.0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	1,2-Dibromoethane			UN	5.0								
1/1.12 ² Finitabilocertane 10 5.0 1/1.12 ² Finitabilocertane 10 5.0 Sylfene 10 5.0 Sylfeneree 10 5.0 Chronoprane 10 5.0 Ch	Chlorobenzene			UN	5.0								
Implementation Impleme	1,1,1,2-Tetrachloroe	ethane		ND	5.0								
Acylene ND 5.0 Sorrop/barrene ND 5.0 Acylenezate ND 5.0 Acyle	Ethylbenzene			ND	5.0								
Sylver Display Display <thdisplay< th=""> <thdisplay< th=""> <thdi< td=""><td>m,p-Xylene</td><td></td><td></td><td>DN</td><td>5.0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thdi<></thdisplay<></thdisplay<>	m,p-Xylene			DN	5.0								
MD 5.0 Syme MD 5.0 Symo Somolentane MD 5.0 Symo MD 5.0 Somolentane MD Chorotolentane MD 5.0 Somolentane MD All Symolentane MD 5.0 Somolentane MD 5.0 Chorotolentane MD 5.0 Somolentane MD 5.0 All Symolentane MD 5.0 <t< td=""><td>o-Xylene</td><td></td><td></td><td>QN</td><td>5.0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	o-Xylene			QN	5.0								
MD 5.0 Sommer ND 5.0 Chordbare ND 5.0 Sommer ND 5.0 Chordbare ND 5.0 Sommer 5	Xylene (Total)			ОN I	5.0								
Socionoform Socionoform <thsocionoform< th=""> <thsocionoform< th=""></thsocionoform<></thsocionoform<>	Styrene			QN	5.0								
Softonylberzere ND 5.0 1.1.2.7Ertachloroethane ND 5.0 2.3.Tichtopropane ND 5.0 Propylberzene ND 5.0 2.3.Tichtopropane ND 5.0 Propylberzene ND 5.0 Propylberzene ND 5.0 Propylberzene ND 5.0 Propylberzene ND 5.0 Chorotolene ND 5.0 ATimethylberzene ND 5.0 1.3.5.Timethylberzene ND 5.0 ATotolocherzene ND 5.0 ATotolocherzene ND 5.0 1.3.Dofolocherzene ND 5.0 1.4.Froloboerzene ND 5.0 2.2.Dofolocherzene ND 5.0 1.4.Froloboerzene ND	Bromoform			DN	5.0								
1.1.2.2.Tetrachlocertane ND 5.0 2.0.moloserzene ND 5.0 2.7.nojhoporate ND 5.0 7.1.2.7.Tetrachlocorpane ND 5.0 7.1.1.2.7.Tetrachlocorpane ND 5.0 7.1.1.0.1000propane ND 5.0 7.1.1.0.1000propane ND 5.0 7.1.1.0.1000propane ND 5.0 7.1.1.0.1000propane ND 5.0 6.1.1.1.0.1000propane ND 5.0 6.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	Isopropylbenzene			DN	5.0								
Somoloenzene ND 5.0 2.3-Tichlooporane ND 5.0 Propylherzene ND 5.0 Propylherzene ND 5.0 Propylherzene ND 5.0 AChlorotoluene ND 5.0 AChlorotoenzene ND 5.0 AChlorotoenzene ND 5.0 AChlorotoenzene ND 5.0 ALTichlorotoenzene ND 5.0 ALS-Dibrorooenzene ND 5.0	1,1,2,2-Tetrachloroe	ethane		DN	5.0								
2.3.Trichloropropane ND 5.0 -Propylenzene ND 5.0 -Propylenzene ND 5.0 -Propylenzene ND 5.0 -Chlorotoluene ND 5.0 R13.5.Trimethybenzene ND 5.0 Achlorotoluene ND 5.0 R13.4.Timethybenzene ND 5.0 R13.4.Timethybenzene ND 5.0 R13.4.Timethybenzene ND 5.0 R14.5.Timethybenzene ND 5.0 R13.4.Timethybenzene ND 5.0 R13.4.Timethybenzene ND 5.0 R4.5.Timethybenzene ND 5.0 R4.5.Timethybenzene ND 5.0 R4.5.Timethybenzene ND 5.0 R4.4.7.Timethybenzene ND 5.0 R4.5.7.1.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5	Bromobenzene			ND	5.0								
Propybenzene ND 5.0 Chorotoluene ND 5.0 L-Stribonobenzene ND 5.0 L-Stribonobenzene ND 5.0 L-Stribonobenzene ND 5.0 L-Stribonopropane ND 5.0 Chorotoropane ND 5.0 Surrogate: Surrogate: 50.00 0 Surrogate: Surropate 50.00 0 104 65 115 <	1,2,3-Trichloropropa	ane		ND	5.0								
Collorodicine ND 5.0 1,5.5.Trimetrybenzene ND 5.0 1,5.5.Trimetrybenzene ND 5.0 1,5.1.Trimetrybenzene ND 5.0 cr.Burybenzene ND 5.0 c.S.1.Trimetrybenzene ND 5.0 1.3.4.Trimetrybenzene ND 5.0 1.4.Dichorobenzene ND 5.0 1.2.Dichorobenzene ND 5.0 1.2.2.Dichorobenzene ND 5.0 1.2.3.Trichlorobenzene ND 5.0 </td <td>n-Propylbenzene</td> <td></td> <td></td> <td>ND</td> <td>5.0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	n-Propylbenzene			ND	5.0								
1.3.5-Trimethylbenzene ND 5.0 Chorooluene ND 5.0 Affindethylbenzene ND 5.0 R-Europortolene ND 5.0 Alsorropylouene ND 5.0 Alsorropylouene ND 5.0 Alsorrophylbenzene ND 5.0 Alsorrophonezene ND 5.0 Alsorrophonezene ND 5.0 Alsorrophonezene ND 5.0 ND Stormodenzene ND 5.0 Alsorrophonezene ND 5.0 ND Stormodenzene ND 5.0 Alsorrophonezene ND 5.0 Alsornofluoronethane 5.1.18 5.0 Surrogate: 1.2.20thoroethane-d4 5.1.8 Surrogate: 1.2.20thoroethane-d4 5.0.0 0 Surrogate: 1.2.20thoroethane-d4 5.0.0 0 104 <	2-Chlorotoluene			ND	5.0								
4.Chlorotoluene ND 5.0 ert-Butylbenzene ND 5.0 ert-Butylbenzene ND 5.0 Sec-Butylbenzene ND 5.0 Sec-Butylbenzene ND 5.0 Ar-Timethylbenzene ND 5.0 Ar-Striphenzene ND 5.0 Artonopholenzene ND 5.0 (J-Strichlorobenzene ND 5.0 -Butylbenzene ND 5.0 (J-Strichlorobenzene ND 5.0 -Butylbenzene ND 5.0 (J-Trichlorobenzene ND 5.0 ND 5.0 5.0 Surrogate: Ditomothane-d4 5.1 Surrogate: Elbionothane-d4 5.0 Surrogate: Elbionothane-d4	1,3,5-Trimethylbenz	ene		ND	5.0								
erf-Butylbenzene ND 5.0 1.2.4-Timetrylbenzene ND 5.0 4.6oropytholene ND 5.0 5.10 5.0 5.0 5.20 5.0 5.0 5.20 5.0 5.0 5.20 ND 5.0 5.20 ND 5.0 1.3-Dichorobenzene ND 5.0 1.4.Dichorobenzene ND 5.0 1.4.Dichorobenzene ND 5.0 1.2.Dichorobenzene ND 5.0 1.2.4-Trichorobenzene ND 5.0 1.2.2.Dichorobenzene ND 5.0 1.2.2.Dichorobenzene ND 5.0 1.2.2.Dichorobenzene ND 5.0 2.1.2.Dichorobenzene ND 5.0 3.1.2.8.Surrogate: 1.2.Dichorobenzene ND 9.0 <td>4-Chlorotoluene</td> <td></td> <td></td> <td>ND</td> <td>5.0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	4-Chlorotoluene			ND	5.0								
1.2.4-Trimethybenzene ND 5.0 sec-Butybenzene ND 5.0 sec-Butybenzene ND 5.0 4.Sopropylolene ND 5.0 4.Sopropylolene ND 5.0 4.Sopropylolene ND 5.0 4.Sopropylolene ND 5.0 1.4.Dichlorobenzene ND 5.0 -Butylbenzene ND 5.0 1.2.Dichorobenzene ND 5.0 1.2.Prichlorobenzene ND 5.0 1.2.Prichlorobenzene ND 5.0 1.2.Prichlorobenzene ND 5.0 1.2.3-Trichlorobenzene ND 5.0 1.2.4.Trichlorobenzene ND 5.0 1.2.5.Trichlorobenzene ND 5.0 Surrogate: 1.2.Dichloroethane-d4 5.0 50.00 0 1.2.3.Trichlorobenzene ND 5.0 0.00 0 104 65 113 Surrogate: 1.2.Dichloroethane-d8 5.0 50.00 0 97.4 85 113 Surrogate: Romofluoromethane 45.46 5.0	tert-Butylbenzene			ND	5.0								
Sec-Butylbenzene ND 5.0 4.lsopropyllouleare ND 5.0 4.lsopropyllouleare ND 5.0 4.lsopropyllouleare ND 5.0 1.4.Oblionobenzene ND 5.0 -Butylbenzene ND 5.0 -Lautylbenzene ND 5.0 1.4.Oblionobenzene ND 5.0 1.2.Dihomo-3-chloropropane ND 5.0 1.2.Tichhorobenzene ND 5.0 1.2.Tichhorobenzene ND 5.0 1.2.Tichhorobenzene ND 5.0 1.2.3.Trichhorobenzene ND 5.0 ND 5.0 0.0 1.2.3.Trichhorobenzene ND 5.0 Naphthalene ND 5.0 5.0 1.2.3.Trichhorobenzene ND 5.0 5.0 Surrogate: Dibromofluoromethane-d4 53.89 5.0 50.00 0 104 65 128 Surrogate: Dibromofluoromethane-d4 53.89 5.0 50.00 0 <td< td=""><td>1,2,4-Trimethylbenz</td><td>tene</td><td></td><td>ND</td><td>5.0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	1,2,4-Trimethylbenz	tene		ND	5.0								
4.Isopropyltolene ND 5.0 1.3-Dichlorobenzene ND 5.0 1.4.Dichlorobenzene ND 5.0 1.4.Dichlorobenzene ND 5.0 1.4.Dichlorobenzene ND 5.0 1.4.Dichlorobenzene ND 5.0 1.2.Dichoszene ND 5.0 1.2.Dichoszene ND 5.0 1.2.Dichoszene ND 5.0 1.2.Trichlorobenzene ND 5.0 1.2.3-Trichlorobenzene ND 5.0 ND 5.0 0 1.04 65 132 1.2.3-Trichlorobenzene ND 5.0 0 0 104 65 132 Surogate: Dikronofluoromethane 5.1 5.0 5.0 0 0 104 65 132 Surogate: Toluene-d8 5.0 5.0 0 0 108 65 115 Surogate: Bronofluorobenzene 48.70 5.0 50.00 0 90.9 77 111 Gurogate: Bronofluorobenzene 45.46	sec-Butylbenzene			ND	5.0								
1,3-Dichlorobenzene ND 5.0 1,4-Dichlorobenzene ND 5.0 1,4-Dichlorobenzene ND 5.0 1,2-Dichlorobenzene ND 5.0 1,2-Dichlorobenzene ND 5.0 1,2-Dichlorobenzene ND 5.0 1,2-Dichlorobenzene ND 5.0 1,2-Tichlorobenzene ND 5.0 1,2-Tichlorobenzene ND 5.0 1,2-Tichlorobenzene ND 5.0 1,2-Tichlorobenzene ND 5.0 Naphthalene ND 5.0 0 104 65 128 Surrogate: Toluene-d8 48.70 5.0 50.00 0 90.9 77 111 Surrogate: Bromofluorobenzene 45.46 5.0 50.00 0 90.9 77 111 Qualiffers: ND-Not Detected at the Reporting Limit 5.0.00 0 90.9 77 111	4-Isopropyltoluene			ND	5.0								
1,4-Dichlorobenzene ND 5.0 7-Burylbenzene ND 5.0 7-Dichlorobenzene ND 5.0 1,2-Dichlorobenzene ND 5.0 1,2-Dichlorobenzene ND 5.0 1,2-Trichlorobenzene ND 5.0 1,2-Trichlorobenzene ND 5.0 1,2-Trichlorobenzene ND 5.0 Naphthalene ND 5.0 Surrogate: Dibromofluoromethane 52.18 5.0 50.00 0 104 65 128 Surrogate: Iouene-d8 48.70 5.0 50.00 0 97.4 85 115 Surrogate: Bromofluoromethane 43.70 5.0 50.00 0 97.4 85 115 Surrogate: Bromofluorobenzene 45.46 5.0 50.00 0 97.4 85 115 Surrogate: Bromofluorobenzene 45.46 5.0 50.00 0 97.4 85 115 Surrogate: Bromofluorobenzene 45.46 5.0 50.00 0 97.4 85 115 Surrogate: Bromofluoro	1,3-Dichlorobenzent	Ð		ND	5.0								
Dutylbenzene ND 5.0 1,2-Dichlorobenzene ND 5.0 1,2-Dichlorobenzene ND 5.0 1,2-Dichlorobenzene ND 5.0 1,2-Trichlorobenzene ND 5.0 1,2-Trichlorobenzene ND 5.0 1,2-Trichlorobenzene ND 5.0 Hexachlorobenzene ND 5.0 Naphthalene ND 5.0 1,2:3-Trichlorobenzene ND 5.0 Naphthalene ND 5.0 Surrogate: Dibromofluoromethane 5.1 8 1,2:3-Trichlorobenzene ND 5.0 Surrogate: Stromofluoromethane 5.0 5.0 Surrogate: Stromofluorobenzene 48.70 5.0 97.4 85 115 Surrogate: Bromofluorobenzene 45.46 5.0 90.9 77 111 Multifers: ND - Not Detected at the Reporting Limit 5.000 0 97.4 85 115	1,4-Dichlorobenzent	e		QN	5.0								
1,2-Dichlorobenzene ND 5.0 1,2-Dichlorobenzene ND 5.0 1,2-Dichlorobenzene ND 5.0 1,2-Trichlorobenzene ND 5.0 1,2-Trichlorobenzene ND 5.0 Hexachlorobutadiene ND 5.0 1,2.3-Trichlorobenzene ND 5.0 Naphthalene ND 5.0 1,2.3-Trichlorobenzene ND 5.0 Naphthalene ND 5.0 Surrogate: Dibromofluoromethane 52.18 5.0 Surrogate: Toluene-d8 48.70 5.0 0 104 65 128 Surrogate: Bromofluorobenzene 45.46 5.0 50.00 0 97.4 85 115 Surrogate: Bromofluorobenzene 45.46 5.0 50.00 0 90.9 77 111 Multifiers: ND - Not Detected at the Reporting Limit 5.0.00 0 90.9 77 111	n-Butylbenzene			<u> </u>	5.0								
N2-Dicromo-3-chloropropaneND5.01,2,4-TrichlorobenzeneND5.0HexachlorobutadieneND5.0HexachlorobutadieneND5.01,2,3-TrichlorobenzeneND5.0NaphthaleneND5.0Surrogate: Dicromofluoromethane5.185.0Surrogate: Toluene-d848.705.00Surrogate: I,2-Dichlorobenzene45.465.00Surrogate: Bromofluorobenzene45.465.00Surrogate: Bromofluorobenzene45.465.00Surrogate: Bromofluorobenzene5.000Surrogate: I,2-Dichlorobenzene45.465.00Surrogate: I,2-Dichlorobenzene5.000Surrogate: I,2-Dichlorobenzene45.465.00Surrogate: I,2-Dichlorobenzene5.000Surrogate: I,2-Dichlorobenzene45.465.00Surrogate: I,2-Dichlorobenzene5.05.00Surrogate: I,2-Dichlorobenzene5.05.00Surrogate: I,2-Dichlorobenzene45.465.05.0Surrogate: I,2-Dichlorobenzene45.465.00Surrogate: I,2-Dichlorobenzene5.000Surrogate: I,2-Dichlorobenzene45.465.0Surrogate: I,2-Dichlorobenzene45.465.0Surrogate: I,2-Dichlorobenzene5.00Surrogate: I,2-Dichlorobenzene5.00Surrogate: I,2-Dichlorobenzene45.46Surrogate:	1,2-Dichlorobenzen	Ð		UN UN	0. °								
1,2,4-Inchlorobentzene NU 5.0 Hexachlorobutadiene ND 5.0 Hexachlorobutadiene ND 5.0 1,2,3-Trichlorobentzene ND 5.0 Naphthalene ND 5.0 Surrogate: Dibromofluoromethane 52.18 5.0 Surrogate: Toluene-d8 53.89 5.0 0 104 65 128 Surrogate: Toluene-d8 53.89 5.0 50.00 0 97.4 85 115 Surrogate: Toluene-d8 48.70 5.0 50.00 0 90.9 77 111 Surrogate: Bromofluorobenzene 45.46 5.0 50.00 0 90.9 77 111 Qualifiers: ND - Not Detected at the Reporting Limit S-Spike Recovery outside accepted recovery limits	1,2-Dibromo-3-chlor	ropropane		UN .	5.U								
HexachlorobutadieneND 5.0 1,2,3-TrichlorobenzeneND 5.0 NaphthaleneND 5.0 Naphthalene 5.0 0 Narogate: Dibromofluoromethane 5.18 5.0 Surrogate: I,2-Dichloroethane-d4 5.18 5.0 97.4 65 Surrogate: Toluene-d8 48.70 5.0 50.00 0 104 65 Surrogate: Toluene-d8 48.70 5.0 50.00 0 97.4 85 Surrogate: Bromofluorobenzene 45.46 5.0 50.00 0 97.4 85 Nurogate: Bromofluorobenzene 45.46 5.0 50.00 0 97.4 85 Surrogate: Bromofluorobenzene 45.46 5.0 50.00 0 90.9 77 111 Oualifiers:ND-Not Detected at the Reporting Limit $S-Spike Recovery outside accepted recovery limits$	1,2,4-Trichlorobenzi	ene			0.0								
1,2,3-Inchrotenation ND 5.0 5.0 5.0 6.5 1.32 Naphthalene 5.18 5.0 5.0 0 104 65 132 Surrogate: Dibromofluoromethane-d4 5.18 5.0 50.00 0 104 65 128 Surrogate: I,2-Dichloroethane-d4 5.18 5.0 50.00 0 97.4 85 115 Surrogate: Toluene-d8 48.70 5.0 50.00 0 90.9 77 111 Surrogate: Bromofluorobenzene 45.46 5.0 50.00 0 90.9 77 111 Qualifiers: ND - Not Detected at the Reporting Limit S-Spike Recovery outside accepted recovery limits 8-Spike Recovery outside accepted recovery limits	Hexachlorobutadien	Ð		UN UN	0.°								
VapInitation 52.18 50.00 0 104 65 132 Surrogate: Dibromofluoromethane 52.18 5.0 50.00 0 104 65 128 Surrogate: 1,2-Dichloroethane-d4 53.89 5.0 50.00 0 108 65 128 Surrogate: Toluene-d8 48.70 5.0 5.0 0 97.4 85 115 Surrogate: Bromofluorobenzene 45.46 5.0 5.0 0 90.9 77 111 Qualifiers: ND - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits S - Spike Recovery outside accepted recovery limits	1,2,3-1 richlorobenzt	ene			с с ч								
Currogate: 1,2Dichloroethane-d4 5.1 5.0 50.00 0 108 65 128 Surrogate: 1,2Dichloroethane-d4 5.0 5.0 50.00 0 97.4 85 115 Surrogate: Toluene-d8 45.46 5.0 50.00 0 90.9 77 111 Surrogate: Bromoftuorobenzene 45.46 5.0 50.00 0 90.9 77 111 Qualifiers: ND - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits	Surrocate: Dibrom	nfinoromethane		52.18	5.0	50.00	0	104	65	132	С		
Surrogate: 1,2-Dichloroethane-d4 533.89 5.0 50.00 0 108 63 128 Surrogate: Romofluorobenzene 45.46 5.0 50.00 0 97.4 85 115 Surrogate: Bromofluorobenzene 45.46 5.0 50.00 0 90.9 77 111 Qualifiers: ND - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 77 111) L		o c	- 0) L		o (
Surrogate: loluene-d8 48.70 5.0 50.00 0 97.4 85 115 Surrogate: Bromofluorobenzene 45.46 5.0 50.00 0 90.9 77 111 Qualifiers: ND - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits	Surrogate: 1,2-Dic	chloroethane-d4		53.89 	5.0	50.00	0 0	108	65 1	128	0 0		
Surrogate: Bromofluorobenzene 45.46 5.0 50.00 0 90.9 77 111 Qualifiers: ND - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits	Surrogate: Toluen	le-d8		48./U	0 °C	00.00	Ð	۲،4	ср	GTT	D		
Qualifiers: ND - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits		fiuorobenzene		45.46	5.0	50.00	0	90.9	<i>LL</i>	111	0		
Qualifiers: ND - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits	Statiff Marticle												
Qualifiers: ND - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits													
ND - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits										-			
	Qualifiers:	ND - Not Detecter	d at the Reporting Limit		S - Sp	ike Recovery outsid	e accepted recovery	' limits		B - A	nalyte detected in	B - Analyte detected in the associated Method Blank	Blank
mLJMS-001 I. Analytic detected helow quantitation limits RPD outside accented recovery limits	mLIMS-001	I Analyte detects	ed helow quantitation limi	te	14 - A	D outside accented	recovery limits						
			Γ.										

T. J021 I.S. M.Liope Area SW8260 LOW_S SW8260 LOW_S I.S. M.Liope Area SW8260 LOW_S SW8260 LOW_S Animality in the interval and state and state and state and state and state and state and and state and state and state and state and state and state and and state and state and state and state and state and state and and state and state and state and state and state and state and state and and state and state and state and state and state and state and and state and state and state and state and state and state and and state and state and state and state and state and state and and state and state and state and state and state and and state and state and state and state and state and and state and state and state and state and state and state and and state and state and state and state and state and state and and state and state and state and state and state and state and and state and state and state and state and state and and state and state and state and state and state and and state and state and state and state and state and state and state and and state and sta	CLIENT:	Day Environmental Inc.			ANALY	ANALYTICAL OC SUMMARY REPORT	SUM	MAR	Y REP(DRT			
I51 ML. Hope Ave. SW446 \$260 - VOC by GC-MS I51 ML. Hope Ave. Samp1'spec LC3 TestCode: \$W280 LOW_S Perp Date: Q224'0' 0'00 S C5-4973 Samp1'spec LC3 Units. pjKq Amays to any state and and state and s		J0281		SW8	3260_LOW_S	,							
C5-3473 Samth')per LGS TestCode: SW2301_LOW_S Part Pictor C235101_644 Risk Part Pictor S25101_1000 S C5-3473 Batch ID. 4473 Units: pgKq Analysis Date: 222510_1100 S S C5-3477 Facut 12,187 5.0 50.00 0 3472 2011 30 C6-473 71.30 5.0 50.00 0 94,6 10	Project:	151 Mt. Hope Ave.		SW8	346 8260 VC	C by GC-MS	and the second						
C.5.407.3 Batch ID: 467.3 Mills: Ip/Kg Analysis Date: 222.51/0 100/0 S comethane $(1, 10)$ 5.3	Sample ID: LCS-49	-	TestCode	SW8260_LOW_S		Prep Date:	02/25/10	9:41	Run II	D: V6_100225A			
Result OL SPK value SPK ref Val KRE Low commentation 41.85 5.0 50.00 6 51.7 50 10.50 commentation 41.85 5.0 50.00 0 51.7 50 10.50 commentation 71.30 5.0 90.00 0 51.7 50 10.50 commentation 77.30 5.0 90.00 0 91.1 20 10.50 commentation 77.30 5.0 90.00 0 91.1 20 10.50 <th></th> <th></th> <th>Units:</th> <th>hg/Kg</th> <th></th> <th>Analysis Date:</th> <th>02/25/10</th> <th>10:00</th> <th>SegN</th> <th>o: 1214383</th> <th></th> <th></th>			Units:	hg/Kg		Analysis Date:	02/25/10	10:00	SegN	o: 1214383			
conclusion 11.65 5.0 50.00 0 31.7 $35.$ $135.$ e 90.10 90.10 90.10 90.10 90.16 50.10 10	Analyte		Result	PQL	SPK value	SPK Ref Val	%REC Lo	wLimit Hi	ghLimit	RPD Ref Val	%RPD RPDLimit	Qual	
e $47, 31$ $5, 0$ $50, 00$ 0 $96, 1$ $50, 100$ $100, 100$ $100, 100, 100$ $100, 100, 100, 100, 100, 100, 100, 100,$	Dichlorodifluorometh	ane	41.85	5.0	50.00	0	83.7	35	135	0			
61.03 5.0 50.00 0 0.01 60 100	Chioromethane		47.31	5.0	50.00	0	94.6	50	130	0			
e 50.33 5.0 50.00 0 101 30 150 Interlane 57.3 5.0 50.00 0 91.6 25.3 150 Interlane 47.30 5.0 50.00 0 94.6 25.3 150 Interlane 47.30 5.0 50.00 0 94.6 25.3 150 Interlane 47.50 5.0 50.00 0 94.6 25.1 150 Interlane 47.50 5.0 50.00 0 94.6 25.1 150 Interlane 44.5 5.0 50.00 0 94.6 25.1 150 Interlane 44.5 5.0 50.00 0 94.7 70 125 Interlane 43.10 5.0 50.00 0 96.7 70 125 Interlane 44.12 5.0 50.00 0 96.7 70 125 Interlane 44.12 5.0 5	Vinyl chloride		48.05	5.0	50.00	0	96.1	60	125	0			
70.43 5.0 50.00 0 115 forme 77.30 5.0 50.00 0 91.6 5 135 forme 47.53 5.0 50.00 0 91.6 5 135 forme 47.53 5.0 50.00 0 91.6 55.1 105 gy tener 44.23 5.0 50.00 0 91.6 55.1 105 gy tener 41.23 5.0 50.00 0 91.4 55.1 1050 100.6 92.3 100.6 gy tener 41.23 5.0 50.00 0 91.4 51.6 100.6 <	Bromomethane		50.33	5.0	50.00	0	101	30	160	0			
Antimation $q_1.30$ 5.0 50.00 0 $g_{1.6}$ Z_{2} 110 Amethane $q_{1.2}$ $S_{1.0}$ $S_{0.00}$ 0 $g_{1.6}$ Z_{2} 120 Amethane $q_{2.2}$ $S_{2.0}$ $S_{0.00}$ 0 $g_{2.6}$ $Z_{2.9}$ $Z_{2.9}$ $Z_{2.9}$ $Z_{2.9}$ $Z_{2.9}$ $Z_{2.9}$ $Z_{2.9}$ $Z_{2.9}$ $Z_{2.00}$ $Z_{2.9}$ $Z_{2.9}$ $Z_{2.00}$ $Z_{2.9}$	Chloroethane		50.43	5.0	50.00	0	101	40	155	0			
Interface $47,50$ 5.0 $50,00$ 0 $55,0$ $55,0$ $55,0$ $55,0$ $55,0$ $55,0$ $55,0$ $55,0$ $55,0$ $55,0$ $55,0$ $55,0$ $55,0$ $55,0$ $55,0$ $55,0$ $55,0,00$ $95,0$	Trichlorofluorometha	Je	47.30	5.0	50.00	0	94.6	25	185	0			
de 42.93 5.0 50.00 0 55.9 20 100 oridite 44.29 5.0 50.00 0 55.9 50 100 oridite 44.29 5.0 50.00 0 93.3 55 140 lorentee 44.29 5.0 50.00 0 93.3 55 120 lorentee 49.11 5.0 50.00 0 93.3 75 125 lorentee 49.11 5.0 50.00 0 93.3 75 126 lorentee 43.29 5.0 50.00 0 93.3 75 126 lorentee 43.88 5.0 50.00 0 93.4 50 126 conthene 49.13 5.0 50.00 0 93.4 50 125 conthene 49.6 5.0 50.00 0 93.4 50 125 lorotee 47.51 50 5	1,1-Dichloroethene		47.50	5.0	50.00	0	95.0	65	135	0			
de 48.35 5.0 50.00 0 57.7 70 126 oricoethene 44.56 5.0 50.00 0 96.7 70 126 vju ether 44.56 5.0 50.00 0 96.7 70 126 vju ether 44.29 5.0 50.00 0 96.7 70 126 vju ether 44.29 5.0 50.00 0 96.7 70 126 vju ether 47.16 5.0 50.00 0 96.7 70 126 read 47.10 50.00 50.00 0 96.7 70 126 read 47.10 50.00 50.00 0 97.6 70 126 read 47.7 50.00 00.00 $00.96.7$ 70 125 read 47.7 50.00 00.00 $00.96.7$ 70 125 read	Acetone		42.93	5.0	50.00	0	85.9	20	160	0			
de 46.65 5.0 50.00 0 93.3 45 100 orded 44.29 5.0 50.00 0 93.3 45 120 vy ether 44.29 5.0 50.00 0 97.3 45 120 vy ether 42.13 5.0 50.00 0 97.3 75 126 thane 57.0 50.00 0 97.3 75 126 coethene 49.13 5.0 50.00 0 97.4 50 120 copane 47.51 5.0 50.00 0 97.6 77 125 repare 47.51 5.0 50.00 0 97.6 70 125 repare 47.51 5.0 50.00 0 97.6 70 125 repare 47.51 5.0 50.00 0 97.6 70 125 <th roto<="" td=""><td>lodomethane</td><td></td><td>48.35</td><td>5.0</td><td>50.00</td><td>0</td><td>96.7</td><td>70</td><td>126</td><td>0</td><td></td><td></td></th>	<td>lodomethane</td> <td></td> <td>48.35</td> <td>5.0</td> <td>50.00</td> <td>0</td> <td>96.7</td> <td>70</td> <td>126</td> <td>0</td> <td></td> <td></td>	lodomethane		48.35	5.0	50.00	0	96.7	70	126	0		
oriede 41.29 5.0 50.00 0 81.6 55 140 oricoethene 48.95 5.0 50.00 0 91.6 55 125 than 5.0 50.00 0 91.3 57 125 than 5.0 50.00 0 91.2 55 135 than 5.0 50.00 0 91.2 55 135 than 47.36 5.0 50.00 0 91.2 55 135 than 48.86 5.0 50.00 0 91.2 55 135 thane 48.75 5.0 50.00 0 97.6 70 135 thane 48.75 5.0 50.00 0 97.6 70 135 thane 48.75 5.0 50.00 0 97.7 70 135 thane 37.12 50.00 0 97.0 97.7 70 135	Carbon disulfide		46.65	5.0	50.00	0	93.3	45	160	0			
Noncenthene 41.55 5.0 50.00 0 91.2 55 125 Value 49.11 5.0 50.00 0 91.2 55 126 thane 49.11 5.0 50.00 0 92.4 55 126 thane 49.11 5.0 50.00 0 92.4 55 126 continue 49.18 5.0 50.00 0 97.4 50 126 rotation 49.88 5.0 50.00 0 97.7 70 125 topold 49.86 5.0 50.00 0 97.7 70 125 topold 90.00 0 97.6 70 </td <td>Methylene chloride</td> <td></td> <td>44.29</td> <td>5.0</td> <td>50.00</td> <td>0</td> <td>88.6</td> <td>55</td> <td>140</td> <td>0</td> <td></td> <td>Щ</td>	Methylene chloride		44.29	5.0	50.00	0	88.6	55	140	0		Щ	
tyle ether $q_{9,11}$ 5.0 50.00 0 $9g.3$ 75 126 thane 52.00 50.00 0 $9g.2$ 75 126 thane 52.00 50.00 0 $9g.2$ 75 126 creathene 52.00 50.00 0 $9g.2$ 75 126 creathene $4g.8$ 50 50.00 0 99.2 65 135 creathene $4g.8$ 50 50.00 0 97.6 70 135 creathene $4g.75$ 5.0 50.00 0 97.6 70 135 creathene	trans-1,2-Dichloroeth	ene	48.95	5.0	50.00	0	97.9	65	135	0			
Intende $9, 11$ 5.0 50.00 0 98.2 75 125 Intende 47.69 5.0 50.00 0 99.8 65 126 continue 47.69 5.0 50.00 0 99.8 65 125 continue 49.88 5.0 50.00 0 99.8 65 125 continue 48.76 5.0 50.00 0 97.6 70 125 continue 48.76 5.0 50.00 0 97.6 70 125 continue 47.28 5.0 50.00 0 97.6 70 <td>Methyl tert-butyl ethe</td> <td></td> <td>49.13</td> <td>5.0</td> <td>50.00</td> <td>0</td> <td>98.3</td> <td>75</td> <td>126</td> <td>0</td> <td></td> <td></td>	Methyl tert-butyl ethe		49.13	5.0	50.00	0	98.3	75	126	0			
52.00 5.0 50.00 0 104 65 113 coefficiene 47.69 5.0 50.00 0 95.4 55 155 ropane 49.88 5.0 50.00 0 97.7 70 125 ropane 49.88 5.0 50.00 0 97.7 70 125 ropane 47.51 5.0 50.00 0 97.8 57 70 125 coefficie 47.51 5.0 50.00 0 97.8 55 135 inprinde 47.51 5.0 50.00 0 97.8 55 125 inprinde 47.51 5.0 50.00 <t< td=""><td>1,1-Dichloroethane</td><td></td><td>49.11</td><td>5.0</td><td>50.00</td><td>0</td><td>98.2</td><td>75</td><td>125</td><td>0</td><td></td><td></td></t<>	1,1-Dichloroethane		49.11	5.0	50.00	0	98.2	75	125	0			
47.69 5.0 50.00 0 95.4 30 150 coeffene 49.88 5.0 50.00 0 97.4 30 150 copane 48.78 5.0 50.00 0 97.4 70 125 copane 48.79 5.0 50.00 0 97.6 70 125 copane 48.79 5.0 50.00 0 97.6 70 125 copane 48.75 5.0 50.00 0 97.6 70 125 copane 48.12 5.0 50.00 0 97.6 70 135 copane 48.12 5.0 50.00 0 97.6 70 135 copane 48.12 5.0 50.00 0 97.6 70 135 copane 48.75 5.0 50.00 0 97.6 70 135 copane 48.75 5.0 50.00 97.6 70	Vinyl acetate		52.00	5.0	50.00	0	104	65	138	0			
rotethene 49.88 5.0 50.00 0 99.8 65 125 nethane 48.79 5.0 50.00 0 97.6 70 125 nethane 48.79 5.0 50.00 0 97.6 70 125 nethane 48.79 5.0 50.00 0 97.6 70 125 nethane 48.12 5.0 50.00 0 97.6 70 125 nethane 48.12 5.0 50.00 0 97.6 70 125 horde 97.6 70 125 50.00 0 97.6 70 125 horde 97.8 50.00 0 97.0	2-Butanone		47.69	5.0	50.00	0	95.4	30	160	0			
copane 49.88 5.0 50.00 0 99.8 55 135 nethane 48.79 5.0 50.00 0 97.7 70 125 oethane 48.79 5.0 50.00 0 97.6 70 135 oethane 48.79 5.0 50.00 0 97.6 70 135 oethane 48.79 5.0 50.00 0 97.6 70 135 hloride 47.51 5.0 50.00 0 97.6 70 135 hloride 48.76 5.0 50.00 0 97.6 70 135 hloride 49.39 5.0 50.00 0 97.6 70 135 ne 39.56 5.0 50.00 0 97.6 70 135 ne 39.56 5.0 50.00 0 97.3 67 135 ne 39.56 5.0 50.00 0 <	cis-1,2-Dichloroether	le	49.88	5.0	50.00	0	8.66	65	125	0			
nethane 48.86 5.0 50.00 0 97.7 70 125 oethane 48.79 5.0 50.00 0 97.7 70 125 optice 48.79 5.0 50.00 0 97.6 70 125 optice 47.12 5.0 50.00 0 97.6 70 125 optice 47.28 5.0 50.00 0 97.6 70 135 optice 49.56 5.0 50.00 0 97.6 70 135 optice 49.56 5.0 50.00 0 97.6 70 135 optice 49.76 5.0 50.00 0 97.6 70 130 opticopene 49.76 5.0 50.00 0 97.6 70 130 opticopene 48.75 5.0 50.00 0 97.6 70	2,2-Dichloropropane		49.88	5.0	50.00	0	9.66	65	135	0			
48.79 5.0 50.00 0 97.6 70 125 cethane 47.51 5.0 50.00 0 97.6 70 135 hloride 47.51 5.0 50.00 0 97.6 70 135 hloride 48.12 5.0 50.00 0 97.6 70 135 hloride 48.88 5.0 50.00 0 97.6 70 135 hloride 33.56 5.0 50.00 0 97.6 70 135 ne 33.56 5.0 50.00 0 97.6 70 120 ne 33.56 5.0 50.00 0 97.6 75 120 ne 33.56 5.0 50.00 0 97.6 75 120 ne 33.56 5.0 50.00 0 97.6 70 120 onethane 31.01 5.0 50.00 0 97.6 70<	Bromochloromethane		48.86	5.0	50.00	0	97.7	70	125	0			
oethane 48.12 5.0 50.00 0 96.2 70 135 ropene 47.51 5.0 50.00 0 96.2 70 135 hloride 47.51 5.0 50.00 0 97.6 70 135 hloride 47.51 5.0 50.00 0 97.6 70 135 thane 50.00 0 97.0 70 135 thane 39.56 5.0 50.00 0 97.6 70 135 ne 39.56 5.0 50.00 0 97.6 70 130 omethane 49.35 5.0 50.00 0 97.5 75 120 omethane 51.01 5.0 50.00 0 97.6 70 130 of optopene 48.75 5.0 50.00 0 97.7 70 125 of optopene 48.75 5.0 50.00 0 97.5 70<	Chloroform		48.79	5.0	50.00	0	97.6	70	125	0			
copene 47.51 5.0 50.00 0 95.0 70 135 Indride 48.88 5.0 50.00 0 95.0 70 135 thane 47.28 5.0 50.00 0 94.6 75 125 ne 33.56 5.0 50.00 0 94.6 75 125 ne 33.56 5.0 50.00 0 97.6 70 120 ne 48.76 5.0 50.00 0 97.5 75 120 omethane 41.35 5.0 50.00 0 97.5 75 120 or 91.61 5.0 50.00 0 97.5 75 125 ne 51.01 5.0 50.00 0 97.5 70 125 optimizet 48.75 5.0 50.00 0 97.5 70 125 <td>1,1,1-Trichloroethane</td> <td></td> <td>48.12</td> <td>5.0</td> <td>50.00</td> <td>0</td> <td>96.2</td> <td>70</td> <td>135</td> <td>0</td> <td></td> <td></td>	1,1,1-Trichloroethane		48.12	5.0	50.00	0	96.2	70	135	0			
Moride 48.88 5.0 50.00 0 97.8 65 135 thane 50.89 5.0 50.00 0 102 70 135 thane 39.56 5.0 50.00 0 94.6 75 125 ne 39.56 5.0 50.00 0 94.6 75 125 ne 39.56 5.0 50.00 0 97.5 75 125 ne 39.56 5.0 50.00 0 97.5 75 120 ane 48.76 5.0 50.00 0 97.5 75 120 omethane 41.35 5.0 50.00 0 97.5 75 125 ornethane 41.35 5.0 50.00 0 97.5 70 125 ornethane 5.0 50.00 0 97.0 97.5 70 125 othere 48.89 5.0 50.00 0 97.	1,1-Dichloropropene		47.51	5.0	50.00	0	95.0	70	135	0			
thane 50.00 50.00 0 102 70 135 re 47.28 5.0 50.00 0 102 70 135 re 39.56 5.0 50.00 0 79.1 75 125 re 39.56 5.0 50.00 0 79.1 75 125 repare 49.39 5.0 50.00 0 99.2 70 120 ane 48.75 5.0 50.00 0 102 70 120 intanoe 51.01 5.0 50.00 0 97.5 70 120 intanoe 51.01 50.00 0 97.5 70 125 intanoe 48.35 5.0 50.00 0 97.5 70 125 intanoe 48.89 5.0 50.00 0 97.5 70 125 oethane <t< th=""><th>Carbon tetrachloride</th><th></th><th>48.88</th><th>5.0</th><th>50.00</th><th>0</th><th>97.8</th><th>65</th><th>135</th><th>0</th><th></th><th></th></t<>	Carbon tetrachloride		48.88	5.0	50.00	0	97.8	65	135	0			
47.28 5.0 50.00 0 94.6 75 125 repare 39.56 5.0 50.00 0 94.6 75 125 ropare 39.56 5.0 50.00 0 94.6 75 125 ane 39.56 5.0 50.00 0 94.6 75 125 ornethane 49.58 5.0 50.00 0 97.5 70 130 ornethane 49.39 5.0 50.00 0 96.7 45 145 intanone 48.75 5.0 50.00 0 97.5 70 125 orpane 48.75 5.0 50.00 0 97.5 70 125 optime 48.75 5.0 50.00 0 97.5 70 125 optime 49.61 5.0 50.00 0 97.5 70 125 optime 28.93 5.0 50.00 0 97.7	1,2-Dichloroethane		50.89	5.0	50.00	0	102	70	135	0			
ret 39.56 5.0 50.00 0 79.1 75 125 ropane 49.58 5.0 50.00 0 99.2 70 120 ane 49.58 5.0 50.00 0 97.5 75 130 omethane 49.39 5.0 50.00 0 97.5 75 130 ornethane 49.39 5.0 50.00 0 97.5 70 130 ornethane 49.35 5.0 50.00 0 97.5 70 125 ornethane 48.75 5.0 50.00 0 97.5 70 125 ornethane 48.75 5.0 50.00 0 97.5 70 125 ornance 48.75 5.0 50.00 0 97.5 70 125 ornance 49.61 5.0 50.00 0 97.5 70 125 opane 28.00 50.00 0 97.	Benzene		47.28	5.0	50.00	0	94.6	75	125	0			
copane 49.58 5.0 50.00 0 99.2 70 120 ane 48.76 5.0 50.00 0 97.5 75 130 omethane 49.39 5.0 50.00 0 97.5 75 130 ornethane 49.39 5.0 50.00 0 97.5 70 125 intanone 48.35 5.0 50.00 0 97.5 70 125 intanone 48.35 5.0 50.00 0 97.5 70 125 intanone 48.35 5.0 50.00 0 97.5 70 125 intanone 48.89 5.0 50.00 0 97.5 70 125 oethane 49.61 5.0 50.00 0 97.2 70 125 hene 47.36 5.0 50.00 0 97.2 70 125 hene 47.36 5.0 50.00 0 <td>Trichloroethene</td> <td></td> <td>39.56</td> <td>5.0</td> <td>50.00</td> <td>0</td> <td>79.1</td> <td>75</td> <td>125</td> <td>0</td> <td></td> <td></td>	Trichloroethene		39.56	5.0	50.00	0	79.1	75	125	0			
ane 48.76 5.0 50.00 0 97.5 75 130 omethane 49.39 5.0 50.00 0 97.5 70 130 oropropene 51.01 5.0 50.00 0 97.5 70 130 oropropene 51.01 5.0 50.00 0 102 70 125 intanone 48.75 5.0 50.00 0 97.5 70 125 intanone 48.75 5.0 50.00 0 97.5 70 125 intanone 48.75 5.0 50.00 0 97.5 70 125 intanone 48.89 5.0 50.00 0 97.8 60 125 optane 28.93 5.0 50.00 0 97.7 45 140 hene 28.93 5.0 50.00 0 94.7 45	1,2-Dichloropropane		49.58	5.0	50.00	0	99.2	70	120	0			
omethane 49.39 5.0 50.00 0 98.8 70 130 ropropene 51.01 5.0 50.00 0 96.7 45 145 intanone 48.35 5.0 50.00 0 96.7 45 145 intanone 48.75 5.0 50.00 0 97.5 70 125 intanone 48.75 5.0 50.00 0 97.5 70 125 intanone 48.75 5.0 50.00 0 97.5 70 125 oethane 48.89 5.0 50.00 0 97.8 65 125 opane 28.93 5.0 50.00 0 97.8 65 125 hene 28.93 5.0 50.00 0 97.8 65 140 ND - Not Detected at the Reporting Limit 17.36 5.0 0 0 94.7 45 145 ND - Not Detected at the Reporting Limit N.0	Dibromomethane		48.76	5.0	50.00	0	97.5	75	130	0			
ropropene 51.01 5.0 50.00 0 102 70 125 intanone 48.35 5.0 50.00 0 96.7 45 145 intanone 48.75 5.0 50.00 0 97.5 70 125 intropropene 48.75 5.0 50.00 0 97.5 70 125 intropropene 48.75 5.0 50.00 0 97.5 70 125 oethane 48.89 5.0 50.00 0 97.8 60 125 optione 28.93 5.0 50.00 0 97.8 65 125 hene 28.93 5.0 50.00 0 94.7 45 145 ND - Not Detected at the Reporting Limit 5.0 50.00 0 94.7 45 145 ND - Not Detected at the Reporting Limit S. Option outside accepted recovery outside accepted recovery limits 94.7 45 145	Bromodichlorometha	ne	49.39	5.0	50.00	0	98.8	70	130	0			
Intanone 48.35 5.0 50.00 0 96.7 45 145 Alanopene 48.75 5.0 50.00 0 97.5 70 125 Aloropropene 50.97 5.0 50.00 0 97.5 70 125 Incropropene 48.89 5.0 50.00 0 97.5 70 125 oethane 48.89 5.0 50.00 0 97.8 60 125 optime 28.93 5.0 50.00 0 97.8 60 125 hene 28.93 5.0 50.00 0 94.7 45 140 ND-Not Detected at the Reporting Limit 5.0 50.00 0 94.7 45 145 ND-Not Detected at the Reporting Limit S- Spike Recovery outside accepted recovery limits 1. Analyte detected below quantitation limits 8. RPD outside accepted recovery limits 45 145	cis-1,3-Dichloroprope	ene	51.01	5.0	50.00	0	102	70	125	0			
48.75 5.0 50.00 0 97.5 70 125 Iloropropene 50.97 5.0 50.00 0 102 65 125 oethane 48.89 5.0 50.00 0 102 65 125 oethane 48.89 5.0 50.00 0 97.8 60 125 opane 28.93 5.0 50.00 0 97.8 60 125 hene 28.93 5.0 50.00 0 94.7 45 145 ND - Not Detected at the Reporting Limit 5.0 50.00 0 94.7 45 145 ND - Not Detected helow mantitation limits S - Spike Recovery outside accepted recovery limits 1. Analyte detected helow mantitation limits R - RPD outside accepted recovery limits	4-Methyl-2-pentanon	Ð	48.35	5.0	50.00	0	96.7	45	145	0			
Incopropene 50.97 5.0 50.00 0 102 65 125 oethane 48.89 5.0 50.00 0 97.8 60 125 ropane 49.61 5.0 50.00 0 97.8 60 125 hene 28.93 5.0 50.00 0 99.2 75 125 hene 28.93 5.0 50.00 0 94.7 45 140 ND - Not Detected at the Reporting Limit 5.0 50.00 0 94.7 45 145 I - Analvte detected helow cumutitation limits R - RPD outside accented recovery limits R - RPD outside accented recovery limits	Toluene		48.75	5.0	50.00	0	97.5	70	125	0			
oethane 48.89 5.0 50.00 0 97.8 60 125 ropane 49.61 5.0 50.00 0 99.2 75 125 ropane 28.93 5.0 50.00 0 99.2 75 125 hene 28.93 5.0 50.00 0 94.7 45 140 ND - Not Detected at the Reporting Limit 5.0 50.00 0 94.7 45 145 ND - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits R - RPD outside accepted recovery limits	trans-1, 3-Dichloroprc	pene	50.97	5.0	50.00	0	102	65	125	0			
ropane 49.61 5.0 50.00 0 99.2 75 125 hene 28.93 5.0 50.00 0 57.9 65 140 hene 47.36 5.0 50.00 0 94.7 45 145 ND - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits N - Not but accepted recovery limits R - RPD outside accepted recovery limits	###1,1,2-Trichloroethane		48.89	5.0	50.00	0	97.8	60	125	0			
28.93 5.0 50.00 0 57.9 65 140 47.36 5.0 50.00 0 94.7 45 145 ND - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits 8. RPD outside accepted recovery limits	1,3-Dichloropropane		49.61	5.0	50.00	0	99.2	75	125	0			
47.36 5.0 50.00 0 94.7 45 145 ND - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits 1. Analyte detected below manifiation limits R - RPD outside accepted recovery limits	Tetrachloroethene		28.93	5.0	50.00	0	57.9	65	140	0		S	
ND - Not Detected at the Reporting Limit I - Analyte detected helow quantitation limits R - RPD outside accepted recovery limits	2-Hexanone		47.36	5.0	50.00	0	94.7	45	145	0			
ers: ND - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits 1 - Analyte detected below quantitation limits R - RPD outside accepted recovery limits													
I - Analyte detected below mantitation limits		ND - Not Detected at the Reporting Lin	ait	S - Sp	ike Recovery outsid	e accepted recovery	limits		B - /	Analyte detected in	the associated Metho	od Blank	
		- Analyte detected below quantitation	limits	R - RI	PD outside accepted	recoverv limits							

CLIENT: Day En	Day Environmental Inc.			ANALY	ANALYTICAL QC SUMMARY REPORT	C SUM	MAR	Y REPO	ORT		4
Work Order: J0281			SW8	SW8260_LOW_S							
Project: 151 Mt.	151 Mt. Hope Ave.		SW8	SW846 8260 VC	VOC by GC-MS						
Sample ID: LCS-49473	SampType: LCS	TestCode	TestCode: SW8260_LOW_S		Prep Date:	02/25/10 9:41	9:41	Run I	Run ID: V6_100225A		
Client ID: LCS-49473	Batch ID: 49473	Units:	Units: Jug/Kg		Analysis Date:	02/25/10 10:00	10:00	SeqN	SeqNo: 1214383		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC L	LowLimit HighLimit	lighLimit	RPD Ref Val	%RPD RPDLimit	Qual
Dibromochloromethane		47.97	5.0	50.00	0	95.9	65	130	0		
1,2-Dibromoethane		48.03	5.0	50.00	0	96.1	70	125	0		
Chlorobenzene		48.07	5.0	50.00	0	96.1	75	125	0		
1,1,1,2-Tetrachloroethane		47.51	5.0	50.00	0	95.0	75	125	0		
Ethylbenzene		47.40	5.0	50.00	0	94.8	75	125	0		
m,p-Xylene		96.26	5.0	100.0	0	96.3	80	125	0		
o-Xylene		47.85	5.0	50.00	0	95.7	75	125	0		
Xylene (Total)		144.1	5.0	150.0	0	96.1	83	125	0		
Styrene		48.90	5.0	50.00	0	97.8	75	125	0		
Bromoform		47.13	5.0	50.00	0	94.3	55	135	0		
Isopropylbenzene		47.74	5.0	50.00	0	95.5	75	130	0		
1,1,2,2-Tetrachloroethane		66.94	5.0	50.00	0	134	55	130	0		S
Bromobenzene		47.45	5.0	50.00	0	94.9	65	120	0		
1,2,3-Trichloropropane		52.85	5.0	50.00	0	106	65	130	0		
n-Propylbenzene		46.95	5.0	50.00	0	93.9	65	135	0		
2-Chlorotoluene		46.67	5.0	50.00	0	93.3	70	130	0		
1,3,5-Trimethylbenzene		47.63	5.0	50.00	0	95.3	65	135	0		
4-Chlorotoluene		46.79	5.0	50.00	0	93.6	75	125	0		
tert-Butylbenzene		52.86	5.0	50.00	0	106	65	130	0		
1,2,4-Trimethylbenzene		47.20	5.0	50.00	0	94.4	65	135	0		
sec-Butylbenzene		46.08	5.0	50.00	0	92.2	65	130	0		
4-isopropyltoluene		45.60	5.0	50.00	0	91.2	75	135	0		
1,3-Dichlorobenzene		46.86	5.0	50.00	0	93.7	70	125	0		
1,4-Dichlorobenzene		46.31	5.0	50.00	0	92.6	70	125	0		
n-Butylbenzene		44.64	5.0	50.00	0	89.3	65	140	0		
1,2-Dichlorobenzene		47.15	5.0	50.00	0	94.3	75	120	0		
1,2-Dibromo-3-chloropropane		50.40	5.0	50.00	0	101	40	135	0		
1,2,4-Trichlorobenzene		39.69	5.0	50.00	0	79.4	65	130	0		
Hexachlorobutadiene		42.94	5.0	50.00	0	85.9	55	140	0		
1,2,3-Trichlorobenzene		36.87	5.0	50.00	0	73.7	60	135	0		
Naphthalene		43.36	5.0	50.00	0	86.7	40	125	0		В
Surrogate: Dibromofluoromethane	ethane	52.56	5.0	50.00	0	105	65	132	0		
Surrogate: 1,2-Dichloroethane-d4	ine-d4	53.42	5.0	50.00	0	107	65	128	0		
Surrogate: Toluene-d8		49.48	5.0	50.00	0	0.06	85	115	0		
	zene	50.90	5.0	50.00	0	102	77	111	0		
States of the second se											
Oundifians. ND - Not	ND - Not Detected at the Reporting I imit		S - Sp	 Snike Recovery outside accented recovery limits 	e accented recovery	limite		ď	Analyte defected in	B - Analyte detected in the accordiated Method Blank	d Rtank
	איייייד אייייה איייייה איייייי		2	ING INVUVITY UNIT	و مدسهنده بدسهم	cumu		1 1 1	Alialyte universu III	LITE assurtation intrud	VIIBIC D

R - RPD outside accepted recovery limits

J - Analyte detected below quantitation limits

mLIMS-001

Work Order:J0281Project:151 Mt. Hope Ave.Sample ID: LCS-49496SampType: LCSSample ID: LCS-49496Batch ID: 49496AnalyteBatch ID: 49496AnalyteResiAnalyteResiDichlorodifluoromethane43.57Client ID: UCS-49496Batch ID: 49496AnalyteResiAnalyte8atch ID: 49496AnalyteResiAnalyte8atch ID: 49496Analyte8atch ID: 49406Analyte8atch ID: 49496Analyte8atch ID: 49496Analyte8atch ID: 49496Analyte8atch ID: 49496Analyte8atch ID: 49496Analyte8atch ID: 49496Acetone9000000000000000000000000000000000000	SW82 SW84 SW8260 LOW S	SW8260_LOW_S SW846 8760 VO							
151 Mt. Hope Ave. 1D: LCS-49496 SampType: LCS D: LCS-49496 Batch ID: 49496 10 concethane 47 10 concethane 48 10 concethane 53 10 concethane 51 10 concethane 53 10 concethane 54 10 concethane 54 10 concethane 54 10 concethane 54 10 concethane	6								
ID: LCS-49496 SampType: LCS D: LCS-49496 Batch ID: 49496 diftuoromethane 43 ethane 46 loride 48 isthane 48 offuoromethane 48 isthane 48 offuoromethane 48 isthane 48 inforcethene 49 inforcethene 51 etate 51 inforcethane 53 inforcethane 53 inforcethane 51 inforomethane 51 inforcethane 51 inforcethane 53 inforcethane 54 i	TestCode: SW8260 LOW S		VOC by GC-MS						
D: LCS-49496 Batch ID: 49496 diffuoromethane 43 lethane 46 lethane 43 lethane 43 loroethene 44 hane 43 loroethene 50 disulfide 43 hane 44 alloroethene 51 etate 53 loroethane 51 one 53 loroethane 51 ichloroethene 53 ichloroethane 51 ichloroethane <			Prep Date:	02/26/10 8:37	3:37	Run II	Run ID: V6_100226A		
diffuoromethane diffuoromethane 41 ethane 44 loride 44 thane 44 thane 44 hane 44 dioroethene 50 disulfide 49 disulfide 61 etate 61 loroethane 51 loroethane 51 loropropane 55 micronoethane 51 loropropane 55 distrocethane 51 chloroethane 51 dischoroethane 51 more 51 more 51 loropropane 55 micromethane 5	Units: µg/Kg		Analysis Date:	02/26/10 9:18	9:18	SeqN	SeqNo: 1214700		
methane are thane are there definence thane thane are thane are for thane are thane are for than are for than	Result PQL	SPK value	SPK Ref Val	%REC LowLimit HighLimit	wLimit Hig	ghLimit	RPD Ref Val	%RPD RPDLimit	Qual
athane ere vroethene ethene ethene pane are oride pane are oride pane are oride oride are are oride oride are oride are oride are oride are oride are oride are oride are oride are oride are oride are oride are oride are oride are oride are oride are oride are oride are oride are oride are oride oride oride o oride o oride o oride o o o o o o o o o o o o	5.0	50.00	0	87.1	35	135	0		
re comethane thene loride loride loride tyl ether ropane ropane thane copane thane copane thane copane thane copane thane copane thane copane thane copane thane copane conethane copane conchane copane copane copane copane copane copane copane copane copane copane copane copane copane copane copane copane copane copane cone copane cone copane cone copane cone cone cone cone cone cone cone co		50.00	0	94.4	50	130	0		
re thene for de lor de lor de lor oethene try le ther trane ropane to ethane thane copane ane copane to methane		50.00	0	93.2	60	125	0		
omethane thene loride invoethene ityl ether thane ropane oethane inloride thane copane ane for oethane thane		50.00	0	97.7	30	160	0		
omethane thene loride ityl ether trane ropane nethane thane thane copane ane copane copane copane		50.00	0	93.8	40	155	0		
thene ide loride ityl ether trane methane coethane inoride thane copane aane comethane		50.00	0	89.2	25	185	0		
ide loride iloroethene ityl ether trane ropane ropene copene thane thane tomethane		50.00	0 0	100	65	135	0		
ide loride loride tyl ether trane ropane ropane thane ropane ropane ane		50.00	0 0	99.1	20	160	0		
ide loride loride tyl ether thane ropane copene copene thane copane ane ane		00.00	-	, , , , , , , , , , , , , , , , , , ,	0/ :	971	0 0		
loride Aloroethene tryl ether thane ropane cothane inloride thane thane ane comethane		50.00	0 (96.6	45	160	0		I
loroethene tryl ether thane ropane nethane copene chore thane thane comethane		50.00	5 0	99.0	55 1	140	0 0		щ
ityl ether thane roethene nethane oethane horide thane ropane ane		50.00	5 0	104 117	60 1 F	07T	.		
roane ropane methane oethane horide thane thane ropane ane		50.00 50		0 T T	21	97T	5 0		
roethene ropane oethane ropene thane thane ropane ane		50 00 50 00		107 122	ري م	C21 861			
		50.00		116	50	160			
		50.00	> 0	106	65 65	125	0 0		
		50.00	0	110	65	135	0		
a d	20 5.0	50.00	0	104	70	125	0		
a g	30 5.0	50.00	0	104	70	125	0		
		50.00	0	101	70	135	0		
		50.00	0	106	10	135	0		
		50.00	0	7.66	65	135	0		
		50.00 50.00	0 (114	70	135	0		
		50.00	0 (105 -	75 	125	0		
	34 5.0	50.00		100./	C/ C/	125 001	5 0		
		50.00		108	ر 1 ت	130			
		50.00	> 0	106	20	130			
		50.00	0	113	70	125	0		
4-Methyl-2-pentanone 62.78	78 5.0	50.00	0	126	45	145	0		
Toluene 54.43	13 5.0	50.00	0	109	70	125	0		
trans-1,3-Dichloropropene 57.69		50.00	0	115	65	125	0		
54.42		50.00	0	109	60	125	0		
e.		50.00	0	113	75	125	0		
hene	5.	50.00	0,	58.2	65	140	0		S
60.65	55 5.0	50.00	0	121	45	145	0		
		F	-			4			
Qualifiers: ND - Not Detected at the Reporting Limit	S - Spik	e kecovery outside	- Spike Kecovery outside accepted recovery limits	limits		B-A	Analyte detected in	- Analyte detected in the associated Method Blank	od Blank
mLIMS-001 J - Analyte detected below quantitation limits	R - RPL	R - RPD outside accepted recovery limits	recovery limits						

Swy326(Swy3260_LOW_S +94366 TestCode: Swy3260_LOW_S Units: pg/Kg A94366 Units: pg/Kg S Aseult PQL S S1.183 5.0 1 S1.122 5.0 1 S1.122 5.0 5.0 S1.122 5.0 1 S2.80 5.0 5.0 S2.81 5.0 5.0 S2.82 5.0 5.0 S2.81 5.0 5.0 S2.81 5.0 5.0 S2.81 5.0 5.0 S2.81 5.0 5.0 S2.12 5.0 5.0 S2.12 5.0 5.0 S2.12 5.0 5.0 <th>Dav Environmental Inc.</th> <th>ANAL</th> <th>ANALYTICAL OC SUMMARY REPORT</th> <th>C SUM</th> <th>MAR</th> <th>Y REPO</th> <th>ORT</th> <th></th> <th></th>	Dav Environmental Inc.	ANAL	ANALYTICAL OC SUMMARY REPORT	C SUM	MAR	Y REPO	ORT		
I: I:51 Mit. Hope Ave. I: D: LCS-49496 SampType: LCS TestCode: SW8260_LOV D: LCS-49496 Batch ID: 49496 Units: jg/Kg D: LCS-49496 Batch ID: 49496 Solution Ontoorethane S1.12 S.0 Ontoorethane S1.12 S.0 Point S2.63 S.0 D: Total S2.64 S2.63 S.0 D: Total S2.64 S2.63 S.0 D: Total S2.63 S2.63 S2.63 S2.63 D: Total S2.64 S2.64 S2.64 S2.64 D: Total S2.63<		SW8260 LOW							
ID: LCS-49496 SampType: LCS TestCode: SW8260_LOV D: LCS-49496 Batch ID: 49495 Units: µg/Kg D: LCS-49496 Batch ID: 49495 Units: µg/Kg Colloromethane Batch ID: 49495 Testut POL Colloromethane 51.183 5.0 5.0 Catal S.1.12 5.0 5.0 Tetrachloroethane 51.13 5.0 5.0 Tetrachloroethane 51.13 5.0 5.0 Tetrachloroethane 50.05 5.0 5.0 Tetrachloroethane 5.1.26 5.0 5.0 Tetrachloroethane 5.1.24 5.0 5.0 Total) 5.2.63 5.0 5.0 5.0 Total) Total 5.2.63 5.0 5.0 Total) Total 5.2.63 5.0 5.0 Total) Total 5.2.63 5.0 5.0 Bibenzene 5.0.61	dt. Hope Ave.	SW846 8260 V	OC by GC-MS						
D: LCS-43436 Batch ID: 4346 Units: Jg/K3 Asult Asult POL chloromethane 51.83 5.0 chloromethane 51.12 5.0 annoeithane 51.12 5.0 retrachloroethane 51.12 5.0 anno 52.65 5.0 anno 52.55 5.0 anno 52.55 5.0 anno 52.55 5.0 anno 52.55 5.0 anno 50.34 5.0 annotythenzene 50.34 5.0 annotythenzene 50.34 5.0 annotythenzene 50.34 5.0 annotythenzene 50.34 5.0 benzene 50.34 5.0 benzene <th></th> <th>8260_LOW_S</th> <th>Prep Date:</th> <th>02/26/10 8:37</th> <th>8:37</th> <th>Run I</th> <th>Run ID: V6_100226A</th> <th></th> <th></th>		8260_LOW_S	Prep Date:	02/26/10 8:37	8:37	Run I	Run ID: V6_100226A		
Result PQL chloromethane 51.83 5.0 ornoothane 51.12 5.0 arzene 51.12 5.0 zene 51.12 5.0 arzene 51.12 5.0 area 51.12 5.0 area 51.12 5.0 area 51.13 5.0 area 52.59 5.0 arrea 52.34 5.0 arrea 52.34 5.0 benzene 50.41 5.0 arrea 50.34 5.0 arrea 50.34 5.0 arrea 50.34 5.0 benzene 50.34 5.0 benzene 50.34 5.0 benzene 50.34 <t< th=""><th></th><th>Kg</th><th>Analysis Date:</th><th>02/26/10 9:18</th><th>9:18</th><th>SeqN</th><th>SeqNo: 1214700</th><th></th><th></th></t<>		Kg	Analysis Date:	02/26/10 9:18	9:18	SeqN	SeqNo: 1214700		
chloromethane 51.83 5.0 moethane 55.32 5.0 moethane 55.32 5.0 etrachloroethane 51.12 5.0 etrachloroethane 51.12 5.0 ncena 51.12 5.0 ne 52.80 5.0 match 52.53 5.0 methane 52.53 5.0 methylenzene 50.10 5.0 intrachloroethane 52.53 5.0 intrachloroethane 50.10 5.0 intrachloroethane 52.63 5.0 intrache 50.10 5.0 intrache 50.11 5.0 intorbenzene			SPK Ref Val	%REC Lo	LowLimit HighLimit	ighLimit	RPD Ref Val	%RPD RPDLimit	Qual
monethane 55.32 5.0 etrachloroethane 51.12 5.0 etrachloroethane 51.12 5.0 zene 103.2 5.0 zene 103.2 5.0 me 52.80 5.0 ne 52.34 5.0 ne 52.34 5.0 benzene 50.10 52.34 5.0 othene 52.34 5.0 nethylbenzene 50.10 5.0 othene 50.34 5.0 nethylbenzene 50.10 5.0 othene 50.34 5.0 benzene 50.34 5.0 othene 50.34 5.0 benzene 50.34 5.0 <td< th=""><th>51.83</th><td></td><td>0</td><td>104</td><td>65</td><td>130</td><td>0</td><td></td><td></td></td<>	51.83		0	104	65	130	0		
matche 51.12 5.0 zene 51.19 5.0 zene 51.19 5.0 zene 103.2 5.0 zene 103.2 5.0 zene 103.2 5.0 zene 103.2 5.0 zene 5.0 5.0 zene 5.0 5.0 m 52.59 5.0 benzene 52.34 5.0 benzene 50.10 52.63 5.0 methylbenzene 50.10 5.0 5.0 ottene 50.10 5.0 5.0 ottene 50.11 50.10 5.0 methylbenzene 50.10 5.0 50.0 ottene 50.10 50.0 50.0 ottene 50.10 50.0 50.0 benzene 50.10 50.0 50.0 ottene 50.10 50.0 50.0 benzene 50.10 50.0 50.0	55.32		0	111	10	125	0		
etrachloroethane 50.05 5.0 Zene 51.19 5.0 Zene 51.19 5.0 Re 103.2 5.0 Re 52.59 5.0 m 52.53 5.0 m 52.63 5.0 m 52.63 5.0 m 52.63 5.0 nracinoroethane 50.10 5.0 nracinoroethane 50.10 5.0 nracinoroethane 50.10 5.0 nracinoroethane 50.10 5.0 nracine 50.10 5.0 colorrace 50.61 5.0 methylbenzene 50.36 5.0 benzene 50.36 5.0 otobenzene 50.31 5.0 withylbenzene 50.31 5.0 orobenzene 50.31 5.0 orobenzene 50.31 5.0 orobenzene 50.31 5.0 orobenzene 50.31 5.0	51.12		0	102	75	125	0		
Zene 51.19 5.0 ne 22.59 5.0 fotal) 52.60 5.0 m 52.59 5.0 m 52.63 5.0 m 52.63 5.0 benzene 52.34 5.0 citrachloroethane 52.34 5.0 citrachloroethane 50.10 5.0 nettrylbenzene 51.24 5.0 benzene 51.24 5.0 orobenzene 51.48 5.0 orobenzene 51.48 5.0 orobenzene 51.48 5.0 orobutacine 51.48 5.0 orob	50.05		0	100	75	125	0		
ne 103.2 5.0 Cla(a) 52.59 5.0 Image: Section contraction of the section contraction of the section contraction contracting contracting contracting contracting contracting contractin contracting contractin contractin	51.19		0	102	75	125	0		
Gtal) 55.80 5.0 m 52.80 5.0 m 52.59 5.0 m 52.63 5.0 benzene 80.91 5.0 ctractilorcethane 50.10 5.0 mitree 52.63 5.0 chloropropane 50.10 5.0 chloropropane 50.10 5.0 ontrace 50.10 5.0 methylbenzene 50.10 5.0 benzene 50.10 5.0 methylbenzene 51.86 5.0 benzene 51.24 5.0 benzene 51.24 5.0 orobenzene 51.48 5.0 orobenzene 51.48 5.0 orobenzene 51.48 5.0 orobenzene 51.48 5.0 orobenzene 50.36 5.0 orobenzene 50.36 5.0 orobenzene 50.36 5.0 orobenzene 50.36 5.	103.2	1	0	103	80	125	0		
Total) 156.0 5.0 m 52.59 5.0 bibenzene 50.01 5.0 bibenzene 50.10 5.0 crachloroethane 52.63 5.0 retrachloroethane 50.10 5.0 chloropropane 50.10 5.0 methylbenzene 50.61 5.0 benzene 51.12 5.0 otrobenzene 51.24 5.0 orobenzene 50.34 5.0 orobe	52.80		0	106	75	125	0		
m 52.59 5.0 benzene 52.63 5.0 benzene 52.34 5.0 etrachloroethane 50.10 5.0 inforopropane 50.10 5.0 ontopropane 50.10 5.0 ontopropane 50.10 5.0 nethylbenzene 50.10 5.0 methylbenzene 50.61 5.0 methylbenzene 50.61 5.0 methylbenzene 50.61 5.0 methylbenzene 51.86 5.0 otobenzene 51.24 5.0 orobenzene 50.36 5.0 orobenzene	156.0		0 (104	60 I	125	0		
52.6352.635.0coethane52.345.0foethane50.105.0spane50.105.0spane50.615.0spane51.865.0spane51.865.0spane51.865.0spane51.245.0spane51.245.0spane51.245.0spane51.245.0spane51.245.0spane50.345.0spane	52.59		0 0	50T	<u>د ا</u>	125 2	0		
5:.345:.0coethane5:.35:.0foethane5:.105:.0coethane5:.105:.0corethane5:.1865:.0corethane5:.1865:.0corethane5:.1245:.0corethane5:.2345:.0corethane5:.2345:.0corethane5:.2345:.0confluoropropane5:.235:.0nzene39145:.0cine39145:.0cine39145:.0cine39145:.0cine39145:.0cine39145:.0cine39145:.0cine39145:.0cine39145:.0cine39125:.0nzene39125:.0nonfluoropropane39125:.0nonfluoropropane35225:.0nonfluoropropane5:.1.195:.0nonfluoropertane5:.1195:.0ND-Not Detected at the Reporting Limit5:.0	52.63		0 0	105	55	135	0		
Icoethane 80.91 5.0 pane 50.10 5.0 50.10 50.10 5.0 50.10 50.61 5.0 50.20 51.86 5.0 51.52 51.86 5.0 51.52 51.24 5.0 51.52 51.24 5.0 51.52 51.24 5.0 51.52 51.24 5.0 51.24 50.34 5.0 50.34 50.34 5.0 50.34 50.34 5.0 50.36 50.34 5.0 60 99 47.48 5.0 60 99 50.34 5.0 60 99 50.34 5.0 60 99 50.34 5.0 60 99 50.34 5.0 60 99 50.34 50.34 60 99 90.14 50.34 60 99 90.14 50.34 60 99 90.14 50.34 60 99 90.14 50.34 60 99 90.14 50.34 60 90.14 50.34 50.34 60 70.34 90.22 50.34 60 90.92 50.34 50.34 60 90.23 90.23 50.34 60 90.23 90.23 50.34 60 90.34 90.32 50.34 60 90.34 90.32 50.34 60 90.34 90.32 <t< th=""><th>52.34</th><td></td><td>0</td><td>105</td><td>75</td><td>130</td><td>0</td><td></td><td></td></t<>	52.34		0	105	75	130	0		
SolutionSoluti	80.91		0	162	52	130	0		S
ppane 62.99 5.0 snzene 50.61 5.0 snzene 51.65 5.0 snzene 51.52 5.0 snzene 51.52 5.0 snzene 51.24 5.0 snzene 51.24 5.0 snzene 51.24 5.0 snzene 50.34 5.0 e 50.34 5.0 e 50.34 5.0 e 50.34 5.0 e 60.99 50 ene 47.48 5.0 nicropropane 39.14 5.0 nicropropane 39.32 5.0 nofluoromethane 52.20 5.0 nofluorobenzene 51.19 5.0 mofluorobenzene 51.19 5.0 ND - Not Detected at the Reporting Limit 5.0	50.10		0	100	65	120	0		
50.86 5.0 50.61 5.0 51.52 5.0 51.52 5.0 51.52 5.0 51.52 5.0 51.52 5.0 51.52 5.0 50.34 5.0 6 50.34 5.0 6 50.34 5.0 6 50.34 5.0 6 50.36 5.0 6 50.36 5.0 6 50.36 5.0 6 50.81 5.0 6 50.81 5.0 6 50.81 5.0 6 50.81 5.0 10ropropane 50.81 5.0 nofluoromethane 50.22 5.0 nofluorobenzene 51.19 5.0 mofluorobenzene 51.19 5.0 ND - Not Detected at the Reporting Limit 5.0	62.99		0	126	65	130	0		
50.61 50.6 enzene 51.52 5.0 e 51.52 5.0 enzene 51.24 5.0 enzene 51.24 5.0 enzene 51.24 5.0 enzene 51.24 5.0 enzene 50.34 5.0 ne 48.82 5.0 ne 50.34 5.0 ne 50.34 5.0 ne 50.34 5.0 cene 49.27 5.0 hloropropane 60.99 5.0 anzene 39.14 5.0 anzene 39.24 5.0 oritiene 39.32 5.0 onofluoromethane 5.22 5.0 Dichloroethane-d4 49.32 5.0 uene-d8 56.23 5.0 uofluorobenzene 51.19 5.0 MD-Not Detected at the Reporting Limit 51.19 5.0	50.86		0	102	65	135	0		
enzene 51.86 5.0 e 51.52 5.0 enzene 51.52 5.0 enzene 51.24 5.0 enzene 51.24 5.0 enzene 50.34 5.0 ne 48.82 5.0 cene 49.27 5.0 cene 49.27 5.0 hloropropane 60.99 5.0 anzene 39.14 5.0 anzene 39.14 5.0 ontofluoromethane 5.22 5.0 outene-d8 39.32 5.0 Jichloroethane-d4 56.23 5.0 outofluorobenzene 51.19 5.0 MD-Not Detected at the Reporting Limit 5.0	50.61	0	o [,]	101	70	130	0		
51.52 5.0 enzene 51.24 5.0 enzene 50.34 5.0 e 50.34 5.0 re 50.34 5.0 re 48.82 5.0 re 49.27 5.0 zene 49.27 5.0 ene 49.27 5.0 ene 49.27 5.0 ene 49.27 5.0 ene 39.14 5.0 norpropane 39.14 5.0 anzene 39.14 5.0 anzene 39.14 5.0 anzene 39.13 5.0 onofluoromethane 52.20 5.0 ouene-d8 56.23 5.0 nofluorobenzene 51.19 5.0 vmofluorobenzene 51.19 5.0 ND - Not Detected at the Reporting Limit 5.0	51.86		0	104	65	135	0		
58.71 58.71 5.0 51.24 5.0 50.34 5.0 48.82 5.0 50.36 5.0 50.36 5.0 50.36 5.0 50.36 5.0 50.36 5.0 90.27 5.0 47.48 5.0 91.48 5.0 92.14 5.0 92.14 5.0 93.14 5.0 39.14 5.0 39.14 5.0 39.12 5.0 39.12 5.0 39.12 5.0 39.12 5.0 39.12 5.0 39.12 5.0 39.12 5.0 39.12 5.0 39.12 5.0 39.12 5.0 39.12 5.0 50.0 5.0 50.0 5.0 50.0 5.0 50.0 5.0 50.0 5.0 50.0 5.0	51.52		0	103	75	125	0		
51.24 5.0 50.34 5.0 50.35 5.0 48.82 5.0 50.36 5.0 50.36 5.0 49.27 5.0 49.27 5.0 60.99 5.0 93.14 5.0 93.14 5.0 93.14 5.0 93.14 5.0 93.14 5.0 93.14 5.0 93.14 5.0 93.14 5.0 94.14 5.0 95.23 5.0 94.36 5.0 95.23 5.0 90 56.23 5.0 10 56.23 5.0 10 56.23 5.0 10 56.23 5.0 10 56.23 5.0 10 56.23 5.0 10 56.23 5.0 10 56.23 5.0 10 56.23 5.0 10 56.23 5.0 10 <th>58.71</th> <td></td> <td>0 0</td> <td>117</td> <td>65</td> <td>130</td> <td>0</td> <td></td> <td></td>	58.71		0 0	117	65	130	0		
50.34 50.3 48.82 5.0 50.36 5.0 50.36 5.0 49.27 5.0 49.27 5.0 50.81 5.0 60.99 5.0 39.14 5.0 39.14 5.0 735.74 5.0 74.88 5.0 75.0 39.14 5.0 75.14 5.0 75.23 5.0 8 56.23 5.0 10benzene 51.19 5.0 Not Detected at the Reporting Limit 5.0	51.24		0	102	65	135	0		
48.82 5.0 50.36 5.0 50.36 5.0 49.27 5.0 47.48 5.0 50.81 5.0 50.81 5.0 50.81 5.0 50.81 5.0 50.81 5.0 99.14 5.0 39.14 5.0 35.74 5.0 35.74 5.0 35.74 5.0 35.74 5.0 35.220 5.0 0 56.23 5.0 0 56.23 5.0 0 56.23 5.0 0 56.23 5.0 0 56.23 5.0 10 51.19 5.0 10 10 5.0 10 51.19 5.0 10 51.19 5.0 10 51.19 5.0	50.34		0		65	130	0		
50.36 50.36 5.0 49.27 5.0 47.48 5.0 50.81 5.0 50.81 5.0 50.81 5.0 50.81 5.0 50.81 5.0 50.81 5.0 50.81 5.0 39.14 5.0 35.74 5.0 35.74 5.0 35.74 5.0 39.92 5.0 0 39.92 5.0 0 56.23 5.0 0 56.23 5.0 0 56.23 5.0 0 51.19 5.0 robenzene 51.19 5.0 .Not Detected at the Reporting Limit 5.0	48.82		0	97.6	75	135	0		
49.27 5.0 47.48 5.0 50.81 5.0 50.81 5.0 50.81 5.0 50.81 5.0 50.81 5.0 39.14 5.0 43.62 5.0 35.74 5.0 oromethane 52.20 5.0 sourcemethane 52.20 5.0 orobenzene 51.19 5.0 robenzene 51.19 5.0 - Not Detected at the Reporting Limit 5.0	50.36		0		70	125	0		
47.48 5.0 50.81 5.0 50.81 5.0 50.81 5.0 39.14 5.0 39.14 5.0 39.14 5.0 39.14 5.0 39.12 5.0 connethane 52.20 solution 51.19 5.0 robenzene 51.19 5.0 - Not Detected at the Reporting Limit 5.0	49.27		0 0	•	70	125	0		
50.81 50.81 5.0 opane 60.99 5.0 39.14 5.0 39.14 5.0 39.14 5.0 39.14 5.0 39.14 5.0 39.12 5.0 cethane-d4 52.20 8 50.23 9.119 5.0 robenzene 51.19 - Not Detected at the Reporting Limit	4 / . 48		C	0.0%	65	L 4 0	0		
opane 60.99 5.0 39.14 5.0 39.14 5.0 35.74 5.0 39.92 5.0 orothane-d4 52.20 5.0 8 49.32 5.0 7 56.23 5.0 8 51.19 5.0 robenzene 51.19 5.0 - Not Detected at the Reporting Limit 51.0			0 0	102	75	120	0 0		
39.14 5.0 43.62 5.0 35.74 5.0 39.92 5.0 roethane-d4 56.23 5.0 8 49.32 5.0 robenzene 51.19 5.0 - Not Detected at the Reporting Limit			0 0	122	40	135	0		
43.62 5.0 35.74 5.0 35.74 5.0 39.92 5.0 roethane-d4 52.20 5.0 8 49.32 5.0 robenzene 51.19 5.0 - Not Detected at the Reporting Limit	39.14		0 0	78.3	65	130	0		
35./4 5.0 39.92 5.0 coromethane 52.20 5.0 noethane-d4 56.23 5.0 state 49.32 5.0 robenzene 51.19 5.0 - Not Detected at the Reporting Limit	43.62		с (87.2	55 9	140	0 0		
39.92 5.0 Dibromofluoromethane 52.20 5.0 1,2-Dichloroethane-d4 56.23 5.0 Toluene-d8 49.32 5.0 Bromofluorobenzene 51.19 5.0 ND - Not Detected at the Reporting Limit	35.74		D (C.17	60	1.351	0 0		
ND - Not Detected at the Reporting Limit				101	4 O	C21	-		
: 1,2-Dichloroethane-d4 5.0 : Toluene-d8 49.32 5.0 : Bromofluorobenzene 51.19 5.0 ND - Not Detected at the Reporting Limit			5 0	1 0 1		102	5 (
: I oluene-d8 51.19 5.0 : Bromofluorobenzene 51.19 5.0 ND - Not Detected at the Reporting Limit			5 0		65 65	128	0 0		
: Bromofluorobenzene 51.19 5.0 ND - Not Detected at the Reporting Limit	49.3		0	98.0	65	GTT	0		
ND - Not Detected at the Reporting Limit		00.05 0.6		102	1.1.	111	0		
ND - Not Detected at the Reporting Limit									
ND - Not Detected at the Reporting Limit									
ning guing during an in privation of the privation of the	ot Datastad at the Banorting I imit	C - Cnike Recovery oute	ide accented recovery	limite		2	Andria datantad in	Anolists datastad in the secondated Mathud Dlaufs	d Dlout
	or receied at the reporting summer	and transmit and a c	nue acception recovery	SHIIII		- Q	manyle uelected III	UIC associated intern	NI DIAIIN
mLIMS-001 J - Analyte detected below quantitation limits R - RPD outside accepted recovery limits	yte detected below quantitation limits	R - RPD outside accept	ed recovery limits						

Day Environmental Inc. J0281 Work Order: **CLIENT:**

SW8260 LOW S

ANALYTICAL QC SUMMARY REPORT

Qual щ S %RPD RPDLimit 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 10 10 50 10 10 0 50 10 40 40 50 40 10 40 0 40 2.26 2.76 1.06 7.45 3.02 8.92 5.55 2.97 5.83 3.29 1.39 5.99 1.75 6.44 2.42 4.51 5.58 8.06 5.11 5.19 5.69 4.94 7.46 3.83 3.67 2.77 0.152 1.04 1.43 8.61 6.61 0.391 10.7 16.9 10.4 1.7 12.6 Run ID: V6_100225A **RPD Ref Val** 48.86 48.88 50.89 47.28 49.58 52.00 47.69 49.88 49.88 48.79 48.12 47.51 39.56 48.76 48.35 48.75 50.97 48.89 47.36 41.85 48.05 50.43 47.30 47.50 42.93 48.35 46.65 44.29 48.95 49.13 49.39 51.01 49.61 28.93 47.31 50.33 49.11 SeqNo: 1214384 %REC LowLimit HighLimit 126 140 135 138 160 125 135 125 125 135 L35 **[**35 135 L25 125 L20 130 130 L25 145 125 125 L25 125 140 160 160 126 160 125 145 135 130 125 155 185 135 02/25/10 10:35 Prep Date: 02/25/10 9:41 35 50 60 30 40 25 65 20 70 45 55 65 75 75 65 30 65 65 70 70 70 70 65 70 75 75 70 75 70 70 45 70 65 60 65 45 94.0 93.6 77.3 96.6 0.66 97.6 99.5 96.9 82.8 86.8 97.3 96.4 99.4 94.9 60.l 101 100 106 104 101 101 109 106 114 105 106 105 103 114 107 105 L06 101 104 107 103 107 Analysis Date: SW846 8260 -- VOC by GC-MS SPK Ref Val 0 0 SPK value 50.00 TestCode: SW8260_LOW_S 5.0 Units: µg/Kg PQL Result 46.81 48.18 47.45 48.28 52.93 50.62 56.85 53.08 52.73 51.39 51.80 50.42 48.80 50.44 49.75 54.27 48.44 41.39 52.43 52.85 51.98 53.73 57.25 51.61 53.56 52.68 52.99 30.06 53.75 46.98 50.25 50.23 38.67 49.48 48.64 49.71 43.42 Batch ID: 49473 SampType: LCSD 151 Mt. Hope Ave. trans-1,3-Dichloropropene Sample ID: LCSD-49473 LCSD-49473 rans-1,2-Dichloroethene Dichlorodifluoromethane cis-1,3-Dichloropropene Bromodichloromethane **Trichlorofluoromethane** cis-1,2-Dichloroethene 4-Methyl-2-pentanone Viethyl tert-butyl ether 1,1,2-Trichloroethane Bromochloromethane 1,1,1-Trichloroethane 2.2-Dichloropropane .1-Dichloropropene Carbon tetrachloride ,2-Dichloropropane ,2-Dichloroethane ,1-Dichloroethene **Wethylene chloride** .1-Dichloroethane Tetrachloroethene Dibromomethane Carbon disulfide **Trichloroethene** Chloromethane Bromomethane Chloroethane odomethane Vinyl chloride Vinyl acetate N2-Hexanone 2-Butanone Client ID: Chloroform Project: Benzene Acetone Toluene Analyte

B - Analyte detected in the associated Method Blank

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

J - Analyte detected below quantitation limits ND - Not Detected at the Reporting Limit

Qualifiers:

mLIMS-001

Day Environmental Inc. Would Oud **CLIENT:**

S INO I UYCOINS

ANALYTICAL QC SUMMARY REPORT

Sample (C. LGSD-6473 Tanyfryn (LSD Tanyfryn (LSD <thtan (lsd<="" fryn="" th=""> Tanyfryn (LSD Ta</thtan>	Project: 151 Mt. Hope Ave.	lope Ave.		SW8	SW846 8260 VC	VOC by GC-MS							
73Letter bit of the interval of the	Sample ID: LCSD-49473	SampType: LCSD	TestCode	s: SW8260_LOW_S		Prep Date:	02/25/10	9:41	Run II	D: V6_100225A			
Read PCI SPK red/val WRCL Low/Intriputing PPD red/val RPD red/val <th< th=""><th></th><th>Batch ID: 49473</th><th>Units</th><th>: µg/Kg</th><th></th><th>Analysis Date:</th><th>02/25/10</th><th>10:35</th><th>SeqN</th><th>o: 1214384</th><th></th><th></th><th></th></th<>		Batch ID: 49473	Units	: µg/Kg		Analysis Date:	02/25/10	10:35	SeqN	o: 1214384			
114 5.0 50.10 0 103 65 130 47.37 118 60 103 61 103	Analyte		Result	PQL	SPK value	SPK Ref Val	%REC L	owLimit H	ighLimit	RPD Ref Val	%RPD RF	DLimit	Qual
Image: Mark Sector (Mark Sector (M	Dibromochloromethane		51.54	5.0	50.00	0	103	65	130	47.97	7.18	40	
Image: black	1.2-Dibromoethane		53.09	5.0	50.00	0	106	70	125	48.03	10	40	
Coordinate 50.2 5.0 0.0 1 75 125 71.11 5.61 40 Solution 5.0 5.0 5.0 5.0 5.0 75 125 71.11 5.61 3.07 Solution 5.0 100.0 0 95.5 73 125 94.50 3.37 64.10 125 64.25 3.37 64.26 3.26 64.26 3.26 64.26 3.26 2.26 2.26 2.26 2.26 2.26 2.26 <th>Chlorobenzene</th> <td></td> <td>49.94</td> <td>5.0</td> <td>50.00</td> <td>0</td> <td>99.9</td> <td>75</td> <td>125</td> <td>48.07</td> <td>3.82</td> <td>40</td> <td></td>	Chlorobenzene		49.94	5.0	50.00	0	99.9	75	125	48.07	3.82	40	
9.73 5.0 90.00 0 99.5 7.40 4.9 9.0 0.21 5.0 100.0 0 99.5 7.20 97.6 3.9 0.21 5.0 90.00 0 91.6 7.20 91.6 5.0 0.21 5.0 50.00 0 101 7 12.5 91.6 5.0 0.21 5.0 50.00 0 101 7 12.5 91.7 91.6 0.21 5.0 50.00 0 101 7 12.5 91.6 4.0 4.0 0.00 91.6 5.0 50.00 0 101 7 12.5 4.13 4.0 0.00 91.6 5.0 50.00 0 111.7 5.1 4.13 4.0 0.00 91.6 5.0 50.00 0 111.7 5.1 4.13 5.1 0.00 0 111 5.0 50.00 50.00 5.1	1,1,1,2-Tetrachloroethane		50.26	5.0	50.00	0	101	75	125	47.51	5.61	40	
9.56 5.0 100.0 0 9.6 60 125 75.26 6.10 130.0	Ethylbenzene		49.73	5.0	50.00	0	99.5	75	125	47.40	4.8	40	
90.21 5.0 90.00 0 100 75 125 47.16 101 20.6 90.66 5.0 90.00 0 100 75 125 14.11 20.6 90.66 5.0 50.00 0 100 75 125 14.11 24.6 90.66 5.0 50.00 0 190.7 51.3 47.13 2.61 0 honochance 93.41 5.0 50.00 0 190.7 51.3 47.13 26.1 47.13 26.1 honochance 93.41 5.0 50.00 0 190.7 51.3 47.13 26.1 47.13 26.1	m,p-Xylene		99.56	5.0	100.0	0	99.6	80	125	96.26	3.37	40	
10-16 5.0 10.0 0 9.9 8.3 1.25 1.44.1 3.45 0.0 nondement 3.0.1 5.0 50.00 0 106 5 130 47.13 12.5 144.1 3.45 4.0 nondement 3.0.1 5.0 50.00 0 106 55 130 47.13 12.5 4.0 13.6 4.0 nondement 3.0.1 5.0 50.00 0 106 55 130 67.13 12.5 4.0 13.6 4.0 poppare 99.44 5.0 50.00 0 109.3 50.1 50.00 120 67.13 12.5 4.0 67.13 12.6 4.0 67.13 12.6 4.0 67.13 12.6 4.0 67.13 12.6 4.0 67.13 12.6 4.0 67.13 12.6 4.0 67.13 12.6 4.0 12.6 12.6 12.6 12.6 12.6 12.6 12.6	o-Xylene		50.21	5.0	50.00	0	100	75	125	47.85	4.81	40	
50.66 5.0 50.00 0 101 75 125 6.0 0 0 end 50.10 5.0 5.00 0 101 75 125 6.13 7.13 12.5 6.0 0 end 49.50 5.0 50.00 0 190.7 55 130 67.31 13.7 40.5 propense 59.44 5.0 50.00 0 199.7 65 130 67.34 130 130 131 130 130 130 130 130 <th< td=""><th>Xylene (Total)</th><td></td><td>149.8</td><td>5.0</td><td>150.0</td><td>0</td><td>99.9</td><td>83</td><td>125</td><td>144.1</td><td>3.85</td><td>40</td><td></td></th<>	Xylene (Total)		149.8	5.0	150.0	0	99.9	83	125	144.1	3.85	40	
mm53.135.050.00010655135 47.13 1240ferateme135.105.050.000139.075130 47.14 135.140ferateme35.005.050.000139.075130 47.14 135.140ferateme39.165.050.000139.075130 47.14 135.140ferateme39.175.050.000139.075130 47.45 13740ferateme39.165.050.000139.075130 47.45 13740ferateme39.165.050.000139.075130 47.45 13740ferateme39.175.050.00099.17130 47.47 30ferateme39.175.050.00099.17130 47.47 40ferateme39.15.050.00099.17130 47.47 40ferateme39.15.050.00099.17130 47.47 40ferateme39.15.050.00001313030.130.1ferateme39.130.00039.130.130.130.130.130.1ferateme39.130.0030.0030.0030.0030.1030.130.130.130.	Styrene		50.66	5.0	50.00	0	101	75	125	48.90	3.54	40	
0 90.0 7.0<	Bromoform		53.13	5.0	50.00	0	106	55	135	47.13	12	40	
Coethane $75,07$ $5,0$ $50,00$ 0 120 55 110 $66,94$ $111,5$ 40 pane $39,48$ $5,0$ $50,00$ 0 190 55 120 $66,94$ $111,5$ 40 pane $39,48$ $5,0$ $50,00$ 0 $190,7$ 55 $100,7$ $50,7$ $100,7$ $50,7$ $100,7$ $50,7$ $100,7$ $50,7$ $100,7$ $50,7$ $100,7$ $50,7$ $100,7$ $50,7$ $100,7$ $50,7$ $100,7$ $50,7$	Isopropylbenzene		49.50	5.0	50.00	0	0.66	75	130	47.74	3.61	40	
Parte 9.04 5.0 50.0 0 99.7 65 120 47.45 4.9 4.0 Parte 9.14 5.0 50.00 0 99.7 65 130 47.45 5.13 5.13 5.13 5.13 5.13 5.13 5.13 5.13 5.13 46.97 5.13 46.97 5.13 46.97 5.13 46.97 5.13 46.97 5.13 46.97 5.13 46.97 5.13 46.97 5.13 46.97 5.13 46.97 5.13 46.97 5.13 46.97 5.13 46.97 5.13 46.97 5.13 46.97 5.13 46.97 5.13 46.73 47.13 46.73 46.73 47.13 46.73 47.13 46.73 47.13	1,1,2,2-Tetrachloroethane		75.07	5.0	50.00	0	150	55	130	66.94	11.5	40	S
pane 59.44 5.0 50.00 0 115 65 120 52.65 11.7 40 rracene 49.761 5.0 50.00 0 99.2 65 133 46.67 5.15 40 rracene 49.78 5.0 50.00 0 99.2 65 133 46.77 5.13 40.41 40 rracene 49.760 5.0 50.00 0 99.2 65 133 46.77 5.14 40 racene 49.60 5.0 50.00 0 99.2 65 133 46.76 5.14 40 racene 49.60 5.0 50.00 0 99.2 65 133 47.20 47.33 40 racene 49.67 5.0 50.00 0 99.2 65 133 40.72 40 racene 49.76 5.0 50.00 0 99.2 65 13.75 40 racen	Bromobenzene		49.84	5.0	50.00	0	99.7	65	120	47.45	4.9	40	
49.61 5.0 50.00 0 99.2 65 135 46.95 5.5 40 nzene 49.13 5.0 50.00 0 99.2 65 135 46.95 5.5 40 nzene 49.78 5.0 50.00 0 99.2 65 130 46.57 5.13 40.75 5.13 40.75 5.13 40.75 5.13 40.75 5.13 40.75 5.13 40.75 5.13 40.75 5.13 40.67 5.13 40.67 5.13 40.67 5.13 40.67 5.13 40.75 5.13 40.75 5.13 40.75 5.13 40.75 5.13 40.75 5.13 40.75 5.13 40.75 5.14 40 nee 40.76 5.0 50.00 0 90.15 65 130 46.67 5.13 40 nee 40.75 5.0 50.00 0 90.15 70 125 40.75 40	1,2,3-Trichloropropane		59.44	5.0	50.00	0	119	65	130	52.85	11.7	40	
Action 9:13 5:0 5:00 0 96:3 70 130 46:67 5:13 40 Action 95:57 5:0 5:00 0 96:3 135 46:67 5:13 40 Pricence 49:60 5:0 5:00 0 99:6 5 133 46:67 5:13 47:63 46:47 5:0 40 Pricence 49:60 5:0 5:00 0 99:6 5 133 46:67 5:0 40 Pricence 49:00 5:0 5:00 0 99:0 5:13 47:63 47:13 47:41 40 Pricence 49:01 5:0 5:00 0 99:1 70 125 46:31 5:73 40 Pricence 40:7 5:0 5:00 90:00 99:3 70 125 41.73 41.43 Pricence 5:01 90:0 90:0 90:0 90:0 77 120 121.3	n-Propylbenzene		49.61	5.0	50.00	0	99.2	65	135	46.95	5.5	40	
enzere 9.76 5.0 5.0 5.0 9.6 65 135 1.613 1.411 10 enzere 5.5 5.0 50.00 0 91.0 75 125 14.11 40 enzere 55.57 5.0 50.00 0 91.0 75 125 41.72 41.15 40 enzere 55.57 5.0 50.00 0 91.7 57 125 41.72 40 enzere 49.67 5.0 50.00 0 95.1 57 125 47.20 47.36 4	2-Chlorotoluene		49.13	5.0	50.00	0	98.3	70	130	46.67	5.13	40	
9.50 5.0 5.0 5.0 5.0 5.0 6.0 5.64 40 entreme 95.57 5.0 5.00 0 11.6 5.130 52.86 5.0 4 entreme 45.60 5.0 50.00 0 91.2 65 130 44.72 5.64 40 entreme 47.00 50.00 0 91.1 65 130 47.20 40 40 entreme 47.00 50.00 0 91.1 65 130 47.20 40 40 entreme 49.07 5.0 50.00 0 91.1 65 130 47.20 40 entreme 49.7 5.0 50.00 0 91.1 65 130 47.20 40 entreme 52.03 50.00 0 92.1 70 12.7 40 entreme 52.13	1,3,5-Trimethylbenzene		49.78	5.0	50.00	0	99.66	65	135	47.63	4.41	40	
cale 5.57 5.0 50.00 0 111 65 130 $5.2.6$ 5.0 40 Viberizane 49.60 5.0 50.00 0 99.2 65 130 $5.2.6$ 4.97 40 cale 47.64 5.0 50.00 0 99.2 65 130 45.60 4.97 40 cale 47.64 5.0 50.00 0 99.1 70 125 46.06 5.0 40 care 47.64 5.0 50.00 0 99.1 70 125 46.06 5.0 40 enzene 47.64 5.0 50.00 0 99.1 70 125 46.06 5.0 40 enzene 47.64 5.0 50.00 0 99.1 70 125 46.06 5.0 40 enzene 50.10 90.00 0 99.1 70 125 46.06 5.0 40 enzene 62.58 5.0 50.00 0 100.165 126 47.6 4.77 40 $3-chloropropane62.585.050.00012514047.647.7540action44.645.050.00012514047.647.7540action44.645.050.00012542.943.6777540action44.645.050.000125<$	4-Chlorotoluene		49.50	5.0	50.00	0	0.66	75	125	46.79	5.64	40	
ylbenzene 49.60 5.0 50.00 0 99.2 65 135 47.20 4.97 40 zene 48.03 5.0 50.00 0 96.1 65 135 47.20 4.15 40 uene 47.64 5.0 50.00 0 96.1 65 130 46.08 4.15 40 uene 49.77 5.0 50.00 0 96.1 70 125 46.38 40 enzene 49.77 5.0 50.00 0 96.1 70 125 46.31 5.73 40 enzene 49.77 5.0 50.00 0 99.1 70 125 46.31 5.73 40 enzene 40.77 5.0 50.00 0 90.1 70 125 46.31 5.73 40 enzene 65.13 50.13 50.10 70 125 46.31 5.73 40 $3.6000000000000000000000000000000000000$	tert-Butylbenzene		55.57	5.0	50.00	0	111	65	130	52.86	5.0	40	
care 48.03 5.0 50.00 0 96.1 65 130 46.08 4.15 40 uene 47.764 5.0 50.00 0 95.3 75 135 46.08 4.15 40 enzane 47.76 5.0 50.00 0 98.1 70 125 46.36 4.38 40 enzane 49.04 5.0 50.00 0 98.1 70 125 46.66 4.7 40 enzane 46.78 5.0 50.00 0 98.1 70 125 46.66 4.7 40 enzane 46.78 5.0 50.00 0 98.1 70 125 46.61 5.7 40 enzane 62.58 50.00 0 98.1 65 140 44.64 4.7 40 $3-chloropropane62.2850.00092.6771541.74062.785.050.0001254047.156.12403-chloropropane62.285.050.00012514047.6447.1561.24062.7850.00085.166712542.6047.1561.2403-chloropropane62.7850.00012514021.64177401100000000000000000000000000000000000$	1,2,4-Trimethylbenzene		49.60	5.0	50.00	0	99.2	65	135	47.20	4.97	40	
uene 47.64 5.0 50.00 0 95.3 75 135 45.60 4.38 40 erzene 49.27 5.0 50.00 0 98.5 7 125 46.65 5.0 40 erzene 49.04 5.0 50.00 0 98.5 7 125 46.65 5.0 40 erzene 46.78 5.0 50.00 0 98.1 70 125 46.64 4.7 40 erzene 50.13 5.0 50.00 0 98.1 70 125 46.4 4.7 40 actiopropane 62.58 5.0 50.00 0 125 40 47.15 6.12 40 actiopropane 62.58 5.0 50.00 0 125 40 135 50.40 21.6 4.7 actiopropane 62.58 5.0 50.00 0 125 40 135 50.40 21.6 40 actiopropane 62.58 5.0 50.00 0 125 40 125 40 125 40 actiopropane 62.58 5.0 50.00 0 125 40 125 40 125 40 actiopropane 62.58 5.0 50.00 0 125 40 125 40 125 40 actiopropane 50.74 50.74 50.74 50.74 50.74 50.74 50.74 50.74 50.74 50.74 $50.$	sec-Butylbenzene		48.03	5.0	50.00	0	96.1	65	130	46.08	4.15	40	
enzene 49.27 5.0 50.00 50.00 90.5 70 125 46.86 5.0 40 enzene 49.04 5.0 50.00 0 98.1 70 125 46.86 5.0 40 ne 49.04 5.0 50.00 0 98.1 70 125 46.31 5.73 40 ne 50.13 5.0 50.00 0 98.1 70 125 46.15 47.7 40 3-chloropropane 62.58 5.0 50.00 0 125 40 1216 47.7 40 3-chloropropane 62.58 5.0 50.00 0 125 40 127 40 3-chloropropane 62.58 5.0 50.00 0 125 40 21.6 40 3-chloropropane 62.51 50.00 0 125 40 21.6 40 3-chloropropane 62.50 50.00 0 85.11 50.40 21.6 40 141.64 5.0 50.00 0 88.13 65 133 36.87 12.2 40 141.64 5.0 50.00 0 88.13 65 133 65 12.6 43.36 12.6 40 120 141.64 5.0 50.00 0 101 40 1225 43.36 12.22 40 120 120 120 120 100 121 40 12.6 12.25 43.36	4-lsopropyitoluene		47.64	5.0	50.00	0	95.3	75	135	45.60	4.38	40	
enzene 49.04 5.0 50.00 0 98.1 70 125 46.31 5.73 40 ne 612 67 50.00 0 93.6 65 140 41.64 4.7 40 actron 62.58 5.0 50.00 0 125 40 135 50.40 21.6 40 $3-\text{chloropropane}$ 62.58 5.0 50.00 0 125 40 135 50.40 21.6 40 $3-\text{chloropropane}$ 62.58 5.0 50.00 0 125 40 135 50.40 21.6 40 $abenzene$ 41.64 5.0 50.00 0 89.1 55 140 42.94 3.66 41.6 $0benzene$ 51.7 61 125 40 125 40 21.6 40 $benzene$ 51.71 50.00 0 89.1 55 140 42.94 3.66 41.6 $0benzene$ 51.51 5.0 50.00 0 83.3 65 122 40 $0benzene$ 51.51 5.0 50.00 0 101 40 125 $40.21.6$ 40 0074 51.6 50.00 0 101 40 125 41.6 40 0074 50.70 0 101 40 125 42.94 3.66 41.6 0074 50.70 50.00 0 101 40 125 121.6 40 </td <th>1,3-Dichlorobenzene</th> <td></td> <td>49.27</td> <td>5.0</td> <td>50.00</td> <td>0</td> <td>98.5</td> <td>07</td> <td>125</td> <td>46.86</td> <td>5.0</td> <td>40</td> <td></td>	1,3-Dichlorobenzene		49.27	5.0	50.00	0	98.5	07	125	46.86	5.0	40	
ne 46.78 5.0 50.00 0 93.6 65 140 44.64 4.7 40 enzene 50.13 5.0 50.00 0 100 75 120 47.15 6.12 40 $3-chloropropane62.585.050.0001007512047.156.12403-chloropropane62.585.050.0001254013550.4021.640442.905.050.00085.86513032.697.7540addiene41.645.050.00089.15513032.6812.943.7640addiene51.715050.0001014012542.943.6640bonzhene51.5150.0001014012543.3612.724012-Dichloropethane-d45.050.0001014012542.943.664012-Dichloropethane-d450.5050.0001017711100012-Dichloropethane-d850.5050.0001017711100012-Dichloropethane-d850.5050.00010177111000012-Dichlorope$	1,4-Dichlorobenzene		49.04	5.0	50.00	0	98.1	70	125	46.31	5.73	40	
enzene 50.13 5.0 50.00 0 100 75 120 47.15 6.12 40 $3-chloropropane62.585.05.050.0001254013550.4021.6403-chloropropane62.585.05.050.0001254013550.4021.6403-chloropropane41.545.050.00085.86513032.697.7540adiane41.645.050.00089.15514042.943.66400bonzene51.515.050.00089.15514042.943.66400bonzene51.515.050.0001014012543.3615.7400binromofluoromethane51.515.050.0001014012543.3615.7401,2-Dichloroethane-d456.345.050.000101771110001,2-Dichloroethane-d456.345.050.000101771110001,2-Dichloroethane-d450.5050.00010177111000101,2-Dichloroethane-d450.5050.00010$	n-Butylbenzene		46.78	5.0	50.00	0	93.6	65	140	44.64	4.7	40	
3-chloropropane 62.58 5.0 5.0 50.00 0 125 40 135 50.40 21.6 40 obenzene 42.90 5.0 50.00 0 85.8 65 130 39.69 7.75 40 datatione 44.54 5.0 50.00 0 89.1 55 140 42.94 3.66 40 datatione 41.64 5.0 50.00 0 89.1 55 140 42.94 3.66 40 doenzene 51.51 5.0 50.00 0 83.3 60 135 36.87 12.2 40 obsizene 51.51 5.0 50.00 0 101 40 125 43.36 12.2 40 Dipromofuturomethane 51.51 5.0 50.00 0 101 40 125 43.36 12.2 40 12 -Dichlorothane-d4 56.34 5.0 50.00 0 101 40 125 43.36 12.7 40 12 -Dichlorothane-d4 56.34 5.0 50.00 0 101 77 111 0 0 0 0 Bromofuturobenzene 50.50 50.00 0 101 77 111 0	1,2-Dichlorobenzene		50.13	5.0	50.00	0	100	75	120	47.15	6.12	40	
obenzene 42.90 5.0 50.00 0 85.8 65 130 39.69 7.75 40 Itadiene 44.54 5.0 50.00 0 89.1 55 140 42.94 3.66 40 obenzene 41.64 5.0 50.00 0 89.1 55 140 42.94 3.66 40 obenzene 41.64 5.0 50.00 0 89.1 55 140 42.94 3.66 40 obenzene 51.71 50 50.00 0 101 40 125 43.36 15.7 40 Dibromofluoromethane 51.51 5.0 50.00 0 101 40 125 43.36 15.7 40 $1,2$ -Dichloroethane-d4 5.0 50.00 0 101 40 125 43.36 15.7 40 $1,2$ -Dichloroethane-d4 5.0 50.00 0 101 40 125 0 0 0 $1,2$ -Dichloroethane-d4 50.50 50.00 0 113 65 122 0 0 0 0 $1,2$ -Dichloroethane-d8 49.49 5.0 50.00 0 0 113 65 125 0 0 0 $1,2$ -Dichloroethane-d8 50.50 50.00 0 0 101 77 111 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1,2-Dibromo-3-chloropropane		62.58	5.0	50.00	0	125	40	135	50.40	21.6	40	
Itadiene 44.54 5.0 50.00 0 89.1 55 140 42.94 3.66 40 obenzene 41.64 5.0 50.00 0 83.3 60 135 36.87 12.2 40 obenzene 50.74 5.0 50.00 0 101 40 125 43.36 15.7 40 Dibromofuoromethane 51.51 5.0 50.00 0 101 40 125 43.36 15.7 40 $1,2-Dichloroethane-d4$ 56.34 5.0 50.00 0 113 65 132 0 0 0 40 $1,2-Dichloroethane-d4$ 56.34 5.0 50.00 0 113 65 128 0 0 0 40 $1,2-Dichloroethane-d4$ 50.50 50.00 0 113 65 112 0 0 0 40 $1,2-Dichloroethane-d4$ 50.50 50.00 0 113 65 112 0 0 0 10 $1,2-Dichloroethane-d4$ 50.50 50.00 0 0 113 65 112 0	1,2,4-Trichlorobenzene		42.90	5.0	50.00	0	85.8	65	130	39.69	7.75	40	
obenzene 41.64 5.0 50.00 0 83.3 60 135 36.87 12.2 40 50.74 5.0 50.00 0 101 40 125 43.36 15.7 40 Dibromofluoromethane 51.51 5.0 50.00 0 101 40 125 43.36 15.7 40 $1,2$ -Dichloroethane-d4 56.34 5.0 50.00 0 113 65 128 0 0 40 $1,2$ -Dichloroethane-d4 56.34 5.0 50.00 0 113 65 128 0 0 40 $1,2$ -Dichloroethane-d4 50.50 50.00 0 113 65 128 0 0 40 $1,2$ -Dichloroethane-d8 50.50 50.00 0 113 65 115 0 0 40 $1,2$ -Diune-d8 50.50 50.00 0 113 65 115 0 0 0 40 $1,2$ -Diune-d8 50.50 50.00 0 113 65 115 0 0 0 0 $1,2$ -Diune-d8 50.50 50.00 0 101 77 111 0 0 0 0	Hexachlorobutadiene		44.54	5.0	50.00	0	89.1	55	140	42.94	3.66	40	
50.74 5.0 50.00 0 101 40 125 43.36 15.7 40 Dipromofluoromethane 51.51 5.0 50.00 0 103 65 132 0 0 40 $1,2$ -Dichloroethane-d4 56.34 5.0 50.00 0 113 65 128 0 0 40 Toluene-d8 49.49 5.0 50.00 0 99.0 85 115 0 0 40 Bromofluorobenzene 50.50 50.00 0 101 77 111 0 0 40	1,2,3-Trichlorobenzene		41.64	5.0	50.00	0	83.3	60	135	36.87	12.2	40	
Dipromofluoromethane 51.51 5.0 50.00 0 103 65 132 0 0 1,2-Dichloroethane-d4 56.34 5.0 50.00 0 113 65 128 0 Toluene-d8 49.49 5.0 50.00 0 99.0 85 115 0 0 Toluene-d8 50.50 5.0 50.00 0 101 77 111 0 0 Bromofluorobenzene 50.50 5.0 50.00 0 101 77 111 0 0	Naphthalene		50.74	5.0	50.00	0	101	40	125	43.36	15.7	40	В
56.34 5.0 50.00 0 113 65 128 0 0 49.49 5.0 50.00 0 99.0 85 115 0 0 50.50 5.0 50.00 0 101 77 111 0 0	Surrogate: Dibromofluorometh	lane	51.51	5.0	50.00	0	103	65	132	0	0	40	
49.49 5.0 50.00 0 99.0 85 115 0 0 50.50 5.0 50.00 0 101 77 111 0 0	Surrogate: 1,2-Dichloroethane	44	56.34	5.0	50.00	0	113	65	128	0	0	40	
50.50 5.0 50.00 0 101 77 111 0	Surrogate: Toluene-d8		49.49	5.0	50.00	0	99.0	85	115	0	0	40	
	Surrogate: Bromofluorobenzer	ne	50.50	5.0	50.00	0	101	LL	111	0	0	40	

B - Analyte detected in the associated Method Blank

J - Analyte detected below quantitation limits ND - Not Detected at the Reporting Limit

Qualifiers: mLIMS-001

S - Spike Recovery outside accepted recovery limits R - RPD outside accepted recovery limits

Day Environmental Inc. J0281 Work Order: **CLIENT:**

SW8260_LOW_S

ANALYTICAL QC SUMMARY REPORT

Client ID: LCSD-49496 Analyte Dichlorodifluoromethane Chloromethane Vinyl chloride	Sampiype: LCSU	TestCode	TestCode: SW8260 LOW S		Prep Date:	02/26/10 8:37	8:37	Run II	Run ID: V6 100226A			
unalyte Dichlorodifluoromethane Chloromethane Ainyl chloride	Batch ID: 49496	Units	Units: µg/Kg		Analysis Date:	02/26/10 9:53	9:53	SegN	SeqNo: 1214701			
Nichlorodifluoromethane Chloromethane Vinyl chloride		Result	PQL	SPK value	SPK Ref Val	%REC Lo	LowLimit HighLimit	igh Limit	RPD Ref Val	%RPD RPDLimit	PDLimit	Qual
chloromethane inyi chloride		39.51	5.0	50.00	0	79.0	35	135	43.57	9.79	40	
/inyl chloride		45.44	5.0	50.00	0	6.06	50	130	47.21	3.82	40	
•		44.18	5.0	50.00	0	88.4	60	125	46.61	5.35	40	
Bromomethane		47.54	5.0	50.00	0	95.1	30	160	48.84	2.71	40	
Chloroethane		49.76	5.0	50.00	0	99.5	40	155	46.88	5.96	40	
Frichlorofiuoromethane		41.43	5.0	50.00	0	82.9	25	185	44.58	7.32	40	
1,1-Dichloroethene		45.30	5.0	50.00	0	90.6	65	135	50.24	10.4	40	
Acetone		33.41	5.0	50.00	0	66.8	20	160	49.56	38.9	40	
iodomethane		48.16	5.0	50.00	0	96.3	0.4	126	50.22	4.17	40	
Carbon disulfide		44.74	5.0	50.00	0	89.5	45	160	48.29	7.61	40	
Methylene chloride		46.34	5.0	50.00	0	92.7	55	140	49.50	6.59	40	ጠ
trans-1,2-Dichloroethene		49.18	5.0	50.00	0	98.4	65	135	51.86	5.3	40	
Methyl tert-butyl ether		51.72	5.0	50.00	0	103	75	126	58.14	11.7	40	
1,1-Dichloroethane		51.07	5.0	50.00	0	102	75	125	53.33	4.34	40	
Vinyl acetate		54.72	5.0	50.00	0	109	65	138	61.25	11.3	40	
2-Butanone		41.98	5.0	50.00	0	84.0	30	160	58.14	32.3	40	
cis-1,2-Dichloroethene		50.91	5.0	50.00	0	102	65	125	53.08	4.16	40	
2,2-Dichloropropane		52.27	5.0	50.00	0	105	65	135	55.02	5.12	40	
Bromochloromethane		49.58	5.0	50.00	0	99.2	70	125	52.20	5.14	40	
Chloroform		49.88	5.0	50.00	0	99.8	70	125	51.80	3.76	40	
1,1,1-Trichloroethane		47.13	5.0	50.00	0	94.3	70	135	50.64	7.19	40	
1,1-Dichloropropene		48.43	5.0	50.00	0	96.9	70	135	53.15	9.28	40	
Carbon tetrachloride		45.67	5.0	50.00	0	91.3	65	135	49.87	8.81	40	
1,2-Dichloroethane		51.79	5.0	50.00	0	104	70	135	57.08	9.71	40	
Benzene		48.32	5.0	50.00	0	96.6	75	125	52.41	8.12	40	
Trichloroethene		40.38	5.0	50.00	0	80.8	75	125	41.84	3.56	40	
1,2-Dichloropropane		53.14	5.0	50.00	0	106	07	120	54.35	2.25	40	
Dibromomethane		47.96	5.0	50.00	0	95.9	75	130	54.06	12	40	
Bromodichloromethane		50.52	5.0	50.00	0	101	70	130	52.96	4.71	40	
cis-1,3-Díchloropropene		53.60	5.0	50.00	0	107	10	125	56.42	5.12	40	
4-Methyi-2-pentanone		47.00	5.0	50.00	0	94.0	45	145	•	28.8	40	
Toluene		51.46	5.0	50.00	0	103	70	125	54.43	5.61	40	
trans-1, 3-Dichloropropene		52.78	5.0	50.00	0	106	65	125	57.69	8.9	40	
1,1,2-Trichloroethane		48.30	5.0	50.00	0	96.6	60	125	54.42	11.9	40	
1,3-Dichloropropane		48.24	5.0	50.00	0	96.5	75	125	56.28	15.4	40	
Tetrachloroethene		26.49	5.0	50.00	0	53.0	65	140	29.10	9.38	40	S
2-Hexanone		41.72	5.0	50.00	0	83.4	45	145	60.65	37	40	

R - RPD outside accepted recovery limits

J - Analyte detected below quantitation limits

mLIMS-001

Day Environmental Inc. J0281 Work Order: **CLIENT:**

SW8260_LOW_S

ANALYTICAL QC SUMMARY REPORT

, sõ	
SW8	
$\boldsymbol{\Sigma}$	
	1
	l
	ł
1	
é	I

Project: 151 Mt. Hope Ave.	e Ave.		SW8	SW846 8260 VC	VOC by GC-MS							
Sample ID: LCSD-49496	SampType: LCSD	TestCod	TestCode: SW8260_LOW_S		Prep Date:	02/26/10 8:37	8:37	Run I	Run ID: V6_100226A			
Client ID: LCSD-49496	Batch ID: 49496	Units	Units: µg/Kg		Analysis Date:	02/26/10 9:53	9:53	SeqN	SeqNo: 1214701			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC Lo	LowLimit HighLimit	ighLimit	RPD Ref Val	%RPD RPDLimit	PDLimit	Qual
Dibromochloromethane		46.78	5.0	50.00	0	93.6	65	130	51.83	10.3	40]
1,2-Dibromoethane		46.72	5.0	50.00	0	93.4	70	125	55.32	16.9	40	
Chlorobenzene		48.08	5.0	50.00	0	96.2	75	125	51.12	6.13	40	
1,1,1,2-Tetrachloroethane		47.98	5.0	50.00	0	96.0	75	125	50.05	4.21	40	
Ethylbenzene		48.25	5.0	50.00	0	96.5	75	125	51.19	5.91	40	
m,p-Xylene		97.96	5.0	100.0	0	98.0	80	125	103.2	5.21	40	
o-Xylene		48.95	5.0	50.00	0	97.9	15	125	52.80	7.56	40	
Xylene (Total)		146.9	5.0	150.0	0	97.9	83	125	156.0	6.0	40	
Styrene		49.42	5.0	50.00	0	98.8	75	125	52.59	6.21	40	
Bromoform		44.04	5.0	50.00	0	88.1	55	135	52.63	17.8	40	
lsopropylbenzene		47.96	5.0	50.00	0	95.9	75	130	52.34	8.74	40	
1,1,2,2-Tetrachloroethane		66.57	5.0	50.00	0	133	55	130	80.91	19.5	40	თ
Bromobenzene		49.07	5.0	50.00	0	98.1	65	120	50.10	2.09	40	
1,2,3-Trichloropropane		50.06	5.0	50.00	0	100	65	130	62.99	22.9	40	
n-Propylbenzene		47.26	5.0	50.00	0	94.5	65	135	50.86	7.33	40	
2-Chlorotoluene		48.98	5.0	50.00	0	98.0	70	130	50.61	3.28	40	
1,3,5-Trimethylbenzene		48.97	5.0	50.00	0	97.9	65	135	51.86	5.71	40	
4-Chiorotoluene		49.03	5.0	50.00	0	98.1	75	125	51.52	4.95	40	
tert-Butylbenzene		54.46	5.0	50.00	0	109	65	130	58.71	7.51	40	
1,2,4-Trimethylbenzene		48.62	5.0	50.00	0	97.2	65	135	51.24	5.26	40	
sec-Butylbenzene		46.23	5.0	50.00	0	92.5	65	130	50.34	8.52	40	
4-Isopropyitoluene		45.23	5.0	50.00	0	90.5	75	135	48.82	7.63	40	
1,3-Dichlorobenzene		48.21	5.0	50.00	0	96.4	70	125	50.36	4.36	40	
1,4-Dichlorobenzene		47.05	5.0	50.00	0	94.1	70	125	49.27	4.61	40	
n-Butylbenzene		43.80	5.0	50.00	0	87.6	65	140	47.48	8.06	40	
1,2-Dichlorobenzene		48.61	5.0	50.00	0	97.2	75	120	50.81	4.42	40	
1,2-Dibromo-3-chloropropane		47.90	5.0	50.00	0	95.8	40	135	60.99	24	40	
1,2,4-Trichlorobenzene		34.62	5.0	50.00	0	69.2	65	130	39.14	12.3	40	
Hexachlorobutadiene		39.01	5.0	50.00	0	78.0	55	140	43.62	11.2	40	
1,2,3-Trichlorobenzene		30.72	5.0	50.00	0	61.4	09	135	35.74	15.1	40	
Naphthalene		32.95	5.0	50.00	0	65.9	40	125	39.92	19.1	40	
Surrogate: Dibromofluoromethane	-	50.78	5.0	50.00	0	102	65	132	0	0	40	
Surrogate: 1,2-Dichloroethane-d4		48.67	5.0	50.00	0	97.3	65	128	0	0	40	
Surrogate: Toluene-d8		48.85	5.0	50.00	0	97.7	85	115	0	0	40	
Surrogate: Bromofluorobenzene		51.10	5.0	50.00	0	102	77	111	0	0	40	
								·				

J - Analyte detected below quantitation limits ND - Not Detected at the Reporting Limit

Qualifiers: mLIMS-001

0027

S - Spike Recovery outside accepted recovery limits R - RPD outside accepted recovery limits

J0281 J01281 I51 Mt. Hope Ave. 3504 SampType: MBLK 3504 Batch ID: 49504 R R R R R R R R R R R R R	SW8260 MBLK TestCode: SW8260_W 49504 Units: µg/L A9504 Units: µg/L Result PQL S ND 5.0 ND 5.0 ND 5.0 ND 5.0 ND 5.0 ND 5.0 ND 5.0 ND 5.0 ND 5.0 ND 5.0	SW8260_W SW846 8260 VOC by GC-MS Prep Date: 02/26/10 9:49 Run ID: V1 Analysis Date: 02/26/10 11:28 SeqNo: 121 SPK value SPK Ref Val %REC LowLimit HighLimit RPD	Run ID: V1_100226B SeqNo: 1214684 hLimit RPD Ref Val	%RPD RPDLimit Qual
I51 Mt. Hope Ave. 151 Mt. Hope Ave. 1504 SampType: MBLK Batch ID: 49504 R R R R R R R R R R R R R R	Image: Viscon State Image: Viscon State Image: Viscon State Viscon State <th></th> <th>Run ID: V1_100226B SeqNo: 1214684 Limit RPD Ref Val</th> <th></th>		Run ID: V1_100226B SeqNo: 1214684 Limit RPD Ref Val	
6504 SampType: MBLK 6504 Batch ID: 49504 R thane her her her her her her her her her he	TestCode: SW8260_W Units: µg/L Result PQL ND 5.0 ND 5.0 ND 5.0 ND 5.0 ND 5.0 ND 5.0 ND 5.0	Prep Date: Analysis Date: SPK Ref Val	Run ID: V1_100226B SeqNo: 1214684 Limit RPD Ref Val	
Biot Batch ID: 49504 Result thane than the the sector of t	Units: µg/L Result PQL ND 5.0 ND 5.0 ND 5.0 ND 5.0 ND 5.0 ND 5.0 ND 5.0 ND 5.0	Analysis Date: SPK Ref Val	SeqNo: 1214684 hLimit RPD Ref Val	
Res thane there here here here hane beere breaction beere breaction beere breaction br	Paل م	SPK Ref Val		
thane and thene thene the the the the the the the the the th				
ane there her ne hane bane breac bre				
there there is the				
there is the is				
ane her ne ene fe fe pene ore propene tre tre tre tre tre tre tre tre tre tr				
and her ine ine hane pene one ne ine ine ine ine ine ine ine ine in				
thene her ene fie fie pene propene tie tie tie tie tie tie tie tie tie ti				
thene her ne hane brane or prene vropene re re re re re re re re re re re re re				
there here here hane pene ore protecte te te te te te te				
there her ene le hane bene soopene voopene re re re re				
there here the the the hane bene the the the the the the the the the th				
ther her ene le hane bene cropene ine tre tre				
ene le pane pene copene le rie rie rie rie rie fie le fie fie fie fie fie fie fie fie fie fi				
ene le pene oreene rie rie rie rie rie rie rie fie le fie fie fie fie fie fie fie fie fie fi				
ene le hane pene ore propene ine ine ine				
ene le le hane propene rie rie rie rie rie rie le				
ene le hane orpene rie rie rie rie rie				
rine Hane Prene Sropene Ine Ine Ine				
ne le hane pene oropene rie rie				
ine le pane pene ore rine ine ine				
le hane pene oreene rine ine				
re hane pene oropene ine ine				
hane pene oropene ine ine				
te pene pene oropene ine ine				
le hane pene one sropene ine				
le hane pene oropene ine ine	n n			
hane pene one oropene ine				
hane pene one propene ine				
pene one sropene ine	ND 5.0			
one vropene ine	ND 5.0			
oropene ine ie	ND 5.0			
oropene ine ie	ND 5.0			
ine	ND 5.0			
ē	ND 5.0			
Tetrachloroethene ND	ND 5.0			
ND-Hexanone	ND 5.0			
Aundliffares NID - Not Detected at the Benorting 1 init		 Conite Recovery cutted accented recovery limits 	D Andrea datantad in 4	the according to Mathematic
:LS:		insure accepted recovery mining	B - Analyte detected in the associated Method Blank	une associated internou E
^{mLIMS-001} J - Analyte detected below quantitation limits	ow quantitation limits R - RPD outside accepted recovery limits	pted recovery limits		

Werk Office: ID31 SWR5.61 WWS.61 SOID SWR5.61 SOID SOID<	CLIENT: I	Day Environmental Inc.			ANALY	ANALY IICAL UC SUMMARY REPORT	NIMINO C	IAKI D	LEFONI		
Project: I.S.I.M. Hope Ave. Swayd 8260 - VOC by CC-MS Sample ID MB-4804 Sampl'ype MBLK TeatCode Swaza0. W Prep Date 025610 9:49 R Sample ID MB-4804 Sampl'ype MBLK TeatCode Swaza0. W Amayks Dave 028610 11:23 S Advision Batch ID: 4604 Units: µpd. Amayks Dave 028710 11:23 S Advision Batch ID: 4604 Units: µpd. Amayks Dave 028710 11:23 S Advision Batch ID: 4604 Units: µpd. Amayks Dave 028710 11:23 S Advision 17.1.12-Finitronentation W 5.0 S		0281		AS	V8260 W	I					
Sample ID: MB-4904 SampType: MBLK TeeCode: SW280_M Prep Date: 0236110 1138 S Clent ID: MB-4904 Batch ID: 4984 Units: µgL Anaysis Date: 0226110 1138 S Analysis Batch ID: 49804 Batch ID: 49804 Units: µgL Anaysis Date: 0226110 1138 S Analysis Discriptionationationationationationationationa		51 Mt. Hope Ave.		SV	V846 8260 VC	C by GC-MS					
Client ID: Mad-4504 Batch ID: 4504 Units Analysis Analysis <th< th=""><th>Sample ID: MB-4950</th><th></th><th>TestCode</th><th>e: SW8260_W</th><th></th><th>Prep Date:</th><th>02/26/10 9:4</th><th>6</th><th>Run ID: V1_100226B</th><th></th><th></th></th<>	Sample ID: MB-4950		TestCode	e: SW8260_W		Prep Date:	02/26/10 9:4	6	Run ID: V1_100226B		
Analytic Real POL SPK value SPK Ref Val %EC Louthint High Intri Distroncelorentiate 10 5.0			Units	: µg/L		Analysis Date:		28	SeqNo: 1214684		
S.0 S.0 <ths.0< th=""> <ths.0< th=""> <ths.0< th=""></ths.0<></ths.0<></ths.0<>	Analyte		Result	PQL	SPK value	SPK Ref Val	%REC Lowl	-imit HighLin		%RPD RPDLimit	Qual
Characteries District Characteries Dist	Dibromochloromethan	0	QN	5.0							
1.1.1.2.7.Ertachilocentane 10 5.0 Childensatere 10 5.0 Styren 10 5.0 Styrent 10 5.0 Styre 5.0 0.0 Styre 5.0 0.0 </td <td>1,2-Dibromoethane</td> <td></td> <td>ND</td> <td>5.0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	1,2-Dibromoethane		ND	5.0							
11.1.1.2.7.Ieitachtorenthale 80 5.0 m.p.Xylene xxylene x0 5.0 oXylene xylene x0 5.0 oXylene x0 5.0 x0 oXylene x0 5.0 x0 Synae	Chlorobenzene		ND	5.0							
Etrylenezene RD 5.0 Sylene 0.0,2/merane 80 5.0 Sylene 0.0,2/merane 80 5.0 Sylene 100 5.0 5.0 Sylene 100 5.0 5.0 Benndom 80 5.0 5.0 Benndomeree 80 5.0 5.0 Benndomeree 80 5.0 5.0 Actionoteneree 80 5.0 5.0 Actionoteneree 80 5.0 5.0 Actionotoenceree 80 5.0	1,1,1,2-Tetrachloroeth	ane	DN	5.0							
m.s.>/jere 5.0 5.0 ovyrene 10 5.0 5.0 Syvere 11.2. Treatment 10 5.0 Syvere 11.2. Treatment 10 5.0 Syvere 11.2. Treatment 10 5.0 Strong/benzene 10 5.0 5.0 J.2Trinthybenzene 10 5.0 5.0	Ethylbenzene		UN	5.0							
ox/viene 5.0 5.0 ox/viene 7.1 5.0 Syram 5.0 5.0 Syram 8000 5.0 Syram 80000 5.0 Syram 800000 5.0 Syram 800000 5.0 Syram 8000000 5.0 Syram 5.0 5.0 Syramore 80000000000000000000000000000000	m,p-Xylene		ND	5.0							
Xyteme (Tota) ND 5.0 Xyteme (Tota) ND 5.0 Bornaform ND 5.0 Bronobertzene ND 5.0 Chloroblane ND 5.0 Affondulane ND 5.0	o-Xylene		ND	5.0							
Syrete Stream ND 5.0 Styrene 5.0 5.0 Storpolylerizate ND 5.0 Cholyberzene ND 5.0 Colloculene ND 5.0 Storpolylerizate ND 5.0 Alsopolylutene ND 5.0 Alsopolylutene ND 5.0 Alsopolylutene ND 5.0 Storpolylutene ND 5.0 Alsopolylutene ND 5.0 Storpolylutene ND 5.0	Xylene (Total)		ND	5.0							
Bornoform ND 5.0 Issorpheratene ND 5.0 Issorpheratene ND 5.0 Issorpheratene ND 5.0 Bronoberzene ND 5.0 Bronoberzene ND 5.0 Coloroberzene ND 5.0 Coloroberzene ND 5.0 1.5.Timetrylberzene ND 5.0 2.4.Timetrylberzene ND 5.0 1.5.Timetrylberzene ND 5.0 2.4.Timetrylberzene ND 5.0 1.5.Timetrylberzene ND 5.0 1.4.Timetrylberzene ND 5.0 1.2.Stributoberzene ND 5.0 1.3.Definionberzene	Styrene		ND	5.0							
Isonopylemizene ND 5.0 1.1.2.7Ertachlorophane ND 5.0 1.2.2.Titehtoropropare ND 5.0 1.2.2.Titehtorophane ND 5.0 1.2.1.Tichtorophane ND 5.0 1.2.1.Tichtorophane ND 5.0 1.3.5.Tichtorophane ND 5.0 2.4.Tichtorophane ND 5.0 2.5.Tichtorophane ND 5.0 1.3.5.Timethylemzene ND 5.0 2.4.Timethylemzene ND 5.0 1.3.5.Timethylemzene ND 5.0 1.4.Lobiotobarzene ND 5.0 1.4.Lobiotobarzene ND 5.0 1.2.4.Timethylemzene ND 5.0 1.3.5.Titotobarzene ND 5.0 1.4.2.1.Diotobarzene ND 5.0 1.2.4.Timethylemzene ND 5.0 1.2.4.Titotobarzene ND 5.0 1.3.5.Tototooparae ND 5.0 1.3.5.Tot	Bromoform		QN	5.0							
1,1,2,2-Tetrachoncerthane ND 5.0 Bornoberzene ND 5.0 R-Poylberzene ND 5.0 R-Poloroburane ND <td>Isopropylbenzene</td> <td></td> <td>DN</td> <td>5.0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Isopropylbenzene		DN	5.0							
Bronobenzene ND 5.0 Bronobenzene ND 5.0 AP conjulenzane ND 5.0 I.3-Trimehylbenzane ND 5.0 I.4-Dichocolanzane ND 5.0 I.2-Dichocolanzane ND 5.0 I.2-Dichocolanzane ND 5.0 I.2-Dichocolanzane	1,1,2,2-Tetrachloroeth	ane	UN	5.0							
1.2.Tricthoropropane ND 5.0 1.2.Tricthoropropane ND 5.0 2.Choropleneane ND 5.0 1.3.FTimethylenzene ND 5.0 scelau/benzene ND 5.0 1.4.Trimethylenzene ND 5.0 1.2.Dichtorobenzene ND 5.0 1.4.Dichtorobenzene ND 5.0 1.4.Dichtorobenzene ND 5.0 1.2.Dichtorobenzene ND 5.0 Surrogate: Inbronolluacionentene-di 5.0 5.0 Surrogate: Dibronol	Bromobenzene		ND	5.0							
mcPonylemate ND 5.0 2.Chlorotouene ND 5.0 3.5.Tirrathylbenzene ND 5.0 4.Chlorotouene ND 5.0 4.Chlorotouene ND 5.0 4.Chlorotouene ND 5.0 4.Chlorotouene ND 5.0 4.Strintentylbenzene ND 5.0 1.3.Dichlorobenzene ND 5.0 1.4.Tichlorobenzene ND 5.0 1.3.Dichlorobenzene ND 5.0 1.4.Dichlorobenzene ND 5.0 1.2.Dichlorobenzene ND 5.0 1.2.2.Dichlorobenzene ND 5.0 1.2.2.Dichlorobenzene ND 5.0 1.2.2.Dichlorobenzene ND 5.0 1.2.2.Dich	1,2,3-Trichloropropane	0	UN	5.0							
2.Chlorotoluene ND 5.0 1.3.5-Trimetrybenzene ND 5.0 1.3.5-Trimetrybenzene ND 5.0 1.3.5-Trimetrybenzene ND 5.0 1.3.4-Trimetrybenzene ND 5.0 1.2.4-Trimetrybenzene ND 5.0 1.2.4-Trimetrybenzene ND 5.0 1.2.4-Trimetrybenzene ND 5.0 1.2.4-Trimetrybenzene ND 5.0 1.3.Dichlorobenzene ND 5.0 1.4.Dichlorobenzene ND 5.0 1.3.Dichlorobenzene ND 5.0 1.4.Dichlorobenzene ND 5.0 1.2.Dibrono-3-chloropropane ND 5.0 1.2.Dibrono-3-chloropropane ND 5.0 1.2.Dibrono-s-chloropropane ND 5.0 1.2.Dibrono-s-chloropropane ND 5.0 1.2.Dibrono-s-chloropenzene ND 5.0 1.2.Dibrono-s-chloropenzene ND 5.0 1.2.Dibrono-sectione ND 5.0 1.2.Dibrono-sectione ND 5.0 2.3.3.5 5.0	n-Propylbenzene		UN	5.0							
1.3.5-TrimetrybenzeneND5.01.3.5-TrimetrybenzeneND5.04.ChlorobenzeneND5.01.2.HrimetrybenzeneND5.0sec-BuybenzeneND5.0sec-BuybenzeneND5.01.3.Exbinono-streneND5.01.4.FrimetrybenzeneND5.0sec-BuybenzeneND5.01.3.Exbinono-schloropenzeneND5.01.4.Exbinono-schloropenzeneND5.01.2.Exbinono-schloropenzeneND5.01.2.Exbinono-schloropenzeneND5.01.2.FrichlorobenzeneND5.01.2.FrichlorobenzeneND5.01.2.FrichlorobenzeneND5.01.2.FrichlorobenzeneND5.01.2.FrichlorobenzeneND5.01.2.FrichlorobenzeneND5.01.2.FrichlorobenzeneND5.01.2.FrichlorobenzeneND5.01.2.FrichlorobenzeneND5.01.2.FrichlorobenzeneND5.01.2.FrichlorobenzeneND5.01.2.FrichlorobenzeneND5.01.2.FrichlorobenzeneND5.01.2.FrichlorobenzeneND5.01.2.FrichlorobenzeneND5.01.2.FrichlorobenzeneND5.01.2.FrichlorobenzeneND5.01.2.FrichlorobenzeneND5.01.2.FrichlorobenzeneND1.2.FrichlorobenzeneND1.2.Frichlorobenzene0.0 <td>2-Chlorotoluene</td> <td></td> <td>QN</td> <td>5.0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	2-Chlorotoluene		QN	5.0							
AChlorototuene ND 5.0 Eqt-Buylbenzene ND 5.0 Eqt-Buylbenzene ND 5.0 Sec-Buylbenzene ND 5.0 4-Isoproyitouene ND 5.0 1.2.4Prinkiybenzene ND 5.0 1.3.Dichlorobenzene ND 5.0 1.3.Dichlorobenzene ND 5.0 1.2.Abrinobenzene ND 5.0 1.2.Dichlorobenzene ND 5.0 1.2.Abrichlorobenzene ND 5.0 1.2.Abrichlorobenzene ND 5.0 1.2.Abrichlorobenzene ND 5.0 1.2.Abrichlorobenzene ND 5.0 1.2.Bioromofluorobudidiene ND 5.0 1.2.Bioromofluorobenzene ND 5.0 Surrogate: 1.2.Dichlorobenzene ND Surrogat	1,3,5-Trimethylbenzer	e	ND	5.0							
12.4-Tichterhylbenzene ND 5.0 12.4-Tichterhylbenzene ND 5.0 4.1soproyhtoluene ND 5.0 1.3-Dichlorobenzene ND 5.0 1.4-Dichlorobenzene ND 5.0 1.2-Dichlorobenzene ND 5.0 1.2-Trichlorobenzene ND 5.0 1.2-Strichlorobenzene ND 5.0 1.2-Trichlorobenzene ND 5.0 Surrogate: Dichonelatione ND 5.0 Surrogate: Dichonobenzene ND 5.0 5.0 Surrogate: Eromofluorobenzene ND 5.0 5.0 70 120 Surrogate: Eromofluorobenzene 48.25 5.0 50.00 0 75 120 Su	4-Chlorotoluene		QN I	5.0							
1.2.4-Timethyllenzene ND 5.0 acc-Butylbenzene ND 5.0 1.3-Dichlorobenzene ND 5.0 1.3-Dichlorobenzene ND 5.0 1.3-Dichlorobenzene ND 5.0 1.4-Dichlorobenzene ND 5.0 1.2-Dichlorobenzene ND 5.0 1.2-Trichlorobenzene ND 5.0 Nopthalene ND 5.0 Surrogate: Dichonofluoromethane 50.33 5.0 Surrogate: I.Dichlorobenzene ND 5.0 50.00 Surrogate: Bromofluorobenzene 48.97 5.0 50.00 0 107 85 Surrogate: Bromofluorobenzene 48.97 5.0 50.00 0 107 85 120 Surrogate: Bromofluorobenzene 48.97 5.0 0 0 107 85 120 Surrogate: Bromofluorobenzene <t< td=""><td>tert-Butylbenzene</td><td></td><td>ON I</td><td>5.0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	tert-Butylbenzene		ON I	5.0							
Sec-Butylbenzene ND 5.0 4-Isopropytioluene ND 5.0 4-Isopropytioluene ND 5.0 1.4-Dichlorobenzene ND 5.0 n-Butylbenzene ND 5.0 1.4-Dichlorobenzene ND 5.0 n-Butylbenzene ND 5.0 n-Butylbenzene ND 5.0 n-Butylbenzene ND 5.0 1.2-Dichlorobenzene ND 5.0 1.2-Dichlorobenzene ND 5.0 1.2-Trichlorobenzene ND 5.0 1.2.4-Trichlorobenzene ND 5.0 1.2.4-Trichlorobenzene ND 5.0 Naprikalene ND 5.0 Surrogate: Ditornofluoromethane 5.0 5.0 Surrogate: Stronofluorobenzene ND 5.0 50.00 Surrogate: Bronofluorobenzene 5.0 50.00 0 101 85 120 Surrogate: Bronofluorobenzene 5.0 5.0 50.00 0 120 120 Surrogate: Bronofluorobenzene 80.00 0 107	1,2,4-Trimethylbenzer	E		0°0							
4-Isopropylioluene ND 5.0 1,3-Dichlorobenzene ND 5.0 1,3-Dichlorobenzene ND 5.0 1,4-Dichlorobenzene ND 5.0 1,2-Dichlorobenzene ND 5.0 1,2-Dichlorobenzene ND 5.0 1,2-Dichlorobenzene ND 5.0 1,2-Dichlorobenzene ND 5.0 1,2-Trichlorobenzene ND 5.0 2-Surrogate: Toluene-d8 5.1 5.0 Surrogate: Bromofluorobenzene 48.97 5.0 0 101 85 120 Surrogate: Bromofluorobenzene 48.97 5.0 0 0 170 120 Surrogate:	sec-Butylbenzene		CIN :	5.U							
1,3-Dichlorobenzene ND 5.0 1,4-Dichlorobenzene ND 5.0 n-Butylbenzene ND 5.0 1,2-Dichlorobenzene ND 5.0 1,2-Dichlorobenzene ND 5.0 1,2-Trichlorobenzene ND 5.0 1,2-Trichlorobenzene ND 5.0 1,2-Trichlorobenzene ND 5.0 Naphthalene ND 5.0 1,2-Trichlorobenzene ND 5.0 Naphthalene ND 5.0 Surrogate: Dibromofluoromethane 50.33 5.0 Surrogate: Iculonobenzene ND 5.0 90.0 Surrogate: Bromofluoromethane 50.33 5.0 90.0 96.5 70 120 Surrogate: Iculene-d8 53.35 5.0 50.00 0 107 85 120 Surrogate: Bromofluorobenzene 48.26 5.0 50.00 0 107 85 120 Surrogate: Iculene-d8 53.35 5.0 50.00 0 107 85 120 Surrogate: Iculene-d8 53.35	4-Isopropyltoluene			5.0							
1,4-Dichlorobenzene ND 5.0 n-Butylbenzene ND 5.0 1,2-Dichlorobenzene ND 5.0 1,2-Dichlorobenzene ND 5.0 1,2-Dichlorobenzene ND 5.0 Hexachlorobutadiene ND 5.0 ND 5.0 ND 5.0 Naprithalene ND 5.0 101 85 115 1,2,3-Trichlorobenzene ND 5.0 90.0 101 85 115 Naprithalene ND 5.0 50.00 0 101 85 120 Surrogate: I2-Dichloroethane-d4 48.26 5.0 50.00 0 107 85 120 Surrogate: Bromofluorobenzene 48.97 5.0 50.00 0 107 85 120 Surrogate: Bromofluorobenzene 48.97 5.0 50.00 0 107 85 120 Surrogate: Interneture 50.00 0 107 85 120 Surrogate: Interneture 50.00 0 107 85 120	1,3-Dichlorobenzene			5.U							
n-butylbenzene ND 5.0 1,2-Dichlorobenzene ND 5.0 1,2-Lichlorobenzene ND 5.0 1,2,4-Trichlorobenzene ND 5.0 1,2,3-Trichlorobenzene ND 5.0 1,2,3-Trichlorobenzene ND 5.0 Surrogate: Dibromofluoromethane 50.33 5.0 50 101 85 120 Surrogate: Bromofluorobenzene 48.26 5.0 50.00 0 107 85 120 Surrogate: Bromofluorobenzene 48.97 5.0 50.00 0 107 85 120 Surrogate: Bromofluorobenzene 48.97 5.0 50.00 0 97.9 75 120 Mainfiers: ND-Not Detected at the Reporting Limit 5.0 0 0	1,4-Dichlorobenzene		CIN CIN	0.0							
1.2-Dictionorbenzene ND 5.0 1.2.4-Trichlorobenzene ND 5.0 1.2.4-Trichlorobenzene ND 5.0 Hexachlorobutadiene ND 5.0 1.2.4-Trichlorobenzene ND 5.0 Hexachlorobutadiene ND 5.0 1.2.3-Trichlorobenzene ND 5.0 Naphtfanelo ND 5.0 1.2.3-Trichlorobenzene ND 5.0 Naphtfanelo ND 5.0 Surrogate: Diconofluoromethane 50.00 0 101 85 115 Surrogate: Toluene-d8 53.35 5.0 50.00 0 107 85 120 Surrogate: Bromofluorobenzene 48.97 5.0 50.00 0 97.9 75 120 Surrogate: Bromofluorobenzene 48.97 5.0 50.00 0 97.9 75 120 Qualifiers: ND - Not Detected at the Reporting Limit 5.0 0 0 97.9 75 120	n-butylbenzene										
1.2-Unformon3-chloropropane ND 5.0 1.2.4-Trichlorobenzene ND 5.0 Hexachlorobutadiene ND 5.0 1.2.3-Trichlorobenzene ND 5.0 Naphthalene ND 5.0 Surrogate: Dibromofluoromethane 50.33 5.0 Surrogate: I.2-Dichlorobenzene 48.26 5.0 50.00 0 101 85 115 Surrogate: I.2-Dichlorobenzene 88 5.0 50.00 0 107 85 120 Surrogate: I.2-Dichlorobenzene 5.0 5.0 5.0 0 0 107 85 120 Surrogate: Bromofluorobenzene 48.97 5.0 50.00 0 97.9 75 120 Qualifiers: ND - Not Detected at the Reporting Limit 5.0 50.00 0 97.9 75 120	1,2-Dichlorobenzene			0.0							
1,2,4-Inchorobenzene ND 5.0 Hexachlorobutadiene ND 5.0 Hexachlorobutadiene ND 5.0 1,2,3-Trichlorobenzene ND 5.0 Naphthalene ND 5.0 Surrogate: Dibromofluoromethane 50.33 5.0 Surrogate: L2-Dichloroethane-d4 48.26 5.0 0 101 85 115 Surrogate: Toluene-d8 53.35 5.0 50.00 0 107 85 120 Surrogate: Bromofluorobenzene 48.97 5.0 50.00 0 107 85 120 Qualifiers: ND - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits 0 0 97.9 75 120	1,2-Dibromo-3-chloro	propane	UN UN	0.0							
Hexachlorobutadiene ND 5.0 ND 5.0 1,2,3-Trichlorobenzene ND 5.0 10 85 115 Naphthalene ND 5.0 50 0 101 85 115 Surrogate: Dibromofluoromethane 50.33 5.0 5.0 96.5 70 120 Surrogate: I_2-Dichloroethane-d4 53.35 5.0 50.00 0 101 85 120 Surrogate: Romofluorobenzene 53.35 5.0 50.00 0 107 85 120 Surrogate: Bromofluorobenzene 48.97 5.0 50.00 0 107 85 120 Surrogate: Bromofluorobenzene 5.0 5.0 50.00 0 107 85 120 Surrogate: Bromofluorobenzene 5.0 5.0 50.00 0 97.9 75 120 Matters: ND - Not Detected at the Reporting Limit 5.0 50.00 0 97.9 75 120	1,2,4-Trichlorobenzen	Û		0.1 0							
1,2,3-Trichlorobenzene ND 5.0 10 85 115 Naphthalene ND 5.0 5.0 96.5 70 120 Surrogate: Dibromofluoromethane-d4 5.0 5.0 50.00 0 101 85 115 Surrogate: Ichloroethane-d4 53.35 5.0 50.00 0 107 85 120 Surrogate: Bromofluorobenzene 53.35 5.0 50.00 0 107 85 120 Surrogate: Bromofluorobenzene 48.97 5.0 50.00 0 97.9 75 120 Oualtifiers: ND - Not Detected at the Reporting Limit S- Spike Recovery outside accepted recovery limits 97.9 75 120	Hexachlorobutadiene		UN .	5.0							
Naprinaire Number Solution	1,2,3-Irichlorobenzen	Ø	UN CN	о. С							
Ourogate: Lizentiation 48.26 5.0 50.00 0 96.5 70 120 Surrogate: Toluene-d8 53.35 5.0 50.00 0 107 85 120 Surrogate: Bromofluorobenzene 48.97 5.0 50.00 0 97.9 75 120 Qualifiers: ND - Not Detected at the Reporting Limit S-Spike Recovery outside accepted recovery limits S-Spike Recovery outside accepted recovery limits	Naprinaiene		50 33	0 C	50 00	C					
Surrogate: 1,2-Dichloroethane-d4 48.26 5.0 50.00 0 96.5 70 120 Surrogate: Toluene-d8 53.35 5.0 50.00 0 107 85 120 Surrogate: Bromofluorobenzene 48.97 5.0 50.00 0 97.9 75 120 Qualifiers: ND - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits 5.0 5	surrogate: Dipromo	nuoromemane		.			•				
Surrogate: Toluene-d8 53.35 5.0 50.00 0 10/ 85 120 Surrogate: Bromofluorobenzene 48.97 5.0 50.00 0 97.9 75 120 Qualifiers: ND - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits 5.0 5.0 5.0 5.0 5.0 75 120	Surrogate: 1,2-Dich	oroethane-d4	48.26	5.0	50.00	0 0	ц,				
Surrogate: Bromofluorobenzene 48.97 5.0 50.00 0 97.9 75 120 Qualifiers: ND - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits ND - Not Detected at the Reporting Limit	👘 Surrogate: Toluene-	d8	53.35	5.0	50.00	0					
Qualifiers: ND - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits	Surrogate: Bromoflu	iorobenzene	48.97	5.0	50.00	0					
Qualifiers: ND - Not Detected at the Reporting Limit Non-Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits											
ers: ND - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits											
rrs: ND - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits							-				
		D - Not Detected at the Reporting Lin	nit	S-	Spike Recovery outsid	e accepted recovery	limits		B - Analyte detected ir	the associated Metho	d Blank
I - Analysta dataetad haloxy quantitation limite		•									

CLIENT: D	Day Environmental Inc.			ANALY	ANALYTICAL QC SUMMARY REPORT	C SUM	MAR	Y REP	ORT		
Work Order: J0 Project: 15	J0281 151 Mt. Hope Ave.		S S	SW8260_W SW846 8260 V(VOC by GC-MS	-					
Sample ID: LCS-49504	4 SampType: LCS	TestCode	TestCode: SW8260_W		Prep Date:	02/26/10 9:49	9:49	Run	Run ID: V1_100226B		
Client ID: LCS-49504	4 Batch ID: 49504	Units	Units: µg/L		Analysis Date:	02/26/10 10:06	10:06	SegN	SeqNo: 1214681		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC LowLimit HighLimit	wLimit H	ighLimit	RPD Ref Val	%RPD RPDLimit	Qual
Dichlorodifluoromethane	Ð	49.03	5.0	50.00	0	98.1	30	155	0		
Chloromethane		42.04	5.0	50.00	0	84.1	40	125	0		
Vinyl chloride		40.69	5.0	50.00	0	81.4	50	145	0		
Bromomethane		40.50	5.0	50.00	0	81.0	30	145	0		
Chloroethane		37.79	5.0	50.00	0	75.6	60	135	0		
Trichlorofluoromethane		60.71	5.0	50.00	0	121	60	145	0		
1,1-Dichloroethene		43.34	5.0	50.00	0	86.7	70	130	0		
Acetone		46.79	5.0	50.00	0	93.6	40	140	0		
lodomethane		43.01	5.0	50.00	0	86.0	72	121	0		
Carbon disulfide		46.38	5.0	50.00	0	92.8	35	160	0		
Methylene chloride		42.60	5.0	50.00	0	85.2	55	140	0		
trans-1,2-Dichloroethene	le	43.27	5.0	50.00	0	86.5	60	140	0		
Methyl tert-butyl ether		44.33	5.0	50.00	0	88.7	65	125	0		
1,1-Dichloroethane		43.76	5.0	50.00	0	87.5	70	135	0		
Vinyl acetate		43.13	5.0	50.00	0	86.3	38	163	0		
2-Butanone		46.16	5.0	50.00	0	92.3	30	150	0		
cis-1,2-Dichloroethene		42.97	5.0	50.00	0	85.9	70	125	0		
2,2-Dichloropropane		45.89	5.0	50.00	0	91.8	70	135	0		
Bromochloromethane		42.99		50.00	0	86.0	65	130	0		
Chloroform		44.73	5.0'	50.00	0	89.5	65	135	0		
1,1,1-Trichloroethane		46.11	5.0	50.00	0	92.2	65	130	0		
1,1-Dichloropropene		43.68	5.0	50.00	0	87.4	75	130	0		
Carbon tetrachloride			5.0	50.00	0	97.8	65	140	0		
1,2-Dichloroethane		45.36	5.0	50.00	0	90.7	70	130	0		
Benzene		43.46	5.0	50.00	0	86.9	80	120	0		
Trichloroethene		41.53	5.0	50.00	0	83.1	70	125	0		
1,2-Dichloropropane		44.74	5.0	50.00	0	89.5	75	125	0		
Dibromomethane		45.50		50.00	0	91.0	75	125	0		
Bromodichloromethane		44.48	•	50.00	0	89.0	75	120	0		
cis-1,3-Dichloropropene	Ð	46.02	5.0	50.00	0	92.0	70	130	0		
4-Methyl-2-pentanone		39.48	•	50.00	0	79.0	60	135	0		
Toluene		43.48		50.00	0	87.0	75	120	0		
trans-1,3-Dichloropropene	ene	46.90	•	50.00	0	93.8	55	140	0		
<pre>demt 1, 1, 2. Trichloroethane</pre>		43.16	•	50.00	0	86.3	75	125	0		
1, 3-Dichloropropane		45.98	5.0	50.00	Ō	92.0	75	125	0		
tetrachloroethene		41.18		50.00	0	82.4	45	150	0		
		41.69	5.0	50.00	0	83.4	55	130	0		
					-						
:LS:	ND - Not Detected at the Reporting Limit		- N	- Spike Recovery outside accepted recovery limits	le accepted recovery	limits		B.	Analyte detected in	- Analyte detected in the associated Method Blank	od Blank
mLIMS-001 J - J	J - Analyte detected below quantitation limits	imits	- R -	R - RPD outside accepted recovery limits	recovery limits						

With Oldare: JOSI SW326.0.W SIGA - VC SW326.0.W SIGA - VC SW326.0.W SIGA - VC Foljati: JI Mi Liju X: SW346.26.0 - VC Manityle LG Imalityle LG	Model Cuert: JOSI SW25.0. V/L SW3.0. SUCH SW3.0. SUCH	CLIENT: Day Envi	Day Environmental Inc.			ANALY	ANALYTICAL QC SUMMARY REPORT	SUM	MAR	Y REP	ORT	
Opticity 13 Milliple Auto SW346 SM0 – VOC Dy GC-MS Sample ID: C3-4960 Sample ID: C3-4960 Sample ID: C3-4960 Pan Date	Trunciple: 13.1M. Hope Are: SW846 \$260 - VOC by GC-MS Samp ID: LCS 4950 BanD Type: LCS Fart Other Ran Distribution Samp ID: LCS 4950 BanD Type: LCS TactOcde State Many State Cara Distribution Samp ID: LCS 4950 BanD Type: LCS TactOcde State Many State Cara Distribution Many State Samp Distribution Cara Distribution Many State Samp Distribution Many State Samp Distribution Many State Samp Distribution Distribution Many State Samp Distribution Samp Distribution Samp Distribution Many State Many Distribution Many Distribution Distribution Many State Many State Samp Distribution Samp Distribution Samp Distribution Distribution Many Distribution Many Distribution Many Distribution Many Distribution Many Distribution Many Distribution Distribution Many Dis				SV	V8260 W						
Structure ID. (G3.4804 Tandon: Sintability Tandon: Sintability Page Date: Currants Analysis Date: Currants Clint ID. (G3.4804 Jannyi Type: LG3 Jannyi Type: LG3 Jannyi Type: LG3 Analysis Date: Seeley: Currants Clint ID. (G3.4804 Jannyi Type: LG3 Jannyi Type: LG3 Jannyi Type: LG3 Seeley: Currants Seeley: Currants Clint ID. (G3.4804 Jannyi Type: LG3 Sci Type: LG3	Sample ID: LC5-4454 TentOre: SMY20. TentOr		Hope Ave.		SV	V846 8260 V(OC by GC-MS					
Client Dis. Caseda (mol Dis.	Client D: Closedo Ints Analysis Analysis <th< th=""><th>Sample ID: LCS-49504</th><th>SampType: LCS</th><th>TestCod</th><th>e: SW8260_W</th><th></th><th>Prep Date:</th><th>02/26/10</th><th>9:49</th><th>Run I</th><th>D: V1_100226B</th><th></th></th<>	Sample ID: LCS-49504	SampType: LCS	TestCod	e: SW8260_W		Prep Date:	02/26/10	9:49	Run I	D: V1_100226B	
undoff Alt Dir. Dir. <thdir.< th=""> Dir. Dir. <th< th=""><th>unique Fevral POL SPC value SPC fortunt Highling POP ArVial Submonoblement 91-30 5-10<</th><th></th><th>Batch ID: 49504</th><th>Units</th><th>s: µg/L</th><th></th><th>Analysis Date:</th><th>02/26/10</th><th>10:06</th><th>SeqN</th><th>o: 1214681</th><th></th></th<></thdir.<>	unique Fevral POL SPC value SPC fortunt Highling POP ArVial Submonoblement 91-30 5-10<		Batch ID: 49504	Units	s: µg/L		Analysis Date:	02/26/10	10:06	SeqN	o: 1214681	
$ \begin the former handline equal to the formation of t$	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Analyte		Result	PQL	SPK value	SPK Ref Val	%REC Lo	wLimit Hi	ghLimit	RPD Ref Val	Qual
$(1, 1)^2$. Therefore $(3, 0)$ $5, 0$ $50, 0$ 0 <	$(1, 1)^{-1}$ Tetrathonenhane $(3, 0)$ $5, 0$ $50, 0$ 0 80 20 $(1, 1)^{-1}$ Tetrathonenhane $(1, 1)^{-1}$ $5, 0$ $50, 0$ 0 $80, 2$ $10, 0$ $(1, 1)^{-1}$ Tetrathonenhane $(1, 2)^{-1}$ $5, 0$ $50, 0$ 0 $10, 0$	Dibromochloromethane		49.38	5.0	50.00	0	98.8	60	135	0	
It (1, 1) It (1, 2) S0.00 0 66.7 80.7 20 It (1, 1) It (1, 2) Fertenblocentane 71.9 5.0 10.00 96.7 96.7 97 120 Etylenese 7.1 5.0 10.00 0 96.7 75 123 Sylven 13.3 5.0 10.00 0 98.7 75 123 Sylven 13.3 5.0 10.00 0 98.7 75 123 Sylven 13.3 5.0 5.0 0.00 0 98.7 75 123 Sylven 13.5 5.0 5.0 5.0 0.00 0 99.1 75 123 Sylven 3.5 5.0 <	Interfact 41.34 5.0 50.00 0 66.7 60. 20 Int (1.2) Fatachlocathane (1.1.2) 50.00 0 96.7 75 120 Rhyberashe (1.1.2) 50.00 0 96.7 75 120 Myberashe (1.1.2) 5.0 10.00 0 96.7 75 120 Myberashe (1.1.2) 5.0 10.00 0 96.7 75 120 Myberashe (1.2.2) 5.0 10.00 0 96.7 75 120 Myberashe (1.2.2) 5.0 50.00 0 97.1 70 120 Myberashe (1.2.2) 50.00 0 97.00 97.1 70 120 Myberashe (1.2.2) 50.00 0 97.00 97.1 70 120 Myberashe (1.2.2) 50.00 0 97.00 97.1 120 Myberashe (1.2.2) 50.00 0 <td< td=""><td>1,2-Dibromoethane</td><td></td><td>45.40</td><td>5.0</td><td>50.00</td><td>0</td><td>90.8</td><td>80</td><td>120</td><td>0</td><td></td></td<>	1,2-Dibromoethane		45.40	5.0	50.00	0	90.8	80	120	0	
(1, 1, 2, 1) $(1, 2, 1)$	(1, 1, 2) $(1, 2)$ $(1, 2)$ $(1, 3)$	Chlorobenzene		44.34	5.0	50.00	0	88.7	80	120	0	
Litylenzane 4.36 5.0	Litylenzane $q_{1,2}$ $q_{1,2}$ $q_{1,2}$ $q_{1,2}$ $q_{1,2}$ $q_{1,2}$ $q_{2,1}$ $q_{2,2}$ $q_{2,1}$ $q_{2,2}$ $q_{2,1}$ $q_{2,2}$ $q_{2,1}$ $q_{2,2}$ $q_{2,1}$ $q_{2,2}$ $q_{2,1}$ $q_{2,2}$	1,1,1,2-Tetrachloroethane		47.99	5.0	50.00	0	96.0	80	130	0	
Transform 5.0 10.0 0 9.5 7.5 Sylpine 44.13 5.0 10.0 0 89.6 75 Sylpine 44.13 5.0 100.0 0 89.6 75 Sylmon 33.17 5.0 100.0 0 89.6 75 Sylmoform 33.17 5.0 50.00 0 89.6 75 Sylmoform 33.17 5.0 50.00 0 89.6 75 Sylmoform 34.11 5.0 50.00 0 89.1 75 Sylmoforpane 41.15 5.0 50.00 0 91.0 75 Chorotoulane 41.15 5.0 50.00 0 91.0	π_{0} Xylene 9.5 5.0 10.0 0 89.5 5.0 10.0 0 89.6 5.0 $Xylene$ 44.13 5.0 100.0 0 89.6 5.0 $Xylene$ 44.13 5.0 50.00 0 89.6 50.00 0 89.6 50.00 0 89.1 12.2 $Xylene$ 44.81 5.0 50.00 0 89.6 50.00 0 89.6 50.00 0 89.1 75.6 $Sylonylbenzene 47.57 5.0 50.00 0 10.7 75.6 75.00 0 10.7 75.6 Floxylbenzene 47.57 5.0 50.00 0 10.7 75.6$	Ethylbenzene		44.36	5.0	50.00	0	88.7	75	125	0	
Sylvene 44.13 5.0 50.00 088.380Sylvene 44.13 5.0 50.00 088.380Somoform 33.87 5.0 50.00 089.465Syrvene 47.87 5.0 50.00 0 89.6 65Synene 47.87 5.0 50.00 0 89.6 65Synene 47.87 5.0 50.00 0 89.6 65Synene 47.87 5.0 50.00 0 89.6 75 Synene 47.87 5.0 50.00 0 99.6 75 Synene 47.75 5.0 50.00 0 99.6 75 Synene 47.75 5.0 50.00 0 91.0 75 PPOpylaerane 47.75 5.0 50.00 0 91.0 75 PPOpylaerane 47.75 5.0 50.00 0 90.3 75 PPOpylaerane 47.75 5.0 50.0	Ayyete 44.13 5.0 50.00 0 88.3 60 Ayyete 7000 14.13 5.0 50.00 0 81.4 50 Symete 33.87 5.0 50.00 0 81.4 50 Symete 33.87 5.0 50.00 0 81.4 50 Symete 47.17 5.0 50.00 0 81.4 50 Symete 47.71 5.0 50.00 0 81.4 50 Symete 47.71 5.0 50.00 0 91.0 50.7 Symete 47.75 5.0 50.00 0 91.0 75 PPopylaerate 47.75 5.0 50.00 0 91.0 75 PFopylaerate 47.75 50.00 90.00 0 91.2 75 PFopylaerate 47.75 50.00 90.00 91.2 75	m,p-Xylene		89.56	5.0	100.0	0	89.6	75	130	0	
Vylene (Total) 133.7 5.0 150.0 0 99.1 81 Symoniom 53.00 0 99.1 65 59.00 0 99.1 65 Symoniom 53.17 5.0 50.00 0 99.1 65 Symoniom 53.3 50.00 0 99.1 65 sopropylibenzene 47.57 5.0 50.00 0 99.1 65 Application 47.57 5.0 50.00 0 91.0 75 Propylibenzene 47.71 5.0 50.00 0 90.1 75 Propylibenzene 47.57 5.0 50.00 0 90.3 75 Propylibenzene 47.57 5.0 50.00 0 90.3 75 Application 47.57 5.0 50.00 0 90.3 75 Application 47.57 5.0 50.00 0 90.3 75 Application 47.57 5.0	Nyme 133.7 5.0 150.0 0 99.1 81 Syne 5.0 5.0 5.0 5.0 9.0 9.1 61 Syne 5.1 5.0 5.0 5.0 9.0 9.1 61 Syne 5.1 5.0 5.0 5.0 9.0 0 91.6 5 Somoharse 47.57 5.0 50.00 0 91.0 75 Somoharse 47.15 5.0 50.00 0 91.0 75 Somoharse 47.11 5.0 50.00 0 91.0 75 Somoharse 47.11 5.0 50.00 0 91.3 75 Chorotuse 47.11 5.0 50.00 0 92.3 75 Chorotuse 47.1 5.0 50.00 0 93.3 75 Somoharse 47.1 50 50.00 0 93.3 75 Chorotuse 47.1 50	o-Xylene		44.13	5.0	50.00	0	88.3	80	120	0	
Syteme 44.81 5.0 50.00 0 93.6 65 Surdivation Surdivation 44.81 5.0 50.00 0 93.6 65 Surdivation 43.79 5.0 50.00 0 95.1 65 Surdivations 43.75 5.0 50.00 0 95.1 65 Surdivations 41.57 5.0 50.00 0 95.1 65 Surdivations 51.1 5.0 50.00 0 95.1 65 Surdivations 41.57 5.0 50.00 0 95.1 67 Surdivations 41.57 5.0 50.00 0 96.3 75 Chiorobusine 45.13 5.0 50.00 0 96.3 75 Chiorobusine 41.57 5.0 50.00 0 96.3 75 Chiorobusine 41.57 5.0 50.00 0 96.3 75 Chiorobusine 41.57 5.	Styrene 5.0 5.0 5.0 9.6 65 Suropherzene 41.81 5.0 5.0 0 91.6 55 Sorophylenzene 47.57 5.0 5.0 0 91.6 55 Sorophylenzene 47.57 5.0 50.00 0 91.6 55 Sorophylenzene 47.75 5.0 50.00 0 91.7 55 Chorotoluene 47.75 5.0 50.00 0 91.7 55 Chorotoluene 47.75 5.0 50.00 0 91.7 55 Chorotoluene 47.75 5.0 50.00 0 91.7 75 Chorotoluene 47.75 5.0 50.00 0 92.3 75 Chorotoluene 47.75 5.0 50.00 0 92.3 75 Chorotoluene 47.75 5.0 50.00 0 92.3 75 Chorotoluene 47.75 50.00 0 0	Xylene (Total)		133.7	5.0	150.0	0	89.1	81	121	0	
Somoform 5.03 5.0 5.00 108 70 scorolybenzene 47.73 5.0 50.00 0 87.6 75 scorolybenzene 47.73 5.0 50.00 0 95.16 75 scorolybenzene 47.73 5.0 50.00 0 91.0 75 somoberzene 57.71 5.0 50.00 0 91.0 75 somoberzene 57.71 5.0 50.00 0 90.8 75 somoberzene 47.71 5.0 50.00 0 90.8 75 cholotolene 47.71 5.0 50.00 0 90.8 75 secbulybenzene 47.71 5.0 50.00 0 90.8 75 secbulybenzene 47.71 5.0 50.00 0 90.8 75 cholotobenzene 47.71 5.0 50.00 0 91.6 75 secbulybenzene 47.26 50.00 0 91.6 75 secbulybenzene 47.26 50.00 0 0 00.8	Sormoform 53.87 5.0 50.00 0 108 70 septoplylemzene 47.17 5.0 50.00 0 91.6 75 septoplylemzene 47.12 5.0 50.00 0 91.1 75 Somoberzene 47.12 5.0 50.00 0 90.5 75 Chorotoluene 45.13 5.0 50.00 0 90.5 75 Chorotoluene 45.13 5.0 50.00 0 90.5 75 Chorotoluene 47.31 5.0 50.00 0 90.3 75 Chorotoluene 47.31 5.0 50.00 </td <td>Styrene</td> <td></td> <td>44.81</td> <td>5.0</td> <td>50.00</td> <td>0</td> <td>89.6</td> <td>65</td> <td>135</td> <td>0</td> <td></td>	Styrene		44.81	5.0	50.00	0	89.6	65	135	0	
soproprilemente $41,75$ $5,0$ $50,00$ 0 $87,6$ $75,7$ $1,12,2$ -Irrachlonoehtane $47,57$ $5,0$ $50,00$ 0 $91,16$ $55,75$ $1,22,2$ -Irrachlonoehtane $47,57$ $5,0$ $50,00$ 0 $91,16$ $55,75$ $2,23$ -Trichlonophane $47,57$ $5,0$ $50,00$ 0 $91,2$ $75,75,75,75,75,75,75,75,75,75,75,75,75,7$	soprogriame $9.1,9$ 5.0 50.00 0 87.6 75 $1,12.7$ Trichlorophane 4.75 5.0 50.00 0 91.1 55.0 $1,22.7$ Trichlorophane 5.131 5.0 50.00 0 91.1 55.0 7.27 Trichlorophane 5.131 5.0 50.00 0 91.1 55.0 7.7 Propriberzene 4.75 5.0 50.00 0 91.2 75.00 7.7 Propriberzene $4.5.25$ 5.0 50.00 0 90.3 75.00 2.7 Trinethybenzene $4.5.13$ 5.0 50.00 0 90.3 75.00 2.4 Trinethybenzene $4.7.57$ 5.0 50.00 0 90.3 75.00 2.4 Trinethybenzene $4.7.77$ 5.0 50.00 0 90.3 75.00 2.4 Trinethybenzene $4.7.77$ 5.0 50.00 0 90.3 75.00 4.10 Trinethybenzene <td>Bromoform</td> <td></td> <td>53.87</td> <td>5.0</td> <td>50.00</td> <td>0</td> <td>108</td> <td>70</td> <td>130</td> <td>0</td> <td></td>	Bromoform		53.87	5.0	50.00	0	108	70	130	0	
1, 1, 2, 2-Tetrachloroethane $4, 1, 5, 1$ $5, 0$ $50, 00$ 0 $9, 5, 1$ 65 3 -monbenzene $5, 1, 3$ $5, 0$ $50, 00$ 0 $91, 0$ 75 $1, 7, 2, 2$ -Tetrachloroephane $5, 1, 3$ $5, 0$ $50, 00$ 0 $91, 0$ 75 $1, 2, 3, 7$ -Interplylbenzene $4, 2, 25$ $5, 0$ $50, 00$ 0 $90, 5$ 75 $2, 3, 7$ -Interplylbenzene $4, 2, 25$ $5, 0$ $50, 00$ 0 $90, 3$ 75 $3, 5, 7$ -Interplylbenzene $4, 1, 33$ $5, 0$ $50, 00$ 0 $90, 3$ 76 $4, 6$ -Intoroloulene $4, 1, 33$ $5, 0$ $50, 00$ 0 $90, 3$ 76 $4, 6$ -Intoroloulene $4, 1, 33$ $5, 0$ $50, 00$ 0 $90, 3$ 76 $4, 1, 1$ -Intoroloulene $4, 1, 33$ $5, 0$ $50, 00$ 0 $90, 3$ 76 $2, 1, 1$ -Intoroloulene $4, 1, 33$ $5, 0$ $50, 00$ 0 $90, 3$ 76 $4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,$	1,1,2,2-Tetrachloroethane $4,1,57$ $5,0$ $50,00$ 0 $91,0$ $55,1$ $55,00$ 0 $91,0$ 75 $2,3000benzene31,315,050,0001037575,0010375POopylbenzene31,315,050,0001037575,0090,575,0090,575,002,31000000ene45,235,050,00090,375,00090,375,0003,5,51000000ene45,135,050,00090,375,00090,375,0004,5100000ene45,135,050,00090,375,00090,375,0004,510000ene44,1335,050,00090,375,00090,375,0004,510000ene44,1335,050,00090,375,00090,375,0004,5000000000000000000000000000000000000$	Isopropylbenzene		43.79	5.0	50.00	0	87.6	75	125	0	
Siomobenzene 5.0 5.0 5.00 0 91.0 75 7.3 -Trichloropripane $5.1.31$ 5.0 50.00 0 90.3 75 7 -Propolyenzene 45.121 5.0 50.00 0 90.3 75 7 -Propolyenzene 45.23 5.0 50.00 0 90.3 75 7 -Chloroprojenzene 45.23 5.0 50.00 0 90.3 75 4 -Chloroprojuene 45.33 5.0 50.00 0 90.3 75 4 -Chloroprojuene 45.13 5.0 50.00 0 90.3 75 4 -Chloroprojuene 41.51 5.0 50.00 0 90.3 75 4 -Lohonoprazene 41.54 5.0 50.00 0 90.3 70 4 -Lohonoprazene 41.21 5.0 50.00 0 90.3 70 4 -Lohonoprazene 41.21 5.0 50.00 0 90.3 70 4 -Lohonoprazene 41.21 50 50.00 0 90.3 70 4 -Lohonoprazene 41.21 50 50.00 0 90.3 70 4 -Lohonoprazene 41.21 50 50.00 0 $90.$	Siomobenizane 5.0 5.0 50.00 0 91.0 75 Alonobenizane $2.2.71$ 5.0 50.00 0 91.3 75 Propylbanzane 45.25 5.0 50.00 0 90.5 75 Chloroptiopane 45.25 5.0 50.00 0 90.5 75 Chloroptiones 45.33 5.0 50.00 0 90.3 75 Chloroptiones 45.33 5.0 50.00 0 90.3 75 Chloroptiones 41.67 5.0 50.00 0 90.3 75 Chloroptiones 41.67 5.0 50.00 0 90.3 75 Chloroptare 41.67 5.0 50.00 0 90.3 75 Chloroptare 41.54 5.0 50.00 0 90.3 75 SecButylbenzene 41.54 5.0 50.00 0 90.3 75 Chloroptare 41.54 5.0 50.00 0 90.3 75 SecButylbenzene 41.54 5.0 50.00 0 90.3 75 Chloroptare 51.75 50.00 0 10.75 52.75 50.00 0 10.25 Chloroptare	1,1,2,2-Tetrachloroethane		47.57	5.0	50.00	0	95.1	65	130	0	
1,2,3-Trichloropropane $5,0$ $5,0$ $5,0$ 103 75 $7,2,3$ -Trichloropropane $1,2,3$ -Trichloropropane $4,5,2$ $5,0$ $5,00$ 0 $85,4$ 70 $7,3,7$ Trinethlyenzene $45,23$ $5,0$ $5,00$ 0 $89,3$ 75 $2,7,1$ Trinethlyenzene $45,33$ $5,0$ $5,00$ 0 $89,3$ 75 $4,67$ $5,00$ 0 $90,3$ 75 $4,67$ $5,00$ 0 $89,3$ 75 $4,61$ Trimethybenzene $44,67$ $5,0$ $5,000$ 0 $89,3$ 75 $4,7$ Irimethybenzene $44,57$ $5,0$ $5,000$ 0 $89,3$ 75 $4,7$ Irimethybenzene $41,33$ $5,0$ $5,000$ 0 $89,3$ 75 $2,2,1$ Trimethybenzene $41,33$ $5,0$ $5,000$ 0 $89,3$ 75 $2,2,1$ Trimethybenzene $41,31$ $5,0$ $5,000$ 0 $89,3$ 75 $2,2,1$ Trimethybenzene $42,23$ $5,0$ $5,000$ 0 $89,3$ 75 $4,2,000008,17,27582,2000081,6754,2,0000009,00009,000092,25651,2,21Trinethybenzene4,2,275,000092,25651,2,21Trinethybenzene4,2,275,000092,25651,2,21Trichorobenzene1,2,215,000010,225$	1.2.3-Trichloropropane5.1.315.050.000103757.Polyblenzene $-Propyblenzene$ 42.115.050.00085.4707.Polyblenzene45.255.050.00080.3752.Chlorotoluene45.135.050.00080.3752.Chlorotoluene45.135.050.00080.3754.Chlorotoluene45.135.050.00080.3754.Chlorotoluene41.675.050.00080.3752.Chlorotoluene41.335.050.00080.3752.Elutybenzene41.335.050.00083.1752.Elutybenzene41.335.050.00083.1752.Lobiorobenzene41.315.050.00083.1754.Sopopyflouene42.925.050.00083.6751.3.Dichlorobenzene42.335.050.00093.8701.2.Polikorobenzene42.255.050.00093.8751.2.Diblorobenzene46.275.050.00093.8701.2.Polikorobenzene41.255.050.00093.8701.2.Polikorobenzene41.255.050.00093.8701.2.Polikorobenzene5.05.050.000102751.2.Polikorobenzene5.05.050	Bromobenzene		45.48	5.0	50.00	0	91.0	75	125	0	
γ -Propribentzene42.715.050.00065.4702.Chlorotoluene2.55.050.00085.4702.Ghorotoluene45.335.050.00080.3752.Ghorotoluene45.135.050.00080.3752.Ghorotoluene45.135.050.00080.3752.Ja-Trimethylbenzene45.135.050.00080.3702.Ja-Trimethylbenzene44.675.050.00080.3752.Ja-Trimethylbenzene44.335.050.00080.3702.Ja-Trimethylbenzene44.335.050.00080.4752.Ja-Trimethylbenzene41.335.050.00080.5753.Gholorobenzene42.225.050.00081.5753.Hylbenzene42.255.050.00081.5753.Hylbenzene44.265.050.00081.5753.Hylbenzene44.265.050.00081.5753.Hylbenzene44.265.050.00091.6703.Hylbenzene44.265.050.00092.5553.Hylbenzene5.050.00092.5553.Hylbenzene43.205.050.000102553.Hylbenzene5.050.0001012.4703.Hylbenz	γ -Popyloenzene 42.71 5.0 50.00 0 85.4 70 $2.Chlocotoluene45.255.050.00089.3752.Chlocotoluene45.335.050.00089.3754.5hrototoluene45.135.050.00089.3754.5hrototoluene45.135.050.00089.3754.5hrototoluene44.675.050.00089.3754.5hrototoluene44.735.050.00089.3752.5hrototoluene44.735.050.00089.3752.5hrototoluene44.735.050.00089.3751.5hrototoluene44.735.050.00089.6751.5hrototoluene44.755.050.00089.6751.5hrototoluene44.755.050.00089.6751.5hrototoluene44.255.050.00089.6751.5hrototoluene44.255.050.00091.6751.5hrototoluene42.7550.00091.6751.5hrototoluenzene42.7550.0000102551.5hrototoluenzene41.2650.00010255551$	1,2,3-Trichloropropane		51.31	5.0	50.00	0	103	75	125	0	
2.Chlorotoluene 45.25 5.0 50.00 0 90.5 75 $7.3.5.77$ imethylbenzene 45.39 5.0 50.00 0 90.3 75 $7.3.5.77$ imethylbenzene 45.13 5.0 50.00 0 90.3 75 $7.3.5.77$ imethylbenzene 45.13 5.0 50.00 0 90.3 75 $7.3.5.77$ imethylbenzene 47.13 5.0 50.00 0 90.3 75 $7.3.5.77$ imethylbenzene 41.54 5.0 50.00 0 90.3 75 $7.3.5.71$ imethylbenzene 41.31 5.0 50.00 0 90.3 75 $4.5.66$ 41.31 5.0 50.00 0 90.6 75 $7.3.5.16$ 50.00 0 90.6 75 75 $4.5.16$ 50.00 0 91.6 75 75 $4.5.16$ 50.00 0 91.6 75 75 $4.5.16$ 50.00 0 91.6 75 75 $4.5.16$ 50.00 0 91.6 75 75 $4.5.16$ 50.00 0 92.6 75 75 $4.5.16$ 50.00 0 92.6 75 75 $4.7.16$ 50.00 0 92.6 75 75 $4.7.16$ 50.00 0 92.6 75 75 $4.7.16$ 50.00 0 92.6 75 75 $4.7.16$ 50.00 0 92.6 75 75 <	2.Chlorotoluene45.255.050.00090.575 $(13.5.Timethylbenzene45.395.050.00090.375(13.5.Timethylbenzene45.395.050.00090.375(13.5.Timethylbenzene45.135.050.00090.375(13.5.Timethylbenzene45.135.050.00090.375(13.5.Timethylbenzene41.535.050.00090.375(13.5.Timethylbenzene41.545.050.00090.375(13.5.Liborobenzene41.545.050.00093.870(13.5.Liborobenzene41.255.050.00093.870(13.5.Liborobenzene41.255.050.00093.870(13.5.Liborobenzene41.255.050.00093.870(13.5.Liborobenzene41.255.050.00093.870(14.5.Liborobenzene41.255.050.00093.870(14.5.Liborobenzene41.265.050.00093.870(14.5.Liborobenzene41.265.050.00093.870(14.5.Liborobenzene41.265.050.00093.870(14.5.Liborobenzene41.265.050.00093.870(14.5.Liborobenzene41.265.050.00093.8<$	n-Propylbenzene		42.71	5.0	50.00	0	85.4	70	130	0	
(3,5-Trimethybenzene 5.0 5.0 5.0 5.00 0 90.8 75 $4-Chiorobusene4.4.675.05.00090.3754-Chiorobusene4.7.135.05.00088.7754-Chiorobusene4.7.335.050.00088.775(2, 1) Trimethybenzene4.1.545.050.00088.775(2, 1) Trimethybenzene4.1.545.050.00088.775(2, 2) Chiorobenzene4.1.545.050.00088.775(4, 2) Chiorobenzene4.1.545.050.00088.775(4, 2) Chiorobenzene4.2.925.050.00088.675(4, 2) Chiorobenzene4.2.75.050.00093.870(2, 2) Chiorobenzene4.2.75.050.00093.870(2, 2) Chiorobenzene4.2.75.050.00092.550.00(2, 2) Chiorobenzene4.2.75.050.00092.650.00(2, 2) Chiorobenzene4.2.75.050.00010.255(2, 2) Chiorobenzene4.2.75.050.00010.255(2, 2) Chiorobenzene5.050.00010.255(2, 3) Chiorobenzene4.2.$	(3,5-Timethylbenzene 5.00 5.0 5.00 90.8 75 4-Chlorobulene 41.67 5.0 50.00 0 89.3 75 4-Chlorobulene 41.71 5.0 50.00 0 89.3 75 $4.4Timethylbenzene41.335.050.00088.7751.4-Timethylbenzene41.335.050.00088.7751.4-Timethylbenzene41.315.050.00088.7754.4Dichlorobenzene41.315.050.00088.7754.4Dichlorobenzene42.925.050.00088.7751.4-Dichlorobenzene42.1265.050.00088.6751.4-Dichlorobenzene42.925.050.00091.6751.4-Dichlorobenzene42.925.050.00091.6751.4-Dichlorobenzene51.795.050.00091.6751.4-Dichlorobenzene51.795.050.00092.6551.2-Dichlorobenzene51.7950.00092.655551.2-Tichlorobenzene51.77950.00011.652.6551.2-Tichlorobenzene51.77950.00011.650.00012.41.2-Tichlorobenzene51.779$	2-Chlorotoluene		45.25	5.0	50.00	0	90.5	75	125	0	
4-Chlorotoluene 44.67 5.0 50.00 0 89.3 75 $c:Huylbenzene$ 47.13 5.0 50.00 0 89.3 70 $1.24.Trimethylbenzene41.335.050.00089.3702.24.Trimethylbenzene41.335.050.00089.7752.24.Trimethylbenzene41.335.050.00088.7751.24.Trimethylbenzene41.245.050.00088.7704.10phonobenzene41.265.050.00088.5751.3.Dichorobenzene41.265.050.00088.5751.4.Dichorobenzene42.265.050.00088.5751.4.Dichorobenzene42.265.050.00092.550.0001.2.Dichorobenzene41.265.050.00092.550.00092.550.001.2.Dichorobenzene41.265.050.00092.550.00092.550.00092.550.00092.550.000116^255^250.000116^255^250.000116^255^250.000116^255^250.000116^255^250.000116^255^250.000$	4-Chlorotoluene 44.67 5.0 50.00 0 89.3 75 $crt-Buylbenzene45.135.050.00080.375crt-Buylbenzene41.545.050.00080.375crt-Buylbenzene41.545.050.00080.775crt-Buylbenzene41.545.050.00080.775crt-Buylbenzene41.265.050.00088.775crt-Buylbenzene42.225.050.00088.575crt-Buylbenzene42.255.050.00088.575crt-Buylbenzene42.255.050.00088.675crt-Buylbenzene44.265.050.00088.675crt-Buylbenzene44.265.050.00092.555crt-Buylbenzene44.265.050.00092.555crt-Buylbenzene46.275.050.00092.555crt-Buylbenzene5.050.000126.450crt-Buylbenzene5.050.000126.450crt-Buylbenzene5.050.000126.450crt-Buylbenzene5.050.000126.450crt-Buylbenzene5.050.00$	1,3,5-Trimethylbenzene		45.39	5.0	50.00	0	90.8	75	130	0	
ert-Burylbenzene 5.0 5.0 50.00 0 90.3 70 $1,2,4$ -Trimethylbenzene 41.33 5.0 50.00 0 80.7 75 sec-Burylbenzene 41.24 5.0 50.00 0 83.1 70 2.4 -Trimethylbenzene 41.24 5.0 50.00 0 83.1 70 4.1 -Sopropyltoluene 41.24 5.0 50.00 0 83.6 75 4.1 -Subropyltoluene 44.231 5.0 50.00 0 88.6 75 $1,4$ -Dichorobenzene 44.231 5.0 50.00 0 88.6 75 $1,4$ -Dichorobenzene 44.231 5.0 50.00 0 88.6 75 $1,4$ -Dichorobenzene 44.231 5.0 50.00 0 93.8 70 $1,4$ -Dichorobenzene 44.25 5.0 50.00 0 116 50 $1,2$ -Dichorobenzene 46.27 5.0 50.00 0 92.5 55 $1,2$ -Trichlorobenzene 41.23 5.0 50.00 0 116 50 $1,2$ -Trichlorobenzene 51.00 50.00 0 116 50 00.00 0 116 50 $1,2$ -Trichlorobenzene 51.00 50.00 0 116 50.00 0 116 50.00 $1,2$ -Trichlorobenzene 51.00 50.00 0 116 51.4 50 $1,2$ -Trichlorobenzene 51.00 50.00 0 10.2	ert-Burylbenzene 45.13 5.0 50.00 0 90.3 70 $1.2.4$ -Trimethylbenzene 41.33 5.0 50.00 0 83.1 75 $ac-Burylbenzene41.335.050.00083.1704.15-sc-Burylbenzene41.335.050.00083.1704.16-sc-Burylbenzene41.245.050.00083.6754.16-sc-Burylbenzene44.235.050.00083.6754.16-sc-Burylbenzene44.235.050.00083.675-Burylbenzene44.235.050.00083.675-Burylbenzene44.235.050.00083.675-Burylbenzene39.535.050.00093.870-Burylbenzene39.535.050.00093.8701.2.4-Trichlorobenzene46.275.050.00011.6501.2.4-Trichlorobenzene41.265.050.00011.6501.2.4-Trichlorobenzene51.7950.00011.6501.2.4-Trichlorobenzene51.7950.00010.250.001.2.4-Trichlorobenzene51.77950.00010.250.001.2.4-Trichlorobenzene51.77950.0001$	4-Chlorotoluene		44.67	5.0	50.00	0	89.3	75	130	0	
1,2,4.Timethylbenzene 41.33 5.0 50.00 0 88.7 75 sec-Butylbenzene 41.54 5.0 50.00 0 88.7 75 sec-Butylbenzene 41.31 5.0 50.00 0 88.6 75 $1,3$ -Dichlorobenzene 41.31 5.0 50.00 0 88.6 75 $1,4$ -Dichlorobenzene 41.26 5.0 50.00 0 88.6 75 $1,4$ -Dichlorobenzene 41.26 5.0 50.00 0 88.6 75 $1,4$ -Dichlorobenzene 44.26 5.0 50.00 0 88.6 75 $1,4$ -Dichlorobenzene 44.26 5.0 50.00 0 88.6 75 $1,2$ -Dichlorobenzene 44.26 5.0 50.00 0 116 50 $1,2$ -Dichlorobenzene 46.88 5.0 50.00 0 116 50 $1,2$ -Dichlorobenzene 46.27 5.0 50.00 0 116 50 $1,2$ -Tichlorobenzene 51.00 50.00 0 116 50 $1,2$ -Tichlorobenzene 51.00 50.00 0 116 50 $1,2$ -Tichlorobenzene 51.00 50.00 0 102 55 $1,2$ -Dichlorobenzene 51.00 0 102 55 $1,2$ -Tichlorobenzene 51.00 0 102 55 $1,2$ -Tichlorobenzene 51.00 0 102 55 $1,2$ -Tichlorobenzene 51.00 0 <td>1,2,4.Timethylbenzene$41.23$$5.0$$50.00$$0$$88.7$$75$sec-buylbenzene$41.54$$5.0$$50.00$$0$$88.6$$75$<math>4,2optopyltoluene$41.24$$5.0$$50.00$$0$$88.6$$75$<math>4,2optopyltoluene$41.24$$5.0$$50.00$$0$$88.6$$75$<math>1,4.Dichlorobenzene$41.26$$5.0$$50.00$$0$$88.6$$75$<math>1,4.Dichlorobenzene$44.26$$5.0$$50.00$$0$$88.6$$75$<math>1,2.Dichlorobenzene$44.26$$5.0$$50.00$$0$$93.8$$70$<math>2.Buylbenzene$44.26$$5.0$$50.00$$0$$91.1$$70$<math>1,2.Dichlorobenzene$46.88$$5.0$$50.00$$0$$91.6$$70$<math>1,2.Dichlorobenzene$46.27$$5.0$$50.00$$0$$116$$50$<math>1,2.Tichlorobenzene$41.26$$5.0$$50.00$$0$$116$$50$<math>1,2.Tichlorobenzene$51.79$$50.00$$0$$102$$85$<math>1,2.Tichlorobenzene$51.00$$50.00$$0$$102$$85$<math>1,2.Tichlorobenzene$51.00$$50.00$$0$$102$$102$<math>1,2.Tichlorobenzene$51.00$$50.00$$0$$102$$102$<math>1,2.Tichlorobenzene$51.00$$50.00$$0$$102$$102$<math>1,2.Dichlorobenzene$50.00$$0$$102$$102$$102$$2.1.79$$50.00$</math></math></math></math></math></math></math></math></math></math></math></math></math></math></math></td> <td>tert-Butylbenzene</td> <td></td> <td>45.13</td> <td>5.0</td> <td>50.00</td> <td>0</td> <td>90.3</td> <td>70</td> <td>130</td> <td>0</td> <td></td>	1,2,4.Timethylbenzene 41.23 5.0 50.00 0 88.7 75 sec-buylbenzene 41.54 5.0 50.00 0 88.6 75 $4,2optopyltoluene41.245.050.00088.6754,2optopyltoluene41.245.050.00088.6751,4.Dichlorobenzene41.265.050.00088.6751,4.Dichlorobenzene44.265.050.00088.6751,2.Dichlorobenzene44.265.050.00093.8702.Buylbenzene44.265.050.00091.1701,2.Dichlorobenzene46.885.050.00091.6701,2.Dichlorobenzene46.275.050.000116501,2.Tichlorobenzene41.265.050.000116501,2.Tichlorobenzene51.7950.000102851,2.Tichlorobenzene51.0050.000102851,2.Tichlorobenzene51.0050.0001021021,2.Tichlorobenzene51.0050.0001021021,2.Tichlorobenzene51.0050.0001021021,2.Dichlorobenzene50.0001021021022.1.7950.00$	tert-Butylbenzene		45.13	5.0	50.00	0	90.3	70	130	0	
sec-Butylbenzene 41.54 5.0 50.00 0 83.1 70 41 sopropyltoluene 42.92 5.0 50.00 0 83.6 75 $1,3$ -Dichlorobenzene 44.11 5.0 50.00 0 88.6 75 $1,4$ -Dichlorobenzene 44.26 5.0 50.00 0 88.6 75 -1 -Butylbenzene 44.26 5.0 50.00 0 88.6 75 -1 -Butylbenzene 44.26 5.0 50.00 0 88.6 75 -12 -Dichlorobenzene 44.26 5.0 50.00 0 91.1 70 $1,2$ -Dichlorobenzene 46.27 5.0 50.00 0 116.6 50 $1,2$ -Dichlorobenzene 45.779 5.0 50.00 0 116.6 50 $1,2$ -Dichlorobenzene 45.779 5.0 50.00 0 102 55 $1,2$ -Dichlorobenzene 51.00 5.0 50.00 0 102 55 $1,2$ -Dichlorobenzene 52.54 5.0 50.00 0 102 55 $1,2$ -Dichlorobenzene 50.78 50.00 0 102 70 $1,2$ -Dichlorobenzene 50.78 50.00 0 102 70 $1,2$ -Dichlorobenzene 50.78 50.00 0 102 75 2 urogate: Flouene-d8 50.78 50.00 0 102 75 2 urogate: Bromofluorobenzene 50.78 50.00 0 102 75 <	sec-Butylbenzene 41.54 5.0 50.00 0 83.1 70 41 sopropyltoluene 42.92 5.0 50.00 0 85.8 75 $1,3$ -Dichlorobenzene 44.26 5.0 50.00 0 88.6 75 $1,4$ -Dichlorobenzene 44.26 5.0 50.00 0 88.6 75 $-Butylbenzene44.265.050.00088.675-Butylbenzene44.265.050.00088.6751,2-Dichlorobenzene46.275.050.00092.8551,2-Dichlorobenzene46.275.050.000116501,2-Trichlorobenzene46.275.050.000116501,2-Trichlorobenzene47.275.050.000102554 exact/lorobenzene51.3050.000102554 exact/lorobutatione50.000102551,2-Trichlorobenzene51.0050.000102553 urogate: Ichonofluoromethane50.000102855 urogate: Bromofluorobenzene50.000102852 urogate: Toluene-d850.700102852 urogate: Bromofluorobenzene50.7001021022 urogate: Bromofluorobenzene50.700102<$	1,2,4-Trimethylbenzene		44.33	5.0	50.00	0	88.7	75	130	0	
41:Sopropyltoluene42:925.050.00085.875 $1,3-$ Dichlorobenzene 41.31 5.0 50.00 088.675 $1,4$ -Dichlorobenzene 41.31 5.0 50.00 088.575 7 -Dichlorobenzene 41.26 5.0 50.00 088.575 7 -Butylbenzene 39.53 5.0 50.00 0 88.6 75 7 -Butylbenzene 39.53 5.0 50.00 0 79.1 70 7 -Dichlorobenzene 46.88 5.0 50.00 0 79.1 70 $1,2$ -Dichlorobenzene 46.27 5.0 50.00 0 93.8 70 $1,2$ -Trichlorobenzene 47.20 5.0 50.00 0 16.4 50 $1,2$ -Trichlorobenzene 47.20 5.0 50.00 0 102 85.6 $1,2$ -Trichlorobenzene 5.0 5.0 50.00 0 102 85.6 $1,2$ -Trichlorobenzene 5.0 50.00 0 102 85.6 $1,2$ -Dichloroethane- 44 5.0 50.00 0 102 85.6 2000 0 102 0 102 102 102 $1,2$ -Dichloroethane	4:Sopropyltoluene 42.92 5.0 50.00 0 85.8 75 $1,3-$ Dichlorobenzene 41.31 5.0 50.00 0 88.6 75 $1,4$ -Dichlorobenzene 44.26 5.0 50.00 0 88.6 75 $1,4$ -Dichlorobenzene 44.26 5.0 50.00 0 88.6 75 $1,2$ -Dichlorobenzene 44.26 5.0 50.00 0 88.6 75 $1,2$ -Dichlorobenzene 46.27 5.0 50.00 0 126 50 $1,2-Dichlorobenzene46.275.050.000116501,2-Trichlorobenzene46.275.050.000116501,2-Trichlorobenzene47.205.050.000116501,2-Trichlorobenzene47.205.050.000102551,2-Trichlorobenzene5.050.000102551,2-Trichlorobenzene5.050.000102551,2-Trichlorobenzene5.050.000102552-Surogate: Ichlorobenzene50.000102552-Surogate: Bromofluorobenzene50.0001021021022-Surogate: Bromofluorobenzene50.0001021021022-Surogate: Bromofluorobenzene50.000102102102$	sec-Butylbenzene		41.54	5.0	50.00	0	83.1	70	125	0	
(3-)Cichlorobenzene 44.31 5.0 50.00 0 88.6 75 $(3-)$ Cichlorobenzene 44.26 5.0 50.00 0 88.5 75 $-$ Butylbenzene 39.53 5.0 50.00 0 88.5 75 $-$ Butylbenzene 39.53 5.0 50.00 0 88.5 75 $-$ Butylbenzene 39.53 5.0 50.00 0 79.1 70 $(12-)$ Cichlorobenzene 46.27 5.0 50.00 0 93.8 70 $(12-)$ Lichlorobenzene 46.27 5.0 50.00 0 116 50 $(12-)$ Lichlorobenzene 46.27 5.0 50.00 0 116 50 $(12-)$ Lichlorobenzene 51.00 0 116 50 0 116 50 $(12,3-Trichlorobenzene51.0050.0001025555Aexachlorobenzene51.0050.0001025555Aurogate: Dibromofluorobenzene50.0001028555Surrogate: Ioluene-d850.0001028550.00010285Surrogate: Bromofluorobenzene50.000102$	1,3-Dichlorobenzene 44.31 5.0 50.00 0 88.6 75 $7,4$ -Dichlorobenzene 44.26 5.0 50.00 0 88.5 75 $-Butylbenzene$ 39.53 5.0 50.00 0 88.5 75 $-Butylbenzene$ 39.53 5.0 50.00 0 88.5 75 $-Butylbenzene$ 39.53 5.0 50.00 0 79.1 70 $1,2$ -Dichlorobenzene 46.27 5.0 50.00 0 92.8 50 $1,2$ -Trichlorobenzene 46.27 5.0 50.00 0 116 50 $1,2$ -Trichlorobenzene 46.27 5.0 50.00 0 116 50 $1,2$ -Trichlorobenzene 46.27 5.0 50.00 0 126.4 50 $1,2,3$ -Trichlorobenzene 51.00 0 102 55 52.00 0 102 55 Aphthalene 52.33 50.00 0 102 55 52.00 0 102 55 Surrogate: Dibromofluoromethane 50.00 0 102 50.00 0 102 70 Surrogate: Bromofluorobenzene 50.78 50.00 0 102 102 75 Surrogate: Bromofluorobenzene 50.78 50.00 0 102 102 102 102 Surrogate: Bromofluorobenzene 50.78 50.00 0 102 102 102 102	4-Isopropyltoiuene		42.92	5.0	50.00	0	85.8	75	130	0	
1,4-Dichlorobenzene 44.26 5.0 50.00 0 88.5 75 $-$ Butylbenzene 39.53 5.0 50.00 0 79.1 70 $-$ Butylbenzene 39.53 5.0 50.00 0 79.1 70 $1,2-$ Dichlorobenzene 46.88 5.0 50.00 0 93.8 70 $1,2-$ Dichlorobenzene 46.27 5.0 50.00 0 93.8 70 $1,2-$ Dibromo-3-chloropropane 46.27 5.0 50.00 0 92.5 55 $1,2-$ Trichlorobenzene 43.20 5.0 50.00 0 102 55 $1,2,3-$ Trichlorobenzene 51.00 5.0 50.00 0 102 55 Naphthalene 51.00 50.00 0 102 86.4 50 $1,2,3-$ Trichlorobenzene 51.00 50.00 0 102 85.6 Surrogate: Dibromofluoromethane 50.82 5.0 50.00 0 102 85 Surrogate: Stronofluorobenzene 50.78 5.0 50.00 0 102 85 Surrogate: Bromofluorobenzene 50.78 5.0 50.00 0 102 102 102 102 102 Surrogate: Bromofluorobenzene 50.78 50.00 0 102 <	1,4-Dichlorobenzene 44.26 5.0 50.00 0 88.5 75 -Butylbenzene 39.53 5.0 50.00 0 79.1 70 -Jubichlorobenzene 39.53 5.0 50.00 0 79.1 70 $1,2$ -Dichlorobenzene 46.88 5.0 50.00 0 93.8 70 $1,2$ -Dichlorobenzene 46.88 5.0 50.00 0 93.8 70 $1,2$ -Trichlorobenzene 46.27 5.0 50.00 0 116 50 $1,2$ -Trichlorobenzene 43.20 5.0 50.00 0 126.4 50 $1,2.3$ -Trichlorobenzene 51.00 50.00 0 102 55 Awachlorobutadiene 51.00 5.0 50.00 0 102 55 Awathlare 51.00 50.00 0 102 55 Surrogate: Dibromofuoromethane 50.82 5.0 50.00 0 102 85 Surrogate: Bromofuorobenzene 50.78 5.0 50.00 0 102 85 Surrogate: Bromofuorobenzene 50.78 5.0 50.00 0 102 12 Surrogate: Bromofuorobenzene 50.78 5.0 50.00 0 102 12	1,3-Dichlorobenzene		44.31	5.0	50.00	0	88.6	75	125	0	
	n-Butylbenzene 39.53 5.0 50.00 0 79.1 70 $1,2$ -Dichlorobenzene 46.88 5.0 50.00 0 93.8 70 $1,2$ -Dichlorobenzene 57.79 5.0 50.00 0 116 50 $1,2$ -Dirbrono-3-chloropropane 57.79 5.0 50.00 0 116 50 $1,2$ -Hrichlorobenzene 46.27 5.0 50.00 0 116 50 $1,2,4$ -Trichlorobenzene 43.20 5.0 50.00 0 102 55 Hexachlorobutadiene 51.00 5.0 50.00 0 102 55 Naphthalene 51.00 5.0 50.00 0 102 55 Surrogate: Diroromethane 50.82 5.0 50.00 0 102 85 Surrogate: Toluene-d8 5.0 50.00 0 102 85 85 Surrogate: Bromofluorobenzene 50.78 5.0 50.00 0 102 85 Surrogate: Bromofluorobenzene 50.78 5.0 50.00 0 102 85	1,4-Dichlorobenzene		44.26	5.0	50.00	0	88.5	75	125	0	
1,2-Dichlorobenzene 46.88 5.0 50.00 0 93.8 70 1,2-Dichlorobenzene 57.79 5.0 50.00 0 116 50 1,2.4-Trichlorobenzene 46.27 5.0 50.00 0 116 50 4exachlorobutadiene 46.27 5.0 50.00 0 92.5 55 Hexachlorobutadiene 51.00 5.0 50.00 0 102 55 Naphthalene 51.00 5.0 50.00 0 102 55 Surrogate: Dibromofluoromethane 50.82 5.0 50.00 0 102 85 Surrogate: I,2-Dichloroethane-d4 50.82 5.0 50.00 0 102 85 Surrogate: Bromofluorobenzene 50.78 5.0 50.00 0 102 85 Surrogate: Bromofluorobenzene 50.78 5.0 50.00 0 102 85	1,2-Dichlorobenzene 46.88 5.0 50.00 0 93.8 70 1,2-Dibromo-3-chloropropane 57.79 5.0 50.00 0 116 50 1,2,4-Trichlorobenzene 46.27 5.0 50.00 0 92.5 65 Hexachlorobutadiene 43.20 5.0 50.00 0 92.5 65 Hexachlorobutadiene 51.00 5.0 50.00 0 102 55 Naphthalene 51.00 5.0 50.00 0 102 55 Surrogate: Dibromoftuoromethane 50.82 5.0 50.00 0 102 85 Surrogate: Toluene-d8 50.78 5.0 50.00 0 102 85 Surrogate: Bromofluorobenzene 50.78 5.0 50.00 0 105 85 Surrogate: Bromofluorobenzene 50.78 5.0 50.00 0 102 85	n-Butylbenzene		39.53	5.0	50.00	0	79.1	70	135	0	
1,2-Dibromo-3-chloropropane 57.79 5.0 50.00 0 116 50 1,2,4-Trichlorobenzene 46.27 5.0 50.00 0 92.5 65 Hexachlorobutadiene 46.27 5.0 50.00 0 92.5 65 Hexachlorobutadiene 51.00 5.0 50.00 0 102 55 Naphthalene 51.00 5.0 50.00 0 102 55 Surrogate: Dibromofluoromethane-d4 50.82 5.0 50.00 0 102 85 Surrogate: Toluene-d8 52.30 5.0 50.00 0 102 85 Surrogate: Bromofluorobenzene 50.78 5.0 50.00 0 102 75	1,2-Dibromo-3-chloropropane 57.79 5.0 50.00 0 116 50 1,2,4-Trichlorobenzene 46.27 5.0 50.00 0 92.5 65 Hexachlorobutadiene 47.20 5.0 50.00 0 86.4 50 1,2,3-Trichlorobenzene 51.00 5.0 50.00 0 86.4 50 1,2,3-Trichlorobenzene 51.00 5.0 50.00 0 102 55 Naphthalene 52.54 5.0 50.00 0 102 85 Surrogate: Dibromofluoromethane 50.82 5.0 50.00 0 102 85 Surrogate: Toluene-d8 52.30 5.0 50.00 0 102 85 Surrogate: Bromofluorobenzene 50.78 5.0 50.00 0 102 85	1,2-Dichlorobenzene		46.88	5.0	50.00	0	93.8	70	120	0	
1,2,4-Trichlorobenzene 46.27 5.0 50.00 0 92.5 65 Hexachlorobutadiene 43.20 5.0 50.00 0 86.4 50 Naphthalene 51.00 5.0 50.00 0 102 55 Surrogate: Dipromofluoromethane- $d4$ 52.54 5.0 50.00 0 102 55 Surrogate: I,2-Dichloroethane- $d4$ 49.03 5.0 50.00 0 102 85 Surrogate: Toluene- $d8$ 52.30 5.0 50.00 0 102 85 Surrogate: Bromofluorobenzene 50.78 5.0 50.00 0 102 85 Surrogate: Bromofluorobenzene 50.78 5.0 50.00 0 102 85 Surrogate: Bromofluorobenzene 50.78 5.0 50.00 0 102 75	1,2,4-Trichlorobenzene 46.27 5.0 50.00 0 92.5 65 Hexachlorobutadiene 43.20 5.0 50.00 0 86.4 50 1,2,3-Trichlorobenzene 51.00 5.0 50.00 0 102 55 Naphthalene 51.00 5.0 50.00 0 102 55 Surrogate: 1,2-Dichloromethane 52.54 5.0 50.00 0 102 85 Surrogate: 1,2-Dichloroethane-d4 49.03 5.0 50.00 0 102 85 Surrogate: Toluene-d8 52.30 5.0 50.00 0 105 85 Surrogate: Bromofluorobenzene 50.78 5.0 50.00 0 102 70	1,2-Dibromo-3-chloropropane		57.79	5.0	50.00	0	116	50	130	0	
Hexachlorobutadiene 43.20 5.0 50.00 0 86.4 50 1,2,3-Trichlorobenzene 51.00 5.0 50.00 0 102 55 Naphthalene 51.00 5.0 50.00 0 102 55 Surrogate: Dipromofluoromethane-d4 52.54 5.0 50.00 0 102 55 Surrogate: 1,2-Dichloroethane-d4 50.82 5.0 50.00 0 102 85 Surrogate: 1,2-Dichloroethane-d4 52.30 5.0 50.00 0 102 85 Surrogate: 1,2-Dichloroethane-d4 52.30 5.0 50.00 0 102 85 Surrogate: Surnofluorobenzene 50.78 5.0 50.00 0 105 85 Surrogate: Bromofluorobenzene 50.78 5.0 50.00 0 105 75	Hexachlorobutadiene 43.20 5.0 50.00 0 86.4 50 $1,2,3$ -Trichlorobenzene 51.00 5.0 50.00 0 102 55 Naphthalene 52.54 5.0 50.00 0 102 55 Surrogate: Dibromofluoromethane 50.82 5.0 50.00 0 102 55 Surrogate: 1,2-Dichloroethane-d4 49.03 5.0 50.00 0 102 85 Surrogate: 1,2-Dichloroethane-d4 52.30 5.0 50.00 0 102 85 Surrogate: Riomofluorobenzene 50.78 5.0 50.00 0 105 85 Surrogate: Bromofluorobenzene 50.78 5.0 50.00 0 102 75	1,2,4-Trichlorobenzene		46.27	5.0	50.00	0	92.5	65	135	0	
1,2,3-Trichlorobenzene 51.00 5.0 50.00 0 102 55 Naphthalene 52.54 5.0 50.00 0 105 55 Surrogate: Dipromofluoromethane-d4 50.82 5.0 50.00 0 105 55 Surrogate: I,2-Dichloroethane-d4 59.03 5.0 50.00 0 102 85 Surrogate: Toluene-d8 52.30 5.0 50.00 0 102 85 Surrogate: Bromofluorobenzene 50.78 5.0 50.00 0 105 85	1,2,3-Trichlorobenzene 51.00 5.0 50.00 0 102 55 Naphthalene 52.54 5.0 50.00 0 105 55 Surrogate: Dibromofluoromethane-d4 50.82 5.0 50.00 0 102 85 Surrogate: 1,2-Dichloroethane-d4 49.03 5.0 50.00 0 102 85 Surrogate: 1,2-Dichloroethane-d4 52.30 5.0 50.00 0 102 85 Surrogate: 1,2-Dichloroethane-d4 52.30 5.0 50.00 0 105 85 Surrogate: Ricomofluorobenzene 50.78 5.0 50.00 0 105 85	Hexachlorobutadiene		43.20	5.0	50.00	0	86.4	50	140	0	
Naphthalene 52.54 5.0 50.00 0 105 55 Surrogate: Dibromofiluoromethane 50.82 5.0 50.00 0 102 85 Surrogate: 1,2-Dichloroethane-d4 49.03 5.0 50.00 0 98.1 70 Surrogate: 1,2-Dichloroethane-d4 52.30 5.0 50.00 0 102 85 Surrogate: Toluene-d8 52.30 5.0 50.00 0 105 85 Surrogate: Bromofluorobenzene 50.78 5.0 50.00 0 105 75	Naphthalene 52.54 5.0 50.00 0 105 55 Surrogate: Dipromofluoromethane 50.82 5.0 50.00 0 102 85 Surrogate: 1,2-Dichloroethane-d4 49.03 5.0 50.00 0 102 85 Surrogate: 1,2-Dichloroethane-d4 52.30 5.0 50.00 0 105 85 Surrogate: Toluene-d8 52.30 5.0 50.00 0 105 85 Surrogate: Bromofluorobenzene 50.78 5.0 50.00 0 105 75	1,2,3-Trichlorobenzene		51.00	5.0	50.00	0	102	55	140	0	
Surrogate: Dibromofluoromethane 50.82 5.0 50.00 0 102 85 Surrogate: 1,2-Dichloroethane-d4 49.03 5.0 50.00 0 98.1 70 Surrogate: Toluene-d8 52.30 5.0 50.00 0 105 85 Surrogate: Bromofluorobenzene 50.78 5.0 50.00 0 105 85	Surrogate: Dibromofluoromethane 50.82 5.0 50.00 0 102 85 Surrogate: 1,2-Dichloroethane-d4 49.03 5.0 50.00 0 98.1 70 Surrogate: 1,2-Dichloroethane-d4 52.30 5.0 50.00 0 105 85 Surrogate: Toluene-d8 52.30 5.0 50.00 0 105 85 Surrogate: Bromofluorobenzene 50.78 5.0 50.00 0 102 75	Naphthalene		52.54	5.0	50.00	0	105	55	140	0	
Surrogate: 1,2-Dichloroethane-d4 49.03 5.0 50.00 0 98.1 70 Surrogate: Toluene-d8 52.30 5.0 50.00 0 105 85 Surrogate: Bromofluorobenzene 50.78 5.0 50.00 0 102 75	Surrogate: 1,2-Dichloroethane-d4 49.03 5.0 50.00 0 98.1 70 Surrogate: Toluene-d8 52.30 5.0 50.00 0 105 85 Surrogate: Bromofluorobenzene 50.78 5.0 50.00 0 102 75	Surrogate: Dibromofluoromet	hane	50.82	5.0	50.00	0	102	85	115	0	
Surrogate: Toluene-d8 52.30 5.0 50.00 0 105 85 Surrogate: Bromofluorobenzene 50.78 5.0 50.00 0 102 75	Surrogate: Toluene-d8 52.30 5.0 50.00 0 105 85 Surrogate: Bromofluorobenzene 50.78 5.0 50.00 0 102 75	Surrogate: 1,2-Dichloroethan	e-d4	49.03	5.0	50.00	0		70	120	0	
Surrogate: Bromofluorobenzene 50.78 5.0 50.00 0 102 75	Surrogate: Bromofluorobenzene 50.78 5.0 50.00 0 102 75	鹕 Surrogate: Toluene-d8		52.30	5.0	50.00	0	105	85	120	0	
			ne	50.78	5.0	50.00	0	102	75	120	0	

S - Spike Recovery outside accepted recovery limits
 R - RPD outside accepted recovery limits

B - Analyte detected in the associated Method Blank

Qualifiers: mLIMS-001

J - Analyte detected below quantitation limits ND - Not Detected at the Reporting Limit

Client: Day Environmental Inc.

Client Sample ID: TP10-4 (2')

Lab ID: J0281-02

Project: 151 Mt. Hope Ave. **Collection Date:** 02/19/10 9:20

Analyses	Result Qual	RL Units	DF Date Analyzed	Batch ID
				SW8270_S
Phenol	ND	390 µg/Kg	1 02/26/2010 18:10	49468
Bis(2-chloroethyl)ether	ND	390 µg/Kg	1 02/26/2010 18:10	49468
2-Chlorophenol	ND	390 µg/Kg	1 02/26/2010 18:10	49468
1,3-Dichlorobenzene	ND	390 µg/Kg	1 02/26/2010 18:10	49468
1,4-Dichlorobenzene	ND	390 µg/Kg	1 02/26/2010 18:10	49468
1,2-Dichlorobenzene	ND	390 µg/Kg	1 02/26/2010 18:10	49468
2-Methylphenol	ND	390 µg/Kg	1 02/26/2010 18:10	49468
2,2'-oxybis(1-Chloropropane)	ND	390 µg/Kg	1 02/26/2010 18:10	49468
4-Methylphenol	ND	390 µg/Kg	1 02/26/2010 18:10	49468
N-Nitroso-di-n-propylamine	ND	390 µg/Kg	1 02/26/2010 18:10	49468
Hexachloroethane	ND	390 µg/Kg	1 02/26/2010 18:10	49468
Nitrobenzene	ND	390 µg/Kg	1 02/26/2010 18:10	49468
Isophorone	ND	390 µg/Kg	1 02/26/2010 18:10	49468
2-Nitrophenol	ND	390 µg/Kg	1 02/26/2010 18:10	49468
2,4-Dimethylphenol	ND	390 µg/Kg	1 02/26/2010 18:10	49468
2,4-Dichlorophenol	ND	390 µg/Kg	1 02/26/2010 18:10	49468
1,2,4-Trichlorobenzene	ND	390 µg/Kg	1 02/26/2010 18:10	49468
Naphthalene	ND	390 µg/Kg	1 02/26/2010 18:10	49468
4-Chloroaniline	ND	390 µg/Kg	1 02/26/2010 18:10	49468
Bis(2-chloroethoxy)methane	ND	390 µg/Kg	1 02/26/2010 18:10	49468
Hexachlorobutadiene	ND	390 µg/Kg	1 02/26/2010 18:10	49468
4-Chloro-3-methylphenol	ND	390 µg/Kg	1 02/26/2010 18:10	49468
2-Methylnaphthalene	40 J	390 µg/Kg	1 02/26/2010 18:10	49468
Hexachlorocyclopentadiene	ND	390 µg/Kg	1 02/26/2010 18:10	49468
2,4,6-Trichlorophenol	ND	390 µg/Kg	1 02/26/2010 18:10	49468
2,4,5-Trichlorophenol	ND	790 µg/Kg	1 02/26/2010 18:10	49468
2-Chloronaphthalene	ND	390 µg/Kg	1 02/26/2010 18:10	49468
2-Nitroaniline	ND	790 µg/Kg	1 02/26/2010 18:10	49468
Dimethylphthalate	ND	390 µg/Kg	1 02/26/2010 18:10	49468
Acenaphthylene	140 J	390 µg/Kg	1 02/26/2010 18:10	49468
2,6-Dinitrotoluene	ND	390 µg/Kg	1 02/26/2010 18:10	49468
3-Nitroaniline	ND	790 µg/Kg	1 02/26/2010 18:10	49468
Acenaphthene	92 J	390 µg/Kg	1 02/26/2010 18:10	49468
2,4-Dinitrophenol	ND	790 μ g/Kg	1 02/26/2010 18:10	49468
4-Nitrophenol	ND	790 µg/Kg	1 02/26/2010 18:10	49468
Dibenzofuran	51 J	390 µg/Kg	1 02/26/2010 18:10	49468
2,4-Dinitrotoluene	ND	390 µg/Kg	1 02/26/2010 18:10	49468
Diethylphthalate	ND	390 µg/Kg	1 02/26/2010 18:10	49468
4-Chlorophenyl-phenylether	ND	390 µg/Kg	1 02/26/2010 18:10	49468

Qualifiers: ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Client: Day Environmental Inc.

Client Sample ID: TP10-4 (2')

Lab ID: J0281-02

Date: (04-Mar-10
---------	-----------

 Project:
 151 Mt. Hope Ave.

 Collection Date:
 02/19/10 9:20

Analyses	Result	Qual	RL	Units	DF Date Analyzed	Batch ID
SW846 8270 SVOA by GC-MS						SW8270_S
Fluorene	110	J	390	µg/Kg	1 02/26/2010 18:10	49468
4-Nitroaniline	ND		790	µg/Kg	1 02/26/2010 18:10	49468
4,6-Dinitro-2-methylphenol	ND		790	µg/Kg	1 02/26/2010 18:10	49468
N-Nitrosodiphenylamine	ND		.390	µg/Kg	1 02/26/2010 18:10	49468
4-Bromophenyl-phenylether	ND		390	µg/Kg	1 02/26/2010 18:10	49468
Hexachlorobenzene	ND		390	µg/Kg	1 02/26/2010 18:10	49468
Pentachlorophenol	ND		790	µg/Kg	1 02/26/2010 18:10	49468
Phenanthrene	1600		390	µg/Kg	1 02/26/2010 18:10	49468
Anthracene	540		390	µg/Kg	1 02/26/2010 18:10	49468
Carbazole	120	J	390	µg/Kg	1 02/26/2010 18:10	49468
Di-n-butylphthalate	ND		390	µg/Kg	1 02/26/2010 18:10	49468
Fluoranthene	3700		390	µg/Kg	1 02/26/2010 18:10	49468
Pyrene	2700		390	µg/Kg	1 02/26/2010 18:10	49468
Butylbenzylphthalate	ND		390	µg/Kg	1 02/26/2010 18:10	49468
3,3'-Dichlorobenzidine	ND		390	µg/Kg	1 02/26/2010 18:10	49468
Benzo(a)anthracene	1800			µg/Kg	1 02/26/2010 18:10	49468
Chrysene	1700		390	µg/Kg	1 02/26/2010 18:10	49468
Bis(2-ethylhexyl)phthalate	ND		390	µg/Kg	1 02/26/2010 18:10	49468
Di-n-octylphthalate	ND		390	µg/Kg	1 02/26/2010 18:10	49468
Benzo(b)fluoranthene	1700		390	µg/Kg	1 02/26/2010 18:10	49468
Benzo(k)fluoranthene	930		390	µg/Kg	1 02/26/2010 18:10	49468
Benzo(a)pyrene	1400		390	µg/Kg	1 02/26/2010 18:10	49468
Indeno(1,2,3-cd)pyrene	780		390	µg/Kg	1 02/26/2010 18:10	49468
Dibenzo(a,h)anthracene	260	J	390	µg/Kg	1 02/26/2010 18:10	49468
Benzo(g,h,i)perylene	840		390	µg/Kg	1 02/26/2010 18:10	49468
Surrogate: Nitrobenzene-d5	66.9		35-100		1 02/26/2010 18:10	49468
Surrogate: 2-Fluorobiphenyl	71.9		45-105	%REC	1 02/26/2010 18:10	49468
Surrogate: Terphenyl-d14	77.5		30-125	%REC	1 02/26/2010 18:10	49468
Surrogate: Phenol-d5	70.2		40-100	%REC	1 02/26/2010 18:10	49468
Surrogate: 2-Fluorophenol	65.7		35-105	%REC	1 02/26/2010 18:10	49468
Surrogate: 2,4,6-Tribromophenol	63.4		35-125	%REC	1 02/26/2010 18:10	49468

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range

Client: Day Environmental Inc.

Client Sample ID: TP10-4 (11')

Lab ID: J0281-03

Date:	04-Mar-10

 Project:
 151 Mt. Hope Ave.

 Collection Date:
 02/19/10 9:45

Analyses	Result	Qual	RL	Units	DF Date Analyzed	Batch ID
SW846 8270 SVOA by GC-MS						SW8270_S
Phenol	ND		540	µg/Kg	1 02/26/2010 18:31	49468
Bis(2-chloroethyl)ether	ND		540	μg/Kg	1 02/26/2010 18:31	49468
2-Chlorophenol	ND		540	µg/Kg	1 02/26/2010 18:31	49468
1,3-Dichlorobenzene	ND		540	µg/Kg	1 02/26/2010 18:31	49468
1,4-Dichlorobenzene	ND		540	µg/Kg	1 02/26/2010 18:31	49468
1,2-Dichlorobenzene	ND		540	µg/Kg	1 02/26/2010 18:31	49468
2-Methylphenol	ND		540	µg/Kg	1 02/26/2010 18:31	49468
2,2'-oxybis(1-Chloropropane)	ND		540	µg/Kg	1 02/26/2010 18:31	49468
4-Methylphenol	120	J	540	µg/Kg	1 02/26/2010 18:31	49468
N-Nitroso-di-n-propylamine	ND		540	µg/Kg	1 02/26/2010 18:31	49468
Hexachioroethane	ND		540	µg/Kg	1 02/26/2010 18:31	49468
Nitrobenzene	ND		540	µg/Kg	1 02/26/2010 18:31	49468
Isophorone	ND		540	µg/Kg	1 02/26/2010 18:31	49468
2-Nitrophenol	ND		540	µg/Kg	1 02/26/2010 18:31	49468
2,4-Dimethylphenol	ND		540	µg/Kg	1 02/26/2010 18:31	49468
2,4-Dichlorophenol	ND		540	µg/Kg	1 02/26/2010 18:31	49468
1,2,4-Trichlorobenzene	ND		540	µg/Kg	1 02/26/2010 18:31	49468
Naphthalene	ND		540	µg/Kg	1 02/26/2010 18:31	49468
4-Chloroaniline	ND		540	µg/Kg	1 02/26/2010 18:31	49468
Bis(2-chloroethoxy)methane	ND		540	µg/Kg	1 02/26/2010 18:31	49468
Hexachlorobutadiene	ND		540	µg/Kg	1 02/26/2010 18:31	49468
4-Chloro-3-methylphenol	ND		540	µg/Kg	1 02/26/2010 18:31	49468
2-Methylnaphthalene	NÐ		540	µg/Kg	1 02/26/2010 18:31	49468
Hexachlorocyclopentadiene	ND		540	µg/Kg	1 02/26/2010 18:31	49468
2,4,6-Trichlorophenol	ND		540	µg/Kg	1 02/26/2010 18:31	49468
2,4,5-Trichlorophenol	ND		1100	µg/Kg	1 02/26/2010 18:31	49468
2-Chloronaphthalene	ND		540	µg/Kg	1 02/26/2010 18:31	49468
2-Nitroaniline	ND		1100	µg/Kg	1 02/26/2010 18:31	49468
Dimethylphthalate	ND		540	µg/Kg	1 02/26/2010 18:31	49468
Acenaphthylene	ND		540	µg/Kg	1 02/26/2010 18:31	49468
2,6-Dinitrotoluene	ND		540	µg/Kg	1 02/26/2010 18:31	49468
3-Nitroaniline	ND		1100	µg/Kg	1 02/26/2010 18:31	49468
Acenaphthene	330	J	540	µg/Kg	1 02/26/2010 18:31	49468
2,4-Dinitrophenol	ND		1100	µg/Kg	1 02/26/2010 18:31	49468
4-Nitrophenol	ND		1100	µg/Kg	1 02/26/2010 18:31	49468
Dibenzofuran	ND		540	µg/Kg	1 02/26/2010 18:31	49468
2,4-Dinitrotoluene	ND		540	µg/Kg	1 02/26/2010 18:31	49468
Diethylphthalate	ND		540	µg/Kg	1 02/26/2010 18:31	49468
4-Chlorophenyl-phenylether	ND		540	µg/Kg	1 02/26/2010 18:31	49468

Qualifiers: ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Client: Day Environmental Inc.

Client Sample ID: TP10-4 (11')

Lab ID: J0281-03

Date:	04-Mar-10
Date.	04-11/10/-10

 Project:
 151 Mt. Hope Ave.

 Collection Date:
 02/19/10 9:45

Analyses	Result	Qual	RL	Units	DF Date Analyzed	Batch ID
SW846 8270 SVOA by GC-MS						SW8270_S
Fluorene	89	J	540	µg/Kg	1 02/26/2010 18:31	49468
4-Nitroaniline	ND		1100	µg/Kg	1 02/26/2010 18:31	49468
4,6-Dinitro-2-methylphenol	ND		1100	µg/Kg	1 02/26/2010 18:31	49468
N-Nitrosodiphenylamine	ND		540	µg/Kg	1 02/26/2010 18:31	49468
4-Bromophenyl-phenylether	ND		540	µg/Kg	1 02/26/2010 18:31	49468
Hexachlorobenzene	ND		540	µg/Kg	1 02/26/2010 18:31	49468
Pentachlorophenol	ND		1100	µg/Kg	1 02/26/2010 18:31	49468
Phenanthrene	410	J	540	µg/Kg	1 02/26/2010 18:31	49468
Anthracene	120	J	540	µg/Kg	1 02/26/2010 18:31	49468
Carbazole	ND		540	µg/Kg	1 02/26/2010 18:31	49468
Di-n-butylphthalate	ND		540	µg/Kg	1 02/26/2010 18:31	49468
Fluoranthene	710		540	µg/Kg	1 02/26/2010 18:31	49468
Pyrene	580		540	µg/Kg	1 02/26/2010 18:31	49468
Butylbenzylphthalate	ND		540	µg/Kg	1 02/26/2010 18:31	49468
3,3'-Dichlorobenzidine	ND		540	µg/Kg	1 02/26/2010 18:31	49468
Benzo(a)anthracene	300	J	540	µg/Kg	1 02/26/2010 18:31	49468
Chrysene	350	J	540	µg/Kg	1 02/26/2010 18:31	49468
Bis(2-ethylhexyl)phthalate	ND		540	µg/Kg	1 02/26/2010 18:31	49468
Di-n-octylphthalate	ND		540	µg/Kg	1 02/26/2010 18:31	49468
Benzo(b)fluoranthene	410	J	540	µg/Kg	1 02/26/2010 18:31	49468
Benzo(k)fluoranthene	150	J	540	µg/Kg	1 02/26/2010 18:31	49468
Benzo(a)pyrene	280	J	540	µg/Kg	1 02/26/2010 18:31	49468
Indeno(1,2,3-cd)pyrene	190	J	540	µg/Kg	1 02/26/2010 18:31	49468
Dibenzo(a,h)anthracene	ND		540	µg/Kg	1 02/26/2010 18:31	49468
Benzo(g,h,i)perylene	220	J	540	µg/Kg	1 02/26/2010 18:31	49468
Surrogate: Nitrobenzene-d5	68.2		35-100	%REC	1 02/26/2010 18:31	49468
Surrogate: 2-Fluorobiphenyl	68.4		45-105	%REC	1 02/26/2010 18:31	49468
Surrogate: Terphenyl-d14	75.2		30-125	%REC	1 02/26/2010 18:31	49468
Surrogate: Phenol-d5	66.4		40-100	%REC	1 02/26/2010 18:31	49468
Surrogate: 2-Fluorophenol	62.4		35-105	%REC	1 02/26/2010 18:31	49468
Surrogate: 2,4,6-Tribromophenol	58.3		35-125	%REC	1 02/26/2010 18:31	49468

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range

Date: 04-Mar-10

Client: Day Environmental Inc.

Client Sample ID: TP10-6 (3.5')

Lab ID: J0281-04

Project: 151 Mt. Hope Ave. **Collection Date:** 02/18/10 8:35

Analyses	Result	Qual	RL	Units	DF Date Analyzed	Batch ID
SW846 8270 SVOA by GC-MS						SW8270_S
Phenol	ND		350	µg/Kg	1 02/26/2010 18:52	49468
Bis(2-chloroethyl)ether	ND		350	µg/Kg	1 02/26/2010 18:52	49468
2-Chlorophenol	ND		350	µg/Kg	1 02/26/2010 18:52	49468
1,3-Dichlorobenzene	ND		350	µg/Kg	1 02/26/2010 18:52	49468
1,4-Dichlorobenzene	ND		350	µg/Kg	1 02/26/2010 18:52	49468
1,2-Dichlorobenzene	ND		350	µg/Kg	1 02/26/2010 18:52	49468
2-Methylphenol	ND		350	µg/Kg	1 02/26/2010 18:52	49468
2,2'-oxybis(1-Chloropropane)	ND		350	µg/Kg	1 02/26/2010 18:52	49468
4-Methylphenol	ND		350	µg/Kg	1 02/26/2010 18:52	49468
N-Nitroso-di-n-propylamine	ND		350	µg/Kg	1 02/26/2010 18:52	49468
Hexachloroethane	ND		350	µg/Kg	1 02/26/2010 18:52	49468
Nitrobenzene	ND		350	µg/Kg	1 02/26/2010 18:52	49468
Isophorone	ND		350	µg/Kg	1 02/26/2010 18:52	49468
2-Nitrophenol	ND		350	µg/Kg	1 02/26/2010 18:52	49468
2,4-Dimethylphenol	ND		350	µg/Kg	1 02/26/2010 18:52	49468
2,4-Dichlorophenol	ND		350	µg/Kg	1 02/26/2010 18:52	49468
1,2,4-Trichlorobenzene	ND		350	µg/Kg	1 02/26/2010 18:52	49468
Naphthalene	180	J	350	µg/Kg	1 02/26/2010 18:52	49468
4-Chloroaniline	ND		350	µg/Kg	1 02/26/2010 18:52	49468
Bis(2-chloroethoxy)methane	ND		350	µg/Kg	1 02/26/2010 18:52	49468
Hexachlorobutadiene	ND		350	µg/Kg	1 02/26/2010 18:52	49468
4-Chloro-3-methylphenol	ND		350	µg/Kg	1 02/26/2010 18:52	49468
2-Methylnaphthalene	250	J	350	µg/Kg	1 02/26/2010 18:52	49468
Hexachlorocyclopentadiene	ND		350	µg/Kg	1 02/26/2010 18:52	49468
2,4,6-Trichlorophenol	ND		350	µg/Kg	1 02/26/2010 18:52	49468
2,4,5-Trichlorophenol	ND		720	µg/Kg	1 02/26/2010 18:52	49468
2-Chloronaphthalene	ND		350	µg/Kg	1 02/26/2010 18:52	49468
2-Nitroaniline	ND		720	µg/Kg	1 02/26/2010 18:52	49468
Dimethylphthalate	ND		350	µg/Kg	1 02/26/2010 18:52	49468
Acenaphthylene	95	J	350	µg/Kg	1 02/26/2010 18:52	49468
2,6-Dinitrotoluene	ND		350	µg/Kg	1 02/26/2010 18:52	49468
3-Nitroaniline	ND		720	µg/Kg	1 02/26/2010 18:52	49468
Acenaphthene	55	J	350	µg/Kg	1 02/26/2010 18:52	49468
2,4-Dinitrophenol	ND		720	µg/Kg	1 02/26/2010 18:52	49468
4-Nitrophenol	ND		720	µg/Kg	1 02/26/2010 18:52	49468
Dibenzofuran	93	J	350	µg/Kg	1 02/26/2010 18:52	49468
2,4-Dinitrotoluene	ND		350	µg/Kg	1 02/26/2010 18:52	49468
Diethylphthalate	ND			µg/Kg	1 02/26/2010 18:52	49468
4-Chlorophenyl-phenylether	ND		350	µg/Kg	1 02/26/2010 18:52	49468

Qualifiers: ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Client: Day Environmental Inc.

Client Sample ID: TP10-6 (3.5')

Lab ID: J0281-04

Datas	01 11 10
Date:	04-Mar-10

 Project:
 151 Mt. Hope Ave.

 Collection Date:
 02/18/10 8:35

Analyses	Result	Qual	RL	Units	DF Date Analyzed	Batch ID
SW846 8270 SVOA by GC-MS	<u> </u>					SW8270_S
Fluorene	75	J	350	µg/Kg	1 02/26/2010 18:52	49468
4-Nitroaniline	ND		720		1 02/26/2010 18:52	49468
4,6-Dinitro-2-methylphenol	ND		720	µg/Kg	1 02/26/2010 18:52	49468
N-Nitrosodiphenylamine	ND		350	µg/Kg	1 02/26/2010 18:52	49468
4-Bromophenyl-phenylether	ND		350	µg/Kg	1 02/26/2010 18:52	49468
Hexachlorobenzene	ND		350	µg/Kg	1 02/26/2010 18:52	49468
Pentachlorophenol	ND		720	µg/Kg	1 02/26/2010 18:52	49468
Phenanthrene	610		350	µg/Kg	1 02/26/2010 18:52	49468
Anthracene	160	J	350	µg/Kg	1 02/26/2010 18:52	49468
Carbazole	56	J	350	µg/Kg	1 02/26/2010 18:52	49468
Di-n-butylphthalate	ND		350	µg/Kg	1 02/26/2010 18:52	49468
Fluoranthene	1100		350	µg/Kg	1 02/26/2010 18:52	49468
Pyrene	900		350	µg/Kg	1 02/26/2010 18:52	49468
Butylbenzylphthalate	ND		350	µg/Kg	1 02/26/2010 18:52	49468
3,3'-Dichlorobenzidine	ND		350	µg/Kg	1 02/26/2010 18:52	49468
Benzo(a)anthracene	540		350	µg/Kg	1 02/26/2010 18:52	49468
Chrysene	560		350	µg/Kg	1 02/26/2010 18:52	49468
Bis(2-ethylhexyl)phthalate	ND		350	µg/Kg	1 02/26/2010 18:52	49468
Di-n-octylphthalate	ND		350	µg/Kg	1 02/26/2010 18:52	49468
Benzo(b)fluoranthene	600		350	µg/Kg	1 02/26/2010 18:52	49468
Benzo(k)fluoranthene	220	J	350	µg/Kg	1 02/26/2010 18:52	49468
Benzo(a)pyrene	410		350	µg/Kg	1 02/26/2010 18:52	49468
Indeno(1,2,3-cd)pyrene	220	J	350	µg/Kg	1 02/26/2010 18:52	49468
Dibenzo(a,h)anthracene	80	J	350	µg/Kg	1 02/26/2010 18:52	49468
Benzo(g,h,i)perylene	240	J	350	µg/Kg	1 02/26/2010 18:52	49468
Surrogate: Nitrobenzene-d5	81.6		35-100	%REC	1 02/26/2010 18:52	49468
Surrogate: 2-Fluorobiphenyl	79.7		45-105	%REC	1 02/26/2010 18:52	49468
Surrogate: Terphenyl-d14	84.8		30-125	%REC	1 02/26/2010 18:52	49468
Surrogate: Phenol-d5	79.6		40-100	%REC	1 02/26/2010 18:52	49468
Surrogate: 2-Fluorophenol	78.0		35-105	%REC	1 02/26/2010 18:52	49468
Surrogate: 2,4,6-Tribromophenol	66.1		35-125	%REC	1 02/26/2010 18:52	49468

A	11.61	
Qua	lifiers:	

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Client: Day Environmental Inc.

Client Sample ID: TP10-6 (9')

Lab ID: J0281-06

 Project:
 151 Mt. Hope Ave.

 Collection Date:
 02/18/10 8:40

Analyses	Result Qual	RL Units	DF Date Analyzed	Batch ID
SW846 8270 SVOA by GC-MS				SW8270_S
Phenol	ND	520 µg/Kg	1 02/26/2010 19:13	49468
Bis(2-chloroethyl)ether	ND	520 µg/Kg	1 02/26/2010 19:13	49468
2-Chlorophenol	ND	520 µg/Kg	1 02/26/2010 19:13	49468
1,3-Dichlorobenzene	ND	520 µg/Kg	1 02/26/2010 19:13	49468
1,4-Dichlorobenzene	ND	520 µg/Kg	1 02/26/2010 19:13	49468
1,2-Dichlorobenzene	ND	520 µg/Kg	1 02/26/2010 19:13	49468
2-Methylphenol	ND	520 µg/Kg	1 02/26/2010 19:13	49468
2,2 -oxybis(1-Chloropropane)	ND	520 µg/Kg	1 02/26/2010 19:13	49468
4-Methylphenol	ND	520 µg/Kg	1 02/26/2010 19:13	49468
N-Nitroso-di-n-propylamine	ND	520 µg/Kg	1 02/26/2010 19:13	49468
Hexachloroethane	ND	520 µg/Kg	1 02/26/2010 19:13	49468
Nitrobenzene	ND	520 µg/Kg	1 02/26/2010 19:13	49 468
Isophorone	ND	520 µg/Kg	1 02/26/2010 19:13	49468
2-Nitrophenol	ND	520 µg/Kg	1 02/26/2010 19:13	49468
2,4-Dimethylphenol	ND	520 µg/Kg	1 02/26/2010 19:13	49468
2,4-Dichlorophenol	ND	520 µg/Kg	1 02/26/2010 19:13	49468
1,2,4-Trichlorobenzene	ND	520 µg/Kg	1 02/26/2010 19:13	49468
Naphthalene	ND	520 µg/Kg	1 02/26/2010 19:13	49468
4-Chloroaniline	ND	520 µg/Kg	1 02/26/2010 19:13	49468
Bis(2-chloroethoxy)methane	ND	520 µg/Kg	1 02/26/2010 19:13	49468
Hexachlorobutadiene	ND	520 µg/Kg	1 02/26/2010 19:13	49468
4-Chloro-3-methylphenol	ND	520 µg/Kg	1 02/26/2010 19:13	49468
2-Methylnaphthalene	ND	520 µg/Kg	1 02/26/2010 19:13	49468
Hexachlorocyclopentadiene	ND	520 µg/Kg	1 02/26/2010 19:13	49468
2,4,6-Trichlorophenol	ND	520 µg/Kg	1 02/26/2010 19:13	49468
2,4,5-Trichlorophenol	ND	1100 µg/Kg	1 02/26/2010 19:13	49468
2-Chloronaphthalene	ND	520 µg/Kg	1 02/26/2010 19:13	49468
2-Nitroaniline	ND	1100 µg/Kg	1 02/26/2010 19:13	49468
Dimethylphthalate	ND	520 µg/Kg	1 02/26/2010 19:13	49468
Acenaphthylene	ND	520 µg/Kg	1 02/26/2010 19:13	49468
2,6-Dinitrotoluene	ND	520 µg/Kg	1 02/26/2010 19:13	49468
3-Nitroaniline	ND	1100 µg/Kg	1 02/26/2010 19:13	49468
Acenaphthene	ND	520 µg/Kg	1 02/26/2010 19:13	49468
2,4-Dinitrophenol	ND	1100 µg/Kg	1 02/26/2010 19:13	49468
4-Nitrophenol	ND	1100 µg/Kg	1 02/26/2010 19:13	49468
Dibenzofuran	ND	520 µg/Kg	1 02/26/2010 19:13	49468
2,4-Dinitrotoluene	ND	520 µg/Kg	1 02/26/2010 19:13	49468
Diethylphthalate	ND	520 µg/Kg	1 02/26/2010 19:13	49468
4-Chlorophenyl-phenylether	ND	520 µg/Kg	1 02/26/2010 19:13	49468

Qualifiers: ND - Not Detected at the Reporting Limit

- J Analyte detected below quanititation limits
- B Analyte detected in the associated Method Blank
- DF Dilution Factor

S - Spike Recovery outside accepted recovery limits

- R RPD outside accepted recovery limits
- E Value above quantitation range
- RL Reporting Limit

 $\widehat{\mathcal{A}}_{(x,y)}^{(i)}$

Client: Day Environmental Inc.

Client Sample ID: TP10-6 (9')

Lab ID: J0281-06

Date:	04-Mar-10
Date.	07-11/10/10

 Project:
 151 Mt. Hope Ave.

 Collection Date:
 02/18/10 8:40

Analyses	Result	Qual R	L Units	DF Date Analyzed	Batch ID
SW846 8270 SVOA by GC-MS					SW8270_S
Fluorene	ND	52	20 μg/Kg	1 02/26/2010 19:13	49468
4-Nitroaniline	ND	11(0 µg/Kg	1 02/26/2010 19:13	49468
4,6-Dinitro-2-methylphenol	ND	11(0 µg/Kg	1 02/26/2010 19:13	49468
N-Nitrosodiphenylamine	ND	52	10 µg/Kg	1 02/26/2010 19:13	49468
4-Bromophenyl-phenylether	ND	52	0 µg/Kg	1 02/26/2010 19:13	49468
Hexachlorobenzene	ND	52	0 µg/Kg	1 02/26/2010 19:13	49468
Pentachlorophenol	ND	110	0 µg/Kg	1 02/26/2010 19:13	49468
Phenanthrene	500	J 52	0 µg/Kg	1 02/26/2010 19:13	49468
Anthracene	310	J 52	0 µg/Kg	1 02/26/2010 19:13	49468
Carbazole	ND	52	0 µg/Kg	1 02/26/2010 19:13	49468
Di-n-butylphthalate	ND	52	0 µg/Kg	1 02/26/2010 19:13	49468
Fluoranthene	1800	52	0 µg/Kg	1 02/26/2010 19:13	49468
Pyrene	970	52	0 µg/Kg	1 02/26/2010 19:13	49468
Butylbenzylphthalate	ND	52	0 µg/Kg	1 02/26/2010 19:13	49468
3,3'-Dichlorobenzidine	ND	52	0 μg/Kg	1 02/26/2010 19:13	49468
Benzo(a)anthracene	560	52	0 µg/Kg	1 02/26/2010 19:13	49468
Chrysene	600	52	0 µg/Kg	1 02/26/2010 19:13	49468
Bis(2-ethylhexyl)phthalate	ND	52	0 µg/Kg	1 02/26/2010 19:13	49468
Di-n-octylphthalate	ND	52	0 µg/Kg	1 02/26/2010 19:13	49468
Benzo(b)fluoranthene	580	52	0 µg/Kg	1 02/26/2010 19:13	49468
Benzo(k)fluoranthene	350	J 52	0 µg/Kg	1 02/26/2010 19:13	49468
Benzo(a)pyrene	470	J 52	0 µg/Kg	1 02/26/2010 19:13	49468
Indeno(1,2,3-cd)pyrene	260	J 52	0 µg/Kg	1 02/26/2010 19:13	49468
Dibenzo(a,h)anthracene	75	J 52	0 µg/Kg	1 02/26/2010 19:13	49468
Benzo(g,h,i)perylene	270	J 52	0 µg/Kg	1 02/26/2010 19:13	49468
Surrogate: Nitrobenzene-d5	54.8	35-10	0 %REC	1 02/26/2010 19:13	49468
Surrogate: 2-Fluorobiphenyl	123	S 45-10	5 %REC	1 02/26/2010 19:13	49468
Surrogate: Terphenyl-d14	79.9	30-12	5 %REC	1 02/26/2010 19:13	49468
Surrogate: Phenol-d5	74.8	40-10	0 %REC	1 02/26/2010 19:13	49468
Surrogate: 2-Fluorophenol	71.1	35-10	5 %REC	1 02/26/2010 19:13	49468
Surrogate: 2,4,6-Tribromophenol	64.8	35-12	5 %REC	1 02/26/2010 19:13	49468

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits

E - Value above quantitation range

Client: Day Environmental Inc.

Client Sample ID: TP10-8 (2.5')

Lab ID: J0281-08

Date: 04-Mar-10

Project: 151 Mt. Hope Ave. **Collection Date:** 02/19/10 10:45

Analyses	Result Qual	RL Units	DF Date Analyzed	Batch ID
SW846 8270 SVOA by GC-MS				SW8270_S
Phenol	ND	360 µg/Kg	1 02/26/2010 19:34	49468
Bis(2-chloroethyl)ether	ND	360 µg/Kg	1 02/26/2010 19:34	49468
2-Chlorophenol	ND	360 µg/Kg	1 02/26/2010 19:34	49468
1,3-Dichlorobenzene	ND	360 µg/Kg	1 02/26/2010 19:34	49468
1,4-Dichlorobenzene	ND	360 µg/Kg	1 02/26/2010 19:34	49468
1,2-Dichlorobenzene	ND	360 µg/Kg	1 02/26/2010 19:34	49468
2-Methylphenol	ND	360 µg/Kg	1 02/26/2010 19:34	49468
2,2'-oxybis(1-Chloropropane)	ND	360 µg/Kg	1 02/26/2010 19:34	49468
4-Methylphenol	ND	360 µg/Kg	1 02/26/2010 19:34	49468
N-Nitroso-di-n-propylamine	ND	360 µg/Kg	1 02/26/2010 19:34	49468
Hexachloroethane	ND	360 µg/Kg	1 02/26/2010 19:34	49468
Nitrobenzene	ND	360 µg/Kg	1 02/26/2010 19:34	49468
Isophorone	ND	360 µg/Kg	1 02/26/2010 19:34	49468
2-Nitrophenol	ND	360 µg/Kg	1 02/26/2010 19:34	49468
2,4-Dimethylphenol	ND	360 µg/Kg	1 02/26/2010 19:34	49468
2,4-Dichlorophenol	ND	360 µg/Kg	1 02/26/2010 19:34	49468
1,2,4-Trichlorobenzene	ND	360 µg/Kg	1 02/26/2010 19:34	49468
Naphthalene	330 J	360 µg/Kg	1 02/26/2010 19:34	49468
4-Chloroaniline	ND	360 µg/Kg	1 02/26/2010 19:34	49468
Bis(2-chloroethoxy)methane	ND	360 µg/Kg	1 02/26/2010 19:34	49468
Hexachlorobutadiene	ND	360 µg/Kg	1 02/26/2010 19:34	49468
4-Chloro-3-methylphenol	ND	360 µg/Kg	1 02/26/2010 19:34	49468
2-Methylnaphthalene	190 J	360 µg/Kg	1 02/26/2010 19:34	49468
Hexachlorocyclopentadiene	ND	360 µg/Kg	1 02/26/2010 19:34	49468
2,4,6-Trichlorophenol	ND	360 µg/Kg	1 02/26/2010 19:34	49468
2,4,5-Trichlorophenol	ND	730 µg/Kg	1 02/26/2010 19:34	49468
2-Chloronaphthalene	ND	360 µg/Kg	1 02/26/2010 19:34	49468
2-Nitroaniline	ND	730 µg/Kg	1 02/26/2010 19:34	49468
Dimethylphthalate	ND	360 µg/Kg	1 02/26/2010 19:34	49468
Acenaphthylene	2100	360 µg/Kg	1 02/26/2010 19:34	49468
2,6-Dinitrotoluene	ND	360 µg/Kg	1 02/26/2010 19:34	49468
3-Nitroaniline	ND	730 µg/Kg	1 02/26/2010 19:34	49468
Acenaphthene	180 J	360 µg/Kg	1 02/26/2010 19:34	49468
2,4-Dinitrophenol	ND	730 µg/Kg	1 02/26/2010 19:34	49468
4-Nitrophenol	ND	730 µg/Kg	1 02/26/2010 19:34	49468
Dibenzofuran	130 J	360 µg/Kg	1 02/26/2010 19:34	49468
2,4-Dinitrotoluene	ND	360 µg/Kg	1 02/26/2010 19:34	49468
Diethylphthalate	ND	360 µg/Kg	1 02/26/2010 19:34	49468
4-Chlorophenyl-phenylether	ND	360 µg/Kg	1 02/26/2010 19:34	49468

Qualifiers: ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Client: Day Environmental Inc.

Client Sample ID: TP10-8 (2.5')

Lab ID: J0281-08

Date: 04-Mar-10

Project: 151 Mt. Hope Ave. **Collection Date:** 02/19/10 10:45

Analyses	Result	Qual	RL	Units	DF Date Analyzed	Batch ID
SW846 8270 SVOA by GC-MS						SW8270_S
Fluorene	180	J	360	µg/Kg	1 02/26/2010 19:34	49468
4-Nitroaniline	ND		730	µg/Kg	1 02/26/2010 19:34	49468
4,6-Dinitro-2-methylphenol	ND		730	µg/Kg	1 02/26/2010 19:34	49468
N-Nitrosodiphenylamine	ND		360	µg/Kg	1 02/26/2010 19:34	49468
4-Bromophenyl-phenylether	ND		360	µg/Kg	1 02/26/2010 19:34	49468
Hexachlorobenzene	ND		360	µg/Kg	1 02/26/2010 19:34	49468
Pentachlorophenol	ND		730	µg/Kg	1 02/26/2010 19:34	49468
Phenanthrene	1100		360	µg/Kg	1 02/26/2010 19:34	49468
Anthracene	1400		360	µg/Kg	1 02/26/2010 19:34	49468
Carbazole	270	J	360	µg/Kg	1 02/26/2010 19:34	49468
Di-n-butylphthalate	ND		360	µg/Kg	1 02/26/2010 19:34	49468
Fluoranthene	5300		360	µg/Kg	1 02/26/2010 19:34	49468
Pyrene	4600		360	µg/Kg	1 02/26/2010 19:34	49468
Butylbenzylphthaiate	ND		360	µg/Kg	1 02/26/2010 19:34	49468
3,3'-Dichlorobenzidine	ND		360	µg/Kg	1 02/26/2010 19:34	49468
Benzo(a)anthracene	4200		360	µg/Kg	1 02/26/2010 19:34	49468
Chrysene	4300		360	µg/Kg	1 02/26/2010 19:34	49468
Bis(2-ethylhexyl)phthalate	ND		360	µg/Kg	1 02/26/2010 19:34	49468
Di-n-octylphthalate	ND		360	µg/Kg	1 02/26/2010 19:34	49468
Benzo(b)fluoranthene	5600		360	µg/Kg	1 02/26/2010 19:34	49468
Benzo(k)fluoranthene	2300		360	µg/Kg	1 02/26/2010 19:34	49468
Benzo(a)pyrene	4300		360	µg/Kg	1 02/26/2010 19:34	49468
Indeno(1,2,3-cd)pyrene	2700		360	µg/Kg	1 02/26/2010 19:34	49468
Dibenzo(a,h)anthracene	1100		360	µg/Kg	1 02/26/2010 19:34	49468
Benzo(g,h,i)perylene	2900		360	µg/Kg	1 02/26/2010 19:34	49468
Surrogate: Nitrobenzene-d5	73.7		35-100	%REC	1 02/26/2010 19:34	49468
Surrogate: 2-Fluorobiphenyl	76.8		45-105	%REC	1 02/26/2010 19:34	49468
Surrogate: Terphenyl-d14	84.0		30-125	%REC	1 02/26/2010 19:34	49468
Surrogate: Phenol-d5	73.6		40-100	%REC	1 02/26/2010 19:34	49468
Surrogate: 2-Fluorophenol	72.8		35-105	%REC	1 02/26/2010 19:34	49468
Surrogate: 2,4,6-Tribromophenol	63.1		35-125	%REC	1 02/26/2010 19:34	49468

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range

Client: Day Environmental Inc.

Client Sample ID: TP10-11 (7')

Lab ID: J0281-09

 Project:
 151 Mt. Hope Ave.

 Collection Date:
 02/18/10 10:40

Analyses	Result	Qual RL	Units	DF Date Analyzed	Batch ID
SW846 8270 SVOA by GC-MS					SW8270_S
Phenol	1800	420	µg/Kg	1 02/26/2010 19:55	49468
Bis(2-chloroethyl)ether	ND	420	µg/Kg	1 02/26/2010 19:55	49468
2-Chlorophenol	ND	420	µg/Kg	1 02/26/2010 19:55	49468
1,3-Dichlorobenzene	ND	420	µg/Kg	1 02/26/2010 19:55	49468
1,4-Dichlorobenzene	ND	420	µg/Kg	1 02/26/2010 19:55	49468
1,2-Dichlorobenzene	ND	420	µg/Kg	1 02/26/2010 19:55	49468
2-Methylphenol	1600	420	µg/Kg	1 02/26/2010 19:55	49468
2,2'-oxybis(1-Chloropropane)	ND	420	µg/Kg	1 02/26/2010 19:55	49468
4-Methylphenol	3700	420	µg/Kg	1 02/26/2010 19:55	49468
N-Nitroso-di-n-propylamine	ND	420	µg/Kg	1 02/26/2010 19:55	49468
Hexachloroethane	ND	420	µg/Kg	1 02/26/2010 19:55	49468
Nitrobenzene	ND	420	µg/Kg	1 02/26/2010 19:55	49468
Isophorone	ND	420	µg/Kg	1 02/26/2010 19:55	49468
2-Nitrophenol	ND	420	µg/Kg	1 02/26/2010 19:55	49468
2,4-Dimethylphenol	ND	420	µg/Kg	1 02/26/2010 19:55	49468
2,4-Dichlorophenol	ND	420	µg/Kg	1 02/26/2010 19:55	49468
1,2,4-Trichlorobenzene	ND	420		1 02/26/2010 19:55	49468
Naphthalene	23000	E 420	µg/Kg	1 02/26/2010 19:55	49468
4-Chloroaniline	ND	420	µg/Kg	1 02/26/2010 19:55	49468
Bis(2-chloroethoxy)methane	ND	420	µg/Kg	1 02/26/2010 19:55	49468
Hexachlorobutadiene	ND	420	µg/Kg	1 02/26/2010 19:55	49468
4-Chloro-3-methylphenol	ND	420	µg/Kg	1 02/26/2010 19:55	49468
2-Methylnaphthalene	6200	420	µg/Kg	1 02/26/2010 19:55	49468
Hexachlorocyclopentadiene	ND	420	µg/Kg	1 02/26/2010 19:55	49468
2,4,6-Trichlorophenol	ND	420	µg/Kg	1 02/26/2010 19:55	49468
2,4,5-Trichlorophenol	ND	860	µg/Kg	1 02/26/2010 19:55	49468
2-Chloronaphthalene	ND	420	µg/Kg	1 02/26/2010 19:55	49468
2-Nitroaniline	ND	860	µg/Kg	1 02/26/2010 19:55	49468
Dimethylphthalate	ND	420	µg/Kg	1 02/26/2010 19:55	49468
Acenaphthylene	3200	420	µg/Kg	1 02/26/2010 19:55	49468
2,6-Dinitrotoluene	ND	420	µg/Kg	1 02/26/2010 19:55	49468
3-Nitroaniline	ND	860	µg/Kg	1 02/26/2010 19:55	49468
Acenaphthene	13000	E 420	µg/Kg	1 02/26/2010 19:55	49468
2,4-Dinitrophenol	ND	860	µg/Kg	1 02/26/2010 19:55	49468
4-Nitrophenol	ND	860	µg/Kg	1 02/26/2010 19:55	49468
Dibenzofuran	13000	E 420	µg/Kg	1 02/26/2010 19:55	49468
2,4-Dinitrotoluene	ND	420	µg/Kg	1 02/26/2010 19:55	49468
Diethylphthalate	ND	420	µg/Kg	1 02/26/2010 19:55	49468
4-Chlorophenyl-phenylether	ND	420	µg/Kg	1 02/26/2010 19:55	49468

Qualifiers: ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Client: Day Environmental Inc.

Client Sample ID: TP10-11 (7')

Lab ID: J0281-09

Date: 04-Mar-10

 Project:
 151 Mt. Hope Ave.

 Collection Date:
 02/18/10 10:40

Analyses	Result	Qual	RL	Units	DF Date Analyzed	Batch ID
SW846 8270 SVOA by GC-MS						SW8270_S
Fluorene	20000	E	420	µg/Kg	1 02/26/2010 19:55	49468
4-Nitroaniline	ND		860	µg/Kg	1 02/26/2010 19:55	49468
4,6-Dinitro-2-methylphenol	ND		860	µg/Kg	1 02/26/2010 19:55	49468
N-Nitrosodiphenylamine	ND		420	µg/Kg	1 02/26/2010 19:55	49468
4-Bromophenyl-phenylether	ND		420	µg/Kg	1 02/26/2010 19:55	49468
Hexachlorobenzene	ND		420	µg/Kg	1 02/26/2010 19:55	49468
Pentachlorophenol	ND		860	µg/Kg	1 02/26/2010 19:55	49468
Phenanthrene	150000	E	420	µg/Kg	1 02/26/2010 19:55	49468
Anthracene	35000	E	420	µg/Kg	1 02/26/2010 19:55	49468
Carbazole	26000	E	420	µg/Kg	1 02/26/2010 19:55	49468
Di-n-butylphthalate	ND		420	µg/Kg	1 02/26/2010 19:55	49468
Fluoranthene	140000	Е	420	µg/Kg	1 02/26/2010 19:55	49468
Pyrene	45000	E	420	µg/Kg	1 02/26/2010 19:55	49468
Butylbenzylphthalate	ND		420	µg/Kg	1 02/26/2010 19:55	49468
3,3 - Dichlorobenzidine	ND		420	µg/Kg	1 02/26/2010 19:55	49468
Benzo(a)anthracene	44000	E	420	µg/Kg	1 02/26/2010 19:55	49468
Chrysene	28000	E	420	µg/Kg	1 02/26/2010 19:55	49468
Bis(2-ethylhexyl)phthalate	ND		420	µg/Kg	1 02/26/2010 19:55	49468
Di-n-octylphthalate	ND		420	µg/Kg	1 02/26/2010 19:55	49468
Benzo(b)fluoranthene	20000	E	420	µg/Kg	1 02/26/2010 19:55	49468
Benzo(k)fluoranthene	8200	E	420	µg/Kg	1 02/26/2010 19:55	49468
Benzo(a)pyrene	14000	Е	420	µg/Kg	1 02/26/2010 19:55	49468
Indeno(1,2,3-cd)pyrene	11000	E	420	µg/Kg	1 02/26/2010 19:55	49468
Dibenzo(a,h)anthracene	8000	Е	420	µg/Kg	1 02/26/2010 19:55	49468
Benzo(g,h,i)perylene	8300	Е	420	µg/Kg	1 02/26/2010 19:55	49468
Surrogate: Nitrobenzene-d5	43.0		35-100	%REC	1 02/26/2010 19:55	49468
Surrogate: 2-Fluorobiphenyl	75.8		45-105	%REC	1 02/26/2010 19:55	49468
Surrogate: Terphenyl-d14	99.0		30-125	%REC	1 02/26/2010 19:55	49468
Surrogate: Phenol-d5	94.7		40-100	%REC	1 02/26/2010 19:55	49468
Surrogate: 2-Fluorophenol	89.1		35-105	%REC	1 02/26/2010 19:55	49468
Surrogate: 2,4,6-Tribromophenol	154	S	35-125	%REC	1 02/26/2010 19:55	49468

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Client: Day Environmental Inc.

Client Sample ID: TP10-11 (7')

Lab ID: J0281-09

 Project:
 151 Mt. Hope Ave.

 Collection Date:
 02/18/10 10:40

Analyses	Result	Qual RI	Units	DF Date Analyzed	Batch ID
SW846 8270 SVOA by GC-MS					SW8270_S
Phenol	ND	850) µg/Kg	20 02/28/2010 16:35	49468
Bis(2-chloroethyl)ether	ND	850) µg/Kg	20 02/28/2010 16:35	49468
2-Chlorophenol	ND	850) µg/Kg	20 02/28/2010 16:35	49468
1,3-Dichlorobenzene	ND	850) µg/Kg	20 02/28/2010 16:35	49468
1,4-Dichlorobenzene	ND	8500) µg/Kg	20 02/28/2010 16:35	49468
1,2-Dichlorobenzene	ND	8500		20 02/28/2010 16:35	49468
2-Methylphenol	ND	8500) µg/Kg	20 02/28/2010 16:35	49468
2,2'-oxybis(1-Chloropropane)	ND	8500) µg/Kg	20 02/28/2010 16:35	49468
4-Methylphenol	3000	J 8500) µg/Kg	20 02/28/2010 16:35	49468
N-Nitroso-di-n-propylamine	ND	8500) µg/Kg	20 02/28/2010 16:35	49468
Hexachloroethane	ND	8500) µg/Kg	20 02/28/2010 16:35	49468
Nitrobenzene	NĎ	8500) µg/Kg	20 02/28/2010 16:35	49468
Isophorone	ND	8500) µg/Kg	20 02/28/2010 16:35	49468
2-Nitrophenol	ND	8500	μg/Kg	20 02/28/2010 16:35	49468
2,4-Dimethylphenol	ND	8500) µg/Kg	20 02/28/2010 16:35	49468
2,4-Dichlorophenol	ND	8500) µg/Kg	20 02/28/2010 16:35	49468
1,2,4-Trichlorobenzene	ND	8500	μg/Kg	20 02/28/2010 16:35	49468
Naphthalene	24000	8500	µg/Kg	20 02/28/2010 16:35	49468
4-Chloroaniline	ND	8500) µg/Kg	20 02/28/2010 16:35	49468
Bis(2-chloroethoxy)methane	ND	8500	μg/Kg	20 02/28/2010 16:35	49468
Hexachlorobutadiene	ND	8500	μg/Kg	20 02/28/2010 16:35	49468
4-Chloro-3-methylphenol	NĎ	8500) µg/Kg	20 02/28/2010 16:35	49468
2-Methylnaphthalene	11000	8500) µg/Kg	20 02/28/2010 16:35	49468
Hexachlorocyclopentadiene	ND	8500	μg/Kg	20 02/28/2010 16:35	49468
2,4,6-Trichlorophenol	ND	8500) µg/Kg	20 02/28/2010 16:35	49468
2,4,5-Trichlorophenol	ND	17000	μg/Kg	20 02/28/2010 16:35	49468
2-Chloronaphthalene	ND	8500	μg/Kg	20 02/28/2010 16:35	49468
2-Nitroaniline	ND	17000) µg/Kg	20 02/28/2010 16:35	49468
Dimethylphthalate	ND	8500) µg/Kg	20 02/28/2010 16:35	49468
Acenaphthylene	10000	8500	μg/Kg	20 02/28/2010 16:35	49468
2,6-Dinitrotoluene	ND	8500) µg/Kg	20 02/28/2010 16:35	49468
3-Nitroaniline	ND	17000) µg/Kg	20 02/28/2010 16:35	49468
Acenaphthene	19000	8500	μg/Kg	20 02/28/2010 16:35	49468
2,4-Dinitrophenol	ND	17000) µg/Kg	20 02/28/2010 16:35	49468
4-Nitrophenol	ND	17000) µg/Kg	20 02/28/2010 16:35	49468
Dibenzofuran	20000	8500	µg/Kg	20 02/28/2010 16:35	49468
2,4-Dinitrotoluene	ND	8500		20 02/28/2010 16:35	49468
Diethylphthalate	ND	8500		20 02/28/2010 16:35	49468
4-Chlorophenyl-phenylether	ND	8500	μg/Kg	20 02/28/2010 16:35	49468
					-

Qualifiers: ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Client: Day Environmental Inc.

Client Sample ID: TP10-11 (7')

Lab ID: J0281-09

Date:	04-Mar-10
	0 1 11100 10

 Project:
 151 Mt. Hope Ave.

 Collection Date:
 02/18/10 10:40

Analyses	Result	Qual	RL	Units	DF Date Analyzed	Batch ID
SW846 8270 SVOA by GC-MS					<u></u>	SW8270_S
Fluorene	28000		8500	µg/Kg	20 02/28/2010 16:35	49468
4-Nitroaniline	ND			µg/Kg	20 02/28/2010 16:35	49468
4,6-Dinitro-2-methylphenol	ND			µg/Kg	20 02/28/2010 16:35	49468
N-Nitrosodiphenylamine	ND		8500	µg/Kg	20 02/28/2010 16:35	49468
4-Bromophenyl-phenylether	ND		8500	µg/Kg	20 02/28/2010 16:35	49468
Hexachlorobenzene	ND		8500	µg/Kg	20 02/28/2010 16:35	49468
Pentachlorophenol	ND		17000	µg/Kg	20 02/28/2010 16:35	49468
Phenanthrene	110000		8500	µg/Kg	20 02/28/2010 16:35	49468
Anthracene	38000		8500	µg/Kg	20 02/28/2010 16:35	49468
Carbazole	13000		8500	µg/Kg	20 02/28/2010 16:35	49468
Di-n-butylphthalate	ND		8500	µg/Kg	20 02/28/2010 16:35	49468
Fluoranthene	97000		8500	µg/Kg	20 02/28/2010 16:35	49468
Pyrene	83000		8500	µg/Kg	20 02/28/2010 16:35	49468
Butylbenzylphthalate	ND		8500	µg/Kg	20 02/28/2010 16:35	49468
3,3'-Dichlorobenzidine	ND		8500	µg/Kg	20 02/28/2010 16:35	49468
Benzo(a)anthracene	49000		8500	µg/Kg	20 02/28/2010 16:35	49468
Chrysene	44000		8500	µg/Kg	20 02/28/2010 16:35	49468
Bis(2-ethylhexyl)phthalate	ND		8500	µg/Kg	20 02/28/2010 16:35	49468
Di-n-octylphthalate	ND		8500	µg/Kg	20 02/28/2010 16:35	49468
Benzo(b)fluoranthene	44000		8500	µg/Kg	20 02/28/2010 16:35	49468
Benzo(k)fluoranthene	17000		8500	µg/Kg	20 02/28/2010 16:35	49468
Benzo(a)pyrene	37000		8500	µg/Kg	20 02/28/2010 16:35	49468
Indeno(1,2,3-cd)pyrene	15000		8500	µg/Kg	20 02/28/2010 16:35	49468
Dibenzo(a,h)anthracene	6000	J	8500	µg/Kg	20 02/28/2010 16:35	49468
Benzo(g,h,i)perylene	15000		8500	µg/Kg	20 02/28/2010 16:35	49468
Surrogate: Nitrobenzene-d5	0	S	35-100	%REC	20 02/28/2010 16:35	49468
Surrogate: 2-Fluorobiphenyl	0	S	45-105	%REC	20 02/28/2010 16:35	49468
Surrogate: Terphenyl-d14	93.7		30-125	%REC	20 02/28/2010 16:35	49468
Surrogate: Phenol-d5	70.3		40-100	%REC	20 02/28/2010 16:35	49468
Surrogate: 2-Fluorophenol	63.3		35-105	%REC	20 02/28/2010 16:35	49468
Surrogate: 2,4,6-Tribromophenol	0	S	35-125	%REC	20 02/28/2010 16:35	49468

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range
- RL Reporting Limit

Client: Day Environmental Inc.

Client Sample ID: TP10-13 (11')

Lab ID: J0281-10

Date: 04-Mar-10

Project: 151 Mt. Hope Ave. Collection Date: 02/18/10 11:25

Analyses	Result Qual	RL Units	DF Date Analyzed	Batch ID
SW846 8270 SVOA by GC-MS				SW8270_S
Phenoi	ND	440 µg/Kg	1 02/26/2010 20:15	49468
Bis(2-chloroethyl)ether	ND	440 µg/Kg	1 02/26/2010 20:15	49468
2-Chlorophenol	ND	440 µg/Kg	1 02/26/2010 20:15	49468
1,3-Dichlorobenzene	ND	440 µg/Kg	1 02/26/2010 20:15	49468
1,4-Dichlorobenzene	ND	440 µg/Kg	1 02/26/2010 20:15	49468
1,2-Dichlorobenzene	ND	440 µg/Kg	1 02/26/2010 20:15	49468
2-Methylphenol	ND	440 µg/Kg	1 02/26/2010 20:15	49468
2,2'-oxybis(1-Chloropropane)	ND	440 µg/Kg	1 02/26/2010 20:15	49468
4-Methylphenol	67 J	440 µg/Kg	1 02/26/2010 20:15	49468
N-Nitroso-di-n-propylamine	ND	440 µg/Kg	1 02/26/2010 20:15	49468
Hexachloroethane	ND	440 µg/Kg	1 02/26/2010 20:15	49468
Nitrobenzene	ND	440 µg/Kg	1 02/26/2010 20:15	49468
Isophorone	ND	440 µg/Kg	1 02/26/2010 20:15	49468
2-Nitrophenol	ND	440 µg/Kg	1 02/26/2010 20:15	49468
2,4-Dimethylphenol	ND	440 µg/Kg	1 02/26/2010 20:15	49468
2,4-Dichlorophenol	ND	440 µg/Kg	1 02/26/2010 20:15	49468
1,2,4-Trichlorobenzene	ND	440 µg/Kg	1 02/26/2010 20:15	49468
Naphthalene	ND	440 µg/Kg	1 02/26/2010 20:15	49468
4-Chloroaniline	ND	440 µg/Kg	1 02/26/2010 20:15	49468
Bis(2-chloroethoxy)methane	ND	440 µg/Kg	1 02/26/2010 20:15	49468
Hexachlorobutadiene	ND	440 µg/Kg	1 02/26/2010 20:15	49468
4-Chloro-3-methylphenol	ND	440 µg/Kg	1 02/26/2010 20:15	49468
2-Methylnaphthalene	ND	440 µg/Kg	1 02/26/2010 20:15	49468
Hexachlorocyclopentadiene	ND	440 µg/Kg	1 02/26/2010 20:15	49468
2,4,6-Trichlorophenol	ND	440 µg/Kg	1 02/26/2010 20:15	49468
2,4,5-Trichlorophenol	ND	900 µg/Kg	1 02/26/2010 20:15	49468
2-Chloronaphthalene	ND	440 µg/Kg	1 02/26/2010 20:15	49468
2-Nitroaniline	ND	900 µg/Kg	1 02/26/2010 20:15	49468
Dimethylphthalate	ND	440 µg/Kg	1 02/26/2010 20:15	49468
Acenaphthylene	82 J	440 µg/Kg	1 02/26/2010 20:15	49468
2,6-Dinitrotoluene	ND	440 µg/Kg	1 02/26/2010 20:15	49468
3-Nitroaniline	ND	900 µg/Kg	1 02/26/2010 20:15	49468
Acenaphthene	ND	440 µg/Kg	1 02/26/2010 20:15	49468
2,4-Dinitrophenol	ND	900 µg/Kg	1 02/26/2010 20:15	49468
4-Nitrophenol	ND	900 µg/Kg	1 02/26/2010 20:15	49468
Dibenzofuran	48 J	440 µg/Kg	1 02/26/2010 20:15	49468
2,4-Dinitrotoluene	ND	440 µg/Kg	1 02/26/2010 20:15	49468
Diethylphthalate	ND	440 µg/Kg	1 02/26/2010 20:15	49468
4-Chlorophenyl-phenylether	ND	440 µg/Kg	1 02/26/2010 20:15	49468

Qualifiers: ND - Not Detected at the Reporting Limit

- J Analyte detected below quanititation limits
- B Analyte detected in the associated Method Blank
- DF Dilution Factor

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Client: Day Environmental Inc.

Client Sample ID: TP10-13 (11')

Lab ID: J0281-10

Date:	04-Mar-10
Dates	01 11111 10

Project: 151 Mt. Hope Ave. **Collection Date:** 02/18/10 11:25

Analyses	Result	Qual	RL	Units	DF Date Analyzed	Batch ID
SW846 8270 SVOA by GC-MS						SW8270_S
Fluorene	69	J	440	µg/Kg	1 02/26/2010 20:15	49468
4-Nitroaniline	ND		900	µg/Kg	1 02/26/2010 20:15	49468
4,6-Dinitro-2-methylphenol	ND		900	µg/Kg	1 02/26/2010 20:15	49468
N-Nitrosodiphenylamine	ND		440	µg/Kg	1 02/26/2010 20:15	49468
4-Bromophenyl-phenylether	ND		440	µg/Kg	1 02/26/2010 20:15	49468
Hexachlorobenzene	ND		440	µg/Kg	1 02/26/2010 20:15	49468
Pentachlorophenol	ND		900	µg/Kg	1 02/26/2010 20:15	49468
Phenanthrene	440		440	µg/Kg	1 02/26/2010 20:15	49468
Anthracene	150	J	440	µg/Kg	1 02/26/2010 20:15	49468
Carbazole	49	J	440	µg/Kg	1 02/26/2010 20:15	49468
Di-n-butylphthalate	ND		440	µg/Kg	1 02/26/2010 20:15	49468
Fluoranthene	760		440	µg/Kg	1 02/26/2010 20:15	49468
Pyrene	540		440	µg/Kg	1 02/26/2010 20:15	49468
Butylbenzylphthalate	ND		440	µg/Kg	1 02/26/2010 20:15	49468
3,3'-Dichlorobenzidine	ND		440	µg/Kg	1 02/26/2010 20:15	49468
Benzo(a)anthracene	380	J	440	µg/Kg	1 02/26/2010 20:15	49468
Chrysene	350	J	440	µg/Kg	1 02/26/2010 20:15	49468
Bis(2-ethylhexyl)phthalate	ND		440	µg/Kg	1 02/26/2010 20:15	49468
Di-n-octylphthalate	ND		440	µg/Kg	1 02/26/2010 20:15	49468
Benzo(b)fluoranthene	440	J	440	µg/Kg	1 02/26/2010 20:15	49468
Benzo(k)fluoranthene	180	J	440	µg/Kg	1 02/26/2010 20:15	49468
Benzo(a)pyrene	360	J	440	µg/Kg	1 02/26/2010 20:15	49468
Indeno(1,2,3-cd)pyrene	190	J	440	µg/Kg	1 02/26/2010 20:15	49468
Dibenzo(a,h)anthracene	62	J	440	µg/Kg	1 02/26/2010 20:15	49468
Benzo(g,h,i)perylene	200	J	440	µg/Kg	1 02/26/2010 20:15	49468
Surrogate: Nitrobenzene-d5	69.4		35-100	%REC	1 02/26/2010 20:15	49468
Surrogate: 2-Fluorobiphenyl	71.1		45-105	%REC	1 02/26/2010 20:15	49468
Surrogate: Terphenyl-d14	83.0		30-125	%REC	1 02/26/2010 20:15	49468
Surrogate: Phenoi-d5	64.4		40-100	%REC	1 02/26/2010 20:15	49468
Surrogate: 2-Fluorophenol	60.3		35-105	%REC	1 02/26/2010 20:15	49468
Surrogate: 2,4,6-Tribromophenol	70.1		35-125	%REC	1 02/26/2010 20:15	49468

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range

Client: Day Environmental Inc.

Client Sample ID: TP10-15 (7')

Lab ID: J0281-11

Date:	04-Mar-10
L'acc.	0 / 1/10/ 10

 Project:
 151 Mt. Hope Ave.

 Collection Date:
 02/18/10 14:40

Analyses	Result	Qual	RL	Units	DF Date Analyzed	Batch ID
SW846 8270 SVOA by GC-MS						SW8270_S
Phenol	91	J	390	µg/Kg	1 02/26/2010 20:37	49468
Bis(2-chloroethyl)ether	ND		390	µg/Kg	1 02/26/2010 20:37	49468
2-Chlorophenol	ND		390	µg/Kg	1 02/26/2010 20:37	49468
1,3-Dichlorobenzene	ND		390	µg/Kg	1 02/26/2010 20:37	49468
1,4-Dichlorobenzene	ND		390	µg/Kg	1 02/26/2010 20:37	49468
1,2-Dichlorobenzene	ND		390	µg/Kg	1 02/26/2010 20:37	49468
2-Methylphenol	73	J	390	µg/Kg	1 02/26/2010 20:37	49468
2,2'-oxybis(1-Chloropropane)	ND		390	µg/Kg	1 02/26/2010 20:37	49468
4-Methylphenol	180	J	390	µg/Kg	1 02/26/2010 20:37	49468
N-Nitroso-di-n-propylamine	ND		390	µg/Kg	1 02/26/2010 20:37	49468
Hexachloroethane	ND		390	µg/Kg	1 02/26/2010 20:37	49468
Nitrobenzene	ND		390	µg/Kg	1 02/26/2010 20:37	49468
Isophorone	ND		390	µg/Kg	1 02/26/2010 20:37	49468
2-Nitrophenol	ND		390	µg/Kg	1 02/26/2010 20:37	49468
2,4-Dimethylphenol	ND		390	µg/Kg	1 02/26/2010 20:37	49468
2,4-Dichlorophenol	ND		390	µg/Kg	1 02/26/2010 20:37	49468
1,2,4-Trichlorobenzene	ND		390	µg/Kg	1 02/26/2010 20:37	49468
Naphthalene	2900		390	µg/Kg	1 02/26/2010 20:37	49468
4-Chloroaniline	ND		390	µg/Kg	1 02/26/2010 20:37	49468
Bis(2-chloroethoxy)methane	ND		390	µg/Kg	1 02/26/2010 20:37	49468
Hexachlorobutadiene	ND		390	µg/Kg	1 02/26/2010 20:37	49468
4-Chloro-3-methylphenol	ND		390	µg/Kg	1 02/26/2010 20:37	49468
2-Methylnaphthalene	2100		390	µg/Kg	1 02/26/2010 20:37	49468
Hexachlorocyclopentadiene	ND		390	µg/Kg	1 02/26/2010 20:37	49468
2,4,6-Trichlorophenol	ND		390	µg/Kg	1 02/26/2010 20:37	49468
2,4,5-Trichlorophenol	ND		800	µg/Kg	1 02/26/2010 20:37	49468
2-Chloronaphthalene	ND		390	µg/Kg	1 02/26/2010 20:37	49468
2-Nitroaniline	ND		800	µg/Kg	1 02/26/2010 20:37	49468
Dimethylphthalate	ND		390	µg/Kg	1 02/26/2010 20:37	49468
Acenaphthylene	630		390	µg/Kg	1 02/26/2010 20:37	49468
2,6-Dinitrotoluene	ND		390	µg/Kg	1 02/26/2010 20:37	49468
3-Nitroaniline	ND		800	µg/Kg	1 02/26/2010 20:37	49468
Acenaphthene	1800		390	µg/Kg	1 02/26/2010 20:37	49468
2,4-Dinitrophenol	ND		800	µg/Kg	1 02/26/2010 20:37	49468
4-Nitrophenol	ND		800	µg/Kg	1 02/26/2010 20:37	49468
Dibenzofuran	1400			µg/Kg	1 02/26/2010 20:37	49468
2,4-Dinitrotoluene	ND		390	µg/Kg	1 02/26/2010 20:37	49468
Diethylphthalate	ND		390	µg/Kg	1 02/26/2010 20:37	49468
4-Chiorophenyl-phenylether	ND			µg/Kg	1 02/26/2010 20:37	49468

Qualifiers: ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Client: Day Environmental Inc.

Client Sample ID: TP10-15 (7')

Lab ID: J0281-11

Date:	04-Mar-10
Date.	07-17101-10

Project: 151 Mt. Hope Ave. **Collection Date:** 02/18/10 14:40

Analyses	Result	Qual RL	Units	DF Date Analyzed	Batch ID
SW846 8270 SVOA by GC-MS	<u></u>				SW8270_S
Fluorene	1800	390	µg/Kg	1 02/26/2010 20:37	49468
4-Nitroaniline	ND	800	µg/Kg	1 02/26/2010 20:37	49468
4,6-Dinitro-2-methylphenol	ND	800	µg/Kg	1 02/26/2010 20:37	49468
N-Nitrosodiphenylamine	ND	390	µg/Kg	1 02/26/2010 20:37	49468
4-Bromophenyl-phenylether	ND	390	µg/Kg	1 02/26/2010 20:37	49468
Hexachlorobenzene	ND	390	µg/Kg	1 02/26/2010 20:37	49468
Pentachlorophenol	ND	800	µg/Kg	1 02/26/2010 20:37	49468
Phenanthrene	12000	E 390	µg/Kg	1 02/26/2010 20:37	49468
Anthracene	3400	390	µg/Kg	1 02/26/2010 20:37	49468
Carbazole	1400	390	µg/Kg	1 02/26/2010 20:37	49468
Di-n-butylphthalate	ND	390	µg/Kg	1 02/26/2010 20:37	49468
Fluoranthene	14000	E 390	µg/Kg	1 02/26/2010 20:37	49468
Pyrene	12000	E 390	µg/Kg	1 02/26/2010 20:37	49468
Butylbenzylphthalate	ND	390	µg/Kg	1 02/26/2010 20:37	49468
3,3'-Dichlorobenzidine	ND	390	µg/Kg	1 02/26/2010 20:37	49468
Benzo(a)anthracene	6200	390	µg/Kg	1 02/26/2010 20:37	49468
Chrysene	6200	390	µg/Kg	1 02/26/2010 20:37	49468
Bis(2-ethylhexyl)phthalate	ND	390	µg/Kg	1 02/26/2010 20:37	49468
Di-n-octylphthalate	ND	390	µg/Kg	1 02/26/2010 20:37	49468
Benzo(b)fluoranthene	6200	390	µg/Kg	1 02/26/2010 20:37	49468
Benzo(k)fluoranthene	2900	390	µg/Kg	1 02/26/2010 20:37	49468
Benzo(a)pyrene	5200	390	µg/Kg	1 02/26/2010 20:37	49468
Indeno(1,2,3-cd)pyrene	2800	390	µg/Kg	1 02/26/2010 20:37	49468
Dibenzo(a,h)anthracene	1300	390	µg/Kg	1 02/26/2010 20:37	49468
Benzo(g,h,i)perylene	3100	390	µg/Kg	1 02/26/2010 20:37	49468
Surrogate: Nitrobenzene-d5	68.5	35-100	%REC	1 02/26/2010 20:37	49468
Surrogate: 2-Fluorobiphenyl	63.3	45-105	%REC	1 02/26/2010 20:37	49468
Surrogate: Terphenyl-d14	90.5	30-125	%REC	1 02/26/2010 20:37	49468
Surrogate: Phenol-d5	70.5	40-100	%REC	1 02/26/2010 20:37	49468
Surrogate: 2-Fluorophenol	64.6	35-105	%REC	1 02/26/2010 20:37	49468
Surrogate: 2,4,6-Tribromophenol	84.6	35-125	%REC	1 02/26/2010 20:37	49468

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Client: Day Environmental Inc.

Client Sample ID: TP10-15 (7')

Lab ID: J0281-11

Date: 04-Mar-10

 Project:
 151 Mt. Hope Ave.

 Collection Date:
 02/18/10 14:40

Analyses	Result Qual	RL Units	DF Date Analyzed	Batch ID
SW846 8270 SVOA by GC-MS				SW8270_S
Phenol	ND	1600 µg/Kg	4 02/28/2010 16:56	49468
Bis(2-chloroethyl)ether	ND	1600 µg/Kg	4 02/28/2010 16:56	49468
2-Chlorophenol	ND	1600 µg/Kg	4 02/28/2010 16:56	49468
1,3-Dichlorobenzene	ND	1600 µg/Kg	4 02/28/2010 16:56	49468
1,4-Dichlorobenzene	ND	1600 µg/Kg	4 02/28/2010 16:56	49468
1,2-Dichlorobenzene	270 J	1600 µg/Kg	4 02/28/2010 16:56	49468
2-Methylphenol	ND	1600 µg/Kg	4 02/28/2010 16:56	49468
2,2'-oxybis(1-Chloropropane)	ND	1600 µg/Kg	4 02/28/2010 16:56	49468
4-Methylphenol	ND	1600 µg/Kg	4 02/28/2010 16:56	49468
N-Nitroso-di-n-propylamine	ND	1600 µg/Kg	4 02/28/2010 16:56	49468
Hexachloroethane	ND	1600 µg/Kg	4 02/28/2010 16:56	49468
Nitrobenzene	ND	1600 µg/Kg	4 02/28/2010 16:56	49468
Isophorone	ND	1600 μg/Kg	4 02/28/2010 16:56	49468
2-Nitrophenol	ND	1600 µg/Kg	4 02/28/2010 16:56	49468
2,4-Dimethylphenol	ND	1600 µg/Kg	4 02/28/2010 16:56	49468
2,4-Dichlorophenol	ND	1600 µg/Kg	4 02/28/2010 16:56	49468
1,2,4-Trichlorobenzene	ND	1600 µg/Kg	4 02/28/2010 16:56	49468
Naphthalene	3200	1600 µg/Kg	4 02/28/2010 16:56	49468
4-Chloroaniline	ND	1600 µg/Kg	4 02/28/2010 16:56	49468
Bis(2-chloroethoxy)methane	ND	1600 µg/Kg	4 02/28/2010 16:56	49468
Hexachlorobutadiene	ND	1600 µg/Kg	4 02/28/2010 16:56	49468
4-Chioro-3-methylphenol	ND	1600 µg/Kg	4 02/28/2010 16:56	49468
2-Methylnaphthalene	2000	1600 µg/Kg	4 02/28/2010 16:56	49468
Hexachlorocyclopentadiene	ND	1600 µg/Kg	4 02/28/2010 16:56	49468
2,4,6-Trichlorophenol	ND	1600 µg/Kg	4 02/28/2010 16:56	49468
2,4,5-Trichlorophenol	ND	3200 µg/Kg	4 02/28/2010 16:56	49468
2-Chloronaphthalene	ND	1600 µg/Kg	4 02/28/2010 16:56	49468
2-Nitroaniline	ND	3200 µg/Kg	4 02/28/2010 16:56	49468
Dimethylphthalate	ND	1600 µg/Kg	4 02/28/2010 16:56	49468
Acenaphthylene	810 J	1600 µg/Kg	4 02/28/2010 16:56	49468
2,6-Dinitrotoluene	ND	1600 µg/Kg	4 02/28/2010 16:56	49468
3-Nitroaniline	ND	3200 µg/Kg	4 02/28/2010 16:56	49468
Acenaphthene	2300	1600 µg/Kg	4 02/28/2010 16:56	49468
2,4-Dinitrophenol	ND	3200 µg/Kg	4 02/28/2010 16:56	49468
4-Nitrophenol	ND	3200 µg/Kg	4 02/28/2010 16:56	49468
Dibenzofuran	1900	1600 µg/Kg	4 02/28/2010 16:56	49468
2,4-Dinitrotoluene	ND	1600 µg/Kg	4 02/28/2010 16:56	49468
Diethylphthalate	ND	1600 µg/Kg	4 02/28/2010 16:56	49468
4-Chlorophenyl-phenylether	ND	1600 µg/Kg	4 02/28/2010 16:56	49468

Qualifiers: ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Client: Day Environmental Inc.

Client Sample ID: TP10-15 (7')

Lab ID: J0281-11

Date:	04-Mar-10
Dates	or mun iv

 Project:
 151 Mt. Hope Ave.

 Collection Date:
 02/18/10 14:40

Analyses	Result	Qual	RL	Units	DF Date Analyzed	Batch ID
SW846 8270 SVOA by GC-MS						SW8270_S
Fluorene	2300		1600	µg/Kg	4 02/28/2010 16:56	49468
4-Nitroaniline	ND		3200	µg/Kg	4 02/28/2010 16:56	49468
4,6-Dinitro-2-methylphenol	ND		3200	µg/Kg	4 02/28/2010 16:56	49468
N-Nitrosodiphenylamine	ND		1600	µg/Kg	4 02/28/2010 16:56	49468
4-Bromophenyl-phenylether	ND		1600	µg/Kg	4 02/28/2010 16:56	49468
Hexachlorobenzene	ND		1600	µg/Kg	4 02/28/2010 16:56	49468
Pentachlorophenol	ND		3200	µg/Kg	4 02/28/2010 16:56	49468
Phenanthrene	14000		1600	µg/Kg	4 02/28/2010 16:56	49468
Anthracene	3500		1600	µg/Kg	4 02/28/2010 16:56	49468
Carbazole	1400	J	1600	µg/Kg	4 02/28/2010 16:56	49468
Di-n-butylphthalate	ND		1600	µg/Kg	4 02/28/2010 16:56	49468
Fluoranthene	15000		1600	µg/Kg	4 02/28/2010 16:56	49468
Pyrene	14000		1600	µg/Kg	4 02/28/2010 16:56	49468
Butylbenzylphthalate	ND		1600	µg/Kg	4 02/28/2010 16:56	49468
3,3'-Dichlorobenzidine	ND		1600	µg/Kg	4 02/28/2010 16:56	49468
Benzo(a)anthracene	6500		1600	µg/Kg	4 02/28/2010 16:56	49468
Chrysene	7200		1600	µg/Kg	4 02/28/2010 16:56	49468
Bis(2-ethylhexyl)phthalate	ND		1600	µg/Kg	4 02/28/2010 16:56	49468
Di-n-octylphthalate	ND		1600	µg/Kg	4 02/28/2010 16:56	49468
Benzo(b)fluoranthene	6900		1600	µg/Kg	4 02/28/2010 16:56	49468
Benzo(k)fluoranthene	3400		1600	µg/Kg	4 02/28/2010 16:56	49468
Benzo(a)pyrene	5600		1600	µg/Kg	4 02/28/2010 16:56	49468
Indeno(1,2,3-cd)pyrene	3000		1600	µg/Kg	4 02/28/2010 16:56	49468
Dibenzo(a,h)anthracene	970	J	1600	µg/Kg	4 02/28/2010 16:56	49468
Benzo(g,h,i)perylene	3400		1600	µg/Kg	4 02/28/2010 16:56	49468
Surrogate: Nitrobenzene-d5	73.9		35-100	%REC	4 02/28/2010 16:56	49468
Surrogate: 2-Fluorobiphenyl	82.3		45-105	%REC	4 02/28/2010 16:56	49468
Surrogate: Terphenyl-d14	95.2		30-125	%REC	4 02/28/2010 16:56	49468
Surrogate: Phenol-d5	72.0		40-100	%REC	4 02/28/2010 16:56	49468
Surrogate: 2-Fluorophenol	66.8		35-105	%REC	4 02/28/2010 16:56	49468
Surrogate: 2,4,6-Tribromophenol	61.4		35-125	%REC	4 02/28/2010 16:56	49468

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Client: Day Environmental Inc.

Client Sample ID: TP10-20 (6.5')

Lab ID: J0281-12

Project: 151 Mt. Hope Ave. **Collection Date:** 02/18/10 13:15

SW842 8270 - SVOA by GC-MS SW8270 - S Phenol ND 460 µgKq 102/25/2010 20.57 44468 Big/C-hloroethy/leher ND 460 µgKq 102/25/2010 20.57 44468 1.3 Chloroethy/leher ND 460 µgKq 102/25/2010 20.57 44468 1.4 Chloroethy/leher ND 460 µgKq 102/25/2010 20.57 44648 1.4 Chloroethy/lehen ND 460 µgKq 102/25/2010 20.57 44648 2.4 Chloropheane ND 460 µgKq 102/25/2010 20.57 44648 2.4 Syste(1-Chloropropane) ND 460 µgKq 102/25/2010 20.57 44648 2.4 Syste(1-Chloropropane) ND 460 µgKq 102/25/2010 20.57 44648 4.4 Metty/phenol ND 460 µgKq 102/25/2010 20.57 44648 2.4 Syste(1-Chloropropane) ND 460 µgKq 102/25/2010 20.57 44648 2.4 Syste(1-Chloropropane) ND 460 µgKq 102/25/2010 20.57 44648	Analyses	Result	Qual RL	Units	DF Date Analyzed	Batch ID
Bis/2-chloreshtylether ND 460 µpKg 10228/2010.20.57 44888 2-Chorophenol ND 460 µpKg 10228/2010.20.57 44888 1.3-Dichlorobenzene ND 460 µpKg 10228/2010.20.57 44888 1.2-Dichlorobenzene ND 460 µpKg 10228/2010.20.57 4488 1.2-Dichlorobenzene ND 460 µpKg 10228/2010.20.57 4488 2.2-Weltylphenol ND 460 µpKg 10228/2010.20.57 44848 2.2-weltylphenol ND 460 µpKg 10228/2010.20.57 44848 Methylphenol ND 460 µpKg 10228/2010.20.57 44848 ND 460 µpKg 10228/2010.20.57 44848 Schorophenol ND 460 µpKg 10228/2010.20.57 44848 Schorophenol ND 460 µpKg 10228/2010.20.57 44848 2.Nirophenol ND 460 µpKg 10228/2010.20.57 44848	SW846 8270 SVOA by GC-MS					SW8270_S
2-Okorophenol ND 460 µ9/Kg 10226201020.57 44848 1.3-Dichlorobenzene ND 460 µ9/Kg 10228201020.57 44848 1.4-Dichlorobenzene ND 460 µ9/Kg 10228201020.57 44848 2-wobici (-Lohoropane) ND 460 µ9/Kg 10228201020.57 44848 2-wobici (-Lohoropane) ND 460 µ9/Kg 10228201020.57 44848 2-wobici (-Lohoropane) ND 460 µ9/Kg 10228201020.57 44848 Nitros di-in-propylamine ND 460 µ9/Kg 10228201020.57 44848 Nitros di-in-propylamine ND 460 µ9/Kg 10228201020.57 44848 2-wobici (-Lohoropane) ND 460 µ9/Kg 10228201020.57 44848 2-wobici (-Lohoropane) ND 460 µ9/Kg 10228201020.57 44848 2-Abchrophenol ND 460 µ9/Kg 10228201020.57 44848 2-Abchrophenol ND 460 µ9/Kg	Phenol	ND	460	µg/Kg	1 02/26/2010 20:57	49468
1.3.Dichlorobenzene ND 460 µg/Kg 10228/2010 20.57 49488 1.4.Dichlorobenzene ND 460 µg/Kg 10228/2010 20.57 49488 2.Metrylphenol ND 460 µg/Kg 10228/2010 20.57 49488 2.2-cryslis(1-Chicoropane) ND 460 µg/Kg 10228/2010 20.57 49488 Ardentylphenol ND 460 µg/Kg 10228/2010 20.57 49488 NNtosoci di-propylarine ND 460 µg/Kg 10228/2010 20.57 49488 Nutrobenzene ND 460 µg/Kg 10228/2010 20.57 49488 Nutrobenzene ND 460 µg/Kg 10228/2010 20.57 49488 Sohrone ND 460 µg/Kg 10228/2010 20.57 49488 2.AUrinthone ND 460 µg/Kg	Bis(2-chloroethyl)ether	ND	460	µg/Kg	1 02/26/2010 20:57	49468
1.4.Dichlorobenzene ND 460 µg/kg 10.228/2010.20.57 49488 1.2.Dichlorobenzene ND 460 µg/kg 10.228/2010.20.57 49488 2.2.dorghight-Chloropropane) ND 460 µg/kg 10.228/2010.20.57 49488 2.2.dorghight-Chloropropane) ND 460 µg/kg 10.228/2010.20.57 49488 4.Methylphenol ND 460 µg/kg 10.228/2010.20.57 49488 Nitroso-di-propriganine ND 460 µg/kg 10.228/2010.20.57 49488 Nitroso-di-propriganine ND 460 µg/kg 10.228/2010.20.57 49488 2.4Direchlydhenol ND 460 µg/kg 10.228/2010.20.57 49488 2.4Direchlydhenol ND 460 µg/kg 10.228/2010.20.57 49488 2.4-Direchlydhenol ND 460 µg/kg 10.228/2010.20.57 49488 1.2.4-Direchlydhenol ND 460 µg/kg 10.228/2010.20.57 49488 2.4-Direchlydhenol ND 460 µg/kg 10.228/2010.20.57 49488 1.2.4-D	2-Chlorophenol	ND	460	µg/Kg	1 02/26/2010 20:57	49468
1.2.Dichlorobenzene ND 460 µKg 10228/2010 20.57 49488 2wstylic/Lohopropano) ND 460 µKg 10228/2010 20.57 49488 2wstylic/Lohopropano) ND 460 µKg 10228/2010 20.57 49488 4.Methylphenol ND 460 µKg 10228/2010 20.57 49488 N.Ntoso din-proplamine ND 460 µKg 10228/2010 20.57 49488 Nitrobenzene ND 460 µKg 10228/2010 20.57 49488 Schorone ND 460 µKg 10228/2010 20.57 49488 2.Artorichone ND 460 µKg 10228/2010 20.57 49488 2.Artorichone ND 460 µKg 10228/2010 20.57 49488 2.Artorichone ND 460 µKg 10228/2010 20.57 49488 2.Artorichone/methal ND 460 µKg 10228/2010 20.57 49488 2.Artorichone/methale ND 460 µKg 10228/2010 20.57 49488 2.Artorichone/methale ND 460 µKg	1,3-Dichlorobenzene	ND	460	µg/Kg	1 02/26/2010 20:57	49468
ND 460 µKg 1.02/28/2010 20:57 49488 2.2 "aybigh(-Chloropropa) ND 460 µKg 1.02/28/2010 20:57 49488 4.Methylphenol ND 460 µKg 1.02/28/2010 20:57 49488 N.Hitoso-di-a-proplamine ND 460 µKg 1.02/28/2010 20:57 49488 Nitrobeniane ND 460 µKg 1.02/28/2010 20:57 49488 Skohorehane ND 460 µKg 1.02/28/2010 20:57 49488 Skohorehane ND 460 µKg 1.02/28/2010 20:57 49488 2Mitrophenol ND 460 µKg 1.02/28/2010 20:57 49488 2A Chichorophenol ND 460 µKg 1.02/28/2010 20:57 49488 1.2.4-Trichlorobenzene ND 460 µKg 1.02/28/2010 20:57 49488 1.2.4-Chichorophenol ND 460 µKg 1.02/28/2010 20:57 49488 1.2.4-Trichlorobenzene ND 460 µKg 1.02/28/2010 20:57	1,4-Dichlorobenzene	ND	460	µg/Kg	1 02/26/2010 20;57	49468
2.2 coxbis(1:Chioropropane) ND 460 µ3Kg 10228/2010.20:57 49488 4.44ttylphenol ND 460 µ3Kg 10228/2010.20:57 49488 Hexachloropthanine ND 460 µ3Kg 10228/2010.20:57 49488 Hexachloropthane ND 460 µ3Kg 10228/2010.20:57 49488 Sophorone ND 460 µ3Kg 10228/2010.20:57 49488 2.4 Dintorphenol ND 460 µ3Kg 10228/2010.20:57 49488 2.4 Dintorphenol ND 460 µ3Kg 10228/2010.20:57 49488 2.4 Dintorphenol ND 460 µ3Kg 10228/2010.20:57 49488 1.2.4 Tricthorobenzene ND 460 µ3Kg 10228/2010.20:57 49488 1.2.4 Tricthorobenzene ND 460 µ3Kg 10228/2010.20:57 49488 1.2.4 Chicoro-methylphenol ND 460 µ3Kg 10228/2010.20:57 49488 2.4 Dintorphenol ND 460 µ3Kg 10228/2010.20:57 49488 2.4 Dintorophenol ND 460 <td>1,2-Dichlorobenzene</td> <td>ND</td> <td>460</td> <td>µg/Kg</td> <td>1 02/26/2010 20:57</td> <td>49468</td>	1,2-Dichlorobenzene	ND	460	µg/Kg	1 02/26/2010 20:57	49468
4-Methylphenol ND 460 µ3Kg 10228/2010 20.57 49488 N-Micoso-din-propylamine ND 460 µ3Kg 10226/2010 20.57 49488 Hexachloroethane ND 460 µ3Kg 10226/2010 20.57 49488 Horbertone ND 460 µ3Kg 10226/2010 20.57 49488 Jephorone ND 460 µ3Kg 10226/2010 20.57 49488 2.4-Dinethylphenol ND 460 µ3Kg 10226/2010 20.57 49488 2.4-Dinethylphenol ND 460 µ3Kg 10226/2010 20.57 49488 2.4-Dinethylphenol ND 460 µ3Kg 10226/2010 20.57 49488 1.2.4-Trichlorobenzene ND 460 µ3Kg 10226/2010 20.57 49488 4.2-Chicro-aniline ND 460 µ3Kg 10226/2010 20.57 49488 4.2-Chicro-aniline ND 460 µ3Kg 10226/2010	2-Methylphenol	ND	460	µg/Kg	1 02/26/2010 20:57	49468
Nitroso-din-propylamine ND 460 lg/Kg 1.02/26/2010 20:57 49488 Hexachloroethane ND 460 lg/Kg 1.02/26/2010 20:57 49488 Nitrobenzane ND 460 lg/Kg 1.02/26/2010 20:57 49488 Sophorone ND 460 lg/Kg 1.02/26/2010 20:57 49488 2.4 Unterphynelol ND 460 lg/Kg 1.02/26/2010 20:57 49488 2.4 Dichtorophonol ND 460 lg/Kg 1.02/26/2010 20:57 49488 1.2.4 Trichtorobenzene ND 460 lg/Kg 1.02/26/2010 20:57 49488 1.2.4 Trichtorobenzene ND 460 lg/Kg 1.02/26/2010 20:57 49488 1.2.4 Trichtorobenzene ND 460 lg/Kg 1.02/26/2010 20:57 49488 1.8/2-chtorosymethane ND 460 lg/Kg 1.02/26/2010 20:57 49488 4:6/toros-3-methylphenol ND 460 lg/Kg 1.02/26/2010 20:57 49488 4:6/torobylogentaliene ND <	2,2'-oxybis(1-Chloropropane)	ND	460	µg/Kg	1 02/26/2010 20:57	49468
Hexachloroethane ND 460 µg/Kg 102/26/2010 20.57 49488 Nitroberzene ND 460 µg/Kg 102/26/2010 20.57 49488 2x-Nitrophenol ND 460 µg/Kg 102/26/2010 20.57 49488 2.4-Dichlorophenol ND 460 µg/Kg 102/26/2010 20.57 49488 2.4-Dichlorophenol ND 460 µg/Kg 102/26/2010 20.57 49488 1.2.4-Trichloroberzene ND 460 µg/Kg 102/26/2010 20.57 49488 1.2.4-Trichloroberzene ND 460 µg/Kg 102/26/2010 20.57 49488 Bis/2-chloroethoxymethane ND 460 µg/Kg 102/26/2010 20.57 49488 2-Methymaphtalene ND <	4-Methylphenol	ND	460	µg/Kg	1 02/26/2010 20:57	49468
Nitobenzene ND 460 µg/Kg 102/26/2010 20:57 44468 Isophorone ND 460 µg/Kg 102/26/2010 20:57 44468 2-Nitrophenol ND 460 µg/Kg 102/26/2010 20:57 49468 2-A Dincthyphenol ND 460 µg/Kg 102/26/2010 20:57 49468 2.4-Dincthyphenol ND 460 µg/Kg 102/26/2010 20:57 49468 1.2.4-Tichkorobenzene ND 460 µg/Kg 102/26/2010 20:57 49468 4.Chkoroanine ND 460 µg/Kg 102/26/2010 20:57 49468 4.Chkoroanine ND 460 µg/Kg 102/26/2010 20:57 49468 2.A-Chkoro-schoxyjmethane ND 460 µg/Kg 102/26/2010 20:57 49468 2.A-Chkoro-schoxyjmethane ND 460 µg/Kg 102/26/2010 20:57 49468 2.A-Chkoro-schoxyjmethane ND 460 µg/Kg 102/26/2010 20:57 49468 2.A-Strickoroschoxyjmethane ND 460 <t< td=""><td>N-Nitroso-di-n-propylamine</td><td>ND</td><td>460</td><td>µg/Kg</td><td>1 02/26/2010 20:57</td><td>49468</td></t<>	N-Nitroso-di-n-propylamine	ND	460	µg/Kg	1 02/26/2010 20:57	49468
Isophorone ND 460 µg/Kg 10228/2010 20:57 49488 2-Nitrophenol ND 460 µg/Kg 10228/2010 20:57 49488 2.4-Dinchrophenol ND 460 µg/Kg 10228/2010 20:57 49488 2.4-Dinchrophenol ND 460 µg/Kg 10228/2010 20:57 49488 1.2.4-Trichlorobenzene ND 460 µg/Kg 10228/2010 20:57 49488 A-Chlorobenzene ND 460 µg/Kg 10228/2010 20:57 49488 A-Chlorobenzene ND 460 µg/Kg 10228/2010 20:57 49488 Bis(2-chlorobutadiene ND 460 µg/Kg 10228/2010 20:57 49488 Hexachlorobutadiene ND 460 µg/Kg 10228/2010 20:57 49488 4-Chloro-3-methylphenol ND 460 µg/Kg 10228/2010 20:57 49488 4-Schorocyclopentadiene ND 460 µg/Kg 10228/2010 20:57 49488 2,4-Strichlorophenol ND 460 µg/Kg	Hexachloroethane	ND	460	µg/Kg	1 02/26/2010 20:57	49468
2-Nitrophenol ND 460 µ/Kg 102/26/2010 20.57 49468 2.4-Dimethylphenol ND 460 µ/Kg 102/26/2010 20.57 49468 2.4-Dimethylphenol ND 460 µ/Kg 102/26/2010 20.57 49468 2.4-Dimethylphenol ND 460 µ/Kg 102/26/2010 20.57 49468 1.2.4-Tichlorobezene ND 460 µ/Kg 102/26/2010 20.57 49468 4-Chloroaniline ND 460 µ/Kg 102/26/2010 20.57 49468 Bis/C-chloroethoxylmethane ND 460 µ/Kg 102/26/2010 20.57 49468 4-Chloro-3-methylphenol ND 460 µ/Kg 102/26/2010 20.57 49468 2-Kherixhynaphthalene ND 460 µ/Kg 102/26/2010 20.57 49468 2-Kherixhynaphthalene ND 460 µ/Kg 102/26/2010 20.57 49468 2-Kherixhynaphthalene ND 460 µ/Kg 102/26/2010 20.57 49468 2-Kherixhorophenol ND 460	Nitrobenzene	ND	460	µg/Kg	1 02/26/2010 20:57	49468
2.4-Directhyphenol ND 460 µg/Kg 102/26/2010 20.57 49468 2.4-Directhorophenol ND 460 µg/Kg 102/26/2010 20.57 49468 1.2.4-Tirchtorobenzene ND 460 µg/Kg 102/26/2010 20.57 49468 Naphthalene ND 460 µg/Kg 102/26/2010 20.57 49468 A-Chtoroanline ND 460 µg/Kg 102/26/2010 20.57 49468 Bis(2-chtoroethoxy)methane ND 460 µg/Kg 102/26/2010 20.57 49468 Hexachtorobutadiene ND 460 µg/Kg 102/26/2010 20.57 49468 4-Chtoroa-smethylphenol ND 460 µg/Kg 102/26/2010 20.57 49468 4-Chtoroa-smethylphenol ND 460 µg/Kg 102/26/2010 20.57 49468 2-Methylnaphthalene ND 460 µg/Kg 102/26/2010 20.57 49468 2,4.5-Trichtorophenol ND 460 µg/Kg 102/26/2010 20.57 49468 2,4.5-Trichtorophenol ND 460 µg/Kg 102/26/2010 20.57 49468 2,4.5-Trichtor	Isophorone	ND	460	µg/Kg	1 02/26/2010 20:57	49468
2.4-Dicklorophenol ND 460 µg/Kg 1.02/26/2010 20:57 49468 1.2,4-Trichlorobenzene ND 460 µg/Kg 1.02/26/2010 20:57 49468 Naphthalene ND 460 µg/Kg 1.02/26/2010 20:57 49468 4-Chloroaniline ND 460 µg/Kg 1.02/26/2010 20:57 49468 Bis(2-chloroethoxy)methane ND 460 µg/Kg 1.02/26/2010 20:57 49468 Hexachlorobutadiene ND 460 µg/Kg 1.02/26/2010 20:57 49468 4-Chloro-3-methylphenol ND 460 µg/Kg 1.02/26/2010 20:57 49468 2-Methylnaphthalene ND 460 µg/Kg 1.02/26/2010 20:57 49468 2-Altorophenol ND 460 µg/Kg 1.02/26/2010 20:57 49468 2-Altorophenol ND 460 µg/Kg 1.02/26/2010 20:57 49468 2-Altorophenol ND 460 µg/Kg 1.02/26/2010 20:57 49468 2-Altorothorophenol	2-Nitrophenol	ND	460	µg/Kg	1 02/26/2010 20:57	49468
1,2,4-Trichlorobenzene ND 460 µg/Kg 102/26/2010 20:57 49488 Naphthalene ND 460 µg/Kg 102/26/2010 20:57 49468 4-Chlorosaniline ND 460 µg/Kg 102/26/2010 20:57 49468 Bis(2-chloroethoxy)methane ND 460 µg/Kg 102/26/2010 20:57 49468 4-Chloros-amethylphenol ND 460 µg/Kg 102/26/2010 20:57 49468 2-Methylnaphthalene ND 460 µg/Kg 102/26/2010 20:57 49468 2-Abethylnaphthalene ND 460 µg/Kg 102/26/2010 20:57 49468 2-A,6-Trichlorophenol ND 460 µg/Kg 102/26/2010 20:57 49468 2-A,6-Trichlorophenol ND 460 µg/Kg 102/26/2010 20:57 49468 2-A,6-Trichlorophenol ND 460 µg/Kg 102/26/2010 20:57 49468 2-Chloronaphthalene ND 460 µg/Kg 102/26/2010 20:57 49468 2-Chloronaphthalene ND 460 µg/Kg 102/26/2010 20:57 49468 2-Chloronapht	2,4-Dimethylphenol	ND	460	µg/Kg	1 02/26/2010 20:57	49468
NapithaleneND460µg/Kg102/26/2010 20:57494684-ChloroanilineND460µg/Kg102/26/2010 20:5749468Bis(2-chloroethoxy)methaneND460µg/Kg102/26/2010 20:5749468HexachlorobutadieneND460µg/Kg102/26/2010 20:57494684-Chloro-3-methylphenolND460µg/Kg102/26/2010 20:57494682-MethylnaphthaleneND460µg/Kg102/26/2010 20:57494682-MethylnaphthaleneND460µg/Kg102/26/2010 20:57494682,4,5-TrichlorophenolND460µg/Kg102/26/2010 20:57494682,4,5-TrichlorophenolND460µg/Kg102/26/2010 20:57494682,4,5-TrichlorophenolND930µg/Kg102/26/2010 20:57494682,4,5-TrichlorophenolND930µg/Kg102/26/2010 20:57494682,4,5-TrichlorophenolND930µg/Kg102/26/2010 20:57494682,6-DinitroblueneND460µg/Kg102/26/2010 20:57494682,6-DinitroblueneND460µg/Kg102/26/2010 20:57494682,6-DinitroblueneND460µg/Kg102/26/2010 20:57494682,4-DinitrobleneND930µg/Kg102/26/2010 20:57494682,4-DinitrobleneND930µg/Kg102/26/2010 20:57494682,4-DinitrobleneND460µg/Kg102/26/2010 20:5749468 </td <td>2,4-Dichlorophenol</td> <td>ND</td> <td>460</td> <td>µg/Kg</td> <td>1 02/26/2010 20:57</td> <td>49468</td>	2,4-Dichlorophenol	ND	460	µg/Kg	1 02/26/2010 20:57	49468
A-Chloroaniline ND 460 µg/Kg 102/26/2010 20:57 49468 Bis(2-chloroethoxy)methane ND 460 µg/Kg 102/26/2010 20:57 49468 Hexachlorobutadiene ND 460 µg/Kg 102/26/2010 20:57 49468 4-Chloro-3-methylphenol ND 460 µg/Kg 102/26/2010 20:57 49468 2-Methylnaphthalene ND 460 µg/Kg 102/26/2010 20:57 49468 2.4.6-Trichlorophenol ND 460 µg/Kg 102/26/2010 20:57 49468 2.4.5-Trichlorophenol ND 460 µg/Kg 102/26/2010 20:57 49468 2.4.5-Trichlorophenol ND 460 µg/Kg 102/26/2010 20:57 49468 2.4.5-Trichlorophenol ND 930 µg/Kg 102/26/2010 20:57 49468 2.4.5-Trichlorophenol ND 930 µg/Kg 102/26/2010 20:57 49468 2.4.5-Trichlorophenol ND 930 µg/Kg 102/26/2010 20:57 49468 2.6-Dinitrobluene ND	1,2,4-Trichlorobenzene	ND	460	µg/Kg	1 02/26/2010 20:57	49468
Bis(2-chloroethoxy)methane ND 460 µg/Kg 102/26/2010 20:57 49488 Hexachlorobutadiene ND 460 µg/Kg 102/26/2010 20:57 49488 4-Chloro-3-methylphenol ND 460 µg/Kg 102/26/2010 20:57 49488 2-Methylnaphthalene ND 460 µg/Kg 102/26/2010 20:57 49468 4-Achlorocyclopentadiene ND 460 µg/Kg 102/26/2010 20:57 49468 2.4,6-Trichlorophenol ND 460 µg/Kg 102/26/2010 20:57 49468 2.Altroaniline ND 460 µg/Kg 102/26/2010 20:57 49468 2.6-Drinitrobluene ND 460 µg/Kg 102/26/2010 20:57 49468 2.6-Drinitrobluene ND	Naphthalene	ND	460	µg/Kg	1 02/26/2010 20:57	49468
HexachlorobutadineNDHo (Hy/Kg)1.02/26/2010 20:57494684-Chloro-3-methylphenolND460µg/Kg1.02/26/2010 20:57494682-MethylnaphthaleneND460µg/Kg1.02/26/2010 20:5749468HexachlorocyclopentadieneND460µg/Kg1.02/26/2010 20:57494682.4,6-TrichlorophenolND460µg/Kg1.02/26/2010 20:57494682.4,5-TrichlorophenolND460µg/Kg1.02/26/2010 20:57494682.4,5-TrichlorophenolND460µg/Kg1.02/26/2010 20:57494682.ChloronaphthaleneND460µg/Kg1.02/26/2010 20:57494682.AktronalitineND930µg/Kg1.02/26/2010 20:5749468DimethylphthalateND460µg/Kg1.02/26/2010 20:5749468AcenaphthyleneND460µg/Kg1.02/26/2010 20:57494683.NitroanilineND460µg/Kg1.02/26/2010 20:57494684.AcenaphthyleneND460µg/Kg1.02/26/2010 20:57494683.NitroanilineND460µg/Kg1.02/26/2010 20:57494684.AcenaphtheneND460µg/Kg1.02/26/2010 20:57494683.NitroanilineND460µg/Kg1.02/26/2010 20:57494683.NitroanilineND460µg/Kg1.02/26/2010 20:57494682.4-DinitroblenenolND930µg/Kg1.02/26/2010 20:5749468 <td>4-Chloroaniline</td> <td>ND</td> <td>460</td> <td>µg/Kg</td> <td>1 02/26/2010 20:57</td> <td>49468</td>	4-Chloroaniline	ND	460	µg/Kg	1 02/26/2010 20:57	49468
A-Chloro-3-methylphenolND460µg/Kg102/26/2010 20:57494682-MethylnaphthaleneND460µg/Kg102/26/2010 20:57494681 kexachlorocyclopentadieneND460µg/Kg102/26/2010 20:57494682,4,6-TrichlorophenolND460µg/Kg102/26/2010 20:57494682,4,5-TrichlorophenolND930µg/Kg102/26/2010 20:57494682-ChloronaphthaleneND460µg/Kg102/26/2010 20:57494682-ChloronaphthaleneND460µg/Kg102/26/2010 20:57494682-NitroanilineND460µg/Kg102/26/2010 20:5749468DimethylphthalateND460µg/Kg102/26/2010 20:57494682,6-DinitrotolueneND460µg/Kg102/26/2010 20:57494682,4-DinitrotolueneND460µg/Kg102/26/2010 20:57494684-NitrophenolND460µg/Kg102/26/2010 20:57494682,4-DinitrotolueneND460µg/Kg102/26/2010 20:57494684-NitrophenolND460µg/Kg102/26/2010 20:57494684-NitrophenolND460µg/Kg102/26/2010 20:57494684-NitrophenolND460µg/Kg102/26/2010 20:57494684-NitrophenolND930µg/Kg102/26/2010 20:57494684-NitrophenolND930µg/Kg102/26/2010 20:57494681 bibenz	Bis(2-chloroethoxy)methane	ND	460	µg/Kg	1 02/26/2010 20:57	49468
2-MethylaphthaleneND460µg/Kg102/26/2010 20:5749468HexachlorocyclopentadieneND460µg/Kg102/26/2010 20:57494682,4,6-TrichlorophenolND460µg/Kg102/26/2010 20:57494682,4,5-TrichlorophenolND930µg/Kg102/26/2010 20:57494682.ChloronaphthaleneND460µg/Kg102/26/2010 20:57494682.NitroanilineND460µg/Kg102/26/2010 20:5749468DimethylphthalateND460µg/Kg102/26/2010 20:5749468AcenaphthyleneND460µg/Kg102/26/2010 20:57494682,6-DinitrotolueneND460µg/Kg102/26/2010 20:57494683-NitroanilineND460µg/Kg102/26/2010 20:57494684-AcenaphtheneND460µg/Kg102/26/2010 20:57494684-NitrophenolND930µg/Kg102/26/2010 20:57494684-NitrophenolND930µg/Kg102/26/2010 20:57494684-NitrophenolND930µg/Kg102/26/2010 20:57494684-NitrophenolND930µg/Kg102/26/2010 20:57494684-NitrophenolND930µg/Kg102/26/2010 20:57494684-NitrophenolND930µg/Kg102/26/2010 20:57494684-NitrophenolND930µg/Kg102/26/2010 20:57494682,4-DinitrotolueneND	Hexachlorobutadiene	ND	460	µg/Kg	1 02/26/2010 20:57	49468
HexachbrocyclopentadieneND460µg/Kg1 02/26/2010 20:57494882,4,6-TrichlorophenolND460µg/Kg1 02/26/2010 20:57494882,4,5-TrichlorophenolND930µg/Kg1 02/26/2010 20:57494882-ChloronaphthaleneND460µg/Kg1 02/26/2010 20:57494882-NitroanilineND930µg/Kg1 02/26/2010 20:5749488DimethylphthalateND460µg/Kg1 02/26/2010 20:57494882,6-DinitrotolueneND460µg/Kg1 02/26/2010 20:57494883-NitroanilineND460µg/Kg1 02/26/2010 20:57494882,4-DinitrophenolND460µg/Kg1 02/26/2010 20:57494884-NitrophenolND930µg/Kg1 02/26/2010 20:57494882,4-DinitrophenolND460µg/Kg1 02/26/2010 20:57494882,4-DinitrophenolND930µg/Kg1 02/26/2010 20:57494884-NitrophenolND930µg/Kg1 02/26/2010 20:57494882,4-DinitrophenolND930µg/Kg1 02/26/2010 20:57494882,4-DinitrotolueneND460µg/Kg1 02/26/2010 20:57494882,4-DinitrotolueneND460µg/Kg1 02/26/2010 20:57494882,4-DinitrotolueneND460µg/Kg1 02/26/2010 20:57494882,4-DinitrotolueneND460µg/Kg1 02/26/2010 20:5749488<	4-Chloro-3-methylphenol	ND	460	µg/Kg	1 02/26/2010 20:57	49468
2,4,6-TrichlorophenolND460µg/Kg1.02/26/2010 20:57494682,4,5-TrichlorophenolND930µg/Kg1.02/26/2010 20:57494682-ChloronaphthaleneND460µg/Kg1.02/26/2010 20:57494682-NitroanilineND930µg/Kg1.02/26/2010 20:5749468DimethylphthalateND460µg/Kg1.02/26/2010 20:5749468AcenaphthyleneND460µg/Kg1.02/26/2010 20:57494682,6-DinitrotolueneND460µg/Kg1.02/26/2010 20:57494683-NitroanilineND460µg/Kg1.02/26/2010 20:57494682,4-DinitrotolueneND460µg/Kg1.02/26/2010 20:57494682,4-DinitrophenolND930µg/Kg1.02/26/2010 20:57494682,4-DinitrophenolND930µg/Kg1.02/26/2010 20:57494682,4-DinitrophenolND930µg/Kg1.02/26/2010 20:57494682,4-DinitrophenolND930µg/Kg1.02/26/2010 20:57494682,4-DinitrophenolND930µg/Kg1.02/26/2010 20:57494682,4-DinitrotolueneND460µg/Kg1.02/26/2010 20:57494682,4-DinitrotolueneND460µg/Kg1.02/26/2010 20:57494682,4-DinitrotolueneND460µg/Kg1.02/26/2010 20:57494682,4-DinitrotolueneND460µg/Kg1.02/26/2010 20:5749468 </td <td>2-Methylnaphthalene</td> <td>ND</td> <td>460</td> <td>µg/Kg</td> <td>1 02/26/2010 20:57</td> <td>49468</td>	2-Methylnaphthalene	ND	460	µg/Kg	1 02/26/2010 20:57	49468
2,4,5-TrichlorophenolND930µg/Kg1.02/26/2010 20:57494682-ChloronaphthaleneND460µg/Kg1.02/26/2010 20:57494682-NitroanilineND930µg/Kg1.02/26/2010 20:5749468DimethylphthalateND460µg/Kg1.02/26/2010 20:5749468AcenaphthyleneND460µg/Kg1.02/26/2010 20:57494682,6-DinitrotolueneND460µg/Kg1.02/26/2010 20:57494683-NitroanilineND930µg/Kg1.02/26/2010 20:57494682,6-DinitrotolueneND460µg/Kg1.02/26/2010 20:57494682,4-DinitrophenolND930µg/Kg1.02/26/2010 20:57494682,4-DinitrophenolND930µg/Kg1.02/26/2010 20:57494684-NitrophenolND930µg/Kg1.02/26/2010 20:57494682,4-DinitrotolueneND930µg/Kg1.02/26/2010 20:57494682,4-DinitrotolueneND930µg/Kg1.02/26/2010 20:57494682,4-DinitrotolueneND460µg/Kg1.02/26/2010 20:57494682,4-DinitrotolueneND460µg/Kg1.02/26/2010 20:57494682,4-DinitrotolueneND460µg/Kg1.02/26/2010 20:57494682,4-DinitrotolueneND460µg/Kg1.02/26/2010 20:57494682,4-DinitrotolueneND460µg/Kg1.02/26/2010 20:5749468 <t< td=""><td>Hexachlorocyclopentadiene</td><td>ND</td><td>460</td><td>µg/Kg</td><td>1 02/26/2010 20:57</td><td>49468</td></t<>	Hexachlorocyclopentadiene	ND	460	µg/Kg	1 02/26/2010 20:57	49468
2-ChloronaphthaleneND460µg/Kg1 02/26/2010 20:57494682-NitroanilineND930µg/Kg1 02/26/2010 20:5749468DimethylphthalateND460µg/Kg1 02/26/2010 20:5749468AcenaphthyleneND460µg/Kg1 02/26/2010 20:57494682,6-DinitrotolueneND460µg/Kg1 02/26/2010 20:57494683-NitroanilineND460µg/Kg1 02/26/2010 20:5749468AcenaphtheneND930µg/Kg1 02/26/2010 20:57494682,4-DinitrophenolND930µg/Kg1 02/26/2010 20:5749468DibenzofuranND930µg/Kg1 02/26/2010 20:57494682,4-DinitrotolueneND930µg/Kg1 02/26/2010 20:57494684-NitrophenolND930µg/Kg1 02/26/2010 20:5749468DibenzofuranND930µg/Kg1 02/26/2010 20:57494682,4-DinitrotolueneND460µg/Kg1 02/26/2010 20:5749468DibenzofuranND460µg/Kg1 02/26/2010 20:57494682,4-DinitrotolueneND460µg/Kg1 02/26/2010 20:5749468DiethylphthalateND460µg/Kg1 02/26/2010 20:57494682,4-DinitrotolueneND460µg/Kg1 02/26/2010 20:57494682,4-DinitrotolueneND460µg/Kg1 02/26/2010 20:57494682,4-Dinitrotoluene <td>2,4,6-Trichlorophenol</td> <td>ND</td> <td>460</td> <td>µg/Kg</td> <td>1 02/26/2010 20:57</td> <td>49468</td>	2,4,6-Trichlorophenol	ND	460	µg/Kg	1 02/26/2010 20:57	49468
2-NitroanilineND930µg/Kg1 02/26/2010 20:5749468DimethylphthalateND460µg/Kg1 02/26/2010 20:5749468AcenaphthyleneND460µg/Kg1 02/26/2010 20:57494682,6-DinitrotolueneND460µg/Kg1 02/26/2010 20:57494683-NitroanilineND930µg/Kg1 02/26/2010 20:5749468AcenaphtheneND930µg/Kg1 02/26/2010 20:57494682,4-DinitrophenolND930µg/Kg1 02/26/2010 20:5749468DibenzofuranND930µg/Kg1 02/26/2010 20:57494682,4-DinitrotolueneND930µg/Kg1 02/26/2010 20:5749468DibenzofuranND930µg/Kg1 02/26/2010 20:57494682,4-DinitrotolueneND460µg/Kg1 02/26/2010 20:5749468DibenzofuranND460µg/Kg1 02/26/2010 20:5749468DiethylphthalateND460µg/Kg1 02/26/2010 20:57494682,4-DinitrotolueneND460µg/Kg1 02/26/2010 20:57494682,4-DinitrotolueneND460µg/Kg1 02/26/2010 20:57494682,4-DinitrotolueneND460µg/Kg1 02/26/2010 20:57494682,4-DinitrotolueneND460µg/Kg1 02/26/2010 20:57494680AAAAAAA0AAAA </td <td>2,4,5-Trichlorophenol</td> <td>ND</td> <td>930</td> <td>µg/Kg</td> <td>1 02/26/2010 20:57</td> <td>49468</td>	2,4,5-Trichlorophenol	ND	930	µg/Kg	1 02/26/2010 20:57	49468
DimethylphthalateND460µg/Kg1 02/26/2010 20:5749468AcenaphthyleneND460µg/Kg1 02/26/2010 20:57494682,6-DinitrotolueneND460µg/Kg1 02/26/2010 20:57494683-NitroanilineND930µg/Kg1 02/26/2010 20:5749468AcenaphtheneND930µg/Kg1 02/26/2010 20:57494682,4-DinitrophenolND930µg/Kg1 02/26/2010 20:5749468DibenzofuranND930µg/Kg1 02/26/2010 20:57494682,4-DinitrotolueneND930µg/Kg1 02/26/2010 20:5749468DibenzofuranND460µg/Kg1 02/26/2010 20:5749468DibenzofuranND460µg/Kg1 02/26/2010 20:5749468DibethylphthalateND460µg/Kg1 02/26/2010 20:5749468	2-Chloronaphthalene	ND	460	µg/Kg	1 02/26/2010 20:57	49468
AcenaphthyleneND460µg/Kg102/26/2010 20:57494682,6-DinitrotolueneND460µg/Kg102/26/2010 20:57494683-NitroanilineND930µg/Kg102/26/2010 20:5749468AcenaphtheneND460µg/Kg102/26/2010 20:57494682,4-DinitrophenolND930µg/Kg102/26/2010 20:5749468DibenzofuranND930µg/Kg102/26/2010 20:57494682,4-DinitrotolueneND930µg/Kg102/26/2010 20:5749468DibenzofuranND460µg/Kg102/26/2010 20:5749468DibenzofuranND460µg/Kg102/26/2010 20:5749468DibetnylphthalateND460µg/Kg102/26/2010 20:5749468	2-Nitroaniline	ND	930	µg/Kg	1 02/26/2010 20:57	49468
2,6-DinitrotolueneND460µg/Kg1 02/26/2010 20:57494683-NitroanilineND930µg/Kg1 02/26/2010 20:5749468AcenaphtheneND460µg/Kg1 02/26/2010 20:57494682,4-DinitrophenolND930µg/Kg1 02/26/2010 20:57494684-NitrophenolND930µg/Kg1 02/26/2010 20:5749468DibenzofuranND930µg/Kg1 02/26/2010 20:57494682,4-DinitrotolueneND460µg/Kg1 02/26/2010 20:5749468DibethylphthalateND460µg/Kg1 02/26/2010 20:5749468	Dimethylphthalate	ND	460	µg/Kg	1 02/26/2010 20:57	49468
3-Nitroaniline ND 930 µg/Kg 1 02/26/2010 20:57 49468 Acenaphthene ND 460 µg/Kg 1 02/26/2010 20:57 49468 2,4-Dinitrophenol ND 930 µg/Kg 1 02/26/2010 20:57 49468 4-Nitrophenol ND 930 µg/Kg 1 02/26/2010 20:57 49468 Dibenzofuran ND 930 µg/Kg 1 02/26/2010 20:57 49468 2,4-Dinitrotoluene ND 460 µg/Kg 1 02/26/2010 20:57 49468 Dibenzofuran ND 460 µg/Kg 1 02/26/2010 20:57 49468 Dibetylphthalate ND 460 µg/Kg 1 02/26/2010 20:57 49468	Acenaphthylene	ND	460	µg/Kg	1 02/26/2010 20:57	49468
AcenaphtheneND460µg/Kg102/26/2010 20:57494682,4-DinitrophenolND930µg/Kg102/26/2010 20:57494684-NitrophenolND930µg/Kg102/26/2010 20:5749468DibenzofuranND460µg/Kg102/26/2010 20:57494682,4-DinitrotolueneND460µg/Kg102/26/2010 20:5749468DiethylphthalateND460µg/Kg102/26/2010 20:5749468	2,6-Dinitrotoluene	ND	460	µg/Kg	1 02/26/2010 20:57	49468
2,4-Dinitrophenol ND 930 µg/Kg 1 02/26/2010 20:57 49468 4-Nitrophenol ND 930 µg/Kg 1 02/26/2010 20:57 49468 Dibenzofuran ND 460 µg/Kg 1 02/26/2010 20:57 49468 2,4-Dinitrotoluene ND 460 µg/Kg 1 02/26/2010 20:57 49468 Diethylphthalate ND 460 µg/Kg 1 02/26/2010 20:57 49468	3-Nitroaniline	ND	930	µg/Kg	1 02/26/2010 20:57	49468
4-Nitrophenol ND 930 µg/Kg 1 02/26/2010 20:57 49468 Dibenzofuran ND 460 µg/Kg 1 02/26/2010 20:57 49468 2,4-Dinitrotoluene ND 460 µg/Kg 1 02/26/2010 20:57 49468 Diethylphthalate ND 460 µg/Kg 1 02/26/2010 20:57 49468	Acenaphthene	ND	460	µg/Kg	1 02/26/2010 20:57	49468
Dibenzofuran ND 460 µg/Kg 1 02/26/2010 20:57 49468 2,4-Dinitrotoluene ND 460 µg/Kg 1 02/26/2010 20:57 49468 Dibethylphthalate ND 460 µg/Kg 1 02/26/2010 20:57 49468	2,4-Dinitrophenol	ND	930	µg/Kg	1 02/26/2010 20:57	49468
2,4-Dinitrotoluene ND 460 µg/Kg 1 02/26/2010 20:57 49468 Diethylphthalate ND 460 µg/Kg 1 02/26/2010 20:57 49468	4-Nitrophenol	ND	930	µg/Kg	1 02/26/2010 20:57	49468
Diethylphthalate ND 460 µg/Kg 1 02/26/2010 20:57 49468	Dibenzofuran	ND	460	µg/Kg	1 02/26/2010 20:57	49468
	2,4-Dinitrotoluene	ND	460	µg/Kg	1 02/26/2010 20:57	49468
4-Chlorophenyl-phenylether ND 460 µg/Kg 1 02/26/2010 20:57 49468	Diethylphthalate	ND	460	µg/Kg	1 02/26/2010 20:57	49468
	4-Chiorophenyl-phenylether	ND	460	µg/Kg	1 02/26/2010 20:57	49468

Qualifiers: ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

Analyte detected offort qualification man

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Client: Day Environmental Inc.

Client Sample ID: TP10-20 (6.5')

Lab ID: J0281-12

Project: 151 Mt. Hope Ave. Collection Date: 02/18/10 13:15

Analyses	Result	Qual	RL	Units	DF Date Analyzed	Batch ID
SW846 8270 SVOA by GC-MS						SW8270_S
Fluorene	66	ſ	460	µg/Kg	1 02/26/2010 20:57	49468
4-Nitroaniline	ND		930	µg/Kg	1 02/26/2010 20:57	49468
4,6-Dinitro-2-methylphenol	ND		930	µg/Kg	1 02/26/2010 20:57	49468
N-Nitrosodiphenylamine	ND		460	µg/Kg	1 02/26/2010 20:57	49468
4-Bromophenyl-phenylether	ND		460	µg/Kg	1 02/26/2010 20:57	49468
Hexachlorobenzene	ND		460	µg/Kg	1 02/26/2010 20:57	49468
Pentachlorophenol	ND		930	µg/Kg	1 02/26/2010 20:57	49468
Phenanthrene	620		460	µg/Kg	1 02/26/2010 20:57	49468
Anthracene	150	J	460	µg/Kg	1 02/26/2010 20:57	49468
Carbazole	ND		460	µg/Kg	1 02/26/2010 20:57	49468
Di-n-butylphthalate	ND		460	µg/Kg	1 02/26/2010 20:57	49468
Fluoranthene	910		460	µg/Kg	1 02/26/2010 20:57	49468
Pyrene	700		460	µg/Kg	1 02/26/2010 20:57	49468
Butylbenzylphthalate	ND		460	µg/Kg	1 02/26/2010 20:57	49468
3,3'-Dichlorobenzidine	ND		460	µg/Kg	1 02/26/2010 20:57	49468
Benzo(a)anthracene	420	J	460	µg/Kg	1 02/26/2010 20:57	49468
Chrysene	410	J	460	µg/Kg	1 02/26/2010 20:57	49468
Bis(2-ethylhexyl)phthalate	ND		460	µg/Kg	1 02/26/2010 20:57	49468
Di-n-octylphthalate	ND		460	µg/Kg	1 02/26/2010 20:57	49468
Benzo(b)fluoranthene	430	J	460	µg/Kg	1 02/26/2010 20:57	49468
Benzo(k)fluoranthene	180	J	460	µg/Kg	1 02/26/2010 20:57	49468
Benzo(a)pyrene	340	J	460	µg/Kg	1 02/26/2010 20:57	49468
Indeno(1,2,3-cd)pyrene	170	J	460	µg/Kg	1 02/26/2010 20:57	49468
Dibenzo(a,h)anthracene	56	J	460	µg/Kg	1 02/26/2010 20:57	49468
Benzo(g,h,i)perylene	200	J	460	µg/Kg	1 02/26/2010 20:57	49468
Surrogate: Nitrobenzene-d5	68.4		35-100	%REC	1 02/26/2010 20:57	49468
Surrogate: 2-Fluorobiphenyl	71.7		45-105	%REC	1 02/26/2010 20:57	49468
Surrogate: Terphenyl-d14	79.2		30-125	%REC	1 02/26/2010 20:57	49468
Surrogate: Phenol-d5	66.7		40-100	%REC	1 02/26/2010 20:57	49468
Surrogate: 2-Fluorophenol	67.3		35-105	%REC	1 02/26/2010 20:57	49468
Surrogate: 2,4,6-Tribromophenol	62.3		35-125	%REC	1 02/26/2010 20:57	49468

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits

E - Value above quantitation range

Date: 04-Mar-10

Client: Day Environmental Inc.

Client Sample ID: TP10-23 (8')

Lab ID: J0281-14

Project: 151 Mt. Hope Ave. **Collection Date:** 02/19/10 13:25

Analyses	Result Qual	RL	Units	DF Date Analyzed	Batch ID
					SW8270_S
Phenol	ND	400	µg/Kg	1 02/26/2010 21:18	49468
Bis(2-chloroethyl)ether	ND	400	µg/Kg	1 02/26/2010 21:18	49468
2-Chlorophenol	ND	400	µg/Kg	1 02/26/2010 21:18	49468
1,3-Dichlorobenzene	ND	400	µg/Kg	1 02/26/2010 21:18	49468
1,4-Dichlorobenzene	ND	400	µg/Kg	1 02/26/2010 21:18	49468
1,2-Dichlorobenzene	ND	400	µg/Kg	1 02/26/2010 21:18	49468
2-Methylphenol	ND	400	µg/Kg	1 02/26/2010 21:18	49468
2,2'-oxybis(1-Chloropropane)	ND	400	µg/Kg	1 02/26/2010 21:18	49468
4-Methylphenol	ND	400	µg/Kg	1 02/26/2010 21:18	49468
N-Nitroso-di-n-propylamine	ND	400	µg/Kg	1 02/26/2010 21:18	49468
Hexachloroethane	ND		µg/Kg	1 02/26/2010 21:18	49468
Nitrobenzene	ND		µg/Kg	1 02/26/2010 21:18	49468
Isophorone	ND	400	µg/Kg	1 02/26/2010 21:18	49468
2-Nitrophenol	ND		µg/Kg	1 02/26/2010 21:18	49468
2,4-Dimethylphenol	ND	400	µg/Kg	1 02/26/2010 21:18	49468
2,4-Dichlorophenol	ND	400	µg/Kg	1 02/26/2010 21:18	49468
1,2,4-Trichlorobenzene	ND	400	µg/Kg	1 02/26/2010 21:18	49468
Naphthalene	ND	400	µg/Kg	1 02/26/2010 21:18	49468
4-Chloroaniline	ND	400	µg/Kg	1 02/26/2010 21:18	49468
Bis(2-chloroethoxy)methane	ND	400	µg/Kg	1 02/26/2010 21:18	49468
Hexachlorobutadiene	ND	400	µg/Kg	1 02/26/2010 21:18	49468
4-Chloro-3-methylphenol	ND	400	µg/Kg	1 02/26/2010 21:18	49468
2-Methylnaphthalene	ND	400	µg/Kg	1 02/26/2010 21:18	49468
Hexachlorocyclopentadiene	ND	400	µg/Kg	1 02/26/2010 21:18	49468
2,4,6-Trichlorophenol	ND		µg/Kg	1 02/26/2010 21:18	49468
2,4,5-Trichlorophenol	ND	800	µg/Kg	1 02/26/2010 21:18	49468
2-Chloronaphthalene	ND	400	µg/Kg	1 02/26/2010 21:18	49468
2-Nitroaniline	ND	800	µg/Kg	1 02/26/2010 21:18	49468
Dimethylphthalate	ND	400	µg/Kg	1 02/26/2010 21:18	49468
Acenaphthylene	ND	400	µg/Kg	1 02/26/2010 21:18	49468
2,6-Dinitrotoluene	ND	400	µg/Kg	1 02/26/2010 21:18	49468
3-Nitroaniline	ND	800	µg/Kg	1 02/26/2010 21:18	49468
Acenaphthene	ND	400	µg/Kg	1 02/26/2010 21:18	49468
2,4-Dinitrophenol	ND	800	µg/Kg	1 02/26/2010 21:18	49468
4-Nitrophenol	ND	800	µg/Kg	1 02/26/2010 21:18	49468
Dibenzofuran	ND	400	μg/Kg	1 02/26/2010 21:18	49468
2,4-Dinitrotoluene	ND		µg/Kg	1 02/26/2010 21:18	49468
Diethylphthalate	ND		µg/Kg	1 02/26/2010 21:18	49468
4-Chlorophenyl-phenylether	ND		µg/Kg	1 02/26/2010 21:18	49468

Qualifiers: ND - Not Detected at the Reporting Limit

- J Analyte detected below quanititation limits
- B Analyte detected in the associated Method Blank
- DF Dilution Factor

S - Spike Recovery outside accepted recovery limits

- R RPD outside accepted recovery limits
- E Value above quantitation range
- RL Reporting Limit

Client: Day Environmental Inc.

Client Sample ID: TP10-23 (8')

Lab ID: J0281-14

Date: 04	4-Mar-10
----------	----------

Project: 151 Mt. Hope Ave. **Collection Date:** 02/19/10 13:25

Analyses	Result	Qual	RL	Units	DF Date Analyzed	Batch ID
SW846 8270 SVOA by GC-MS						SW8270_S
Fluorene	ND		400	µg/Kg	1 02/26/2010 21:18	49468
4-Nitroaniline	ND		800	µg/Kg	1 02/26/2010 21:18	49468
4,6-Dinitro-2-methylphenol	ND		800	µg/Kg	1 02/26/2010 21:18	49468
N-Nitrosodiphenylamine	ND		400	µg/Kg	1 02/26/2010 21:18	49468
4-Bromophenyl-phenylether	ND		400	µg/Kg	1 02/26/2010 21:18	49468
Hexachlorobenzene	ND		400	µg/Kg	1 02/26/2010 21:18	49468
Pentachlorophenol	ND		800	µg/Kg	1 02/26/2010 21:18	49468
Phenanthrene	110	J	400	µg/Kg	1 02/26/2010 21:18	49468
Anthracene	45	J	400	µg/Kg	1 02/26/2010 21:18	49468
Carbazole	ND		400	µg/Kg	1 02/26/2010 21:18	49468
Di-n-butylphthalate	ND		400	µg/Kg	1 02/26/2010 21:18	49468
Fluoranthene	220	J	400	µg/Kg	1 02/26/2010 21:18	49468
Pyrene	160	J	400	µg/Kg	1 02/26/2010 21:18	49468
Butylbenzylphthalate	ND		400	µg/Kg	1 02/26/2010 21:18	49468
3,3´-Dichlorobenzidine	ND		400	µg/Kg	1 02/26/2010 21:18	49468
Benzo(a)anthracene	94	J	400	µg/Kg	1 02/26/2010 21:18	49468
Chrysene	87	J	400	µg/Kg	1 02/26/2010 21:18	49468
Bis(2-ethylhexyl)phthalate	ND		400	µg/Kg	1 02/26/2010 21:18	49468
Di-n-octylphthalate	ND		400	µg/Kg	1 02/26/2010 21:18	49468
Benzo(b)fluoranthene	86	J	400	µg/Kg	1 02/26/2010 21:18	49468
Benzo(k)fluoranthene	50	J	400	µg/Kg	1 02/26/2010 21:18	49468
Benzo(a)pyrene	75	J	400	µg/Kg	1 02/26/2010 21:18	49468
Indeno(1,2,3-cd)pyrene	54	J	400	µg/Kg	1 02/26/2010 21:18	49468
Dibenzo(a,h)anthracene	ND		400	µg/Kg	1 02/26/2010 21:18	49468
Benzo(g,h,i)perylene	49	J	400	µg/Kg	1 02/26/2010 21:18	49468
Surrogate: Nitrobenzene-d5	61.2		35-100	%REC	1 02/26/2010 21:18	49468
Surrogate: 2-Fluorobiphenyl	66.0		45-105	%REC	1 02/26/2010 21:18	49468
Surrogate: Terphenyl-d14	73.9		30-125	%REC	1 02/26/2010 21:18	49468
Surrogate: Phenol-d5	63.7		40-100	%REC	1 02/26/2010 21:18	49468
Surrogate: 2-Fluorophenol	62.5		35-105	%REC	1 02/26/2010 21:18	49468
Surrogate: 2,4,6-Tribromophenol	64.6		35-125	%REC	1 02/26/2010 21:18	49468

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits

E - Value above quantitation range

CLIENT: Work Order:							V CI INTANI IS "				
Project:	Day Environmental J0281 151 Mt. Hope Ave.	Day Environmental Inc. J0281 151 Mt. Hope Ave.			ANALYTICAL QC SW8270_S SW846 8270 SVOA by GC-MS	ANALYTICAL QC SUMMARY REPORT 2. 8270 SVOA by GC-MS	SUMMAR	NEFUNI			
Sample ID: MB-49468 Client ID: MB-49468	MB-49468 MB-49468	SampType: MBLK Batch ID: 49468	TestCode Units:	TestCode: SW8270_S Units: µg/Kg		Prep Date: Analysis Date:	02/25/10 12:45 02/26/10 17:08	Run ID: S3_100226A SeqNo: 1217312	00226A 12		
Analyte			Result	PQL	SPK value	SPK Ref Val	%REC LowLimit HighLimit	hLimit RPD Ref Val	Val	%RPD RPDLimit	Qual
Phenol			QN	330							
Bis(2-chloroethyl)ether	ether		ND	330							
2-Chlorophenol			UD	330							
1,3-Dichlorobenzene	ene		ND	330							
1,4-Dichlorobenzene	ene		QN	330							
1,2-Dichlorobenzene	ene		QN Q	330							
z-imetinyipinenoi	(000000000			000							
z,z -oxyois(1-Unioropropane) 4-Methylnhenol	oropropane)			330							
N-Nitroso-di-n-propylamine	nvlamine		QN	330							
Hexachloroethane	e e		UN	330							
Nitrobenzene	I		UD	330							
Isophorone			UN	330							
2-Nitrophenol			ND	330							
2,4-Dimethylphenol	loi		QN	330							
2,4-Dichlorophenol	0		QN	330							
1,2,4-1 richloropenzene	nzene		CIN CIN	330							
4-Chloroaniline			DN ON	330							
Bis(2-chloroethoxy)methane	v)methane		QN	330							
Hexachlorobutadiene	iene		ND	330							
4-Chloro-3-methylphenol	/phenol		DN	330							
2-Methylnaphthalene	ene		DN	330							
Hexachlorocyclopentadiene	bentadiene		ON CN	330							
2,4,0-1 richlorophenol 2 4 5-Trichlorophenol	enoi enoi		CIN CIN	530 670							
2-Chloronaphthalene	ene		ND	330							
2-Nitroaniline			ND	670							
Dimethylphthalate	đ		ND	330							
Acenaphthylene			DN	330							
2,6-Dinitrotoluene	()		UN UN	33U 670							
Acenaohthene			QN	330							
4-Dinitrophenol			UN	670							
A-Nitrophenol			ND	670							
D ibenzofuran			ND	330							
Qualifiers:	ND - Not Dete	ND - Not Detected at the Reporting Limit			S - Spike Recovery outside accepted recovery limits	accepted recovery	limits	B - Analyte det	ected in the	B - Analyte detected in the associated Method Blank	Blank
TAG OUT										normatic namesorem	

With function IDDA SWASTING SWASTING Target JSI ML. Lipto AVE. SWASTING SWASTING SWASTING Target JSI ML. Lipto AVE. JSI ML. Lipto AVE. SWASTING SWASTING Swaft JSI ML. Lipto AVE. JSI ML. Lipto AVE. SWASTING Part Data Distribution Swaft JSI ML. Lipto AVE. Swaft JSI ML. Lipto AVE. Monito JSI ML. Lipto AVE. Monito JSI ML. Lipto AVE. Monito JSI ML. Lipto AVE. Swaft JSI ML. Lipto AVE. Swaft JSI ML. Lipto AVE. Monito JSI ML. Lipto AVE. Monito JSI ML. Lipto AVE. Monito JSI ML. Lipto AVE. Swaft JSI ML. Lipto AVE. Swaft JSI ML. Lipto AVE. Monito JSI ML. Lipto AVE. Monito JSI ML. Lipto AVE. Monito JSI ML. Lipto AVE. Swaft JSI ML. Lipto AVE. Swaft JSI ML. Monito JSI ML. Lipto AVE. Monito JSI ML. Monito JSI ML. Monito JSI ML. Swaft JSI ML. Swaft JSI ML. Monito JSI ML. Monito JSI ML. Monito JSI ML. Monito JSI ML. Swaft JSI ML. Swaft JSI ML. Monito JSI ML. Swaft AVE ML. Monito JSI ML. Monito JSI ML. Swaft JSI ML. Swaft JSI ML.	Work Order: Project: Sample ID: MB-4	102.81					,						
ISIN: Enporte SW946 6270 - SYOA by GCMS Barn Type Malk Texture server 2.5 Perro Data Currents Run Di 63_10024 Run Di 63_10024 Barn Type Malk Texture server 2.5 Perro Data ZZEST 01.244 Run Di 63_10024 Run Di 63_10024 Barn Type Malk Texture server 2.5 Perro Data ZZEST 01.244 Run Di 63_10224 Run Di 63_10224 Barn Type Malk Texture server 2.3 Run Di 64/14 Run Di 64/141 Run Di 64_1024 Barn Type Malk SEC Low Lint HighLant Run Di 64/141 Run Di 64/141 Run Di 64/141 Barn Type Malk SEC Low Lint HighLant Run Di 64/141 Run Di 64/141 Run Di 64/141 Barn Type Malk SEC Low Lint HighLant Run Di 64/141 Run Di 64/141 Run Di 64/141 Barn Type Malk SEC Low Lint HighLant Run Di 64/141 Run Di 64/141 Run Di 64/141 Barn Type Malk Run Di 64/141 Run Di 64/141 Run Di 64/141 Run Di 64/141 Barn Type Malk Run Di 64/141 Run Di 64/141 Run Di 64/141 Run Di 64/141 Barn Type Malk Run Di	Project: Sample ID: MB-49					SW8270 S							
Structure LD: Hol-Jests Sampflyee: MULK TateCool: SMY270, S Perp Date: Z22510112-4 Run ID: S1_10230A Electri LD: Jests Jests Jones Amayes Date: Z2251012-0 SeqNo:: 217312 Electri LD: Jests Jones Pol. SSY.vuo SeqNo:: 217312 SeqNo:: 217312 Electri LD: Jests ID 200 Structure SeqNo:: 217312 SeqNo:: 217312 Chine Schendphending ID 201 Structure SeqNo:: 217312 SeqNo:: 217312 Chine Schendphending ID 201 201 SeqNo:: 217312 Chine Schendphending ID 201 201 SeqNo:: 217312 Chine Schendphending ID 201 201 <t< th=""><th>Sample ID: MB-4</th><th>151 Mt. Hop.</th><th>e Ave.</th><th></th><th></th><th>SW846 8270 SV</th><th>OA by GC-M</th><th>IS</th><th></th><th></th><th></th><th></th><th></th></t<>	Sample ID: MB-4	151 Mt. Hop.	e Ave.			SW846 8270 SV	OA by GC-M	IS					
Client D. Bach D. Mark Biology Data Biology		1468	SampType: MBLK	TestCode	∋: SW8270_S		Prep Date:) 12:45	Run I			
and/de Res QL SYN table Res QL Res		1468	Batch ID: 49468	Units	;; µg/Kg		Analysis Date:		0 17:08	SeqN	Vo: 1217312		
Altincholatere N0 330 Altincholatere N0 330 Altincholatere N0 330 Altincholatere N0 330 Chorsphary/shefter N0 330 Altincholatere N0 330 Altincarialitie N0 330 Altincholatere N0 330 Altincarialitie N0 300 S00 300 S00 S00 Altincarialitie N0 300 S00 300 S00	Analyte			Result	PQL	SPK value	SPK Ref Val	%REC	_owLimit Hi	ghLimit	RPD Ref Val	%RPD RPDLimit	Qual
Clinophenylphenylphend III 330 Chinophenylphenylphend III 330 Chinophenylphend III 330 Chinophenylphend III IIII Chinophenylphend IIII IIII Chinophenylphend IIII IIIII Chinophenylphend IIII IIIIIII Chinophenylphend IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	2,4-Dinitrotoluene			DN	330								
Choophenyl-phenylether 130 Mataanline 130 Mataanline 100 130 Mataanline 100 100 Strontaanline 100 100 100 Strontaanline 100 100 100 100 Strontaanline 100 100 100 100 100 Strontaanline 100 100 100 100 100 100 Strontaanline 100 <	Diethylphthalate			ND	330								
Nice 330 Niceantie NB 330 Affrantie NB 330 Barnophenylehend NB 330 Affrance NB 330 Barnophenylehend NB 330 Barnophenylehend NB 330 Affraction	4-Chlorophenyl-phe	nylether		ND	330								
Mitrosofiphenication NB 6/00 Africantine 2-methylphenic NB 6/00 Africantine 2-methylphenication NB 6/00 Nitrosofipheniylpheniy	Fluorene			QN	330								
Altroconstration ND 670 Altroconstration ND 670 Borncophenyl-phenyletter ND 330 Ph-buylphthalate ND 330 Diversitiene ND 330 Moltocenzeline ND 330 Diversitiene ND 330 Diversitiene ND 330 330 Diversitiene ND 330 330 Diversitiene ND 330 330 330 Diversitiene ND 330 330 330 330 Diversitiene ND	4-Nitroaniline			ND	670								
Anoncohenvictein ND 330 Borncoptenvictein ND 330 Borncoptenvictein ND 330 Borncoptenvictein ND 330 Bearchioroberacein ND 330 Breantfrane ND 330 Chronoptenvictein ND 330 Chronoptenvicteine ND <t< td=""><td>4,6-Dinitro-2-methy</td><td>Iphenol</td><td></td><td>QN I</td><td>670</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	4,6-Dinitro-2-methy	Iphenol		QN I	670								
And Complexity free/yether ND 330 extachlorophenol ND 330 extachlorophenol ND 330 extachlorophenol ND 330 extachlorophenol ND 330 entachlorophenol ND 330 yene ND 330 Stricturatione ND 330 Stricturatione ND 330 Stricturatione ND 330 Encordythinate ND 330 Encordythinate ND 330 Encordythinate ND	N-Nitrosodiphenyla	mine		QN	330 220								
Instantion ND JJD Restantionoberusie ND JJD Instantionoberusie ND JJD Viene ND JJD Renzo(Jantinate ND <t< td=""><td>4-Bromophenyl-ph</td><td>snylether</td><td></td><td>ON 1</td><td>330</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	4-Bromophenyl-ph	snylether		ON 1	330								
entractionophenol ND 570 entractionophenol ND 570 antracene ND 330 antracene ND 330 antracene ND 330 antracene ND 330 Viener/philatate ND 330 S ¹ -Cleihorberzitine ND 330 istarcio/fintracene ND 330 <td>Hexachlorobenzen</td> <td>m</td> <td></td> <td></td> <td>330</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Hexachlorobenzen	m			330								
Transmere ND 330 Instractione ND 330 In-buty/printatione ND 330 Underscriptione ND 330 Underscriptione ND 330 Underscriptione ND 330 Underscriptione ND 330 Interscone	Pentachlorophenol			CN I	0/0								
Anitracene ND 330 Anitracene ND 330 An-UNyphthalate ND 330 Iucranthene ND 330 Unsamthene ND 330 Anyberte ND 330 Anyberte ND 330 Anyberte ND 330 Anybertychthalate ND 330 Anyberte ND 330 Anyberte ND 330 Anyberte ND 330 Anochyphthalate ND 330 Anochypht	Phenanthrene			QN	330								
andrazole ND 330 indrazole ND 330 Vjene ND 330 Viene ND 330 S-Tolbenzophinalete ND 330 innoctivitie 1248 330 surrogate Innoctivitie 0 <t< td=""><td>Anthracene</td><td></td><td></td><td>QN</td><td>330</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Anthracene			QN	330								
M-Fullypiritialde ND 330 Undanthene ND 330 Undanthene ND 330 Undanthene ND 330 Stronglanthracene ND 330 Firstoljanthracene ND 330 Firstoljantene ND 330 Surrogate	Carbazole			QN	330								
Noranthene ND 330 Vene ND 330 St-Dichlorobenzidine ND 330 Involution ND 330 Introduction Intef 0 Introduction	Di-n-butylphthalate			ND	330								
Viene ND 330 Viene Utblenzyththalte ND 330 Utblenzyththalte ND 330 Utblenzyththalte Intysene ND 330 ND 330 Strytene ND 330 ND 330 Intysene ND 330 ND 330 Introducturthene ND 330 ND 330 Introducturthene ND 330 ND 330 Introducturthene ND 330 1667 0 100 Enrod(b)fluoranthene ND 330 1667 0 74.9 45 100 Enrod(sh.liperylene ND 330 1667 0 74.9 45 100 Surrogate: Plenorl-d5 1248 330 1667 0 74.9 45 105 Surrogate: Phenorl-d5 1309 330 1667 0 79.3 105 Surrogate: Phenorl-d5 1309 2500 0	Fluoranthene			DN	330								
3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 1.1 3.1 1.1 3.1 1.1 3.1 1.2 3.1 1.1 3.1 1.1 3.1 1.1 3.1 1.1 3.1 1.1 3.1 1.1 3.1 1.1 3.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1	Pyrene			ND	330								
3. Olchlorobenzidine ND 330 6nzo(a)arthracene ND 330 6nzo(a)arthracene ND 330 6nzo(a)phthalate ND 330 6n-octyphthalate ND 330 8nrogate: Terphenyl-dfd 1330 Surrogate: Terphenyl-dfd 1330 Surrogate:	Butylbenzylphthala	te		ND	330								
intracene ND 330 hirvsene ND 330 enzo(b)fluoranthene ND 330 ottool(1,2,3-cd)pyrene ND 330 Surrogate: Nitrobenzene-d5 1248 330 Surrogate: Terphenyl-d14 1309 12667 0 Surrogate: Z-f.G-T	3,3'-Dichlorobenzic	line		ND	330								
Intysene ND 330 SisC-ethylhav()phthalate ND 330 Bi-r-octylphthalate ND 330 Bi-roctylphthalate ND 330 Birzo(a,h)roranthene ND 330 denco(1,2,3-cd)pyrene ND 330 Surrogate: Planophenol 1248 330 Surrogate: Plenoh-d5 1983 330 Surrogate: 2,4,6-Tribromophenol 1969 330 Surrogate: 2,4,6-Tribromophenol 1969 330 Surrogate: 2,4,6-Tribromophenol 1969 330 Surrogate: 2,4,6-Trib	Benzo(a)anthracen	e		ND	330								
iis(2-ethylhex/l)pithalate ND 330 i-n-ock/phithalate 1667 0 i-n-ock/phithalate 1309 330 i-norophithanyl 1309 330 i-norophithanyl 1309 2500 0 i-norophithanyl 1569 330 2500 0 i-norophithanyl 1569 330 <td>Chrysene</td> <td></td> <td></td> <td>ND</td> <td>330</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Chrysene			ND	330								
Nin-octy(phthalate ND 330 lenzo(b)fluoranthene ND 330 lenzo(b)fluoranthene ND 330 lenzo(a)pyrene ND 330 lenzo(a)pyrene ND 330 deno(1, 2, 3-cd)pyrene ND 330 deno(1, 2, 3-cd)pyrene ND 330 ideno(1, 2, 3-cd)pyrene ND 330 ideno(1, 2, 3-cd)pyrene ND 330 ideno(2, 1)printinzene ND 330 ideno(2, 1)printinzene ND 330 ideno(1, 2, 3-cd)pyrene ND 330 otdeno(1, 2, 3-cd)pyrene ND 330 ideno(1, 2, 3-cd)pyrene ND 330 otdeno(1, 2, 3-cd)pyrene ND 330 ideno(1, 2, 3-cd)pyrene ND 1667 ideno(1, 2, 3-cd)pyrene 1309 330 ideno(1, 2, 3-cd)pyrene 1309 2500 ideno(1, 2, 3-d)pyrene 1569 330 ideno(1, 2, 3	Bis(2-ethylhexyl)ph	thalate		ND	330								
lenzo(b)fluoranthene ND 330 lenzo(s)pyrene ND 330 lenzo(s)pyrene ND 330 deno(1,2,3-od)pyrene ND 330 ndeno(1,2,3-od)pyrene ND 330 ndeno(1,2,3-od)pyrene ND 330 ndeno(1,2,3-od)pyrene ND 330 ndeno(1,2,3-od)pyrene ND 330 surcogate: 2-fluorobibhenyl 1248 330 1667 0 74.9 45 105 Surrogate: 2-fluorobibhenyl 1309 330 1667 0 78.6 30 125 Surrogate: 2-fluorobibhenyl 1983 330 2500 0 78.8 35 105 Surrogate: 2-fluorobhenol 1969 330 2500 0 78.8 35 105 Surrogate: 2-4,6-Tribromophenol 1569 330 2500 0 62.8 <t< td=""><td>Di-n-octylphthalate</td><td></td><td></td><td>ND</td><td>330</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Di-n-octylphthalate			ND	330								
lenzo(k)fluoranthene ND 330 lenzo(a)pyrene ND 330 deno(1,2,3-cd)pyrene ND 330 ndeno(1,2,3-cd)pyrene ND 330 ndeno(1,2,3-cd)pyrene ND 330 ndeno(1,2,3-cd)pyrene ND 330 surrogate: Y-fluorophenyl 1248 330 Surrogate: Terphenyl-d14 1309 330 1667 0 78.5 105 Surrogate: Terphenyl-d14 1309 330 2500 0 78.5 30 125 Surrogate: Terphenyl-d14 1969 330 2500 0 78.5 30 125 Surrogate: Z-fluorophenol 1569 330 2500 0 78.6 105 Surrogate: Z-fluorophenol 1569 330 2500 0 78.8 35 105	Benzo(b)fluoranthe	ne		ND	330								
Image: Second	Benzo(k)fluoranthe	ne		DN	330								
Ideno(1,2,3-cd)pyrene ND 330 Nibenzo(a,h)anthracene ND 330 ND 330 ND 330 Nibenzo(a,h)anthracene ND 330 1667 0 80.4 35 100 Renzo(g,h,i)penylene ND 330 1667 0 80.4 35 105 Surrogate: Nitrobenzene-d5 1248 330 1667 0 74.9 45 105 Surrogate: Terphenyl-d14 1309 330 1667 0 78.5 30 125 Surrogate: Terphenyl-d5 1983 330 2500 0 79.3 40 100 Surrogate: 2,4,6-Tribromophenol 1569 330 2500 0 62.8 35 105 Surrogate: 2,4,6-Tribromophenol 1569 330 2500 0 62.8 35 105	Benzo(a)pyrene			ΠN	330								
ND 330 Benzo(g,h,l)perylene ND 330 Benzo(g,h,l)perylene ND 330 1667 0 80.4 35 100 Surrogate: Nitrobenzene-d5 1340 330 1667 0 80.4 35 100 Surrogate: Terphenyl-d14 1309 330 1667 0 74.9 45 105 Surrogate: Terphenyl-d14 1309 330 1667 0 78.5 30 125 Surrogate: Terphenyl-d14 1309 330 2500 0 78.5 30 125 Surrogate: Z-Fluorophenol 1983 330 2500 0 78.8 35 100 Surrogate: Z,4,6-Tribromphenol 1569 330 2500 0 62.8 35 125 ND MATDated at the Domation 1 intit ND MATDated at the Domation 1 intit Surrogate 2500 0 62.8 35 125	Indeno(1,2,3-cd)py	rene		DN	330								
ND 330 Surrogate: Nitrobenzene-d5 1340 330 1667 0 80.4 35 100 Surrogate: Z-Fluorobiphenyl 1248 330 1667 0 74.9 45 105 Surrogate: Terphenyl-d14 1309 330 1667 0 74.9 45 105 Surrogate: Terphenyl-d14 1309 330 1667 0 78.5 30 125 Surrogate: Terphenyl-d14 1309 330 2500 0 78.8 35 105 Surrogate: 2-Fluorophenol 1963 330 2500 0 78.8 35 105 Surrogate: 2,4,6-Tribromophenol 1569 330 2500 0 78.8 35 125 ND Mondate: 2,4,6-Tribromophenol 1569 330 2500 0 62.8 35 125	Dibenzo(a,h)anthra	cene		DN	330								
Surrogate: Nitrobenzene-d5 1340 330 1667 0 80.4 35 100 Surrogate: 2-Fluorobiphenyl 1248 330 1667 0 74.9 45 105 Surrogate: Terphenyl-d14 1309 330 1667 0 78.5 30 125 Surrogate: Terphenyl-d14 1309 330 2500 0 78.5 30 125 Surrogate: Terphenyl-d14 1983 330 2500 0 78.8 35 100 Surrogate: 2-Fluorophenol 1969 330 2500 0 78.8 35 105 Surrogate: 2,4,6-Tribromophenol 1569 330 2500 0 62.8 35 125	Benzo(g,h,i)peryler	ē	,	DN	330								
Surrogate: 2-Fluorobiphenyl 1248 330 1667 0 74.9 45 105 Surrogate: Terphenyl-d14 1309 330 1667 0 78.5 30 125 Surrogate: Terphenyl-d14 1309 330 2500 0 78.5 30 125 Surrogate: 2-Fluorophenol 1969 330 2500 0 78.8 35 105 Surrogate: 2,4,6-Tribromophenol 1569 330 2500 0 62.8 35 125 Munchate: 2,4,6-Tribromophenol 1569 330 2500 0 62.8 35 125	Surrogate: Nitrob	enzene-d5	н. Н	340	330	1667	0	80.4	35	100	0		
Surrogate: Terphenyl-d14 1309 330 1667 0 78.5 30 125 Surrogate: Phenol-d5 1983 330 2500 0 79.3 40 100 Surrogate: 2-Fluorophenol 1969 330 2500 0 78.8 35 105 Surrogate: 2,4,6-Tribromophenol 1569 330 2500 0 62.8 35 125 Surrogate: 2,4,6-Tribromophenol 1569 330 2500 0 62.8 35 125	Surrogate: 2-Fluc	robiphenyl	1	248	330	1667	0	74.9	45	105	0		
Surrogate: Phenol-d5 1983 330 2500 0 79.3 40 100 Surrogate: 2-Fluorophenol 1969 330 2500 0 78.8 35 105 Surrogate: 2,4,6-Tribromophenol 1569 330 2500 0 62.8 35 125 Nurogate: 2,4,6-Tribromophenol 1569 330 2500 0 62.8 35 125	Surrogate: Terph	enyl-d14		309	330	1667	0	78.5	30	125	0		
Surrogate: 2-Fluorophenol 1969 330 2500 0 78.8 35 105 Surrogate: 2,4,6-Tribromophenol 1569 330 2500 0 62.8 35 125 Nurogate: 2,4,6-Tribromophenol 1569 330 2500 0 62.8 35 125	Surrogate: Phenc	N-d5	, ,	983	330	2500	0	79.3	40	100	0		
Surrogate: 2,4,6-Tribromophenol 1569 330 2500 0 62.8 35 125	Surrogate: 2-Fluc	rophenol	T	969	330	2500	0	78.8	35	105	0		
Oucliferent MD Met Datasted of the Datasting I init		Tribromophenol	1	569	330	2500	0	62.8	35	125	0		
ND Mot Detected of the Demoting Limit C. Suiles Demotery atteide account initia													
ND Not Detected of the Denorting Limit C Cuiles Denortany outside accessed economy limits													
	Ouelifiare.	ND - Not Detecte	od at the Penarting I imit			S - Snike Recovery outside	accented recovery	·limite			Auchte detected in	to the Mathematica and	Diate

R - RPD outside accepted recovery limits

J - Analyte detected below quantitation limits

mLIMS-001

CLIENT:	Dav Environmental Inc			ANALY	ANALYTICAL OC SUMMARY REPORT		MAR	VRFD	ORT		an and a second s
Work Order.	10781	14	-	CW/0770 C							
Project:	151 Mt. Hope Ave.		-	- 0	SVOA by GC-MS	S					
Sample ID: LCS-49468	49468 SampType: LCS		TestCode: SW8270_S		Prep Date:	02/25/10 12:45	12:45	Run ID:	ID: S3_100226A		
Client ID: LCS-49468	49468 Batch ID: 49468		Units: µg/Kg		Analysis Date:	02/26/10 17:29	17:29	Seq	SeqNo: 1217315		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC Lo	LowLimit HighLimit	ighLimit	RPD Ref Val	%RPD RPDLimit	Qual
Phenol		1258	330	1667	0	75.5	40	100	0		
Bis(2-chloroethyl)ether	ther	1247	330	1667	0	74.8	40	105	0		
2-Chlorophenol		1281	330	1667	0	76.8	45	105	0		
1,3-Dichlorobenzene	ЭС	1230	330	1667	0	73.8	40	100	0		
1,4-Dichlorobenzene	Эс	1218	330	1667	0	73.1	35	105	0		
1,2-Dichlorobenzene	ЭС	1261	330	1667	0	75.6	45	95	0		
2-Methylphenol		1336	330	1667	0	80.2	40	105	0		
2,2	ropropane)	1202	330	1667	0	72.1	20	115	0		
4-Methylphenol		1325	330	1667	0	79.5	40	105	0		
N-Nitroso-di-n-propylamine	ylamine	1331	330	1667	0	79.8	40	115	0		
Hexachloroethane		1258	330	1667	0	75.5	35	110	0		
Nitrobenzene		1336	330	1667	0	80.2	40	115	0		
Isophorone		1366	330	1667	0	81.9	45	110	0		
2-Nitrophenol		1399	330	1667	0	83.9	40	110	0		
2,4-Dimethylphenol	-	1652	330	1667	0	99.1	30	105	0		
2,4-Dichlorophenol		1355	330	1667	0	81.3	45	110	0		
1,2,4-Trichlorobenzene	zene	1269	330	1667	0	76.1	45	110	0		
Naphthalene		1327	330	1667	0	79.6	40	105	0		
4-Chloroaniline		1504	330	1667	0	90.2	10	95	0		
Bis(2-chloroethoxy)methane)methane	1322	330	1667	0	79.3	45	110	0		
Hexachlorobutadiene	ne	1249	330	1667	0	74.9	40	115	0		
4-Chloro-3-methylphenol	henol	1483	330	1667	0	89.0	45	115	0		
2-Methylnaphthalene	ле	1284	330	1667	0	77.0	45	105	0		
Hexachlorocyclopentadiene	ntadiene	1405	330	1667	0	84.3	8.0	148	0		
2,4,6-Trichlorophenol	loc	1257	330	1667	0	75.4	45	110	0		
2,4,5-Trichlorophenol	lor	1388	670	1667	0	83.3	50	110	0		
2-Chloronaphthalene	ле	1329	330	1667	0	7.9.7	45	105	0		
2-Nitroaniline		1442	670	1667	0	86.5	45	120	0		
Dimethylphthalate		1417	330	1667	0	85.0	50	110	0		
Acenaphthylene		1418	330	1667	0	85.1	45	105	0		
2,6-Dinitrotoluene		1411	330	1667	0	84.7	50	110	0		
3-Nitroaniline		1031	670	1667	0	61.8	25	110	0		
Acenaphthene		1373	330	1667	0	82.4	45	110	0		
2,4-Dinitrophenol		1495	670	1667	0	89.7	15	130	0		
		1385	670	1667	0	83.1	15	140	0		
Dibenzofuran		1378	330	1667	0	82.7	50	105	0		
2,4-Dinitrotoluene		1464	330	1667	0	87.8	50	115	0		
和 _清 杂级											
Qualifiers:	ND - Not Detected at the Reporting Limit	3 Limit		S - Spike Recovery outside accepted recovery limits	a accepted recovery l	imits		B - 1	Analyte detected in	B - Analyte detected in the associated Method Blank	Blank
100-SWITm	I - Analyta datactad haloov cuentitation limite	tion limite	1	of DDD cutcide concerned and the dot of the	account limits						
	mannah waraa nalaanan alfining - r		-	N + NEL UUISIUU avveptivu	recovery minus						

CLIENT: Day Env	Day Environmental Inc.			ANALY	ANALYTICAL QC SUMMARY REPORT	SUN	IMAR	Y REP	ORT	
Work Order: J0281			S	SW8270_S						
Project: 151 Mt.	151 Mt. Hope Ave.		S	SW846 8270 SVOA by GC-MS	OA by GC-M	5				
Sample ID: LCS-49468	SampType: LCS	TestCode	TestCode: SW8270_S		Prep Date:	02/25/10 12:45	12:45	Run	Run ID: S3_100226A	
Client ID: LCS-49468	Batch ID: 49468	Units	Units: µg/Kg		Analysis Date:	02/26/10 17:29	17:29	SeqN	SeqNo: 1217315	
Anaiyte		Result	PQL	SPK value	SPK Ref Val	%REC L	%REC LowLimit HighLimit	ighLimit	RPD Ref Val	%RPD RPDLimit Qual
Diethylphthalate		1416	330	1667	0	85.0	50	115	0	
4-Chlorophenyl-phenylether		1386	330	1667	0	83.1	45	110	0	
Fluorene		1378	330	1667	0	82.6	50	110	0	
4-Nitroaniline		838.0	670	1667	o	50.3	35	115	0	
4,6-Dinitro-2-methylphenol		1471	670	1667	0	88.2	30	135	0	
N-Nitrosodiphenylamine		1397	330	1667	0	83.8	50	115	0	
4-Bromophenyl-phenylether		1308	330	1667	0	78.5	45	115	0	
Hexachlorobenzene		1288	330	1667	0	77.3	45	120	0	
Pentachlorophenol		1341	670	1667	0	80.5	25	120	0	
Phenanthrene		1424	330	1667	0	85.4	50	110	0	
Anthracene		1431	330	1667	0	85.8	55	105	0	
Carbazole		1449	330	1667	0	86.9	45	115	0	
Di-n-butylphthalate		1463	330	1667	0	87.8	55	110	0	
Fluoranthene		1419	330	1667	0	85.1	55	115	0	
Pyrene		1394	330	1667	0	83.6	45	125	0	
Butylbenzylphthalate		1455	330	1667	0	87.3	50	125	0	
3,3'-Dichlorobenzidine		1137	330	1667	0	68.2	10	130	. 0	
Benzo(a)anthracene		1452	330	1667	0	87.1	50	110	0	
Chrysene		1415	330	1667	0	84.9	55	110	0	
Bis(2-ethylhexyl)phthalate		1506	330	1667	0	90.4	45	125	0	
Di-n-octylphthalate		1504	330	1667	0	90.2	40	130	0	
Benzo(b)fluoranthene		1410	330	1667	0	84.6	45	115	0	
Benzo(k)fluoranthene		1373	330	1667	0	82.4	45	125	0	
Benzo(a)pyrene		1451	330	1667	0	87.0	50	110	0	
Indeno(1,2,3-cd)pyrene		1419	330	1667	0	85.1	40	120	0	
Dibenzo(a,h)anthracene		1421	330	1667	0	85.2	40	125	0	
Benzo(g,h,i)perylene		1417	330	1667	0	85.0	40	125	0	
Surrogate: Nitrobenzene-d5		1361	330	1667	0	81.6	35	100	0	
Surrogate: 2-Fluorobiphenyl		1308	330	1667	0	78.5	45	105	0	
Surrogate: Terphenyl-d14		1369	330	1667	0	82.1	30	125	0	
Surrogate: Phenol-d5		1820	330	2500	0	72.8	40	100	0	
Surrogate: 2-Fluorophenol		2000	330	2500	0	80.0	35	105	0	
Surrogate: 2,4,6-Tribromophenol	enol	1577	330	2500	0	63.1	35	125	0	
00										

0050

S - Spike Recovery outside accepted recovery limits
 R - RPD outside accepted recovery limits

B - Analyte detected in the associated Method Blank

Qualifiers: mLIMS-001

ND - Not Detected at the Reporting Limit J - Analyte detected below quantitation limits

CLIENT: Day Env	Day Environmental Inc.		ANAL	ANALYTICAL OC SUMMARY REPORT	C SUM	MAR	Y REP	ORT			
Work Order: J0281			SW8270_S	,				 			
Project: 151 Mt.	151 Mt. Hope Ave.		- 0	SVOA by GC-MS	S						
Sample ID: LCSD-49468	SampType: LCSD	TestCode: SW8270_S		Prep Date:	02/25/10 12:45	12:45	Run ID:	D: S3_100226A			
Client ID: LCSD-49468	Batch ID: 49468	Units: µg/Kg		Analysis Date:	02/26/10 17:50	17:50	SeqN	SeqNo: 1217318			
Analyte		Result PQL	SPK value	SPK Ref Val	%REC L	LowLimit HighLimit	ighLimit	RPD Ref Val	%RPD RPDLimit	PDLimit	Qual
Phenol	1	1299 330	1667	0	9.77	40	100	1258	3.2	40]
Bis(2-chloroethyl)ether		1222 330	1667	0	73.3	40	105	1247	2.01	40	
2-Chlorophenol		1290 330	1667	0	77.4	45	105	1281	0.685	40	
1,3-Dichlorobenzene			1667	0	73.3	40	100	1230	0.613	40	
1,4-Dichlorobenzene	H		1667	0	74.3	35	105	1218	1.65	40	
1,2-Dichlorobenzene		1232 330	1667	0	73.9	45	95	1261	2.31	40	
2-Methylphenol	1	1285 330	1667	0	77.1	40	105	1336	3.93	40	
2,2'-oxybis(1-Chloropropane)		1193 330	1667	0	71.5	20	115	1202	0.783	40	
4-Methylphenol	T	1283 330	1667	0	77.0	40	105	1325	3.21	40	
N-Nitroso-di-n-propylamine		1315 330	1667	0	78.9	40	115	1331	1.15	40	
Hexachloroethane		1287 330	1667	0	77.2	35	110	1258	2.22	40	
Nitrobenzene	1	1279 330	1667	0	76.7	40	115	1336	4.37	40	
Isophorone	1	1312 330	1667	0	78.7	45	110	1366	3.99	40	
2-Nitrophenol	1	1361 330	1667	0	81.6	40	110	1399	2.75	40	
2,4-Dimethylphenol	-1	1586 330	1667	0	95.1	30	105	1652	4.09	40	
2,4-Dichlorophenol	1	1303 330	1667	0	78.2	45	110	1355	3.89	40	
1,2,4-Trichlorobenzene	1	1255 330	1667	0	75.3	45	110	1269	1.13	40	
Naphthalene	1	1268 330	1667	0	76.1	40	105	1327	4.49	40	
4-Chloroaniline	1	1458 330	1667	0	87.5	10	95	1504	3.07	40	
Bis(2-chloroethoxy)methane	-	1298 330	1667	0	77.9	45	110	1322	1.85	40	
Hexachlorobutadiene		1218 330	1667	0	73.0	40	115	1249	2.54	40	
4-Chloro-3-methylphenol		1414 330	1667	0	84.8	45	115	1483	4.81	40	
2-Methyinaphthalene	7		1667	0	72.6	45	105	1284	5.86	40	
Hexachlorocyclopentadiene	r-1		1667	0	80.4	8.0	148	1405	4.64	40	
2,4,6-Trichlorophenol			1667	0	71.0	45	110	1257	5.99	40	
2,4,5-Trichlorophenol	1		1667	0	82.1	50	110	1388	1.38	40	
2-Chloronaphthalene	-		1667	0	75.2	45	105	1329	5.89	40	
2-Nitroaniline	1	1390 670	1667	0	83.4	45	120	1442	3.65	40	
Dimethylphthalate	1		1667	0	81.8	50	110	1417	3.88	40	
Acenaphthylene	1	1349 330	1667	0	80.9	45	105	1418	5.02	40	
2,6-Dinitrotoluene	-1	1365 330	1667	0	81.9	50	110	1411	3.33	40	
3-Nitroaniline		978.1 670	1667	Ö	58.7	25	110	1031	5.26	40	
Acenaphthene	1	1294 330	1667	0	77.6	45	110	1373	5.98	40	
44.2,4-Dinitrophenol	1	1438 670	1667	0	86.3	15	130	1495	3.89	40	
		1621 670	1667	0	97.3	15	140	1385	5	40	
Dibenzofuran		1320 330	1667	0	79.2	50	105	1378	4.34	40	
4-Dinitrotoluene		1405 330	1667	0	84.3	50	115	1464	4.14	40	
Qualifiers: ND - Not D	ND - Not Detected at the Reporting Limit		S - Spike Recovery outs	- Spike Recovery outside accepted recovery limits	limits		B-/	B - Analyte detected in the associated Method Blank	the associate	d Method	Blank

R - RPD outside accepted recovery limits

J - Analyte detected below quantitation limits

mLIMS-001

CI IDNT.	Dory Eurinomoutol Inc.		IVNY	ANAL VTICAL OC SUMMARY BEBORT				Tuo		
der:	LARVIL VIIIII CHIRAL LIIV.		SW8270 S							
	151 Mt. Hope Ave.		270	SVOA by GC-MS	S					
Sample ID: LCSD-49468	SampType: LCSD	TestCode: SW8270_S	:70_S	Prep Date:		02/25/10 12:45	Run ID:	ID: \$3_100226A		
Client ID: LCSD-49468	Batch ID: 49468	Units: µg/Kg	_	Analysis Date:		02/26/10 17:50	Seq	SeqNo: 1217318		
Analyte		Result PQL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit	HighLimit	RPD Ref Val	%RPD RPDLimit	DLimit Qual
Diethylphthalate		1356 330	0 1667	0	81.4	50	115	1416	4.32	40
4-Chlorophenyl-phenylether	ər	1335 330	0. 1667	0	80.1	45	110	1386	3.73	40
Fluorene		1339 330	0 1667	0	80.3	50	110	1378	2.82	40
4-Nitroaniline		782.0 670	0 1667	0	46.9	35	115	838.0	6.92	40
4,6-Dinitro-2-methylphenol		1359 670	0 1667	0	81.5	30	135	1471	7.86	40
N-Nitrosodiphenylamine		1318 330	0 1667	0	79.1	50	115	1397	5.81	40
4-Bromophenyl-phenylether	er	1236 330		0	74.2	45	115	1308	5.65	40
Hexachlorobenzene		1189 330	0 1667	0	71.3	45	120	1288	8.01	40
Pentachlorophenol		1182 670	0 1667	0	70.9	25	120	1341	12.6	40
Phenanthrene		1324 330	0 1667	0	79.4	50	110	1424	7.26	40
Anthracene		1347 330	0 1667	0	80.8	55	105	1431	6.01	40
Carbazole		1361 330	0 1667	0	81.6	45	115	1449	6.25	40
Di-n-butylphthalate		1390 330	0 1667	0	83.4	55	110	1463	5.13	40
Fluoranthene		1370 330	1667	0	82.2	55	115	1419	3.52	40
Pyrene			0 1667	0	77.4	45	125	1394	7.66	40
Butylbenzylphthalate		1358 330	0 1667	0	81.5	50	125	1455	6.89	40
3,3'-Dichlorobenzidine				0	66.4	10	130	1137	2.75	40
Benzo(a)anthracene				0	79.7	50	110	1452	8.88	40
Chrysene				0	78.5	55	110	1415	7.8	40
Bis(2-ethylhexyl)phthalate				0	84.2	45	125	1506	7.02	40
Di-n-octylphthalate				0	83.2	40	130	1504	8.1	40
Benzo(b)fiuoranthene				0		45	115	1410	7.2	40
Benzo(k)fluoranthene				0	7.77	45	125	1373	5.92	40
Benzo(a)pyrene				0	80.3	50	110	1451	8.05	40
Indeno(1,2,3-cd)pyrene				0	78.4	40	120	1419	8.24	40
Dibenzo(a,h)anthracene		1319 330	0 1667	0	79.1	40	125	1421	7.45	40
Benzo(g,h,i)perylene				0	79.9	40	125	1417	6.18	40
Surrogate: Nitrobenzene-d5	1-d5	1361 330	0 1667	0	81.6	35	100	0		
Surrogate: 2-Fluorobiphenyl	enyl	1349 330	0 1667	0	80.9	45	105	0		
Surrogate: Terphenyl-d14	4	1329 330	1	0	79.7	30	125	0		
Surrogate: Phenol-d5		2050 330		0	82.0	40	100	0		
Surrogate: 2-Fluorophenol	lot -	2092 330	8	0	83.7	35	105	0		
Surrogate: 2,4,6-Tribromophenol	nophenol	1592 330	0 2500	0	63.7	35	125	0		

acei

S - Spike Recovery outside accepted recovery limits
 R - RPD outside accepted recovery limits

ND - Not Detected at the Reporting Limit J - Analyte detected below quantitation limits

Qualifiers: mLIMS-001

B - Analyte detected in the associated Method Blank

Date: 05-Mar-10

Client: Day Environmental Inc.

Client Sample ID: TP10-1 (8.5')

Lab ID: J0281-01

 Project:
 151 Mt. Hope Ave.

 Collection Date:
 02/19/10 10:15

Analyses	Result Qua	I RL	Units	DF Date Analyzed	Batch ID
SW846 6010 Metals by ICP					SW6010_S
Arsenic	4.9	1.2	mg/Kg	1 02/25/2010 13:21	49458
Barium	110 B	12	mg/Kg	1 02/25/2010 13:21	49458
Cadmium	0.27 BJ	0.29	mg/Kg	1 02/25/2010 13:21	49458
Chromium	13 B	1.2	mg/Kg	1 02/25/2010 13:21	49458
Lead	47	0.58	mg/Kg	1 02/25/2010 13:21	49458
Selenium	ND	1.7	mg/Kg	1 02/25/2010 13:21	49458
Silver	ND	1.7	mg/Kg	1 02/25/2010 13:21	49458
SW846 7471 Mercury by FIA					SW7471
Mercury	0.090	0.047	mg/Kg	1 02/25/2010 15:47	49463

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range
- RL Reporting Limit

Date: 05-Mar-10

Client: Day Environmental Inc.

Client Sample ID: TP10-4 (2')

Lab ID: J0281-02

Project: 151 Mt. Hope Ave. Collection Date: 02/19/10 9:20

Analyses	Result Qual	RL	Units	DF Date Analyzed	Batch ID
SW846 6010 Metals by ICP					SW6010_S
Arsenic	5.3	1.0	mg/Kg	1 02/25/2010 13:24	49458
Barium	88 B	10	mg/Kg	1 02/25/2010 13:24	49458
Cadmium	0.82 B	0.25	mg/Kg	1 02/25/2010 13:24	49458
Chromium	19 B	1.0	mg/Kg	1 02/25/2010 13:24	49458
Lead	130	0.50	mg/Kg	1 02/25/2010 13:24	49458
Selenium	ND	1.5	mg/Kg	1 02/25/2010 13:24	49458
Silver	ND	1.5	mg/Kg	1 02/25/2010 13:24	49458
SW846 7471 Mercury by FIA					SW7471
Mercury	0.28	0.047	mg/Kg	1 02/25/2010 15:49	49463

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range
- RL Reporting Limit

Date: 05-Mar-10

Client: Day Environmental Inc.

Client Sample ID: TP10-4 (11')

Lab ID: J0281-03

Project: 151 Mt. Hope Ave. Collection Date: 02/19/10 9:45

Analyses	Result Qual	RL Units	DF Date Analyzed	Batch ID
SW846 6010 Metals by ICP				SW6010_S
Arsenic	13	1.6 mg/Kg	1 02/25/2010 13:42	49458
Barium	150 B	16 mg/Kg	1 02/25/2010 13:42	49458
Cadmium	1.4 B	0.40 mg/Kg	1 02/25/2010 13:42	49458
Chromium	15 B	1.6 mg/Kg	1 02/25/2010 13:42	49458
Lead	260	0.81 mg/Kg	1 02/25/2010 13:42	49458
Selenium	ND	2.4 mg/Kg	1 02/25/2010 13:42	49458
Silver	ND	2.4 mg/Kg	1 02/25/2010 13:42	49458
SW846 7471 Mercury by FIA				SW7471
Mercury	1.8	0.066 mg/Kg	1 02/25/2010 15:53	49463

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits

E - Value above quantitation range

Date: 05-Mar-10

Client: Day Environmental Inc.

Client Sample ID: TP10-6 (3.5')

Lab ID: J0281-04

Project: 151 Mt. Hope Ave. Collection Date: 02/18/10 8:35

Analyses	Result Qual	RL	Units	DF Date Analyzed	Batch ID
SW846 6010 Metals by ICP					SW6010_S
Arsenic	3.6	0.83	mg/Kg	1 02/25/2010 13:44	49458
Barium	34 B	8.3	mg/Kg	1 02/25/2010 13:44	49458
Cadmium	0.23 B	0.21	mg/Kg	1 02/25/2010 13:44	49458
Chromium	5.9 B	0.83	mg/Kg	1 02/25/2010 13:44	49458
Lead	44	0.42	mg/Kg	1 02/25/2010 13:44	49458
Selenium	ND	1.3	mg/Kg	1 02/25/2010 13:44	49458
Silver	ND	1.3	mg/Kg	1 02/25/2010 13:44	49458
SW846 7471 Mercury by FIA					SW7471
Mercury	0.37	0.041	mg/Kg	1 02/25/2010 15:54	49463

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range
- RL Reporting Limit

Client: Day Environmental Inc.

Client Sample ID: TP10-6 (5-5.8')

Lab ID: J0281-05

Date: 05-Mar-10

Project: 151 Mt. Hope Ave. Collection Date: 02/18/10 8:45

Analyses	Result	Qual	RL	Units	DF Date Analyzed	Batch ID
SW846 6010 Metals by ICP						SW6010_S
Aluminum	5200	В	9.2	mg/Kg	1 03/04/2010 13:54	49458
Antimony	0.30	BJ	0.92	mg/Kg	1 02/25/2010 13:47	49458
Arsenic	10		0.92	mg/Kg	1 02/25/2010 13:47	49458
Barium	57	В	9.2	mg/Kg	1 02/25/2010 13:47	49458
Beryllium	0.93	В	0.23	mg/Kg	1 02/25/2010 13:47	49458
Cadmium	0.18	BJ	0.23	mg/Kg	1 02/25/2010 13:47	49458
Calcium	6200	В	37	mg/Kg	1 03/04/2010 13:54	49458
Chromium	6.5	В	0.92	mg/Kg	1 02/25/2010 13:47	49458
Cobalt	19	В	2.3	mg/Kg	1 02/25/2010 13:47	49458
Copper	100	в	1.4	mg/Kg	1 02/25/2010 13:47	49458
Iron	11000	В	9.2	mg/Kg	1 03/04/2010 13:54	49458
Lead	260		0.46	mg/Kg	1 02/25/2010 13:47	49458
Magnesium	2100	в	23	mg/Kg	1 03/04/2010 13:54	49458
Manganese	79		2.3	mg/Kg	1 02/25/2010 13:47	49458
Nickel	23	в	2.3	mg/Kg	1 02/25/2010 13:47	49458
Potassium	460	В	46	mg/Kg	1 03/04/2010 12:56	49458
Selenium	ND		1.4	mg/Kg	1 02/25/2010 13:47	49458
Silver	ND		1.4	mg/Kg	1 02/25/2010 13:47	49458
Sodium	130	В	46	mg/Kg	1 03/04/2010 12:56	49458
Thallium	ND		0.92	mg/Kg	1 02/25/2010 13:47	49458
Vanadium	17	В	2.3	mg/Kg	1 02/25/2010 13:47	49458
Zinc	120	B	2.3	mg/Kg	1 02/25/2010 13:47	49458
SW846 7471 Mercury by FIA						SW7471
Mercury	0.63		0.047	mg/Kg	1 02/25/2010 15:58	49463

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits

E - Value above quantitation range

Date: 05-Mar-10

Client: Day Environmental Inc.

Client Sample ID: TP10-6 (9')

Lab ID: J0281-06

Project: 151 Mt. Hope Ave. **Collection Date:** 02/18/10 8:40

Analyses	Result Qual	RL	Units	DF Date Analyzed	Batch ID
SW846 6010 Metals by ICP					SW6010_S
Arsenic	14	1.4	mg/Kg	1 02/25/2010 13:50	49458
Barium	120 B	14	mg/Kg	1 02/25/2010 13:50	49458
Cadmium	0.51 B	0.35	mg/Kg	1 02/25/2010 13:50	49458
Chromium	7.9 B	1.4	mg/Kg	1 02/25/2010 13:50	49458
Lead	320	0.70	mg/Kg	1 02/25/2010 13:50	49458
Selenium	ND	2.1	mg/Kg	1 02/25/2010 13:50	49458
Silver	ND	2.1	mg/Kg	1 02/25/2010 13:50	49458
SW846 7471 Mercury by FIA					SW7471
Mercury	2.4	0.055	mg/Kg	1 02/25/2010 15:59	49463

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Client: Day Environmental Inc.

Client Sample ID: TP10-7 (6.5')

Lab ID: J0281-07

Date: 05-Mar-10

Project: 151 Mt. Hope Ave. **Collection Date:** 02/19/10 11:20

Analyses	Result Qual	RL Unit	ts DF Date Analyzed	Batch ID
SW846 6010 Metals by ICP				SW6010_S
Arsenic	15	1.2 mg/Kg	g 1 02/25/2010 13:53	49458
Barium	96 B	12 mg/Kg	g 1 02/25/2010 13:53	49458
Cadmium	0.15 BJ	0.30 mg/Kg	g 1 02/25/2010 13:53	49458
Chromium	7.2 B	1.2 mg/Kg	g 1 02/25/2010 13:53	49458
Lead	120	0.60 mg/Kg	g 1 02/25/2010 13:53	49458
Selenium	ND	1.8 mg/Kg	g 1 02/25/2010 13:53	49458
Silver	ND	1.8 mg/Kg	g 1 02/25/2010 13:53	49458
SW846 7471 Mercury by FIA				SW7471
Mercury	0.26	0.046 mg/Kg	g 1 02/25/2010 16:01	49463

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

- E Value above quantitation range
- RL Reporting Limit

Client: Day Environmental Inc.

Client Sample ID: TP10-8 (2.5')

Lab ID: J0281-08

Date: 05-Mar-10

 Project:
 151 Mt. Hope Ave.

 Collection Date:
 02/19/10 10:45

Analyses	Result Qual	RL	Units	DF Date Analyzed	Batch ID
SW846 6010 Metals by ICP					SW6010_S
Arsenic	5.3	0.81	mg/Kg	1 02/25/2010 14:07	49458
Barium	31 B	8.1	mg/Kg	1 02/25/2010 14:07	49458
Cadmium	0.48 B	0.20	mg/Kg	1 02/25/2010 14:07	49458
Chromium	6.6 B	0.81	mg/Kg	1 02/25/2010 14:07	49458
Lead	64	0.41	mg/Kg	1 02/25/2010 14:07	49458
Selenium	ND	1.2	mg/Kg	1 02/25/2010 14:07	49458
Silver	ND	1.2	mg/Kg	1 02/25/2010 14:07	49458
SW846 7471 Mercury by FIA					SW7471
Mercury	0.31	0.041	mg/Kg	1 02/25/2010 16:02	49463

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range
- RL Reporting Limit

Client: Day Environmental Inc.

Client Sample ID: TP10-20 (6.5')

Lab ID: J0281-12

 Project:
 151 Mt. Hope Ave.

 Collection Date:
 02/18/10 13:15

Analyses	Result	Qual	RL	Units	DF Date Analyzed	Batch ID
SW846 6010 Metals by ICP						SW6010_S
Aluminum	5700	В	12	mg/Kg	1 03/04/2010 13:58	49458
Antimony	1.5	В	1.2	mg/Kg	1 02/25/2010 14:10	49458
Arsenic	12		1.2	mg/Kg	1 02/25/2010 14:10	49458
Barium	140	В	12	mg/Kg	1 02/25/2010 14:10	49458
Beryllium	0.65	В	0.31	mg/Kg	1 02/25/2010 14:10	49458
Cadmium	0.20	BJ	0.31	mg/Kg	1 02/25/2010 14:10	49458
Calcium	19000	В	49	mg/Kg	1 03/04/2010 13:58	49458
Chromium	8.8	В	1.2	mg/Kg	1 02/25/2010 14:10	49458
Cobalt	7.0	В	3.1	mg/Kg	1 02/25/2010 14:10	49458
Copper	45	В	1.8	mg/Kg	1 02/25/2010 14:10	49458
Iron	9100	в	12	mg/Kg	1 03/04/2010 13:58	49458
Lead	310		0.61	mg/Kg	1 02/25/2010 14:10	49458
Magnesium	4900	В	31	mg/Kg	1 03/04/2010 13:58	49458
Manganese	780		3.1	mg/Kg	1 02/25/2010 14:10	49458
Nickel	10	В	3.1	mg/Kg	1 02/25/2010 14:10	49458
Potassium	680	В	61	mg/Kg	1 03/04/2010 12:58	49458
Selenium	1.1	J	1.8	mg/Kg	1 02/25/2010 14:10	49458
Silver	ND		1.8	mg/Kg	1 02/25/2010 14:10	49458
Sodium	180	В	61	mg/Kg	1 03/04/2010 12:58	49458
Thallium	ND		1.2	mg/Kg	1 02/25/2010 14:10	49458
Vanadium	19	В	3.1	mg/Kg	1 02/25/2010 14:10	49458
Zinc	150	В	3.1	mg/Kg	1 02/25/2010 14:10	49458
SW846 7471 Mercury by FIA						SW7471
Mercury	1.2		0.095	mg/Kg	2 02/25/2010 16:25	49463

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Client: Day Environmental Inc. Client Sample ID: TP10-22 (8')

Lab ID: J0281-13

Date:	05-Mar-1	9

 Project:
 151 Mt. Hope Ave.

 Collection Date:
 02/19/10 12:50

Analyses	Result	Qual	RL	Units	DF Date Analyzed	Batch ID
SW846 6010 Metals by ICP						SW6010_S
Aluminum	4400	в	13	mg/Kg	1 03/04/2010 14:01	49458
Antimony	0.53	BJ	1.3	mg/Kg	1 02/25/2010 14:13	49458
Arsenic	11		1.3	mg/Kg	1 02/25/2010 14:13	49458
Barium	120	В	13	mg/Kg	1 02/25/2010 14:13	49458
Beryllium	0.44	В	0.32	mg/Kg	1 02/25/2010 14:13	49458
Cadmium	0.11	BJ	0.32	mg/Kg	1 02/25/2010 14:13	49458
Calcium	12000	В	51	mg/Kg	1 03/04/2010 14:01	49458
Chromium	11	В	1.3	mg/Kg	1 02/25/2010 14:13	49458
Cobalt	4.6	В	3.2	mg/Kg	1 02/25/2010 14:13	49458
Copper	30	В	1.9	mg/Kg	1 02/25/2010 14:13	49458
Iron	5200	B	13	mg/Kg	1 03/04/2010 14:01	49458
Lead	260		0.63	mg/Kg	1 02/25/2010 14:13	49458
Magnesium	920	В	32	mg/Kg	1 03/04/2010 14:01	49458
Manganese	99		3.2	mg/Kg	1 02/25/2010 14:13	49458
Nickel	9.7	в	3.2	mg/Kg	1 02/25/2010 14:13	49458
Potassium	450	В	63	mg/Kg	1 03/04/2010 13:00	49458
Selenium	1.7	J	1.9	mg/Kg	1 02/25/2010 14:13	49458
Silver	ND		1.9	mg/Kg	1 02/25/2010 14:13	49458
Sodium	210	В	63	mg/Kg	1 03/04/2010 13:00	49458
Thailium	ND		1.3	mg/Kg	1 02/25/2010 14:13	49458
Vanadium	26	В	3.2	mg/Kg	1 02/25/2010 14:13	49458
Zinc	72	В	3.2	mg/Kg	1 02/25/2010 14:13	49458
SW846 7471 Mercury by FIA						SW7471
Mercury	1.2		0.054	mg/Kg	1 02/25/2010 16:05	49463

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

	ł	
-	ļ	
	l	
	l	i
5	ł	
Ö	ł	ł
÷.	l	ł
g	l	ł
boratories	1	Ì
0	l	l
9	l	ļ
à	l	
. 1	l	l
Τ	l	ł
C	l	
E	ł	l
O)	l	
kem	l	
Ŧ	l	
:	l	
\sim	I	
	I	

Date: 03/05/2010 08:44

CLIENT:	Day Environmental Inc.	mental Inc.			ANALY	TICAL QC	ANALYTICAL QC SUMMARY REPORT	REPORT		
Work Order: Droiget:	J0281 151 Mt Hone Ave	e Ave			SW6010_S SW846 6010 - Motols hv 1CD	tals by ICD				
riojeci.		CAVC.				clais by LUF				
Sample ID: MB-49458	9458	SampType: MBLK	TestCode:	TestCode: SW6010_S		Prep Date:	02/24/10 14:00	Run ID: OPTIMA2_100225C	2_100225C	
Client ID: MB-49458	9458	Batch ID: 49458	Units:	Units: mg/Kg		Analysis Date:	02/25/10 13:15	SeqNo: 1217252		
Analyte			Result	PQL	SPK value	SPK Ref Val	%REC LowLimit HighLimit	Limit RPD Ref Val	Val %RPD RPDLimit	Qual
Antimony			0.2413	1.0						Ŀ
Arsenic			QN	1.0						
Barium			0.4298	10						Ŀ
Beryllium			0.01832	0.25						Ŀ,
Cadmium				CZ.U						÷ ۲
Chromium			0.07120	л. Ч. С						ר ר.
Copart			0.6688	1.5						5 F
Lead			QN	0.50						,
Manganese			ND	2.5						
Nickel			0.1240	2.5						Ŀ
Selenium			DN	1.5						
Silver			DN	1.5						
Thallium			DN	1.0						
Vanadium			0.09887	2.5						IJ
Zinc			1.275	2.5						ъ
Sample ID: MB-49458	9458	SampType: MBLK	TestCode:	TestCode: SW6010_S		Prep Date:	02/24/10 14:00	Run ID: OPTIMA3_100304A	3_100304A	
Client ID: MB-49458	9458	Batch ID: 49458	Units:	Units: mg/Kg		Analysis Date:	03/04/10 12:51	SeqNo: 1217380		
Analyte			Result	PQL	SPK value	SPK Ref Val	%REC LowLimit HighLimit	Limit RPD Ref Val	Val %RPD RPDLimit	Qual
Potassium			2.502	50						Ŀ
Sodium			3.856	50						IJ
Sample ID: MB-49458	9458	SampType: MBLK	TestCode:	TestCode: SW6010_S		Prep Date:	02/24/10 14:00	Run ID: OPTIMA3_100304B	3_100304B	
Client ID: MB-49458	9458	Batch ID: 49458	Units:	Units: mg/Kg		Analysis Date:	03/04/10 13:48	SeqNo: 1217674		
Analyte			Result	PQL	SPK value	SPK Ref Val	%REC LowLimit HighLimit	Limit RPD Ref Val	Val %RPD RPDLimit	Qual
Aluminum			2.009	10						ں ا
Calcium			12.59 5.200	40						ŗ,
Iron Macnasium			0.230 4.239	2.5 2.5						י כ
)	5						þ
								-		
Qualifiers:	ND - Not Detecte	ND - Not Detected at the Reporting Limit			S - Spike Recovery outside accepted recovery limits	e accepted recovery i	limits	B - Analyte detect	B - Analyte detected in the associated Method Blank	d Blank
InLIMS-001	J - Analyte detect	J - Analyte detected below quantitation limits	ts		R - RPD outside accepted recovery limits	recovery limits				

CLIENT: Day En	Day Environmental Inc.			ANALY	ANALYTICAL QC SUMMARY REPORT	C SUM	MAR	V REPO	DRT		
Work Order: J0281			S	SW6010_S							
Project: 151 Mt	151 Mt. Hope Ave.		S	SW846 6010 Metals by ICP	etals by ICP						
Sample ID: LCS-49458	SampType: LCS	TestCod	TestCode: SW6010_S		Prep Date.	02/24/10 14:00	14:00	Run ID:	D: OPTIMA2_100225C	0225C	
Client ID: LCS-49458	Batch ID: 49458	Unit	Units: mg/Kg		Analysis Date:	02/25/10 13:18	13:18	SeqN	SeqNo: 1217254		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC Lo	LowLimit HighLimit	ghLimit	RPD Ref Val	%RPD RPDLimit	Qual
Antimony		25.10	1.0	22.75	0	110	80	120	0		m
Arsenic		23.15	1.0	22.75	0	102	80	120	0		
Barium		463.4	10	455.0	0	102	80	120	0		В
Beryllium		11.26	0.25	11.35	0	99.2	80	120	0		æ
Cadmium		11.40	0.25	11.35	0	100	80	120	0		ы
Chromium		45.67	1.0	45.50	0	100	80	120	0		В
Cobalt		114.8	2.5	113.5	0	101	80	120	0		р
Copper		56.59	1.5	56.50	0	100	80	120	0		щ
Lead		23.59	0.50	22.75	0	104	80	120	0		
Manganese		115.9	2.5	113.5	0	102	80	120	0		
Nickel		114.9	2.5	113.5	0	101	80	120	0		щ
Selenium		21.40	1.5	22.75	0	94.1	80	120	0		
Silver		54.64	1.5	56.50	0	96.7	75	120	0		
Thallium		22.32	1.0	22.75	0	98.1	80	120	0		
Vanadium		114.4	2.5	113.5	0	101	80	120	0		В
Zinc		113.6	2.5	113.5	0	100	80	120	0		В
Sample ID: LCS-49458	SampType: LCS	TestCod	TestCode: SW6010_S		Prep Date:	02/24/10 14:00	14:00	Run II	Run ID: OPTIMA3_100304A	0304A	
Client ID: LCS-49458	Batch ID: 49458	Unit	Units: mg/Kg		Analysis Date:	03/04/10 12:53	12:53	SeqN	SeqNo: 1217381		
Analvte		Result	POL	SPK value	SPK Ref Val	%RFC LC	%RFC_1 owLimit HighLimit	thl imit	RPD Ref Val	%RPD RPDI imit	laiO
		1000	<u>د</u> ر	1125	c	0 90	00	001			
Potassium Sodium		1106 1106	50	1135	0 0	97.5	80 80	120 120			л п
Sample ID: LCS-49458	SampType: LCS	TestCod	TestCode: SW6010_S		Prep Date:		14:00	Run ID:	D: OPTIMA3 100304B	0304B	
Client ID: LCS-49458	Batch ID: 49458	Unit	Units: mg/Kg		Analysis Date:	03/04/10 13:51	13:51	SeqNo:	o: 1217675		<u>.</u>
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC Lo	LowLimit HighLimit	ghLimit	RPD Ref Val	%RPD RPDLimit	Qual
Aluminum		452.8	10	455.0	0	99.5	80	120	0		В
Calcium		1133	40	1135	0	99.8	80	120	0 (ф
Mocnocium		232.8 1113	с С п	221.25		101	л В О В	120	0 0		са с
INIAGLICSIULI		CF11	7 3	0011	þ	7 O T	0	120	Ð		ή
consects storage											
						-					
irs:	ND - Not Detected at the Reporting Limit	Lit	S	- Spike Recovery outside accepted recovery limits	le accepted recovery	limits		B-A	malyte detected in	B - Analyte detected in the associated Method Blank	l Blank
mLIMS-001 J - Analyt	J - Analyte detected below quantitation limits	limits	R	R - RPD outside accepted recovery limits	recovery limits						

CLIENT: Day F	Day Environmental Inc.			ANALY	ANALYTICAL QC SUMMARY REPORT	C SUMMA	RY REP	ORT		
Work Order: J0281	1		S	SW6010_S						
Project: 151 N	151 Mt. Hope Ave.		S	0	Metals by ICP					
Sample ID: J0281-02ADUP	P SampType: DUP	TestCode: SW6010_S	SW6010_S		Prep Date:	02/24/10 14:00	Run ID:	ID: OPTIMA2_100225C	0225C	
Client ID: TP10-4 (2')	Batch ID: 49458	Units: mg/Kg	ng/Kg		Analysis Date:	02/25/10 13:26	SeqNo:	No: 1217258		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC LowLim	LowLimit HighLimit	RPD Ref Val	%RPD RPDLimit	Qual
Arsenic		5.706	1.0	0	0	0	0	5.337	6.68 20]
Barium		72.57	10	0	0	0 0	0	87.80		В
Cadmium		0.7465	0.26	0	0	0	0	0.8162	8.92 20	д
Chromium		17.23	1.0	0	0		0	18.82		В
Lead		115.7	0.51	0	0		0	126.1	.61	
Selenium Silvar		CN CN	1.5	0 0	0 0		00	0	0 0	
) •		>			>		
Sample ID: J0281-02AMS	SampType: MS	TestCode: SW6010_S	sW6010_S		Prep Date:	02/24/10 14:00	Run ID:	ID: OPTIMA2_100225C	0225C	
Client ID: TP10-4 (2')	Batch ID: 49458	Units: mg/Kg	ng/Kg		Analysis Date:	02/25/10 13:28	SeqNo:	No: 1217259		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC LowLim	LowLimit HighLimit	RPD Ref Val	%RPD RPDLimit	Quai
Arsenic		26.40	1.0	23.69	5.337	88.9 80	120	0		
Barium		484.4	10	473.7	87.80		120	0		щ
Cadmium		10.39	0.26	11.82	0.8162		120	0		д
Chromium		57.90	1.0	47.37	18.82		120	0		щ
Lead		146.3	0.52	23.69	126.1		120	0		
Selenium		18.35	1.6	23.69	0 0	77.5 80	120	0 0		S
Silver		CF*CC	0.т	70.00	0		17N	D		
Sample ID: J0281-02ASD	SampType: SD	TestCode: SW6010_S	SW6010_S		Prep Date:	02/24/10 14:00	Run ID:	ID: OPTIMA2_100225C	0225C	
Client ID: TP10-4 (2')	Batch ID: 49458	Units: mg/Kg	ng/Kg		Analysis Date:	02/25/10 13:30	SeqNo:	No: 1217260		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC LowLim	LowLimit HighLimit	RPD Ref Val	%RPD RPDLimit	Qual
Arsenic		4.215	5.0	0	0		0	5.337	23.5 10	JR
Barium		103.7	50	0	0		0	87.80		BR
Cadmium		0.9758	1.3	0	0		0	0.8162		BJR
Chromium		21.70	5.0	0 (0.	0	0	18.82	14.2 10	BR
Celonium		4.161 AN	ר א ני	- -	5 0		0 0	126.1	18.6 10 6 10	Ж
Silver		0.5616	7.5	00	00		00	0 0		JR
a source of the second se										
stilletet										
Qualifiers: ND - No	ND - Not Detected at the Reporting Limit	it	S	- Spike Recovery outside accepted recovery limits	e accepted recovery	limits	-В-	Analyte detected in	B - Analyte detected in the associated Method Blank	d Blank
mLIMS-001 J - Anal	J - Analyte detected below quantitation limits	imits	Ä	R - RPD outside accepted recovery limits	recovery limits					
				•	•					

	MANULA PLAN	Day EXIMITENTICITICAL TIME.				TWO TAN INFORMATION ON TWO IT INFORM	TATTATO O V	THE TYPE	IND		
Work Order: Project:	J0281 151 Mt. Hope Ave.	spe Ave.		SV	SW6010_S SW846 6010 Metals by ICP	tals by ICP					
Sample ID: J0281-13ASD Client ID: TP10-22 (8')		SampType: SD Batch ID: 49458	TestCode Units	TestCode: SW6010_S Units: mg/Kg		Prep Date: Analysis Date:	02/24/10 14:00 03/04/10 13:03		Run ID: OPTIMA3_100304A SeqNo: 1217385	0304A	
Analyte			Result	PQL	SPK value	SPK Ref Val	%REC LowL	%REC LowLimit HighLimit	RPD Ref Vat	%RPD RPDLimit	Qual
Potassium Sodium			455.3 206.9	320 320	0 0	0 0	0 0	0 0	451.0 206.2	0.928 10 0.32 10	в ВJ
Sample ID: J0281-13ASD Client ID: TP10-22 (8')	1-13ASD ·22 (8')	SampType: SD Batch ID: 49458	TestCodu Units	TestCode: SW6010_S Units: mg/Kg		Prep Date: Analysis Date:	Prep Date: 02/24/10 14:00 Ilysis Date: 03/04/10 14:04		Run ID: OPTIMA3_100304B SeqNo: 1217679	0304B	-
Analyte			Result	PQL	SPK value	SPK Ref Val	%REC LowL	%REC LowLimit HighLimit	RPD Ref Val	%RPD RPDLimit Qual	Qual
Aluminum			4878	63 250	0 (0	0 0	0	4388		BR
Calcium Iron			1330U 5978	63	00	00		0 0	12250 5194	8.21 10 14 10	B BR
Magnesium			1089	160	0	0	0	0 0	923.8	16.4 10	BR
Sample ID: J0281-02APDS Client ID: TP10-4 (2')	1-02APDS 4 (2')	SampType: PDS Batch ID: 49458	TestCodt Units	TestCode: SW6010_S Units: mg/Kg		Prep Date: Analysis Date:	Prep Date: 02/24/10 14:00 Ilysis Date: 02/25/10 13:39		Run ID: OPTIMA2_100225C SeqNo: 1217263	0225C	•
Analyte			Result	PQL	SPK value	SPK Ref Val	%REC LowL	%REC LowLimit HighLimit	RPD Ref Val	%RPD RPDLimit	Qual
Selenium			18.48	1.5	22.88	0	80.8 7	75 125	0		

S - Spike Recovery outside accepted recovery limits
 R - RPD outside accepted recovery limits

B - Analyte detected in the associated Method Blank

0075

Qualifiers: mLIMS-001

CLIENT: D: Work Order: J0	Day Environmental Inc. J0281		SW7471	ANALY 471	FICAL QC	ANALYTICAL QC SUMMARY REPORT I	Y REPO	RT		
	151 Mt. Hope Ave.		3WS	SW846 7471 Mercury by FIA	ceury by FIA					
Sample ID: MB-49463 Client ID: MB-49463	SampType: MBLK Batch ID: 49463	TestCode: SW7471 Units: mg/Kg	v7471 3/Kg		Prep Date: Analysis Date:	Prep Date: 02/24/10 14:00 Ilysis Date: 02/25/10 15:45	Run ID: SeqNo:	Run ID: FIMS1_100225B SeqNo: 1213324	B	
Analyte Mercury		Result P	PQL 0.033	SPK value	SPK Ref Val	%REC LowLimit HighLimit	lighLimit	RPD Ref Val	%RPD RPDLimit	Qual
Sample ID: LCS-49463 Client ID: LCS-49463	3 SampType: LCS 3 Batch ID: 49463	TestCode: SW7471 Units: mg/Kg	v7471 ₃ /Kg		Prep Date: Analysis Date:	Prep Date: 02/24/10 14:00 Analysis Date: 02/25/10 15:46	Run ID: SeqNo:	Run ID: FIMS1_100225B SeqNo: 1213325	щ.	
Analyte Mercury		Result P 0.8240	PQL 0.033	SPK value 0.7580	SPK Ref Val 0	%REC LowLimit HighLimit 109 80 120	lighLimit 120	RPD Ref Val 0	%RPD RPDLimit	Qual
Sample ID: J0281-02ADUP Client ID: TP10-4 (2')	DUP SampType: DUP) Batch ID: 49463	TestCode: SW7471 Units: mg/Kg	V7471 ₃ /Kg		Prep Date: Analysis Date:	Prep Date: 02/24/10 14:00 alysis Date: 02/25/10 15:50	Run ID: SeqNo:	Run ID: FIMS1_100225B SeqNo: 1213328	B	
Analyte Mercury		Result P	PQL 0.045	SPK value 0	SPK Ref Val 0	%REC LowLimit HighLimit	lighLimit 0	RPD Ref Val 0.2809	%RPD RPDLimit 14.2 20	Qual
Sample ID: J0281-02AMS Client ID: TP10-4 (2')	MS SampType: MS) Batch ID: 49463	TestCode: SW7471 Units: mg/Kg	V7471 3/Kg		Prep Date: Anaiysis Date:	Prep Date: 02/24/10 14:00 Ilysis Date: 02/25/10 15:51	Run ID: SeqNo:	Run ID: FIMS1_100225B SeqNo: 1213329	ß	
Analyte		Ŧ	PQL	SPK value	SPK Ref Val	EC Low	lighLimit	RPD Ref Val	%RPD RPDLimit	Qual
Mercury		1.325	0.042	0.9728	0.2809	107 80	120	0		

S - Spike Recovery outside accepted recovery limits R - RPD outside accepted recovery limits

Qualifiers: mLIMS-001

B - Analyte detected in the associated Method Blank

WorkOrder: J0281

Project: 151 Mt. Hope Ave. **WO Name:** 151 Mt. Hope Ave.

Client ID: DAY

Location: 151_MT_HOPE,

Comments: N/A

02/25/2010 09:41

Case: SDG:

Mitkem Laboratories

HC Due: 03/05/10Report Level:LEVEL 2Fax Due:Special Program:Fax Report:EDD:GISKEY

4302S-09
P0:

UL qmb Ju	Client Sample ID	Collection Date	Date Kecv'd		I ESI COME	Samp / Lab 1 est Comments	TT TI MIS SEL SUITAGE
J0281-01A	TP10-1 (8.5')	02/19/2010 10:15	02/23/2010	Soil	PMoist		A2
J0281-01A	TP10-1 (8.5')	02/19/2010 10:15	02/23/2010	Soil	SW6010_S	/ RCRA8	Y A2
J0281-01A	TP10-1 (8.5')	02/19/2010 10:15	02/23/2010	Soil	SW7471	/ RCRA8	A2
J0281-02A	TP10-4 (2')	02/19/2010 09:20	02/23/2010	Soil	PMoist		A2
J0281-02A	TP10-4 (2')	02/19/2010 09:20	02/23/2010	Soil	SW6010_S	/ RCRA8	Y A2
J0281-02A	TP10-4 (2')	02/19/2010 09:20	02/23/2010	Soil	SW7471	/ RCRA8	A2
J0281-02B	TP10-4 (2')	02/19/2010 09:20	02/23/2010	Soil	SW8270_S		A2
J0281-03A	TP10-4 (11')	02/19/2010 09:45	02/23/2010	Soil	PMoist		A2
J0281-03A	TP10-4 (11')	02/19/2010 09:45	02/23/2010	Soil	SW6010_S	/ RCRA8	Y A2
J0281-03A	TP10-4 (11')	02/19/2010 09:45	02/23/2010	Soil	SW7471	/ RCRA8	A2
J0281-03B	TP10-4 (11')	02/19/2010 09:45	02/23/2010	Soil	SW8270_S	1	A2
J0281-04A	TP10-6 (3.5')	02/18/2010 08:35	02/23/2010	Soil	PMoist	1	A2
J0281-04A	TP10-6 (3.5')	02/18/2010 08:35	02/23/2010	Soil	SW6010_S	/ RCRA8	Υ A2
J0281-04A	TP10-6 (3.5')	02/18/2010 08:35	02/23/2010	Soil	SW7471	/ RCRA8	A2
J0281-04B	TP10-6 (3.5')	02/18/2010 08:35	02/23/2010	Soil	SW8270_S		A2
J0281-05A	TP10-6 (5-5.8')	02/18/2010 08:45	02/23/2010	Soil	PMoist		A2
J0281-05A	TP10-6 (5-5.8')	02/18/2010 08:45	02/23/2010	Soil	SW6010_S	/ TAL	Y A2
J0281-05A	TP10-6 (5-5.8')	02/18/2010 08:45	02/23/2010	Soil	SW7471	/ TAL	A2
J0281-06A	TP10-6 (9')	02/18/2010 08:40	02/23/2010	Soil	PMoist		A2
J0281-06A	TP10-6 (9')	02/18/2010 08:40	02/23/2010	Soil	SW6010_S	/ RCRA8	Y A2
J0281-06A	TP10-6 (9')	02/18/2010 08:40	02/23/2010	Soil	SW7471	/ RCRA8	A2

Lab Client Rep: Agnes R Ng

Page 01 of 03

WorkOrder: J0281

Project: 151 Mt. Hope Ave. **WO Name:** 151 Mt. Hope Ave.

Client ID: DAY

Location: 151_MT_HOPE,

Comments: N/A

02/25/2010 09:41

Case: SDG:

Mitkem Laboratories

HC Due: 03/05/10Report Level:LEVEL 2Fax Due:Special Program:Fax Report:□EDD:GISKEY

PO: 4302S-09

Lab Samp ID	D Client Sample ID	Collection Date	Date Recv'd	Matrix	Test Code	Samp / Lab Test Comments	HF HT MS SI	SEL Storage
J0281-06B	TP10-6 (9')	02/18/2010 08:40	02/23/2010	Soil	SW8260_LOW_S	1		VOA
J0281-06B	TP10-6 (9')	02/18/2010 08:40	02/23/2010	Soil	SW8260_MED_S	1	۶	VOA
J0281-06C	TP10-6 (9')	02/18/2010 08:40	02/23/2010	Soil	SW8270_S			A2
J0281-07A	TP10-7 (6.5')	02/19/2010 11:20	02/23/2010	Soil	PMoist			A2
J0281-07A	TP10-7 (6.5')	02/19/2010 11:20	02/23/2010	Soil	SW6010_S	/ RCRA8	Υ	A2
J0281-07A	TP10-7 (6.5')	02/19/2010 11:20	02/23/2010	Soil	SW7471	/ RCRA8		A2
J0281-08A	TP10-8 (2.5')	02/19/2010 10:45	02/23/2010	Soil	PMoist			A2
J0281-08A	TP10-8 (2.5')	02/19/2010 10:45	02/23/2010	Soil	SW6010_S	/ RCRA8	7	A2
J0281-08A	TP10-8 (2.5')	02/19/2010 10:45	02/23/2010	Soil	SW7471	/ RCRA8		A2
J0281-08B	TP10-8 (2.5')	02/19/2010 10:45	02/23/2010	Soil	SW8270_S			A2
J0281-09A	TP10-11 (7')	02/18/2010 10:40	02/23/2010	Soil	PMoist	1		A2
J0281-09A	TP10-11 (7')	02/18/2010 10:40	02/23/2010	Soil	SW8270_S	1		A2
J0281-09B	TP10-11 (7')	02/18/2010 10:40	02/23/2010	Soil	SW8260_LOW_S			VOA
J0281-09B	TP10-11 (7')	02/18/2010 10:40	02/23/2010	Soil	SW8260_MED_S	/	۲	VOA
J0281-10A	TP10-13 (11')	02/18/2010 11:25	02/23/2010	Soil	PMoist			A2
J0281-10A	TP10-13 (11')	02/18/2010 11:25	02/23/2010	Soil	SW8270_S			A2
J0281-10B	TP10-13 (11')	02/18/2010 11:25	02/23/2010	Soil	SW8260_LOW_S			VOA
J0281-10B	TP10-13 (11')	02/18/2010 11:25	02/23/2010	Soil	SW8260_MED_S		۶	VOA
J0281-11A	TP10-15 (7')	02/18/2010 14:40	02/23/2010	Soil	PMoist	1		A2
J0281-11A	TP10-15 (7')	02/18/2010 14:40	02/23/2010	Soil	SW8270_S			A2
C 0281-11B	TP10-15 (7')	02/18/2010 14:40	02/23/2010	Soil	SW8260_LOW_S			VOA
HF = Fra	\mathbb{C} HF = Fraction logged in but all tests have been placed on hold	s have been placed on h	old			HT = Test lo	HT = Test logged in but has been placed on hold	d on hold

Lab Client Rep: Agnes R Ng

Page 02 of 03

WorkOrder: J0281

Project: 151 Mt. Hope Ave. WO Name: 151 Mt. Hope Ave.

Client ID: DAY

Location: 151_MT_HOPE,

Comments: N/A

02/25/2010 09:41

Case: SDG:

Mitkem Laboratories

HC Due: 03/05/10Report Level:LEVEL 2Fax Due:Special Program:Fax Report:EDD:GISKEY

PO: 4302S-09

Lab Samp II	Lab Samp ID Client Sample ID	Collection Date Date Recv'd Matrix	Date Recv'd		Test Code	Samp / Lab Test Comments	HF HT MS SEL Storage
J0281-11B	TP10-15 (7')	02/18/2010 14:40 02/23/2010	02/23/2010	Soil	SW8260_MED_S		Y VOA
J0281-12A	TP10-20 (6.5')	02/18/2010 13:15	02/23/2010	Soil	PMoist		A2
J0281-12A	TP10-20 (6.5')	02/18/2010 13:15	02/23/2010	Soil	SW6010_S	/ TAL	Y A2
J0281-12A	ТР10-20 (6.5')	02/18/2010 13:15	02/23/2010	Soil	SW7471	/ TAL	A2
J0281-12B	TP10-20 (6.5')	02/18/2010 13:15	02/23/2010	Soil	SW8270_S		A2
J0281-13A	TP10-22 (8')	02/19/2010 12:50	02/23/2010	Soil	PMoist		A2
J0281-13A	TP10-22 (8')	02/19/2010 12:50	02/23/2010	Soil	SW6010_S	/ TAL	Y A2
J0281-13A	TP10-22 (8')	02/19/2010 12:50	02/23/2010	Soil	SW7471	/ TAL	A2
J0281-14A	TP10-23 (8')	02/19/2010 13:25 02/23/2010	02/23/2010	Soil	PMoist		A2
J0281-14A	TP10-23 (8')	02/19/2010 13:25 02/23/2010	02/23/2010	Soil	SW8270_S	1	A2
J0281-14B	TP10-23 (8')	02/19/2010 13:25 02/23/2010	02/23/2010	Soil	SW8260_LOW_S	1	VOA
J0281-14B	TP10-23 (8')	02/19/2010 13:25 02/23/2010	02/23/2010	Soil	SW8260_MED_S	1	Y VOA
J0281-15A	TB021910	02/19/2010 00:00 02/23/2010	02/23/2010	Aqueous	SW8260_W	1	VOA

Lab Client Rep: Agnes R Ng

HT = Test logged in but has been placed on hold

	CH	CHAIN ()F	OF CUSTODY RECORD	ST	OD	ΥI	SE	CO	RD	All T Min Min	Sp ndard T ₂ h TAT · ATs subj 24-bour	Special Handling: Standard TAT - 7 to 10 Jusiness days Rush TAT - Date Needed: - All TATs subject to laboratory approval. Min 24-hour notification needed for rishes	2: ness days pproval. 1 for mshes
SPECTRUM ANALYTICAL, INC. Featuring HANIBAL TECHNOLOGY				Page	0	of Z					· Sam other	Samples disposed of otherwise instructed.	Samples disposed of after 60 days unless otherwise instructed.	/s unless
Report TO: Jeff Danzinger	4	Invoice To:		SAME	U				Project No.:		Rocity		43025-09	
	KET								Site Name:		15)	AT H	MT Hope Avenue	200
ROCHESTER, UY 14614	14							1	Location:		Rochater	Jer		State: $\mathcal{N}\mathcal{P}$
Telephone # 585 - 454. 0210 × 114	X 114	P.O. No.:			RQN	Ž.			Sampler(s):	(s):	CAH	_		
I=Na ₂ S2O ₃ 2=HCl 3=H ₂ SO ₄ 8= NaHSO ₄ 9=	4=HNO ₃ 10=	5=NaOH 6=	=Ascorl	6=Ascorbic Acid 11=	7=C	7=CH ₃ OH			ist pres	srvative	List preservative code below:		QA/QC Reporting Notes: (check as needed)	rting Notes: needed)
DW-Deiding Water CW-Geometric		W/W/-W/actowatow			ပီ	Containers				Analyses:	SS:			
DW-DIMANG WACE OW-DIMANA 0=0il SW= Surface Water SO=Soil X1= X2=	SI	e A=Air	l			SSB	620N	l	574L				Provide MA DEP MCP CAM Report Provide CT DPH RCP Report Output	MCP CAM Report SCP Report
G=Grab C=Composite	Iposite				ο A Vi	lear Gl	STARS						UA/UC Keporting Level X Standard DNo QC D Other	TTING LEVEL
I ah Id: Samole Id:	Date	Lime.	ədxT	xinteM			<u>וכר/5</u> וd גיע bl	ICT	TAL VL	<u>``~</u> ~			State specific reporting standards:	rting standards:
TP10-1 (2.51)		0:15	v	0	-		-		×					
121	2-19-10	01120	و	S S O S				×	. ×				21	
(11)	2-19-10	OG :45		50				×	×					
(3.51)	2-18-10	92:30	G	So	-	-		×	×					
(5-5 Å)	2-18-10	08:415	3	ŝ					×					
	0]-2[-2	04:30	ى	20		Ч.	×	\times	×					
(e.5)	2.19-10	02:11	J	So	-				×					
(2.21)	2-11-10	10:45	U	S 0	_	-		×	×					
09 TP10-11 (7') 2-	2-18-10	10:40	U	50		2	×	×						
10 TPIO-US (11') Z-	2-18-10	11:25	U	\$ 0		2	` ×	. ×						
				Relin	Relinquished by:	d by:			H	Received by:	by:	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	Date:	Time:
EDD Format			0	Tharles	$\pm \frac{1}{2}$	Hampton	5	L'a	5. E)	4			2-22-10	13:00
			\ -	() ()	Ц	-		+	150		Ŕ		2/23/10	40 111
Condition upon receipt: Deced D Ambient Dec	ent ¥(°C	2								/				

11 Almgren Drive • Agawam, MA 01001 • 413-789-9018 • FAX 413-789-4076 • www.spectrum-analytical.com

Special Handling: Standard TAT - 7 to (0 business days Rush TAT - Date Needed: All TATs subject to laboratory approval. Min. 24-hour notification needed for rushes. Samples disposed of after 60 days unless otherwise instructed.	Rocity 43025 - 09	MT HODE Avenue	-		W: QA/QC Reporting Notes: (check as needed)		Provide MA DEP MCP CAM Report Provide CT DPH RCP Report	CAVEC Reporting Level Destandard Div QC	State specific reporting standards:								Date: Time:	2-22-10 3:00	2/23/10 11:04	
	- Project No.: Rocit	- Site Name: $151 N$	Location: Zoch ester	Sampler(s): CAH	List preservative code below:	Analyses:	4F2 52 NOC3	251AT2 2U2 T3M	74] 127 127	×××	XX	X	××				Received by:	Fed EXN	PLC XIII	
DF CUSTODY RECORD Page 2 of 2	o: SAME			RQN:	6=Ascorbic Acid 7=CH ₃ OH 11=	Containers	sssf	k VOA Vi lear Gl	A lo #	6 50 Z	G 50 1 1	6 50 1	6 80 · 2	X w 2			Relinquished by	Zilles Hamoton	Fred Ex	
CHAIN (Invoice T	STRRET	14614	2 X 1/4 P.O. No.:	4=HNO ₃ 5=NaOH 10=	ndwater W/W=Wastewater	S	C=Composite	Date: Time:	2-18-10 14:40	2-18-10 13:15	2-19-10 12:50	2-19-20 13:25	2-19-10						Dambient X°C 5
SPECTRUM ANALYTICAL, INC. Featuring HANIBAL TECHNOLOGY	Report To: Jeff Danzinger	NO COMMERCIAL STRE		Project Mgr. JUANZINGE15 WURYMAIL . Nr. Telephone #: 585-454-0210 x 114	1=Na ₂ S2O ₃ 2=HCl 3=H ₂ SO ₄ 8= NaHSO ₄ 9=	DW=Drinking Water GW=Groundwater		G=Grab C=C	Lab Id: Sample Id:	11 TP10-15 (7')	15 10-20/6.51	13 TP10-22 (81)	14 TP 10-23 (81)					EDD Format	L E-mail to	Condition mon receipt \mathbf{X} [ced \Box A)

11 Almgren Drive • Agawam, MA 01001 • 413-789-9018 • FAX 413-789-4076 • www.spectrum-analytical.com

MITKEM LABORATORIES Sample Condition Form

	Sam	ple Conditic	on Forr	n			Page	1	of	1
Received By: AEて	> Reviewed By	r: SA		Date:	2/23/10	Mitke			- 1er #: 2	JOZBI
Client Project: 151		<u>.</u>		Clien		AY				Soil
							<u>n (pH)</u>)	VOA	Headspace or Air Bubble ≥
		Lab Sam		HNO ₃	H ₂ SO ₄	HCI	NaOH	H ₃ PO₄	Matrix	1/4"
1) Cooler Sealed	YesTNo	J0281	61							
			02							
2) Custody Seal(s)	Present, Absent		03							
	Coolers / Bottles		64							
	Intact/ Broken		05							
			06				1		us	
3) Custody Seal Numbe	r(s) NA		67					1	<u></u>	
-, ,			08			<u> </u>				,
			09						us	
		<u> </u>	10						us	
	V		10						us	
									005	
4) Chain-of-Custody	Present)Absent		12							
	F 4		13							
5) Cooler Temperature	<u>5</u> °C	V	14						us	
IR Temp Gun ID	Mī - (J0281	15						\{	
Coolant Condition	ICED	*******								
6) Airbill(s)	Present+Absent								\square	
Airbill Number(s)	FEDEX									
	861321344306									
						$\overline{\langle}$	(
					∇	~	2			
7) Samples Bottles	Intact / Broken / Leaking			R.	71	V	· · · ·			
		· · · · · · · · · · · · · · · · · ·				<u> </u>				
8) Date Received	7/22/10		1	\checkmark						
b) Date Received			$+ \neq$							
0) Time Dessived	2/23/10 11:04		\swarrow							
9) Time Received										
· · · · · · · · · · · · · · · · · · ·										<u> </u>
Preservative Name/Lot I	No.:		VOA	Matrix	Kov					
	·······				ney. Unpre	serve	d Soil		A = Ai	r
· · · · · · · · · · · · · · · · · · ·					Unpre				H = H	
· · · · · · · · · · · · · · · · · · ·	<u></u>			M = N	•				E = Ei	
					aHSO	4			F = Fr	
See Samp	e Condition Notification/Corre	ective Action	Form	ves / /	6)					
				(/		Rad (DK ve	s/no	

Last Page of Data Report

Report Date: 27-May-10 17:39

🗹 Final Repo	ort
🗌 Re-Issued	Report
🗌 Revised R	eport

A DIVISION OF SPECTRUM ANALYTICAL, INC. Featuring HANIBAL TECHNOLOGY

Laboratory Report

Work Order: J0944

Project #:

Project : 151 Mt. Hope Ave.

Day Environmental Inc. 40 Commercial Street Rochester, NY 14614-1008

Attn: Jeff Danzinger

	Laboratory ID	Client Sample ID					Matrix		Date Sampled		Date Received
	J0944-01	MW10-1 (7'-8')				· .	Soil		05-May-10 09:00		07-May-10 09:40
	J0944-02	MW10-1 (8.5'-10')					Soil		05-May-10 09:20		07-May-10 09:40
	J0944-03	MW10-1 (10'-11')					Soil		05-May-10 09:22		07-May-10 09:40
	J0944-04	MW10-2 (5.5'-6')			A Second		Soil		05-May-10 11:10		07-May-10 09:40
	J0944-05	MW10-2 (8'-9.5')					Soil		05-May-10 11:25		07-May-10 09:40
	J0944-06	MW10-3 (10'-12')					Soil		06-May-10 08:25		07-May-10 09:40
	J0944-07	MW10-3 (13')					Soil		06-May-10 08:30		07-May-10 09:40
	J0944-08	TB050610					Aqueous		06-May-10 00:00		07-May-10 09:40

I attest that the information contained within the report has been reviewed for accuracy and checked against the quaility control requirements for each method. The results relate only to the samples(s) as received.

All applicable NELAC or USEPA CLP requirments have been meet.

N/A

Mitkem Laboratories is accredited under the National Environmental Laboratory Approval Program (NELAP) and is certified by several States, as well as USEPA and US Department of Defense. The current list of our laboratory approvals and certifications is available on the Certifications page our web site at www.mitkem.com.

Please contact the Laboratory or Technical Director at 401-732-3400 with any questions regarding the data contained in the laboratory report.

Department of Defense Connecticut Delaware Maine Massachusetts New Hampshire New Jersey New York North Carolina Pennsylvania Rhode Island Texas USDA USEPA - ISM USEPA - SOM

PH-0153 N/A 2007037 M-RI907 2631 RI001 11522 581 68-00520 LAI00301 T104704422-08-TX P330-08-00023 EP-W-09-039 EP-W-05-030

Authorized by:

Yihai Ding Laboratory Director

Technical Reviewer's Initials

Analytical Data Package for Day Environmental Inc.

Client Project: 151 Mt. Hope Ave.

Mitkem Work Order ID: J0944

May 27, 2010

Prepared For:

Day Environmental Inc. 40 Commercial Street Rochester, NY 14614 Attn: Mr. Jeff Danzinger

Prepared By:

Mitkem Laboratories 175 Metro Center Boulevard Warwick, RI 02886 (401) 732-3400 **Client: Day Environmental Inc.**

Client Project: 151 Mt. Hope Ave.

Lab Project ID: J0944

Date samples received: 05/07/10

Project Narrative

This data report includes the analysis results for eight (8) samples that were received from Day Environmental Inc. on May 7, 2010. Analyses were performed per specification on the Chain of Custody form. For reference, a copy of the Mitkem Sample Log-In form is included for cross-referencing the client sample ID and the laboratory sample ID.

Percent recoveries for surrogate standards for volatiles analysis were within the QC limits. The recoveries for the volatile laboratory control samples were within the QC limits with the exception of marginally high recovery of acetone and marginally low recovery of iodomethane in LCS-51421. Chloroform and naphthalene were detected in method blank MB-51519 at a concentration above the MDL but below the reporting limits. Chloroform and naphthalene will be flagged with "B" on data reporting forms if they are detected in the associated samples. No other unusual observations were made during sample analysis.

Percent recoveries for surrogate standards for semivolatiles analysis were within the QC limits with the marginally low recovery of nitrobenzene-d5 in sample MW10-2(8'-9.5') and marginally high recovery of 2-fluorophenol in method blank MB-51450. The recoveries for semivolatile laboratory control samples were within the QC limits. No other unusual observations were made during sample analysis.

Spike recoveries for the laboratory control sample for metals were within the QC limits. No other unusual observations were made during sample analysis.

The pages in this report have been numbered consecutively, which starts with the title page and ends with the page labeled as "Last Page of data Report".

This data report has been reviewed and is authorized for release as evidenced by the signature below.

aquish Huntly

Agnes Huntley ^O CLP Project Manager

Client: Day Environmental Inc. Client Sample ID: MW10-2 (5.5'-6') Lab ID: J0944-04 Date: 20-May-10

 Project:
 151 Mt. Hope Ave.

 Collection Date:
 05/05/10 11:10

Analyses	Result Qual	RL	Units	DF Date Analyzed	Batch ID		
SW846 8260 VOC by GC-MS				SW8260_LOW			
Dichlorodifluoromethane	ND	5.9	µg/Kg	1 05/13/2010 11:45	51519		
Chloromethane	ND	5.9	µg/Kg	1 05/13/2010 11:45	51519		
Vinyl chloride	ND	5.9	µg/Kg	1 05/13/2010 11:45	51519		
Bromomethane	ND	5.9	µg/Kg	1 05/13/2010 11:45	51519		
Chloroethane	ND	5.9	µg/Kg	1 05/13/2010 11:45	51519		
Trichlorofluoromethane	ND	5.9	µg/Kg	1 05/13/2010 11:45	51519		
1,1-Dichloroethene	ND	5.9	µg/Kg	1 05/13/2010 11:45	51519		
Acetone	ND	5.9	µg/Kg	1 05/13/2010 11:45	51519		
lodomethane	ND	5.9	µg/Kg	1 05/13/2010 11:45	51519		
Carbon disulfide	ND	5.9	µg/Kg	1 05/13/2010 11:45	51519		
Methylene chloride	ND	5.9	µg/Kg	1 05/13/2010 11:45	51519		
trans-1,2-Dichloroethene	ND	5.9	µg/Kg	1 05/13/2010 11:45	51519		
Methyl tert-butyl ether	ND	5.9	µg/Kg	1 05/13/2010 11:45	51519		
1,1-Dichloroethane	ND	5.9	µg/Kg	1 05/13/2010 11:45	51519		
Vinyl acetate	ND	5.9	µg/Kg	1 05/13/2010 11:45	51519		
2-Butanone	ND	5.9	µg/Kg	1 05/13/2010 11:45	51519		
cis-1,2-Dichloroethene	ND	5.9	µg/Kg	1 05/13/2010 11:45	51519		
2,2-Dichloropropane	ND	5.9	µg/Kg	1 05/13/2010 11:45	51519		
Bromochloromethane	ND	5.9	µg/Kg	1 05/13/2010 11:45	51519		
Chloroform	1.3 BJ	5.9	µg/Kg	1 05/13/2010 11:45	51519		
1,1,1-Trichloroethane	ND	5.9	µg/Kg	1 05/13/2010 11:45	51519		
1,1-Dichloropropene	ND	5.9	µg/Kg	1 05/13/2010 11:45	51519		
Carbon tetrachloride	ND	5.9	µg/Kg	1 05/13/2010 11:45	51519		
1,2-Dichloroethane	ND	5.9	µg/Kg	1 05/13/2010 11:45	51519		
Benzene	ND	5.9	µg/Kg	1 05/13/2010 11:45	51519		
Trichloroethene	NÐ	5.9	µg/Kg	1 05/13/2010 11:45	51519		
1,2-Dichloropropane	ND	5.9	µg/Kg	1 05/13/2010 11:45	51519		
Dibromomethane	ND	5.9	µg/Kg	1 05/13/2010 11:45	51519		
Bromodichloromethane	ND	5.9	µg/Kg	1 05/13/2010 11:45	51519		
cis-1,3-Dichloropropene	ND	5.9	µg/Kg	1 05/13/2010 11:45	51519		
4-Methyl-2-pentanone	ND	5.9	µg/Kg	1 05/13/2010 11:45	51519		
Toluene	ND	5.9	µg/Kg	1 05/13/2010 11:45	51519		
trans-1,3-Dichloropropene	ND	5.9	µg/Kg	1 05/13/2010 11:45	51519		
1,1,2-Trichloroethane	ND	5.9	µg/Kg	1 05/13/2010 11:45	51519		
1,3-Dichloropropane	ND	5.9	µg/Kg	1 05/13/2010 11:45	51519		
Tetrachloroethene	ND		µg/Kg	1 05/13/2010 11:45	51519		
2-Hexanone	ND	5.9	µg/Kg	1 05/13/2010 11:45	51519		
Dibromochloromethane	ND	5.9	µg/Kg	1 05/13/2010 11:45	51519		
1,2-Dibromoethane	ND		µg/Kg	1 05/13/2010 11:45	51519		

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Date: 20-May-10

Client: Day Environmental Inc. Client Sample ID: MW10-2 (5.5'-6') Lab ID: J0944-04

 Project:
 151 Mt. Hope Ave.

 Collection Date:
 05/05/10 11:10

Analyses	Result	Qual	RL	Units	DF Date Analyzed	Batch ID		
SW846 8260 VOC by GC-MS	-				SW8260_LOW_S			
Chlorobenzene	ND		5.9	µg/Kg	1 05/13/2010 11:45	51519		
1,1,1,2-Tetrachloroethane	ND		5.9	µg/Kg	1 05/13/2010 11:45	51519		
Ethylbenzene	ND		5.9	µg/Kg	1 05/13/2010 11:45	51519		
m,p-Xylene	ND		5.9	µg/Kg	1 05/13/2010 11:45	51519		
o-Xylene	ND		5.9	µg/Kg	1 05/13/2010 11:45	51519		
Xylene (Total)	ND		5.9	µg/Kg	1 05/13/2010 11:45	51519		
Styrene	ND		5.9	µg/Kg	1 05/13/2010 11:45	51519		
Bromoform	ND		5.9	µg/Kg	1 05/13/2010 11:45	51519		
Isopropylbenzene	ND		5.9	µg/Kg	1 05/13/2010 11:45	51519		
1,1,2,2-Tetrachloroethane	ND		5.9	µg/Kg	1 05/13/2010 11:45	51519		
Bromobenzene	ND		5.9	µg/Kg	1 05/13/2010 11:45	51519		
1,2,3-Trichloropropane	ND		5.9	µg/Kg	1 05/13/2010 11:45	51519		
n-Propylbenzene	ND		5.9	µg/Kg	1 05/13/2010 11:45	51519		
2-Chlorotoluene	ND		5.9	µg/Kg	1 05/13/2010 11:45	51519		
1,3,5-Trimethylbenzene	ND		5.9	µg/Kg	1 05/13/2010 11:45	51519		
4-Chlorotoluene	ND		5.9	µg/Kg	1 05/13/2010 11:45	51519		
tert-Butylbenzene	ND		5.9	µg/Kg	1 05/13/2010 11:45	51519		
1,2,4-Trimethylbenzene	ND		5.9	µg/Kg	1 05/13/2010 11:45	51519		
sec-Butylbenzene	ND		5.9	µg/Kg	1 05/13/2010 11:45	51519		
4-Isopropyltoluene	ND		5.9	µg/Kg	1 05/13/2010 11:45	51519		
1,3-Dichlorobenzene	ND		5.9	µg/Kg	1 05/13/2010 11:45	51519		
1,4-Dichlorobenzene	ND		5.9	µg/Kg	1 05/13/2010 11:45	51519		
n-Butylbenzene	ND		5.9	µg/Kg	1 05/13/2010 11:45	51519		
1,2-Dichlorobenzene	ND		5.9	µg/Kg	1 05/13/2010 11:45	51519		
1,2-Dibromo-3-chloropropane	ND		5.9	µg/Kg	1 05/13/2010 11:45	51519		
1,2,4-Trichlorobenzene	ND		5.9	µg/Kg	1 05/13/2010 11:45	51519		
Hexachlorobutadiene	ND		5.9	µg/Kg	1 05/13/2010 11:45	51519		
1,2,3-Trichlorobenzene	ND		5.9	µg/Kg	1 05/13/2010 11:45	51519		
Naphthalene	10	В	5. 9	µg/Kg	1 05/13/2010 11:45	51519		
Surrogate: Dibromofluoromethane	109		65-132	%REC	1 05/13/2010 11:45	51519		
Surrogate: 1,2-Dichloroethane-d4	95.5		65-128	%REC	1 05/13/2010 11:45	51519		
Surrogate: Toluene-d8	97.0		85-115	%REC	1 05/13/2010 11:45	51519		
Surrogate: Bromofluorobenzene	95.6		77-111	%REC	1 05/13/2010 11:45	51519		

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits

E - Value above quantitation range

Date: 20-May-10

Client: Day Environmental Inc. Client Sample ID: TB050610 Lab ID: J0944-08

 Project:
 151 Mt. Hope Ave.

 Collection Date:
 05/06/10 0:00

Analyses	Result Qual	RL Units	DF Date Analyzed	Batch ID
SW846 8260 VOC by GC-MS	· · ·			SW8260_W
Dichlorodifluoromethane	ND	5.0 µg/L	1 05/10/2010 16:50	51421
Chloromethane	ND	5.0 µg/L	1 05/10/2010 16:50	51421
Vinyl chloride	ND	5.0 µg/L	1 05/10/2010 16:50	51421
Bromomethane	ND	5.0 µg/L	1 05/10/2010 16:50	51421
Chloroethane	ND	5.0 µg/L	1 05/10/2010 16:50	51421
Trichlorofluoromethane	ND	5.0 µg/L	1 05/10/2010 16:50	51421
1,1-Dichloroethene	ND	5.0 µg/L	1 05/10/2010 16:50	51421
Acetone	ND	5.0 µg/L	1 05/10/2010 16:50	51421
lodomethane	ND	5.0 µg/L	1 05/10/2010 16:50	51421
Carbon disulfide	ND	5.0 µg/L	1 05/10/2010 16:50	51421
Methylene chloride	ND	5.0 µg/L	1 05/10/2010 16:50	51421
trans-1,2-Dichloroethene	ND	5.0 µg/L	1 05/10/2010 16:50	51421
Methyl tert-butyl ether	ND	5.0 µg/L	1 05/10/2010 16:50	51421
1,1-Dichloroethane	ND	5.0 µg/L	1 05/10/2010 16:50	51421
Vinyl acetate	ND	5.0 µg/L	1 05/10/2010 16:50	51421
2-Butanone	ND	5.0 μg/L	1 05/10/2010 16:50	51421
cis-1,2-Dichloroethene	ND	5.0 µg/L	1 05/10/2010 16:50	51421
2,2-Dichloropropane	ND	5.0 µg/L	1 05/10/2010 16:50	51421
Bromochloromethane	ND	5.0 µg/L	1 05/10/2010 16:50	51421
Chloroform	ND	5.0 µg/L	1 05/10/2010 16:50	51421
1,1,1-Trichloroethane	ND	5.0 µg/L	1 05/10/2010 16:50	51421
1,1-Dichloropropene	ND	5.0 µg/L	1 05/10/2010 16:50	51421
Carbon tetrachloride	ND	5.0 µg/L	1 05/10/2010 16:50	51421
1,2-Dichloroethane	ND	5.0 µg/L	1 05/10/2010 16:50	51421
Benzene	ND	5.0 µg/L	1 05/10/2010 16:50	51421
Trichloroethene	ND	5.0 µg/L	1 05/10/2010 16:50	51421
1,2-Dichloropropane	ND	5.0 μg/L	1 05/10/2010 16:50	51421
Dibromomethane	ND	5.0 µg/L	1 05/10/2010 16:50	51421
Bromodichloromethane	ND	5.0 µg/L	1 05/10/2010 16:50	51421
cis-1,3-Dichloropropene	ND	5.0 µg/L	1 05/10/2010 16:50	51421
4-Methyl-2-pentanone	ND	5.0 µg/L	1 05/10/2010 16:50	51421
Toluene	ND	5.0 µg/L	1 05/10/2010 16:50	51421
trans-1,3-Dichloropropene	ND	5.0 µg/L	1 05/10/2010 16:50	51421
1,1,2-Trichloroethane	ND	5.0 µg/L	1 05/10/2010 16:50	51421
1,3-Dichloropropane	ND	5.0 µg/L	1 05/10/2010 16:50	51421
Tetrachloroethene	ND	5.0 µg/L	1 05/10/2010 16:50	51421
2-Hexanone	ND	5.0 µg/L	1 05/10/2010 16:50	51421
Dibromochloromethane	ND	5.0 µg/L	1 05/10/2010 16:50	51421
1,2-Dibromoethane	ND	5.0 µg/L	1 05/10/2010 16:50	51421

Qualifiers:

,

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Client: Day Environmental Inc. Client Sample ID: TB050610 Lab ID: J0944-08 **Date:** 20-May-10

 Project:
 151 Mt. Hope Ave.

 Collection Date:
 05/06/10 0:00

Analyses	Result	Qual R	L Units	DF Date Analyzed	Batch ID
SW846 8260 VOC by GC-MS					SW8260_W
Chlorobenzene	ND	5	.0 µg/L	1 05/10/2010 16:50	51421
1,1,1,2-Tetrachloroethane	ND		.0 μg/L	1 05/10/2010 16:50	51421
Ethylbenzene	ND	5	.0 μg/L	1 05/10/2010 16:50	51421
m,p-Xylene	ND	5	.0 μg/L	1 05/10/2010 16:50	51421
o-Xylene	ND	5	.0 μg/L	1 05/10/2010 16:50	51421
Xylene (Total)	ND	5	.0 μg/L	1 05/10/2010 16:50	51421
Styrene	ND	5	.0 μg/L	1 05/10/2010 16:50	51421
Bromoform	ND	5	.0 μ g/L	1 05/10/2010 16:50	51421
lsopropylbenzene	ND	5	.0 μ g/L	1 05/10/2010 16:50	51421
1,1,2,2-Tetrachloroethane	' ND	5	.0 μ g/L	1 05/10/2010 16:50	51421
Bromobenzene	ND	5	.0 µg/L	1 05/10/2010 16:50	51421
1,2,3-Trichloropropane	ND	5	.0 μ g/L	1 05/10/2010 16:50	51421
n-Propylbenzene	ND	5	.0 μ g/L	1 05/10/2010 16:50	51421
2-Chlorotoluene	ND	5	0 μ g/L	1 05/10/2010 16:50	51421
1,3,5-Trimethylbenzene	ND	5	.0 μg/L	1 05/10/2010 16:50	51421
4-Chlorotoluene	ND	5	.0 μg/L	1 05/10/2010 16:50	51421
tert-Butylbenzene	ND	5	.0 μg/L	1 05/10/2010 16:50	51421
1,2,4-Trimethylbenzene	ND	5	0 µg/L	1 05/10/2010 16:50	51421
sec-Butylbenzene	ND	5	.0 μg/L	1 05/10/2010 16:50	51421
4-Isopropyltoluene	ND	5	0 µg/L	1 05/10/2010 16:50	51421
1,3-Dichlorobenzene	ND	5	0 µg/L	1 05/10/2010 16:50	51421
1,4-Dichlorobenzene	ND	5	.0 μg/L	1 05/10/2010 16:50	51421
n-Butylbenzene	ND	5	.0 μg/L	1 05/10/2010 16:50	51421
1,2-Dichlorobenzene	ND	5	.0 µg/L	1 05/10/2010 16:50	51421
1,2-Dibromo-3-chloropropane	ND	5	.0 μg/L	1 05/10/2010 16:50	51421
1,2,4-Trichlorobenzene	ND	5	.0 μg/L	1 05/10/2010 16:50	51421
Hexachlorobutadiene	ND	5	.0 μg/L	1 05/10/2010 16:50	51421
1,2,3-Trichlorobenzene	ND	5	.0 μg/L	1 05/10/2010 16:50	51421
Naphthalene	ND	5	.0 μg/L	1 05/10/2010 16:50	51421
Surrogate: Dibromofluoromethane	97.5	85-1	5 %REC	1 05/10/2010 16:50	51421
Surrogate: 1,2-Dichloroethane-d4	98.1	70-12	20 %REC	1 05/10/2010 16:50	51421
Surrogate: Toluene-d8	100	85-12	20 %REC	1 05/10/2010 16:50	51421
Surrogate: Bromofluorobenzene	93.2	75-12	20 %REC	1 05/10/2010 16:50	51421

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

CLIENT: Day Environmental Inc. Work Order: J0944 Project: 151 Mt. Hope Ave. Sample ID: MB-51519 SampType: Sample ID: MB-51519 SampType: Sample ID: MB-51519 SampType: Sample ID: MB-51519 Batch ID: 51519 Sample ID: MB-51519 Batch ID: 51519 Sample ID: MB-51519 Batch ID: 51519 Analyte Result ND Client ID: MB-51519 Batch ID: 51519 Analyte MB-51519 Batch ID: 51519 Analyte MB-51519 Batch ID: 51519 Analyte Result ND ND Client ID: MB-51519 Batch ID: 51519 Analyte Result ND ND Client ID: MB-51610 MB ND Clintorethane ND ND Clintorethane ND Methyl tert-butyl ether ND Methyl tert-butyl ether ND Vinyl acetate ND Vinyl acetate ND Vinyl acetate ND Vinyl acetate ND Vinyl acetate	MDL 3.5 2.6 0.1 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	SW8266 SW8466 SW8466 SW8466 SU8466 SU8466 SU8466 SU8466 SU8466 SU8466 SU8466 SU8466 SU8466 SU8466 SU8466 SU8466 SU8826 SU88266 SU88266 SU88266 SU88266 SU88266 SU88266 SU88266 SU88266 SU88266 SU88266 SU88266 SU88266 SU8826 SU886	ANALYTICAL QC SW8260_LOW_S SW846 8260 VOC by GC-MS w_s Prep Date: Analysis Date: SPK value SPK Ref Val	C SUMMARY R 05/13/10 8:57 05/13/10 10:45 %REC LowLimit HighLimi	EPORT Run ID: V6_100513C SeqNo: 1288676 iit RPD Ref Val	%RPD RPDLimit	Qual
1 Mt. Hope	MDL 3.6 3.5 3.5 3.5 5.6 1.1 1.0 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0	SW846 8260 - SW846 8560 - SW846	- VOC by GC-MS Prep Date: Analysis Date: SPK Ref Val	05/13/10 8:57 05/13/10 10:45 %REC LowLimit HighLimi	Run ID: V6_100513C SeqNo: 1288676 it RPD Ref Val		Qual
	MDL MDL 0.111 0.0111 0.01111 0.01111 0.01111 0.0111 0.0111 0.01111			05/13/10 8:57 05/13/10 10:45 %REC LowLimit HighLim	Run ID: V6_100513C SeqNo: 1288676 it RPD Ref Val		Qual
	MDL 3.6 0.74 1.4 1.7 2.6 0.98 0.98 0.98 0.66 0.66 0.98 0.64 0.77 0.58			05/13/10 10:45 %REC LowLimit HighLimi	Sed N		Qual
	MDL 3.6 0.74 1.0 1.4 2.6 0.98 3.5 0.66 0.66 0.64 0.64 0.64 0.64 0.64 0.65 0.64 0.58	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		%REC LowLimit HighLimi			Qual
2 . 10 6							
0							
2							
2.19							
2							
0							
2							
2. 10 10							
0 		0.000 0.000 0.000					
2		0 0 0 0 0 0 0 0					
2.19		5.0 5.0					
2.19		5.0					
2.19							
2.19	0 2.8	5.0					
2.19	1.2	5.0					-
2.19		5.0					
2.12	0	5.0					
		5.0					ŗ
		5.0					
		о. С					
		5.0					
		5.0					
		5.0					
	0 1.2	5.0					
	1.5	5.0					
	1.1	5.0					
Ū	0.62	5.0				. •	
4-Methyl-2-pentanone ND		5.0		-			
	0.54	5.0					
bene		5.0					
-		5.0					
le	1.2	5.0					
™. tetrachloroethene ND	-	0.6					
Qualifiers: ND - Not Detected at the Reporting Limit	ing Limit	S - Spike Recovery c	S - Spike Recovery outside accepted recovery limits	limits	B - Analyte detected in	B - Analyte detected in the associated Method Blank	Blank
	:				•		

Matrix Simple State Simple State	CLIENT: Day Env	Day Environmental Inc.			ANALY	ANALYTICAL OC SUMMARY REPORT	C SUMA	IARY]	REPORT		
IMI. Hope Ave. SW346 82/60 – VOC by GC-MS Samp/yer WBLK Testcode: SW3360_LOW_S Prep: Date: 601/310 857 R Samp/yer MBLK Testcode: SW3360_LOW_S Analysis Date: 601/310 10-66 S Batch ID: Fig19 Units: upf0 Poll Poll SPK real Val SerEC LowLine HighLinit Batch ID: 513 Poll POL SPK value SPK real Val SrEC LowLine HighLinit Batch ID: Frau POL SPK value SPK real Val SrEC LowLine HighLinit Batch ID: Frau POL SPK value SPK real Val SrEC LowLine HighLinit Batch ID: Frau POL SPK value SPK value SPK value SFK real Val Batch ID: Frau POL SPK value SPK value SFK real Val SrEC LowLine HighLinit Batch ID: Frau SPK value SFK real Val SrEC LowLine HighLinit Batch ID: Frau SFK value SFK value SFK value SFK value SFK value S				SW8	260 LOW S	,					
Sampt'ype: MBLK TestCode: Sw8260_LOW_S Arealysis Date: OF1706:: SF170 Dist Arealysis Date: OF170:: SF1 S Reauxt MOL DOL SPK walves: SFX Ref^1/al SFEC. LowLintt HightInit S No 12 5.0 SPK walves: SFK Ref^1/al SFEC. LowLintt HightInit S No 12 5.0 SPK walves: SFK Ref^1/al SFEC. LowLintt HightInit S No 12 5.0 SPK walves: SFEC. LowLintt HightInit S No 12 5.0 SPK Ref^1/al SFEC. LowLintt HightInit S No 12 5.0 SPK Ref^1/al SFEC. LowLintt HightInit S No 11 5.0 SPK Ref^1/al SFEC. LowLintt HightInit S No 11 5.0 SPK SEC		Hope Ave.		SW8	346 8260 – <u>V</u> C	C by GC-MS		:			
Batch ID: 5157 Units Lyfty Analysis Date: 661710 704 5 Result MDL PQL SPK value SPK ref Val WED PCL	Sample ID: MB-51519	SampType: MBLK	TestCo	ode: SW8260_LOW_S		Prep Date:		57	Run ID: V6_1005	30	
Result MD. POL SPK ratue SPK ratue SPK call MEC Low 112 0.17 5.0 5.0 SPC		Batch ID: 51519	Ŀ	nits: µg/Kg		Analysis Date:):45	SeqNo: 1288676		
N0 1.2 5.0 N0 1.2 5.0 N1 1.2 5.0 N1 1.2 5.0 N1 1.2 5.0 N1 1.2 5.0 N2 1.1 5.0 N2 1.1 5.0 N3 1.1 5.0 N4 1.1 5.0 N3 1.1 5.0 N4 1.1 5.0 <t< th=""><th>Analyte</th><th>Result</th><th>MDL</th><th>PQL</th><th>SPK value</th><th>SPK Ref Val</th><th>%REC Low</th><th>/Limit HighLi</th><th></th><th></th><th>t Qual</th></t<>	Analyte	Result	MDL	PQL	SPK value	SPK Ref Val	%REC Low	/Limit HighLi			t Qual
000 0.77 5.0 100 0.76 5.0 100 1.25 5.0 100 1.12 5.0 111 5.0	2-Hexanone	ND	1.2	5.0							
0 1.5 5.0 1 1.2 5.0 1 5.0 5.0 5.0 1 1.0 1.1 5.0 5.0 1 1.0 <th1< td=""><td>Dibromochloromethane</td><td>ND</td><td>0.77</td><td>5.0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th1<>	Dibromochloromethane	ND	0.77	5.0							
NIN 0.96 5.0 NO 112 5.0 NO 112 5.0 NO 111 5.0 NO 0.95 5.0 NO 1.1 5.0 NO 1.1 5.0 NO 1.1 5.0 NO 1.2 5.0 NO 1.3 5.0 NO 1.4 5.0 NO 1.4 5.0	1,2-Dibromoethane	ND	1.5	5.0							
Image ND 1.2 5.0 ND 1.1 5.0 1.1 5.0 ND 1.1 5.0 5.0 5.0 ND 0.87 5.0 5.0 5.0 ND 1.1 5.0 5.0 5.0 ND 1.3 5.0 5.0 5.0 ND 1.1 5.0 5.0	Chlorobenzene	ND	0.96	5.0							
ND 1.2 5.0 ND 1.1 5.0 ND 0.1 5.0 ND 0.35 5.0 ND 1.1 5.0 <	1,1,1,2-Tetrachloroethane	UN	1.2	5.0							
NID 1.7 5.0 NID 1.1 5.0 NID 0.87 5.0 NID 0.87 5.0 NID 1.1 5.0 NID 1.1 <td< td=""><td>Ethylbenzene</td><td>UN</td><td>1.2</td><td>5.0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	Ethylbenzene	UN	1.2	5.0							
NID 1.1 5.0 NID 1.3 5.0 NID 1.4 5	m,p-Xylene	UN	1.7	•							
ND 1.1 5.0 ND 0.95 5.0 ND 1.3 5.0 ND 1.3 5.0 ND 1.3 5.0 ND 1.3 5.0 ND 1.7 5.0 ND 1.6 5.0 ND 1.6 5.0 <	o-Xylene	CN .	1.1	5.0							
ND 1.1 5.0 ND 1.4 5.0 ND 1.1 5.0 ND 1.1 5.0 ND 1.1 5.0 ND 1.1 5.0 ND 0.87 5.0 ND 1.3 5.0 ND 1.4 5.0 ND 0.2 5.0 5.0 ND 1.4 5.0 5.0 ND 0.2 5.0 5.0 ND	Xylene (Total)	QN	1.1	5.0							
ND 1.4 5.0 ND 1.6 5.0 ND 1.6 5.0 ND 1.6 5.0 ND 1.3 5.0 ND 1.4 5.0 ND 0.67 5.0 ND 0.67 5.0 ND 1.4 5.0 ND 1.4 5.0 ND 0.67 5.0 ND 0.67 5.0 ND 0.67 5.0 ND 0.60 0.0 0.0	Styrene	ND	1.1	5.0							
ND 1.6 5.0 ND 1.1 5.0 ND 0.97 5.0 ND 2.0 5.0 ND 1.3 5.0 ND 1.4 5.0 ND 1.4 5.0 ND 0.67 5.0 ND 0.79 5.0 1.4 5.0 5.0 ND 0.79 5.0 1.4 5.0 5.0 ND 0.79 5.0 1.4 5.0 5.0 1.6 5.0 5.0 <t< td=""><td>Bromoform</td><td>ND</td><td>1.4</td><td>5.0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Bromoform	ND	1.4	5.0							
m ND 1.1 5.0 ND 0.97 5.0 ND 1.3 5.0 ND 1.5 5.0 ND 1.3 5.0 ND 1.3 5.0 ND 1.3 5.0 ND 2.0 5.0 ND 2.0 5.0 ND 1.3 5.0 ND 1.3 5.0 ND 1.3 5.0 ND 1.4 5.0 ND 1.4 5.0 ND 1.4 5.0 ND 1.7 5.0 ND 1.4 5.0 ND 1.7 5.0 ND 1.7 5.0 ND 1.7 5.0 ND 1.1 0 1.0 1.804 0.67 5.0 0 10.6 53.13 0 5.0 0 10.6 5.0 50.11	Isopropylbenzene	UN	1.6	5.0							
ND 0.87 5.0 ND 1.3 5.0 ND 1.3 5.0 ND 1.3 5.0 ND 1.7 5.0 ND 1.4 5.0 ND 1.4 5.0 ND 1.6 5.0 Sold 0.6 5.0 Sold 0 0 0 Sold 0 5.0 0 0 Sold 0 0 0 0 0 0 Sold 0 0 0 0 0 0 0 Sold	1,1,2,2-Tetrachloroethane	UN	1.1	5.0							
ND 0.95 5.0 ND 1.3 5.0 ND 1.7 5.0 ND 1.4 5.0 ND 0 5.0 0.0 1.66 5.0 5.0 5.0 1.69 0 5.0 0.0 0 5.0 1.1.6 5.0 5.0 <td>Bromobenzene</td> <td>UN</td> <td>0.87</td> <td>5.0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Bromobenzene	UN	0.87	5.0							
ND 2.0 5.0 ND 1.3 5.0 ND 1.7 5.0 ND 1.7 5.0 ND 1.7 5.0 ND 1.7 5.0 ND 1.4 5.0 ND 1.4 5.0 ND 1.4 5.0 ND 1.4 5.0 ND 0.67 5.0 ND 1.6 5.0 ND 0.99 5.0 ND 0.92 5.0 S3.13 0 5.0 0 5.0 5.0 1.1.6 5.0 5.0 1.1.94 5.0 5.0 1.1.94 0.0 1.0 65 132 3.1.16 0 5.0 0.00 0 100 50.00 100 50.00	1,2,3-Trichloropropane	UN .	0.95	5.0							
ND 1.3 5.0 ND 1.5 5.0 ND 1.7 5.0 ND 1.4 5.0 ND 0.67 5.0 ND 1.4 5.0 ND 0.99 5.0 ND 1.4 5.0 ND 1.7 5.0 ND 1.6 5.0 ND 0.99 5.0 ND 0.92 5.0 ND 0.92 5.0 Sold 0 106 5.1 5.0 5.0 Sold 0 106 65 128 50.11 0 5.0 0 106 65 128 50.11 0 5.0 0 0 106 65 128 50.11 0 5.0 0 0	n-Propylbenzene	UN	2.0	5.0							
ND 1.5 5.0 ND 1.7 5.0 ND 1.4 5.0 ND 1.4 5.0 ND 1.4 5.0 ND 1.6 5.0 ND 1.7 5.0 ND 1.6 5.0 ND 1.6 5.0 ND 1.6 5.0 S3.13 0 50.0 0 105 65 132 53.13 0 50.00 0 102 65 132 50.11 0 50.00 0 100 105 65 132 50.11 0 50.00 0 100 100 100 </td <td>2-Chlorotoluene</td> <td>ON .</td> <td>1.3</td> <td>5.0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	2-Chlorotoluene	ON .	1.3	5.0							
ND 1.7 5.0 ND 1.3 5.0 ND 1.4 5.0 ND 1.4 5.0 ND 1.4 5.0 ND 1.4 5.0 ND 1.6 5.0 ND 1.6 5.0 ND 1.6 5.0 ND 1.7 5.0 ND 1.6 5.0 ND 0.92 5.0 ND 0.92 5.0 1.894 0.60 5.0 5.1.16 0 5.0 5.1.16 0 5.0 5.0.11 0 5.0 5.0.11 0 5.0 5.0.11 0 100 5.0.11 0 100 5.0.11 0 100 100 5.0.11 0 5.0 100 100 110 </td <td>1,3,5-Trimethylbenzene</td> <td>UN</td> <td>•</td> <td>•</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	1,3,5-Trimethylbenzene	UN	•	•							
ND 2.0 5.0 ND 1.3 5.0 ND 1.4 5.0 ND 0.67 5.0 ND 0.67 5.0 ND 0.67 5.0 ND 0.99 5.0 ND 1.4 5.0 ND 1.6 5.0 ND 1.7 5.0 ND 1.7 5.0 ND 1.7 5.0 ND 1.6 5.0 ND 0.99 5.0 ND 0.67 5.0 ND 0.60 5.0 Solution 0 0 0 Solution 0 0 0 0 Solution 0 50.00 0 0 0 Solution 0 50.00 0 0 0 0 Not Detected at the Reporting Limit Solution 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4-Chlorotoluene	DN	1.7	5.0							
ND 1.3 5.0 ND 1.7 5.0 ND 1.4 5.0 ND 0.67 5.0 ND 0.67 5.0 ND 1.7 5.0 ND 1.6 5.0 ND 0.92 5.0 5.1 5.0 5.0 5.0 ND 0.60 5.0 50.00 0 106 65 128 51.16 0 5.0 50.00 0 106 65 128 51.11 0 5.0 50.00 0 102 65 128 50.11 0 50.00 0 100 85 115 Not Detected at the Reporting Limit S.00 0 100 85 115 S.000<	tert-Butylbenzene	DN	2.0	5.0							
ND 1.7 5.0 ND 1.4 5.0 ND 0.67 5.0 ND 1.6 5.0 ND 1.6 5.0 ND 1.7 5.0 ND 1.7 5.0 ND 1.4 5.0 ND 1.4 5.0 ND 1.6 5.0 ND 0.92 5.0 ND 0.92 5.0 1.894 0.60 5.0 53.13 0 50.00 0 106 65 132 53.13 0 50.00 0 106 65 132 53.13 0 50.00 0 106 65 132 51.16 0 50.00 0 102 65 132 50.11 0 50.00 0 100 85 115 S0.11 0 50.00 0 100 85 115	1,2,4-Trimethylbenzene	ND	1.3	5.0							
ND 1.9 5.0 ND 1.4 5.0 ND 1.6 5.0 ND 1.7 5.0 ND 1.7 5.0 ND 1.7 5.0 ND 1.4 5.0 ND 1.7 5.0 ND 1.4 5.0 ND 0.99 5.0 ND 0.92 5.0 Sold 0.60 5.0 0.00 0 106 65 132 Sol.13 0 5.0 50.00 0 106 65 132 Sol.11 0 5.0 50.00 0 106 65 132 Not Detected at the Reporting Limit 5.0 50.00 0 100 85 115	sec-Butylbenzene	ND	1.7	5.0							
ND 1.4 5.0 ND 0.67 5.0 ND 1.6 5.0 ND 1.7 5.0 ND 1.7 5.0 ND 1.7 5.0 ND 1.4 5.0 ND 1.4 5.0 ND 1.4 5.0 ND 1.6 5.0 ND 0.92 5.0 Sol 5.0 50.00 0 106 65 132 Sol.16 0 5.0 50.00 0 102 65 132 Sol.11 0 5.0 50.00 0 102 65 132 Not Detected at the Reporting Limit S.0.00 0 100 85 115	4-Isopropyltoluene	UN	1.9	5.0							
ND 0.67 5.0 ND 1.6 5.0 ND 1.7 5.0 ND 1.7 5.0 ND 1.7 5.0 ND 1.4 5.0 ND 1.4 5.0 ND 1.4 5.0 ND 0.92 5.0 S3.13 0 5.0 S3.13 0 5.0 S1.16 0 106 65 132 S1.16 0 5.0 50.00 0 102 65 128 S0.11 0 5.0 50.00 0 102 65 128 Not Detected at the Reporting Limit S.50:00 0 100 85 115	1,3-Dichlorobenzene	ND	1.4	5.0							
ND 1.6 5.0 ND 1.7 5.0 ND 1.7 5.0 ND 1.4 5.0 ND 1.4 5.0 ND 1.6 5.0 ND 1.6 5.0 ND 0.92 5.0 ND 0.92 5.0 S3.13 0 5.0 53.13 0 5.0 S1.16 0 106 65 132 S1.16 0 5.0 50.00 0 106 65 132 S0.11 0 5.0 50.00 0 102 65 128 Not Detected at the Reporting Limit S- Splic Recovery outside accepted recovery limits S- Splic Recovery outside accepted recovery limits	1,4-Dichlorobenzene	QN	0.67	5.0							
ND 0.99 5.0 Pane ND 1.7 5.0 ND 1.4 5.0 ND 1.6 5.0 ND 0.92 5.0 ND 0.92 5.0 ND 0.92 5.0 ND 0.92 5.0 1.894 0.60 5.0 53.13 0 5.0 50.00 0 106 65 132 53.13 0 5.0 5.0 50.00 0 106 65 132 51.16 0 5.0 50.00 0 102 65 128 50.11 0 5.0 50.00 0 100 85 115 Not Detected at the Reporting Limit S.000 0 100 85 115	n-Butylbenzene	UN .	1.6	5.0							
pane ND 1.7 5.0 ND 1.4 5.0 ND 1.6 5.0 ND 0.92 5.0 1.894 0.60 5.0 53.13 0 5.0 53.13 0 5.0 51.16 0 106 65 51.16 0 5.0 50.00 0 50.11 0 5.0 50.00 0 102 65 50.11 0 5.0 50.00 0 100 85 115	1,2-Dichlorobenzene	ND	0.99	5.0							
ND 1.4 5.0 ND 1.6 5.0 ND 0.92 5.0 1.894 0.60 5.0 53.13 0 5.0 51.16 0 5.0 51.16 0 106 65 51.16 0 5.0 0 102 65 50.11 0 5.0 50.00 0 102 65 115 Not Detected at the Reporting Limit 0 5.0 50.00 0 100 85 115	1,2-Dibromo-3-chloropropane	QN	1.7	5.0							
ND 1.6 5.0 ND 0.92 5.0 1.894 0.60 5.0 5.1 5.0 50.00 0 106 65 132 53.13 0 5.0 50.00 0 106 65 132 51.16 0 5.0 50.00 0 102 65 128 50.11 0 5.0 50.00 0 100 85 115 Not Detected at the Reporting Limit S-Spike Recovery outside accepted recovery limits S-Spike Recovery outside accepted recovery limits	1,2,4-Trichlorobenzene	QN 1	1.4	5.0							
NJ 0.92 5.0 5.0 500 0.106 65 132 53.13 0 5.0 5.0 50.00 0 106 65 132 51.16 0 5.0 50.00 0 102 65 128 50.11 0 5.0 50.00 0 100 85 115 Not Detected at the Reporting Limit 8.5 8.5 8.5 8.5 8.5 8.5	Hexachlorobutadiene	QN	1.6	5.U							
1.894 0.60 5.0 50.00 0 106 65 132 53.13 0 5.0 5.0 50.00 0 106 65 128 51.16 0 5.0 5.0 50.00 0 102 65 128 50.11 0 5.0 5.0 50.00 0 100 85 115 Not Detected at the Reporting Limit	1,2,3-1 richlorobenzene		0.92	0.0							I
53.13 0 5.0 50.00 0 106 65 132 51.16 0 5.0 50.00 0 102 65 128 50.11 0 5.0 50.00 0 100 85 115 Not Detected at the Reporting Limit	Naphthalene	1.894	0.60	5.0	4						Ŋ
51.16 0 5.0 50.00 0 102 65 128 50.11 0 5.0 50.00 0 100 85 115 Not Detected at the Reporting Limit S-Spike Recovery outside accepted recovery limits S-Spike Recovery outside accepted recovery limits S S	Surrogate:	53.13	0	•	50.00	o					
50.11 0 5.0 50.00 0 100 85 115 Not Detected at the Reporting Limit S-Spike Recovery outside accepted recovery limits	Surrogate: 1,2-	51.16	0	5.0	50.00	0					
Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits	Surrogate: Toluene-d8	50.11	0	5.0	50.00	0					
ers: ND - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits											
		etected at the Reporting Lim	lit	S - Sp	ike Recovery outsid	accepted recovery	limits		B - Analyte detect	id in the associated Meth	od Blan
						• -			•		

CLIENT: Da Work Order: J09 Project: 151	Day Environmental Inc. J0944 151 Mt. Hope Ave.		SW82 SW84	ANALYTICAL QC SW8260_LOW_S SW846 8260 VOC by GC-MS	FICAL QC C by GC-MS	ANALYTICAL QC SUMMARY REPORT)_LOW_S 8260 VOC by GC-MS	Y REPO	RT		
Sample ID: MB-51519 Client ID: MB-51519	SampType: MBLK Batch ID: 51519		TestCode: SW8260_LOW_S Units: µg/Kg		Prep Date: Analysis Date:	05/13/10 8:57 05/13/10 10:45	Run ID: SeqNo:	Run ID: V6_100513C SeqNo: 1288676		
Analyte	Result	MDL	PQL	SPK value	SPK Ref Val	%REC LowLimit HighLimit	ighLimit	RPD Ref Val	%RPD RPDLimit (Qual
Bromofluorobenzene	1 3 9 9									
000										
Dualifiers:	ND - Not Detected at the Reporting Limit	nit	S - Spii	S - Spike Recovery outside accepted recovery limits	; accepted recovery	limits	B - A	nalyte detected in	B - Analyte detected in the associated Method Blank	Blan
	I - Analyte detected below quantitation limits	limits	R - RPI	 RPD outside accepted recovery limits 	recovery limits					

With Order: Dioti SWR2601 LOWS SWR2601 LOWS SWR2601 LOWS Turplet: I.H. HURD ANG SWR26. SEG1 – VC 100 EST SWR26. SEG1 – VC 100 EST Amonga and and and and and and and and and an	CLIENT:	Day Envii	Day Environmental Inc.			ANALY	ANALYTICAL QC SUMMARY REPORT	C SUN	IMAR	Y REP	ORT		
I TentCrise: SVRTBAL LOW 3 Pertop less: Gir M10 Ex7 Ann 12: Yes, Const. SVRTBAL LOW 3 I Bath D: S1513 TentCrise: SVRTBAL LOW 3 Ann 15: Yes, Const. TentCrise: SVRTBAL LOW 3 I Bath D: S1513 Disk: jufys Ann 35: Yes Ann 15: Yes Signe: Const. TentCrise: SVRTBAL LOW 3 Image: Signe: S1: Yes Disk: jufys Disk: jufys SPC Mark M2 SPC Mark M2 Sector S1: Yes SPC Mark M2	Work Order: Project:	J0944 151 Mt. H	Hope Ave.		SW8 SW8	8260_LOW_S 146 8260 VC	C by GC-M	z o					
13 Link Link <thl< th=""><th>Sample ID 1 CS-</th><th>51519</th><th>SampTvpe: LCS</th><th>TestCo</th><th>ide: SW8260 LOW S</th><th></th><th>Prep Date</th><th></th><th>) 8:57</th><th>Run I</th><th></th><th></th><th></th></thl<>	Sample ID 1 CS-	51519	SampTvpe: LCS	TestCo	ide: SW8260 LOW S		Prep Date) 8:57	Run I			
Next DOI OC Sect value	Client ID: LCS-	-51519	Batch ID: 51519	'n	its: µg/Kg		Analysis Date) 9:15	SeqN			
nd $34, 66$ 3.6 5.0 50.00 0 69.3 39.16 30.13 <th>Analyte</th> <th></th> <th>Result</th> <th>MDL</th> <th>PQL</th> <th>SPK value</th> <th>SPK Ref Val</th> <th>%REC I</th> <th>-owLimit F</th> <th>lighLimit</th> <th>RPD Ref Val</th> <th>%RPD RPDLimit</th> <th>Qual</th>	Analyte		Result	MDL	PQL	SPK value	SPK Ref Val	%REC I	-owLimit F	lighLimit	RPD Ref Val	%RPD RPDLimit	Qual
31.66 0.14 5.0 50.00 0 77.7 50 100 120 52.32 1.1 0 0 77.7 0 120 52.32 1.1 0 0 0 17.7 0 120 52.32 1.1 0 0.0 0 <th0< th=""> <th0< th=""> 0</th0<></th0<>	Dichlorodifluorome	sthane	34.66	3.6	5.0	50.00	0	69.3	35	135	0		
6.37 1.0 5.0 50.00 0 92.7 00 125 6.32 1.4 5.0 50.00 0 100 10 <td>Chloromethane</td> <td></td> <td>38.86</td> <td>0.74</td> <td>5.0</td> <td>50.00</td> <td>0</td> <td>77.7</td> <td>50</td> <td>130</td> <td>0</td> <td></td> <td></td>	Chloromethane		38.86	0.74	5.0	50.00	0	77.7	50	130	0		
6 55.23 1.4 5.0 50.00 0 105 30 166 6 55.32 1.4 5.0 50.00 0 100 4 10 4 10 4 10 5 10 5 10 5 10 5 10 5 10 5 10 5 10 5 10 5 10 10 5 10 10 5 10 10 2 10 2 10 2 10 2 10 2 10 2 10 2 10 2 10 2 10 2 10 2 10 2 10 2 10 2 10 2 10 2 10 2 10 2 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10	Vinvl chloride		46.37	1.0	5.0	50.00	0	92.7	60	125	0		
49.98 1.7 5.0 50.00 0 100 40 15 6 55.15 2.6 50.00 0 110 25 185 60.50 3.5 5.0 50.00 0 121 25 185 60.50 3.5 5.0 50.00 0 121 25 185 60.50 3.5 5.0 50.00 0 121 25 126 60.50 0.64 5.0 50.00 0 101 35 126 90.32 0.77 5.0 50.00 0 101 35 126 90.32 0.76 5.0 50.00 0 121 35 126 90.32 50.00 0.11 1.5 50.00 0 121 35 126 91.4 90.00 0 111 15 50.00 0 121 35 126 91.4 90.00 90.00 90.00 <td>Bromomethane</td> <td></td> <td>52.52</td> <td>1.4</td> <td>5.0</td> <td>50.00</td> <td>0</td> <td>105</td> <td>30</td> <td>160</td> <td>0</td> <td></td> <td></td>	Bromomethane		52.52	1.4	5.0	50.00	0	105	30	160	0		
e 55.15 2.6 5.0 50.00 0 110 25 118 60.50 3.29 5.0 50.00 0 100 25 125 44.74 0.06 5.0 50.00 0 101 55 126 44.74 0.06 5.0 50.00 0 101 55 126 44.74 0.076 5.0 50.00 0 101 55 126 50.228 0.11 5.0 50.00 0 113 55 128 47.45 0.94 5.0 50.00 0 101 55 128 50.28 0.076 5.0 50.00 0 111 70 125 50.28 0.70 0 111 70 125 50.29 0.70 50.00 0 111 70 125 50.28 0.70 0 111 70 125 50.20 0.10	Chloroethane		49.98	1.7	5.0	50.00	0	100	40	155	0		
64.49 0.98 5.0 50.00 0 109 65 135 47.78 1.0 5.0 50.00 0 121 20 120 47.78 1.0 5.0 50.00 0 91.4 7 91.6 47.78 0.66 5.0 50.00 0 91.6 75 121 50.32 0.74 0.75 5.0 50.00 0 91.6 75 121 51.6 50.00 0 91.6 9	Trichlorofluoromet	hane	55.15	2.6	5.0	50.00	0	110	25	185	0		
(0, 50) 3.5 5.0 50.00 0 121 20 120 20 120 20 120 20 120 20 120 20 120 20 120 20 1	1,1-Dichloroethene	Û	54.49	0.98	5.0	50.00	0	109	65	135	0		
47.66 1.0 5.0 50.00 0 95.4 70 126 50.32 0.46 5.0 50.00 0 95.4 75 126 50.32 0.47 5.0 50.00 0 91.5 75 126 41.27 0.77 5.0 50.00 0 91.5 75 126 35.67 0.34 5.0 50.00 0 91.6 75 126 35.67 0.35 5.0 50.00 0 91.6 70 125 35.67 0.36 5.0 50.00 0 91.6 70 125 35.128 0.46 5.0 50.00 0 91.1 70 125 57.50 1.11 1.5 5.0 50.00 0 91.6 70 125 57.50 1.11 5.0 50.00 0 117 70 125 57.50 1.11 5.0 50.00 0	Acetone		60.50	3.5	5.0	50.00	0	121	20	160	0		
41.74 0.66 5.0 50.00 0 89.5 45 160 41.27 0.71 5.0 50.00 0 89.5 55 126 41.27 0.71 5.0 50.00 0 91.3 55 126 41.27 0.71 5.0 50.00 0 91.3 55 128 37.67 0.28 5.0 50.00 0 91.3 55 128 128 50.28 5.0 50.00 0.112 55 128 128 128 50.28 0.76 5.0 50.00 0 121 35 128 128 57.26 11.2 5.0 50.00 0.117 70 128 57.20 11.1 5.0 50.00 0.1117 70 128 57.20 11.1 5.0 50.00 0.1117 70 128	lodomethane		47.68	1.0	5.0	50.00	0	95.4	70	126	0		
50.32 0.64 5.0 50.00 0 101 55 140 41.27 0.77 5.0 50.00 0 99.3 55 125 41.27 0.77 5.0 50.00 0 91.9 75 128 47.50 0.28 5.0 50.00 0 91.9 75 128 50.20 0.50 0.70 0.76 50.00 0 101 35 128 50.20 0.68 5.0 50.00 0 101 35 128 59.21 0.68 5.0 50.00 0 117 70 128 57.50 11.1 5.0 50.00 0 117 70 128 57.50 11.1 5.0 50.00 0 117 70 128 57.50 11.1 5.0 50.00 0 1101 712 </td <td>Carbon disulfide</td> <td></td> <td>44.74</td> <td>0.66</td> <td>5.0</td> <td>50.00</td> <td>0</td> <td>89.5</td> <td>45</td> <td>160</td> <td>0</td> <td></td> <td></td>	Carbon disulfide		44.74	0.66	5.0	50.00	0	89.5	45	160	0		
Inc 49.66 1.1 5.0 50.00 0 99.3 55 125 71.4 0.77 5.0 50.00 0 94.3 55 125 35.67 0.38 5.0 50.00 0 94.3 55 128 35.67 0.38 5.0 50.00 0 94.3 55 128 35.67 0.58 5.0 50.00 0 94.8 70 128 50.28 0.68 5.0 50.00 0 94.8 70 128 57.76 0.82 5.0 50.00 0 117 70 128 57.26 0.82 5.0 50.00 0 117 70 128 57.20 0.90 0.70 0.117 51 70 128 57.20 0.00 0 111 1.5 128 128	Methylene chloride	Ð	50.32	0.64	5.0	50.00	0	101	55	140	0		
41.27 0.77 5.0 90.00 0 82.5 75 125 47.46 0.58 5.0 50.00 0 94.9 75 125 35.67 0.58 5.0 50.00 0 94.9 75 125 50.28 2.9 50.00 0 94.9 75 125 50.28 5.0 50.00 0 94.9 75 125 50.276 1.2 5.0 50.00 0 101 30 160 51.2750 1.6 5.0 50.00 0 117 70 125 57.50 1.1 5.0 50.00 0 117 70 135 58.20 0.16 5.0 50.00 0 117 70 135 58.20 0.16 5.0 50.00 0 117 70 135 58.12 0.10 0.117 5.0 50.00 0 125 <td< td=""><td>trans-1,2-Dichloroe</td><td>ethene</td><td>49.66</td><td>1.1</td><td>5.0</td><td>50.00</td><td>0</td><td>6.99.3</td><td>65</td><td>135</td><td>0</td><td></td><td></td></td<>	trans-1,2-Dichloroe	ethene	49.66	1.1	5.0	50.00	0	6.99.3	65	135	0		
47.46 0.94 5.0 50.00 0 94.9 75 125 35.67 0.58 5.0 50.00 0 11.3 55 138 50.28 1.2 5.0 50.00 0 11.3 55 133 57.50 1.2 5.0 50.00 0 11.3 55 135 59.91 0.68 5.0 50.00 0 120 55 135 57.50 1.1 5.0 50.00 0 117 70 135 57.50 1.1 5.0 50.00 0 117 70 135 57.50 1.1 5.0 50.00 0 117 70 135 58.27 0.16 5.0 50.00 0 117 70 135 58.20 0.11 5.0 50.00 0 110 70 135 58.210 0.11 5.0 50.00 0 101 70<	Methyl tert-butyl et	ther	41.27	0.77	5.0	50.00	0	82.5	75	.126	0		
35.67 0.58 5.0 50.00 0 71.3 65 138 97.50 12.6 5.0 50.00 0 11.3 56 138 97.50 1.5 5.0 50.00 0 120 55 138 97.41 1.5 5.0 50.00 0 120 55 138 57.10 0.82 5.0 50.00 0 117 70 125 57.28 0.76 5.0 50.00 0 117 70 125 57.28 0.76 5.0 50.00 0 117 70 125 56.10 0.86 5.0 50.00 0 117 70 125 57.10 0.86 0.70 0.117 5.0 50.00 0 117 70 125 56.10 0.70 0.71 0.71 0.71 0.71 <	1,1-Dichloroethane	9	47.46	0.94	5.0	50.00	0	94.9	75	125	0		
50.28 2.8 5.0 50.00 0 101 30 160 5 59.91 0.68 5.0 50.00 0 101 30 160 47.41 1.2 5.0 50.00 0 117 70 125 52.76 0.82 5.0 50.00 0 117 70 125 57.50 1.6 5.0 50.00 0 117 70 135 57.50 1.6 5.0 50.00 0 117 70 135 57.50 1.6 5.0 50.00 0 117 70 135 57.50 1.6 5.0 50.00 0 117 70 135 58.32 1.1 5.0 50.00 0 110 70 135 58.32 1.1 5.0 50.00 0 101 75 125 6 1.1 5.0 50.00 0 101 <	Vinyl acetate		35.67	0.58	5.0	50.00	0	71.3	65	138	0		
1.7.50 1.2 5.0 50.00 0 95.0 65 125 7.41 1.5 5.0 50.00 0 117 70 125 $5.7.50$ 1.6 5.0 50.00 0 117 70 125 57.50 1.16 5.0 50.00 0 117 70 135 57.50 1.11 5.0 50.00 0 117 70 135 57.50 1.11 5.0 50.00 0 117 70 135 57.50 1.11 5.0 50.00 0 117 70 135 57.10 0.36 5.0 50.00 0 117 70 135 57.10 0.77 0.77 0.76 0.77 0.72 125 50.60 0.77 0.77 0.77 0.72 125 66 51.60 <td>2-Butanone</td> <td></td> <td>50.28</td> <td>2.8</td> <td>5.0</td> <td>50.00</td> <td>0</td> <td>101</td> <td>30</td> <td>160</td> <td>0</td> <td></td> <td></td>	2-Butanone		50.28	2.8	5.0	50.00	0	101	30	160	0		
59.91 0.68 5.0 50.00 0 120 65 135 47.41 1.5 5.0 50.00 0 106 70 125 52.76 0.82 5.0 50.00 0 117 70 135 57.50 1.16 5.0 50.00 0 117 70 135 58.32 1.11 5.0 50.00 0 117 70 135 58.32 1.11 5.0 50.00 0 117 70 135 58.32 0.77 5.0 50.00 0 110 70 135 55.10 0.96 5.0 50.00 0 110 70 125 55.10 0.77 5.0 50.00 0 101 70 125 54.65 0.77 5.0 50.00 0 101 75 125 66 51.63 0.76 0.0 10 170 <td>cis-1,2-Dichloroeth</td> <td>hene</td> <td>47.50</td> <td>1.2</td> <td>5.0</td> <td>50.00</td> <td>0</td> <td>95.0</td> <td>65</td> <td>125</td> <td>0</td> <td></td> <td></td>	cis-1,2-Dichloroeth	hene	47.50	1.2	5.0	50.00	0	95.0	65	125	0		
47.41 1.5 5.0 50.00 0 94.8 70 125 52.76 0.82 5.0 50.00 0 117 70 135 58.22 1.1 5.0 50.00 0 117 70 135 58.22 1.1 5.0 50.00 0 117 70 135 58.32 1.1 5.0 50.00 0 117 70 135 55.10 0.90 5.0 50.00 0 117 70 135 55.10 0.90 5.0 50.00 0 117 70 135 56.10 0.77 5.0 50.00 0 101 70 135 50.65 0.77 5.0 50.00 0 101 70 135 46.37 1.15 5.0 50.00 0 101 75 125 6 51.63 0.11 5.0 50.00 0 101	2,2-Dichloropropa	ne	59.91	0.68	5.0	50.00	0	120	65	135	0		
52.76 0.82 5.0 50.00 0 106 70 125 51.28 0.76 5.0 50.00 0 117 70 135 57.50 1.16 5.0 50.00 0 117 70 135 55.10 0.90 5.0 50.00 0 117 70 135 55.10 0.90 5.0 50.00 0 110 70 135 55.10 0.90 5.0 50.00 0 101 75 125 55.65 0.77 5.0 50.00 0 101 75 125 46.37 1.1 5.0 50.00 0 101 75 125 66 51.63 1.11 5.0 50.00 0 101 75 120 67.72 0.54 0.6 0.00 0 1012 141.06	Bromochlorometh	ane	47.41	1.5	5.0	50.00	0	94.8	70	125	0		
58.28 0.76 5.0 50.00 0 117 70 135 57.50 1.6 5.0 50.00 0 117 70 135 57.50 1.1 5.0 50.00 0 117 70 135 57.50 0.90 5.0 50.00 0 117 70 135 55.10 0.90 5.0 50.00 0 117 70 135 56.65 0.77 5.0 50.00 0 101 7 126 46.37 1.5 5.0 50.00 0 101 7 126 47.96 0.62 5.0 50.00 0 103 70 130 6 51.63 1.1 5.0 50.00 0 103 70 126 66 1.1 5.0 5.0 50.00 0 103 70 126 66 1.0 5.0 50.00 0 <t< td=""><td>Chloroform</td><td></td><td>52.76</td><td>0.82</td><td>5.0</td><td>50.00</td><td>0</td><td>106</td><td>70</td><td>125</td><td>0</td><td></td><td>В</td></t<>	Chloroform		52.76	0.82	5.0	50.00	0	106	70	125	0		В
57.50 1.6 5.0 50.00 0 115 70 135 58.32 1.1 5.0 50.00 0 117 65 135 55.10 0.90 5.0 50.00 0 117 65 135 55.10 0.90 5.0 50.00 0 110 70 135 46.05 0.77 5.0 50.00 0 101 75 125 50.65 0.77 5.0 50.00 0 101 75 125 46.37 1.2 5.0 50.00 0 101 75 126 41.63 1.1 5.0 50.00 0 101 75 126 as 51 0.66 5.0 50.00 0 101 79 126 46.72 0.56 5.0 50.00 0 103 70 126 38.51 0.66 5.0 50.00 0 77.0 45 145 66 1.0 5.0 50.00 0 77.0	1,1,1-Trichloroeths	ane	58.28	0.76	5.0	50.00	0	117	70	135	0		
58.32 1.1 5.0 50.00 0 117 65 135 55.10 0.90 5.0 50.00 0 110 70 135 46.05 0.77 5.0 50.00 0 92.1 75 125 50.65 0.77 5.0 50.00 0 92.1 75 125 46.05 0.77 5.0 50.00 0 101 75 125 46.37 1.1 5.0 50.00 0 101 75 126 47.96 0.62 5.0 50.00 0 92.7 75 130 a 31.63 1.1 5.0 50.00 0 92.7 75 130 a 51.63 1.1 5.0 50.00 0 92.7 75 130 a 31.61 0.162 5.0 50.00 0 92.4 70 125 a 46.72 0.54 5.0 50.00 0 70 125 a 44.08 0.66 5	1,1-Dichloroproper	ne	57.50	1.6	5.0	50.00	0	115	70	135	0		
55.10 0.90 5.0 50.00 0 110 70 135 46.05 0.86 5.0 50.00 0 92.1 75 125 50.65 0.77 5.0 50.00 0 92.1 75 125 50.65 0.77 5.0 50.00 0 92.1 75 125 6 51.63 1.1 5.0 50.00 0 92.7 75 130 76 51.63 1.1 5.0 50.00 0 92.7 75 130 76 45.37 1.1 5.0 50.00 0 92.7 75 130 76 47.96 0.62 5.0 50.00 0 93.4 70 130 76 38.51 0.86 5.0 50.00 0 93.4 70 125 96.63 1.0 5.0 50.00 0 101 65 125 91.25 5.0 <td>Carbon tetrachlorid</td> <td>ide</td> <td>58.32</td> <td>1.1</td> <td>5.0</td> <td>50.00</td> <td>0</td> <td>117</td> <td>65</td> <td>135</td> <td>0</td> <td></td> <td></td>	Carbon tetrachlorid	ide	58.32	1.1	5.0	50.00	0	117	65	135	0		
46.05 0.86 5.0 50.00 0 92.1 75 125 50.65 0.77 5.0 50.00 0 101 75 125 43.81 1.2 5.0 50.00 0 92.7 75 126 46.37 1.5 5.0 50.00 0 92.7 75 130 6 51.63 1.1 5.0 50.00 0 92.7 75 130 76 51.63 1.1 5.0 50.00 0 92.7 75 130 76 47.96 0.62 5.0 50.00 0 92.4 70 125 98.5 66 5.0 50.00 0 93.4 70 125 98.6 6.63 5.0 50.00 0 93.4 70 125 91.2 5.0 50.00 0 93.4 70 125 91.2 50.00 0 0 10	1,2-Dichloroethane	е	55.10	06.0	5.0	50.00	0	110	70	135	0		
50.65 0.77 5.0 50.00 0 101 75 125 43.81 1.2 5.0 50.00 0 87.6 70 120 46.37 1.5 5.0 50.00 0 87.6 70 120 46.37 1.1 5.0 50.00 0 103 70 130 a 51.63 1.1 5.0 50.00 0 103 70 130 a 46.72 0.62 5.0 50.00 0 101 65 125 a 46.72 0.54 5.0 50.00 0 101 65 125 bene 50.63 1.0 50.00 0 101 65 125 a 44.08 0.66 5.0 50.00 0 101 65 125 a 49.52 1.2 5.0 50.00 0 102 65 140 45.39 1.2	Benzene		46.05	0.86	5.0	50.00	0		75	125	0		
43.81 1.2 5.0 50.00 0 87.6 70 120 46.37 1.5 5.0 50.00 0 92.7 75 130 a 47.96 0.62 5.0 50.00 0 95.9 70 126 a 47.96 0.62 5.0 50.00 0 95.9 70 130 a 47.96 0.62 5.0 50.00 0 95.9 70 125 a 46.72 0.86 5.0 50.00 0 93.4 70 125 bene 50.63 1.0 5.0 50.00 0 93.4 70 125 bene 50.63 1.0 5.0 50.00 0 93.4 70 125 bene 50.63 1.0 50.00 0 93.4 70 125 bene 50.63 50.00 0 910.4 70 125 bene 54.59 1.22 50.00 0 92	Trichloroethene		50.65	0.77	5.0	50.00	0	101	75	125	0		
46.37 1.5 5.0 50.00 0 92.7 75 130 6 51.63 1.1 5.0 50.00 0 103 70 130 6 47.96 0.62 5.0 50.00 0 95.9 70 130 6 47.96 0.62 5.0 50.00 0 93.4 70 135 6 50.63 1.0 5.0 50.00 0 93.4 70 125 ene 50.63 1.0 5.0 50.00 0 93.4 70 125 ene 50.63 1.0 5.0 50.00 0 93.4 70 125 ene 50.63 1.2 50.00 0 70 125 125 ene 50.63 1.2 50.00 0 99.0 70 70 125 ene 51.25 50.00 0 0 99.0 70 70 125 45.39 1.2 50.00 0 99.0 70 70 <th7< td=""><td>1,2-Dichloropropa</td><td>ne</td><td>43.81</td><td>1.2</td><td>5.0</td><td>50.00</td><td>0</td><td>87.6</td><td>70</td><td>120</td><td>0</td><td></td><td></td></th7<>	1,2-Dichloropropa	ne	43.81	1.2	5.0	50.00	0	87.6	70	120	0		
e 51.63 1.1 5.0 50.00 0 103 70 130 ne 47.96 0.62 5.0 50.00 0 77.0 45 145 ne 38.51 0.86 5.0 50.00 0 77.0 45 145 ne 50.63 1.0 5.0 50.00 0 93.4 70 125 ne 50.63 1.0 5.0 50.00 0 93.4 70 125 44.08 0.66 5.0 50.00 0 99.0 70 125 49.52 1.2 5.0 50.00 0 99.0 75 125 54.59 1.2 5.0 50.00 0 99.0 75 125 54.539 1.2 50.00 0 99.0 75 126 54.539 1.2 50.00 0 90	Dibromomethane		46.37	1.5	5.0	50.00	0	92.7	75	130	0		
•e 47.96 0.62 5.0 50.00 0 95.9 70 125 38.51 0.86 5.0 50.00 0 77.0 45 145 bene 50.63 1.0 5.0 50.00 0 93.4 70 125 bene 50.63 1.0 5.0 5.0 0.0 0 77.0 45 145 bene 50.63 1.0 5.0 5.0 0.01 0 93.4 70 125 bene 50.63 1.0 5.0 5.0 0 0 101 65 125 def 44.08 0.66 5.0 5.00 0 99.0 75 125 54.59 1.2 5.0 50.00 0 99.0 75 125 45.39 1.2 5.0 50.00 0 90.8 45 145 D- Not Detected at the Reporting Limit S- Spike Recovery outside accepted recovery limits A 70 125	Bromodichloromet	thane	51.63	1.1	5.0	50.00	0	103	70	130	0		
38.51 0.86 5.0 50.00 0 77.0 45 145 46.72 0.54 5.0 50.00 0 93.4 70 125 46.72 0.56 5.0 50.00 0 101 65 125 96.72 0.66 5.0 50.00 0 101 65 125 44.08 0.66 5.0 50.00 0 101 65 125 49.52 1.2 5.0 50.00 0 99.0 75 125 54.59 1.2 5.0 50.00 0 109 65 140 45.39 1.2 5.0 50.00 0 90.8 45 145 D- Not Detected at the Reporting Limit S- Spike Recovery outside accepted recovery limits 8 A. RPD outside accepted recovery limits 8	cis-1,3-Dichloropro	opene	47.96	0.62	5.0	50.00	0	95.9	70	125	0		
46.72 0.54 5.0 50.00 0 93.4 70 125 bene 50.63 1.0 5.0 50.00 0 101 65 125 44.08 0.66 5.0 50.00 0 101 65 125 49.52 1.2 5.0 50.00 0 99.0 75 125 54.59 1.2 5.0 50.00 0 99.0 75 125 45.39 1.2 5.0 50.00 0 90.8 45 145 D-Not Detected at the Reporting Limit S- Spike Recovery outside accepted recovery limits S- Spike Recovery outside accepted recovery limits B	4-Methyl-2-pentan	lone	38.51	0.86	5.0	50.00	0	77.0	45	145	0		
Gene 50.63 1.0 5.0 50.00 0 101 65 125 44.08 0.66 5.0 50.00 0 88.2 60 125 49.52 1.2 5.0 50.00 0 99.0 75 125 49.52 1.2 5.0 50.00 0 99.0 75 125 54.59 1.2 5.0 50.00 0 109 65 140 45.39 1.2 5.0 50.00 0 90.8 45 145 D- Not Detected at the Reporting Limit S- Spike Recovery outside accepted recovery limits B A-RPD outside accepted recovery limits B	Toluene		46.72	0.54	5.0	50.00	0	93.4	70	125	0		
44.08 0.66 5.0 50.00 0 88.2 60 125 49.52 1.2 5.0 50.00 0 99.0 75 125 54.59 1.2 5.0 50.00 0 99.0 75 125 45.39 1.2 5.0 50.00 0 90.8 45 140 D-Not Detected at the Reporting Limit 5.0 50.00 0 90.8 45 145	trans-1,3-Dichlorol	propene	50.63	1.0	5.0	50.00	0	101	65	125	0		
49.52 1.2 5.0 50.00 0 99.0 75 125 54.59 1.2 5.0 50.00 0 109 65 140 45.39 1.2 5.0 50.00 0 90.8 45 145 D-Not Detected at the Reporting Limit S-Spike Recovery outside accepted recovery limits S-Spike Recovery outside accepted recovery limits B	1,1,2-Trichloroeth	ane	44.08	0.66		50.00	0	88.2	60	125	0		
54.59 1.2 5.0 50.00 0 109 65 140 45.39 1.2 5.0 50.00 0 90.8 45 145 D-Not Detected at the Reporting Limit S-Spike Recovery outside accepted recovery limits S-Spike Recovery outside accepted recovery limits B	3-Dichloropropa	ne	49.52	1.2	5.0	50.00	0	0.06	75	125	0		
45.39 1.2 5.0 50.00 0 90.8 45 145 ND - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits B J - Analyte detected below quantitation limits R - RPD outside accepted recovery limits B	tetrachloroethene	~	54.59	1.2	5.0	50.00	0	109	65	140	0		
ND - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits B J - Analyte detected below quantitation limits R - RPD outside accepted recovery limits B	2 Hexanone		45.39	1.2	5.0	50.00	0	90.8	45	145	0		
crs: ND - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits B I - Analyte detected below quantitation limits R - RPD outside accepted recovery limits	7			5439 · · ·									
J - Analyte detected below auantitation limits	Qualifiers:	ND - Not Det	tected at the Reporting Lim	uit		ike Recovery outsic	le accepted recovery	y limits		B-,	Analyte detected in	the associated Metho	d Blank
	mLIMS-002	I - Analyte de	efected below anantitation 1	limits		D outside accented	recovery limits						

CLIENT:	Day Environmental Inc.	mental Inc.			ANALY	ANALYTICAL QC SUMMARY REPORT	C SUM	IMAR	Y REPC)RT		
Work Order: Project:	J0944 151 Mt Hone Ave	Ave Ave		SW8.	SW8260_LOW_S SW846 8260 VC		74					
r roject.		DC AVC.		OWC								
Sample ID: LCS-51519	51519	SampType: LCS	TestCo	TestCode: SW8260_LOW_S		Prep Date:	: 05/13/10 8:57	8:57	Run ID:): V6_100513C		
Client ID: LCS-	LCS-51519	Batch ID: 51519	Ъ	Units: µg/Kg		Analysis Date:	: 05/13/10 9:15	9:15	SeqNo	SeqNo: 1288674		
Analyte		Result	MDL	PQL	SPK value	SPK Ref Val	%REC L	%REC LowLimit HighLimit	ghLimit	RPD Ref Val	%RPD RPDLimit	Qual
Dibromochloromethane	hane	52.52	0.77	5.0	50.00	0	105	65	130	0		
1,2-Dibromoethane	ť	48.10	1.5	5.0	50.00	0	96.2	70	125	0		
Chlorobenzene		50.89	0.96	5.0	50.00	0	102	75	125	0		
1,1,1,2-Tetrachloroethane	oethane	54.23	1.2	5.0	50.00	0	108	75	125	0		
Ethylbenzene		52.29	1.2	5.0	50.00	0	105	75	125	0		
m,p-Xylene		105.2	1.7	5.0	100.0	0	105	80	125	0		
o-Xylene		54.01	1.1	5.0	50.00	0	108	75	125	0		
Xylene (Total)		159.2	1.1	5.0	150.0	0	106	83	125	0		
Styrene		52.81	1.1	5.0	50.00	0	106	75	125	0		
Bromoform		50.72	1.4	5.0	50.00	0	101	55	135	0		
Isopropylbenzene		54.72	1.6	5.0	50.00	0	109	75	130	0		
1,1,2,2-Tetrachloroethane	bethane	40.93	1.1	5.0	50.00	0	81.9	55	130	0		
Bromobenzene		49.12	0.87	5.0	50.00	0	98.2	65	120	0		
1,2,3-Trichloropropane	Jane	41.73	0.95	5.0	50.00	0	83.5	65	130	0		
n-Propylbenzene		49.97	2.0	5.0	50.00	0	99.9	65	135	0		
2-Chlorotoluene		48.83	1.3	5.0	50.00	0	97.7	70	130	0		
1,3,5-Trimethylbenzene	Izene	51.40	1.5	5.0	50.00	0	103	65	135	0		
4-Chlorotoluene		48.61	1.7	5.0	50.00	0	97.2	75	125	0		
tert-Butylbenzene		49.39	2.0	5.0	50.00	0	98.8	65	130	0		
1,2,4-Trimethylbenzene	Izene	50.61	1.3	5.0	50.00	0	101	65	135	0		
sec-Butylbenzene		48.32	1.7	5.0	50.00	0	96.6	65	130	0		
4-Isopropyltoluene		50.36	1.9	5.0	50.00	0	101	75	135	0		
1,3-Dichlorobenzene	ne	48.27	1.4	5.0	50.00	0	96.5	70	125	0		
1,4-Dichlorobenzene	ne	45.98	0.67	5.0	50.00	0	92.0	70	125	0		
n-Butylbenzene		46.83	1.6	5.0	50.00	0	93.7	65	140	0		
1,2-Dichlorobenzene	ne	47.86	0.99	5.0	50.00	0	95.7	75	120	0		
1,2-Dibromo-3-chloropropane	oropropane	44.40	1.7	5.0	50.00	0	88.8	40	135	0		
1,2,4-Trichlorobenzene	zene	40.43	1.4	5.0	50.00	0	80.9	65	130	0		
Hexachlorobutadiene	ine	50.93	1.6	5.0	50.00	0	102	55	140	0		
1,2,3-Trichlorobenzene	zene	40.63	0.92	5.0	50.00	0	81.3	60	135	0		
Naphthalene		39.16	0.60	5.0	50.00	0	78.3	40	125	0		В
Surrogate:		52.26	0	5.0	50.00	0	105	65	132	0		
Dibromofluoromethane	hane							;	1			
Surrogate: 1,2-		51.62	0	5.0	50.00	0	103	65	128	0		
Surrogate: Toluene-d8	ine-d8	51.04	0	5.0	50.00	0	102	85	115	0		
Mark Surrogate:		51.33	0	5.0	50.00	0	103	77	111	0		
Bromofluorobenzene	ne											
Oualifiers:	ND - Not Detect	ND - Not Detected at the Reporting Limit	it	S - Spik	ce Recovery outside	- Spike Recovery outside accepted recovery limits	limits		B - Ai	nalvte detected in	B - Analyte detected in the associated Method Blank	l Blank
									: 1		nomater namioosen am	
700-SIMLUM	J - Analyte detec	J - Analyte detected below quantitation limits	limits	K - KPI	R - RPD outside accepted recovery limits	recovery limits					·	

CLIENT: Da	Day Environmental Inc.	-		ANALY	ANALYTICAL OC SUMMARY REPORT	SUM	MAR	Y REP	ORT			
Work Order: J09	J0944		SWS	SW8260 LOW S	,							
Project: 15	151 Mt. Hope Ave.		SWS	SW846 8260 - V(VOC by GC-MS	_						
Sample ID: LCSD-51519	19 SampType: LCSD	TestCo	TestCode: SW8260_LOW_S	-	Prep Date:	05/13/10 8:57	8:57	Run I	Run ID: V6_100513C		-	
Client ID: LCSD-51519	19 Batch ID: 51519	Uni	Units: µg/Kg		Analysis Date:	05/13/10 9:45	9:45	SeqN	SeqNo: 1288675			
Analyte	Result	MDL	PQL	SPK value	SPK Ref Val	%REC Lo	LowLimit HighLimit	ghLimit	RPD Ref Val	%RPD RPDLimit	DLimit	Qual
Dichlorodifluoromethane	37.34	3.6	5.0	50.00	0	74.7	35	135	34.66	7.46	40]
Chloromethane	39.20	0.74	5.0	50.00	0	78.4	50	130	38.86	0.869	40	
Vinyl chloride	47.84	1.0	5.0	50.00	0	95.7	60	125	46.37	3.11	40	
Bromomethane	54.98	1.4	5.0	50.00	0	110	30	160	52.52	4.58	40	
Chloroethane	52.61	1.7	5.0	50.00	0	105	40	155	49.98	5.13	40	
Trichlorofluoromethane	56.84	2.6	5.0	50.00	0	114	25	185	55.15	3.02	40	
1,1-Dichloroethene	54.67	0.98	5.0	50.00	0	109	65	135	54.49	0.334	40	
Acetone	61.51	3.5	5.0	50.00	0	123	20	160	60.50	1.65	40	
lodomethane	51.09	1.0	5.0	50.00	0	102	70	126	47.68	6.9	40	
Carbon disulfide	45.54	0.66	5.0	50.00	0	91.1	45	160	44.74	1.79	40	
Methylene chloride	54.02	0.64	5.0	50.00	0	108	55	140	50.32	7.1	40	
trans-1,2-Dichloroethene	50.66	1.1	5.0	50.00	0	101	65	135	49.66	1.99	40	
Methyl tert-butyl ether	44.66	0.77	5.0	50.00	0	89.3	75	126	41.27	7.88	40	
1,1-Dichloroethane	48.76	0.94	5.0	50.00	0	97.5	75	125	47.46	2.71	40	
Vinyl acetate	39.04	0.58	5.0	50.00	0	78.1	65	138	35.67	9.02	40	
2-Butanone	55.16	2.8	5.0	50.00	0	110	30	160	50.28	9.25	40	
cis-1,2-Dichloroethene	49.23	1.2	5.0	50.00	0	98.5	65	125	47.50	3.59	40	
2,2-Dichloropropane	62.56	0.68	•	50.00	0	125	65	135	59.91	4.32	40	
Bromochloromethane	50.75	1.5	5.0	50.00	0	102	70	125	47.41	6.82	40	
Chloroform	54.24	0.82	•	50.00	0	108	70	125	52.76	2.75	40	£
1,1,1-Trichloroethane	59.68	0.76	5.0	50.00	0	119	70	135	58.28	2.39	40	
1,1-Dichloropropene	59.83	1.6	5.0	50.00	0	120	70	135	57.50	3.98	40	
Carbon tetrachloride	62.90	1.1	5.0	50.00	0	126	65	135	58.32	7.57	40	
1,2-Dichloroethane	60.75	0.90	•	50.00	0	121	70	135	55.10	9.76	40	
Benzene	48.63	0.86	5.0	50.00	0	97.3	75	125	46.05	5.45	40	
Trichloroethene	52.93	0.77	5.0	50.00	0		75	125	50.65	4.39	40	
1,2-Dichloropropane	46.33	1.2	5.0	50.00	0	92.7	70	120	43.81	5.59	40	
Dibromomethane	51.35	1.5	5.0	50.00	0	103	75	130	46.37	10.2	40	
Bromodichloromethane		1.1	5.0	50.00	0	112	70	130	51.63	8.21	40	
cis-1,3-Dichloropropene	53.52	0.62	5.0	50.00	0	107	70	125	47.96	11	40	
4-Methyl-2-pentanone	43.65	0.86	5.0	50.00	0	87.3	45	145	38.51	12.5	40	
Toluene	49.41	0.54	5.0	50.00	0	98.8	70	125	46.72	5.58	40	
trans-1,3-Dichloropropene	1e 56.69	1.0	5.0	50.00	0	113	65	125	50.63	11.3	40	
4,1,2-Trichloroethane	48.94	0.66	5.0	50.00	0	97.9	60	125	44.08	10.4	40	
3-Dichloropropane	54.87	1.2	5.0	50.00	0	110	75	125	49.52	10.2	40	
Tetrachloroethene	59.35	1.2	5.0	50.00	0	119	65	140	54.59	8.35	40	
2-Hexanone	49.37	1.2	5.0	50.00	0	98.7	45	145	45.39	8.39	40	
Qualifiers: ND-	ND - Not Detected at the Reporting Limit	it	S - Sp	ike Recovery outsid	- Spike Recovery outside accepted recovery limits	limits		B-,	- Analyte detected in the associated Method Blank	the associated	d Method	Blank
			4		:							

R - RPD outside accepted recovery limits 1 Ę.

J - Analyte detected below quantitation limits T Sumoday am

Quanners: mLIMS-002

CI IFNT. Dav	Day Environmental Inc			VIAL	ANALYTICAL OC SUMMARY REPORT	MIN	MAR	V REP(TAC			
ler:	4		SW8	SW8260_LOW_S								
Project: 151	151 Mt. Hope Ave.		SW8	46 8260 V(SW846 8260 VOC by GC-MS	-						
Sample ID: LCSD-51519	SampType: LCSD	TestCoc	TestCode: SW8260_LOW_S		Prep Date:	05/13/10 8:57	8:57	Run II	Run ID: V6_100513C			
Client ID: LCSD-51519	Batch ID: 51519	Unit	Units: µg/Kg		Analysis Date:	05/13/10 9:45	9:45	SeqN	SeqNo: 1288675			
Analyte	Result	MDL	PQL	SPK value	SPK Ref Val	%REC Lo	LowLimit HighLimit	ighLimit	RPD Ref Val	%RPD RPDLimit	PDLimit	Qual
Dibromochloromethane	58.12	0.77	5.0	50.00	0	116	65	130	52.52	10.1	40	
1,2-Dibromoethane	53.09	1.5	5.0	50.00	0	106	70	125	48.10	9.86	40	
Chlorobenzene	56.88	0.96	5.0	50.00	0	114	75	125	50.89	11.1	40	
1,1,1,2-Tetrachloroethane		1.2	5.0	50.00	0	121	75	125	54.23	11.1	40	
Ethylbenzene	58.25	1.2	5.0	50.00	0	117	75	125	52.29	10.8	40	
m,p-Xylene	117.6	1.7	5.0	100.0	0	118	80	125	105.2	11.1	40	
o-Xylene	60.91 120 F		0.0	50.00	0 0	122	75	125	54.01	12	40	
Xylene (Total)	1/8.5	1.1	0.0 0	15U.U		120	2 G G	175 175	159.2 52.01	11.4	40	
Styrene	00.02 57 51	т - т				115 115	ר ע ער ל	125 125		12.0 12.1	40	
Bromotorm Isoprepulhenzene	16./C	н. Н. Н.	0 G	50.00		124	75	130	54.72	C•21	40	
1 1 2 2-Tetrachlornethane		1.1	5.0	50.00	0	89.2	55	130	40.93	8.63	40	
Bromobenzene		0.87	5.0	50.00	0	108	65	120	49.12	9.05	40	
1,2,3-Trichloropropane	37.80	0.95	5.0	50.00	0	75.6	65	130	41.73	9.87	40	
n-Propylbenzene	55.35	2.0	5.0	50.00	0	111	65	135	49.97	10.2	40	
2-Chlorotoluene	53.53	1.3	5.0	50.00	0	107	70	130	48.83	9.19	40	
1,3,5-Trimethylbenzene	57.08	1.5	5.0	50.00	0	114	65	135	51.40	10.5	40	
4-Chlorotoluene	54.07	1.7	5.0	50.00	0	108	75	125	48.61	10.6	40	
tert-Butylbenzene	55.36	2.0	5.0	50.00	0	111	65	130	49.39	11.4	40	
1,2,4-Trimethylbenzene	56.98	1.3	5.0	50.00	0 0	114	65 61	135	50.61		40	
sec-Butylbenzene	56.40 77 00	1.1	5.U	00.05		115	C 0 11	130	48.32	15.4	40	
4-Isopropyltoluene	70°10	۲.۲		50.00		011 011	C/	125 125	00.JC	10.1	40	
1,3-Dichlorobenzene	52.79	0.67	5.0	50.00) O	106	70	125	45.98		40	
n-Butvibenzene	54.57	1.6	5.0	50.00	0	109	65	140	46.83	15.3	40	
1,2-Dichlorobenzene	54.18	0.99	5.0	50.00	0	108	75	120	47.86	12.4	40	
1,2-Dibromo-3-chloropropane	ane 49.84	1.7	5.0	50.00	0	7.66	40	135	44.40	11.5	40	
1,2,4-Trichlorobenzene	49.69	1.4	5.0	50.00	0	99.4	65	130	40.43	20.6	40	
Hexachlorobutadiene	58.32	1.6	5.0	50.00	0	117	55	140	50.93	•	40	
1,2,3-Trichlorobenzene	48.73	0.92	5.0	50.00	0 (97.5	60	135	40.63		40	
Naphthalene	47.64	0.60	5.0	50.00	0	95.3	40	125	39.16	19.5	40	മ
Surrogate: Dibromofluoromethane	53.30	0	5.0	50.00	0	107	65	132	0	0	40	
Surrogate: 1.2-	52.35	0	5.0	50.00	0	105	65	128	0	Q	40	
Cichloroethane-d4												
🚫 Surrogate: Toluene-d8	51.76	0	5.0	50.00	0	104	85	115	0	0	40	
Surrogate:	51.31	0	5.0	50.00	0	103	<i>LL</i>	111	0	0	40	
					-							
Qualifiers: ND - N	ND - Not Detected at the Reporting Limit	t	S - Spi	ke Recovery outsid	- Spike Recovery outside accepted recovery limits	limits		B-A	- Analyte detected in the associated Method Blank	the associat	ed Method	l Blank
	I - Analyte detected below anantitation limits	mite	R - RP	- RPD outside accented recovery limits	recovery limits							
	מואום מהוההוהם ההוהית אממווותוהיה זו	2	4	n uuuuu www.								

WULK UTUEL:	10014		11.5						
Project:	J0944 151 Mt. Hope Ave.		MS MS	SW846 8260 VO	VOC by GC-MS				
Sample ID: MB-51421 Cliant ID: MB-51421	1421 SampType: MBLK 1421 Batch ID: 51421	TestCode: SW8 Units: und	TestCode: SW8260_W Itnits: uo/I		Prep Date: Analvsis Date	05/10/10 11:29 05/10/10 13:07	Run ID: V1_100510A SerNo: 1281732	VO VO	
		MDL	PQL	SPK value	SPK Ref Val	%REC LowLimit HighLimit	imit RPD Ref Val	al %RPD RPDLimit	Qual
Dicklorodifluoromethane		0.47	5.0						
Chloromethane		0.54	5.0						
Vinyl chloride	QN	0.78	5.0						
Bromomethane	ND	0.74	5.0						
Chloroethane	QN	0.89	5.0						
Trichlorofluoromethane	ND	0.60	5.0						
1,1-Dichloroethene	ND	0.64	5.0						
Acetone	ND	4.6	5.0						
lodomethane	ND	0.37	5.0						
Carbon disulfide		0.34	5.0						
Methylene chloride		0.83	5.0						
trans-1,2-Dichloroethene		0.37	5.0						
Methyl tert-butyl ether		0.25	5.0						
1,1-Dichloroethane		0.24	5.0						
Vinyl acetate		0.43							
z-Dutanorie sis 1.2 Disklerestheres		0.3 Dr. 0							
2 2-Dichloropropane		0.22	5.0						
Bromochloromethane		0.30	5.0						
Chloroform	ND	0.30	5.0						
1,1,1-Trichloroethane	ne ND	0.18	5.0						
1,1-Dichloropropene		0.38	5.0						
Carbon tetrachloride		0.11	5.0						
1,2-Dichloroethane	UN UN	0.16	5°0						
Benzene Tricklessethere		0 25	о. С						
1 richloroethene 1 2-Dichloronronane		0.24	5.0						
Dibromomethane		0.26	5.0						
Bromodichloromethane	hane ND	0.20	5.0						
cis-1,3-Dichloropropene	pene	0.22	5.0						
4-Methyl-2-pentanone	DNE ND	1.5	5.0						
Toluene	QN	0.15	5.0						
trans-1,3-Dichloropropene	Incopene ND	0.27	5.0						
1,2-Trichloroethane	ne ND	0.29	5.0						
3-Dichloropropan		0.26	5.0						
Tetrachloroethene	ND	0.27	5.0						
2-Hexanone	ND	1.1	5.0						
Qualifiers:	ND - Not Detected at the Reporting Limit	lit	S-S	S - Spike Recovery outside accepted recovery limits	accepted recovery l	imits	B - Analyte detecte	B - Analyte detected in the associated Method Blank	d Blank
COO 3/11 I			- 2						

CLIENT: Day En	Dav Environmental Inc.			ANALY	ANALYTICAL OC SUMMARY REPORT	C SUM	MARY	REPOF	ХТ		
Work Order: J0944			S	SW8260 W)						
	151 Mt. Hope Ave.		SI	SW846 8260 VOC by GC-MS	DC by GC-MS						
Sample ID: MB-51421	SampType: MBLK	TestCo	TestCode: SW8260_W	1	Prep Date:	05/10/10 11:29	1:29	Run ID: 1	Run ID: V1_100510A		
Client ID: MB-51421	Batch ID: 51421	Uni	Units: µg/L		Analysis Date:	05/10/10 13:07	3:07	SeqNo: 1281732	1281732		
Analyte	Result	MDL	PQL	SPK value	SPK Ref Val	%REC LowLimit HighLimit	vLimit High		RPD Ref Val	%RPD RPDLimit	Qual
Dibromochloromethane	DN	0.20	5.0								
1,2-Dibromoethane	ND	0.31	5.0								
Chlorobenzene	ND	0.23	5.0								
1,1,1,2-Tetrachloroethane	ND	0.28	5.0								
Ethylbenzene	ND	0.23	5.0								
m,p-Xylene	ND	0.40	5.0								
o-Xylene	DN	0.26	5.0								
Xylene (Total)	ND	0.26	2.0								
Styrene	ND	0.16	5.0								
Bromoform	ND	0.44	5.0								
Isopropylbenzene	ND	0.20	•								
1,1,2,2-Tetrachloroethane	UN.	0.23	5.0								
Bromobenzene	ND	0.37	•								
1,2,3-Trichloropropane	ND	0.72	5.0								
n-Propylbenzene	ND	0.20	5.0								
2-Chlorotoluene	ND	0.30	5.0								
1,3,5-Trimethylbenzene	UN	0.12	5.0								
4-Chlorotoluene	ND	0.43	5.0								
tert-Butylbenzene	DN	0.24	5.0								
1,2,4-Trimethylbenzene	UN	0.15	5.0								
sec-Butylbenzene	ND	0.19	5.0								
4-Isopropyltoluene	UN .	0.17	5.0								
1, 3-Dichlorobenzene	ND	0.19	5.0								
1,4-Dichlorobenzene	ND	0.24	5.0								
n-Butylbenzene	ND	0.27	5.0								
1,2-Dichlorobenzene		0.24	5.0								
1,2-Dibromo-3-chloropropane		0.35	5.0								
1,2,4-Trichlorobenzene	UN	0.39	5.0								
Hexachlorobutadiene	ON	0.41	0. u								
1,2,3-Trichlorobenzene	(JN)	0.45 0.15									
Naphthalene	UN	0.15	0.0								
Surrogate: Dibromofluoromethane	46.69	0	5.0	50.00	0	93.4	85	115	0		
Surrogate: 1,2-	49.77	0	5.0	50.00	0	99.5	70	120	0		
	51 QK	c	C G	50.00	C	104	л С	120	C		
Surrogate. I oluerie-uo		5 0		20.00	o c	г со гот					
Constant Surrogate: Constant Survey S Survey Survey S Survey Survey S Survey Survey S Survey Survey S Survey Survey Survey Survey Survey Survey Survey S Survey Survey Survey Survey S Survey Survey Survey S Survey Survey S Survey Survey S Survey S Surve	40.01	5	0.0	00.00	>	1.00		071	þ		
Qualifiers: ND - Not I	ND - Not Detected at the Reporting Limit	lit	- S -	S - Spike Recovery outside accepted recovery limits	e accepted recovery	limits		B - Anal	yte detected in	B - Analyte detected in the associated Method Blank	l Blank
mLIMS-002 I - Analyte	I - Analyte detected below quantitation limits	limite	- 2	R - RPD outside accented recovery limits	recovery limits						
	י מכופרופת הפוחא אחמוווומיזייוי	contra	:	winn wummer unit	מיזיזיו לואאטאו						

CLIENT:	Dav Environmental Inc.		4	ANALY	ANALYTICAL OC SUMMARY REPORT		MAR	V REP(JRT		
Work Order:	J0944		SV	SW8260_W							
Project:	151 Mt. Hope Ave.		SV	SW846 8260 VC	VOC by GC-MS	- 0					
Sample ID: LCS-51421	1421 SampType: LCS	TestCo	TestCode: SW8260_W	-	Prep Date:	05/10/10 11:29	11:29	Run ID:): V1_100510A		
Client ID: LCS-51421	1421 Batch ID: 51421	n	Units: µg/L		Analysis Date:	05/10/10 11:46	11:46	SeqN	SeqNo: 1281730		
Analyte	Result	MDL	PQL	SPK value	SPK Ref Val	%REC LowLimit HighLimit	wLimit H	ghLimit	RPD Ref Val	%RPD RPDLimit	Qual
Dichlorodifluoromethane	lane 32.09	0.47	5.0	50.00	0	64.2	30	155	0		
Chloromethane	39,04	0.54	5.0	50.00	0	78.1	40	125	0		
Vinyl chloride	39.16	0.78	5.0	50.00	0	78.3	50	145	0		
Bromomethane	42.14	0.74	5.0	50.00	0	84.3	30	145	0		
Chloroethane	42.20	0.89	5.0	50.00	0	84.4	60	135	0		
Trichlorofluoromethane	ane 39.38	0.60	5.0	50.00	0	78.8	60	145	0		
1,1-Dichloroethene		0.64	5.0	50.00	0	74.6	70	130	0		
Acetone	70.84	4.6	•	50.00	0	142	40	140	0		თ
lodomethane	35.11	0.37	•	50.00	0	70.2	72	121	0		S
Carbon disulfide	34.65	0.34	•	50.00	0	69.3	35	160	0		
Methylene chloride		0.83	•	50.00	0	81.8	55	140	0		
trans-1,2-Dichloroethene		0.37	5.0	50.00	0	78.1	60	140	0		
Methyl tert-butyl ether		0.25	5.0	50.00	0	79.9	65	125	0		
1,1-Dichloroethane	39.25	0.24	•	50.00	0	78.5	70	135	0		
Vinyl acetate	44.82	0.43	5.0	50.00	0	89.6	38	163	0		
2-Butanone	60.52	2.0	•	50.00	0	121	30	150	0		
cis-1,2-Dichloroethene	ne 39.02	0.34	5.0	50.00	0	78.0	70	125	0		
2,2-Dichloropropane		0.22	5.0	50.00	0	81.6	70	135	0		
Bromochloromethane		0.30	•	50.00	0	78.0	65	130	0		
Chloroform	38.21	0.30	•	50.00	0	76.4	65	135	0		
1,1,1-Trichloroethane		0.18	5.0	50.00	0	73.2	65	130	0		
1,1-Dichloropropene	40.36	0.38	5.0	50.00	0	80.7	75	130	0		
Carbon tetrachloride	38.46	0.11	5.0	50.00	0	76.9	65	140	0		
1,2-Dichloroethane	44.01	0.16	5.0	50.00	0	88.0	70	130	0		
Benzene	42.00	0.12	5.0	50.00	0	84.0	80	120	0		
Trichloroethene	39.92	0.25	5.0	50.00	0	79.8	70	125	0		
1,2-Dichloropropane	44.12	0.24	5.0	50.00	0	88.2	75	125	0		
Dibromomethane	42.15	0.26	5.0	50.00	0	84.3	75	125	0		
Bromodichloromethane	ane 44.44	0.20	5.0	50.00	0	88.9	75	120	0		
cis-1,3-Dichloropropene	ene 44.34	0.22	5.0	50.00	0	88.7	70	130	0		
4-Methyl-2-pentanone	le 49.46	1.5	5.0	50.00	0	98.9	60	135	0		
Toluene	42.34	0.15	5.0	50.00	0	84.7	75	120	0		
trans-1,3-Dichloropropene	opene 46.12	0.27	5.0	50.00	0	92.2	55	140	0		
1,2-Trichloroethane	e 43.88	0.29	5.0	50.00	0	87.8	75	125	0		
3-Dichloropropane	48.91	0.26	5.0	50.00	0	97.8	75	125	0		
tetrachloroethene	40.85	0.27	5.0	50.00	0	81.7	45	150	0		
2-Hexanone	60.00	1.1	5.0	50.00	0	120	55	130	0		
BUS. Star											
Qualifiers:	ND - Not Detected at the Reporting Limit	nit	S -	- Spike Recovery outside accepted recovery limits	e accepted recovery	limits		B - A	nalyte detected in	- Analyte detected in the associated Method Blank	d Blank
mLIMS-002	I - Analyte detected below quantitation limits	limits	- X	R - RPD outside accented recovery limits	recovery limits						
				I							

CLIENT: Dav En	Dav Fnvironmental Inc			ANALA	ANALYTICAL OC SUMMARY REPORT	MIN	MAR	V REP	ORT		
der:			SI	SW8260_W							
Project: 151 Mt	151 Mt. Hope Ave.		IS	SW846 8260 V(VOC by GC-MS						
Sample ID: LCS-51421	SampType: LCS	TestCo	TestCode: SW8260_W		Prep Date:	05/10/10 11:29	11:29	Run I	Run ID: V1_100510A		
Client ID: LCS-51421	Batch ID: 51421	'n	Units: µg/L		Analysis Date:	05/10/10 11:46	11:46	SeqN	SeqNo: 1281730		
Analyte	Result	MDL	PQL	SPK value	SPK Ref Val	%REC LowLimit HighLimit	wLimit Hi	ghLimit	RPD Ref Val	%RPD RPDLimit	Qual
Dibromochloromethane	46.75	0.20	5.0	50.00	0	93.5	.60	135	0		
1,2-Dibromoethane	49.83	0.31	5.0	50.00	0	7.06	80	120	0		
Chlorobenzene	43.76	0.23	5.0	50.00	0	87.5	80	120	0		
1,1,1,2-Tetrachloroethane	44.38	0.28	5.0	50.00	0	88.8	80	130	0		
Ethylbenzene	44.15	0.23	5.0	50.00	0	88.3	75	125	0		
m,p-Xylene	87.94	0.40	5.0	100.0	0	87.9	75	130	0		
o-Xylene	43.78	0.26	5.0	50.00	0	87.6	80	120	0		
Xylene (Total)	131.7	0.26	5.0	150.0	0	87.8	81	121	0		
Styrene	44.91	0.16	5.0	50.00	0	89.8	65	135	0		
Bromoform	48.12	0.44	5.0	50.00	0	96.2	70	130	0		
Isopropylbenzene	43.93	0.20	5.0	50.00	0	87.9	75	125	0		
1,1,2,2-Tetrachloroethane	44.74	0.23	5.0	50.00	0	89.5	65	130	0		
Bromobenzene	41.78	0.37	5.0	50.00	0	83.6	75	125	0		
1,2,3-Trichloropropane	49.87	0.72	5.0	50.00	0	99.7	75	125	0		
n-Propylbenzene	43.24	0.20	5.0	50.00	0	86.5	70	130	0		
2-Chlorotoluene	41.55	0.30	5.0	50.00	0	83.1	75	125	0		
1,3,5-Trimethylbenzene	42.43	0.12	. 5.0	50.00	0	84.9	75	130	0		
4-Chlorotoluene	42.15	0.43	5.0	50.00	0	84.3	75	130	0		
tert-Butylbenzene	43.10	0.24	5.0	50.00	0	86.2	70	130	0		
1,2,4-Trimethylbenzene	42.84	0.15	5.0	50.00	0	85.7	75	130	0		
sec-Butylbenzene	42.88	0.19	5.0	50.00	0	85.8	70	125	0		
4-Isopropyltoluene	43.31	0.17	5.0	50.00	0	86.6	75	130	0		
1, 3-Dichlorobenzene	42.96	0.19	5.0	50.00	0	85.9	75	125	0		
1,4-Dichlorobenzene	42.97	0.24	5.0	50.00	0	85.9	75	125	0		
n-Butylbenzene	46.48	0.27	5.0	50.00	0	93.0	70	135	0		
1,2-Dichlorobenzene	42.66	0.24	5.0	50.00	0	85.3	70	120	0		
1,2-Dibromo-3-chloropropane		0.35	5.0	50.00	0	6.66	50	130	0		
1,2,4-Trichlorobenzene	47.85	0.39	5.0	50.00	0	95.7	65	135	0		
Hexachlorobutadiene	39.98	0.41	5.0	50.00	0	80.0	50	140	0		
1,2,3-Trichlorobenzene	47.63	0.45	5.0	50.00	0	95.3	55	140	0		
Naphthalene	51.11	0.15	5.0	50.00	0	102	55	140	0		
Surrogate:	46.34	0	5.0	50.00	0	92.7	85	115	0		
Dibromofluoromethane											
Surrogate: 1,2-	50.91	0	5.0	50.00	0	102	70	120	0		
Surrogate: Toluene-d8	51.59	0	5.0	50.00	0	103	85	120	0		
Surronate.	51.36	0	5.0	50.00	0	103	75	120	0		
er comogracione de la comogracia de la como											
			c					,			
ITS:	ND - Not Detected at the Reporting Limit	Ħ	S.	- Spike Recovery outside accepted recovery limits	e accepted recovery	limits		B-/	Analyte detected in	- Analyte detected in the associated Method Blank	l Blank
mLIMS-002 J - Analyte	J - Analyte detected below quantitation limits	imits	R -	- RPD outside accepted recovery limits	recovery limits						

CLIENT: Day Envi	Day Environmental Inc.			ANALY	ANALYTICAL OC SUMMARY REPORT		MAR	Y REPO	ORT			
Work Order: J0944			S	SW8260_W	,							
Project: 151 Mt. I	151 Mt. Hope Ave.		S	-	VOC by GC-MS							
Sample ID: LCSD-51421	SampType: LCSD	TestCod	TestCode: SW8260_W		Prep Date:	05/10/10 11:29	11:29	Run I	Run ID: V1_100510A			
Client ID: LCSD-51421	Batch ID: 51421	Unit	Units: µg/L		Analysis Date:	05/10/10 12:12	12:12	SeqN	SeqNo: 1281731			
Analyte	Result	MDL	PQL	SPK value	SPK Ref Val	%REC Lo	LowLimit HighLimit	ighLimit	RPD Ref Val	%RPD RPDLimit		Qual
Dichlorodifluoromethane	29.85	0.47	5.0	50.00	0	59.7	30	155	32.09	7.21	40]
Chloromethane	37.80	0.54	5.0	50.00	0	75.6	40	125	39.04	3.23	40	
Vinyl chloride	37:63	0.78	5.0	50.00	0	75.3	50	145	39.16	3.98	40	
Bromomethane	37.55	0.74	5.0	50.00	0	75.1	30	145	42.14	11.5	40	
Chloroethane	40.51	0.89	5.0	50.00	0	81.0	60	135	42.20	4.09	40	
Trichlorofluoromethane	38.19	0.60	5.0	50.00	0	76.4	60	145	39.38	3.07	40	
1,1-Dichloroethene	35.08	0.64	5.0	50.00	0	70.2	70	130	37.29	6.09	40	
Acetone	51.05	4.6	5.0	50.00	0	102	40	140	70.84	32.5	40	
lodomethane	38.62	0.37	5.0	50.00	0	77.2	72	121	35.11	9.52	40	
Carbon disulfide	32.85	0.34	5.0	50.00	0	65.7	35	160	34.65	5.32	40	
Methylene chloride	39.88	0.83	5.0	50.00	0	79.8	55	140	40.92	2.57	40	
trans-1,2-Dichloroethene	35.95	0.37	5.0	50.00	0	71.9	60	140	39.04	8.25	40	
Methyl tert-butyl ether	41.33	0.25	5.0	50.00	0	82.7	65	125	39.97	3.35	40	
1,1-Dichloroethane	39.75	0.24	5.0	50.00	0	79.5	70	135	39.25	1.25	40	
Vinyl acetate	46.01	0.43	5.0	50.00	0	92.0	38	163	44.82	2.64	40	
2-Butanone	59.05	2.0	5.0	50.00	0	118	30	150	60.52	2.46	40	
cis-1,2-Dichloroethene	39.71	0.34	5.0	50.00	0	79.4	70	125	39.02	1.75	40	
2,2-Dichloropropane	38.62	0.22	5.0	50.00	0	77.2	70	135	40.82	5.53	40	
Bromochloromethane	39.33	0.30	5.0	50.00	0	78.7	65	130		0.802	40	
Chloroform	38.21	0.30	5.0	50.00	0	76.4	65	135		0.00227	40	
1,1,1-Trichloroethane	35.39	0.18	5.0	50.00	0	70.8	65	130	36.58	3.32	40	
1,1-Dichloropropene	40.15	0.38	5.0	50.00	0	80.3	75	130	40.36	0.527	40	
Carbon tetrachloride	37.81	0.11	5.0	50.00	0	75.6	65	140	38.46	1.72	40	
1,2-Dichloroethane	43.94	0.16	5.0	50.00	0	87.9	70	130	44.01	0.149	40	
Benzene	40.61	0.12	5.0	50.00	0	81.2	80	120	42.00	3.38	40	
Trichloroethene	38.08	0.25	5.0	50.00	0	76.2	70	125	39.92	4.72	40	
1,2-Dichloropropane	43.25	0.24	5.0	50.00	0	86.5	75	125	44.12	1.99	40	
Dibromomethane	44.89	0.26	5.0	50.00	0	89.8	75	125	42.15	6.31	40	
Bromodichloromethane	43.74	0.20	5.0	50.00	0	87.5	75	120	44.44	1.61	40	
cis-1,3-Dichloropropene	44.31	0.22	5.0	50.00	0	88.6	70	130	44.34	0.0681	40	
4-Methyl-2-pentanone	53.55	1.5	5.0	50.00	0	107	60	135	49.46	7.93	40	
Toluene	41.53	0.15	5.0	50.00	0	83.1	75	120	42.34	1.92	40	
trans-1,3-Dichloropropene	46.56	0.27	5.0	50.00	0	93.1	55	140	46.12	0.932	40	
4,1,2-Trichloroethane	44.52	0.29	5.0	50.00	0	89.0	75	125	43.88	1.43	40	
3-Dichloropropane	48.72	0.26	5.0	50.00	0	97.4	75	125	48.91	0.402	40	
tetrachloroethene	40.18	0.27	5.0	50.00	0	80.4	45	150	40.85	1.66	40	
2-Hexanone	58.60	1.1	5.0	50.00	0	117	55	130	60.00	2.37	40	
a static to the state of the st												
Qualifiers: ND - Not De	ND - Not Detected at the Reporting Limit	it	S -	- Spike Recovery outside accepted recovery limits	e accepted recovery	limits		B - /	- Analyte detected in the associated Method Blank	the associate	d Method	Blank
:												

J - Analyte detected below quantitation limits

CLIENT: Day	Dav Environmental Inc.	,		ANALY	ANALYTICAL OC SUMMARY REPORT		MAR	Y REP	ORT			
ler:	J0944		S	SW8260_W					· · · · · · · · · · · · · · · · · · ·			
Project: 151	151 Mt. Hope Ave.		S	SW846 8260 VOC by GC-MS	DC by GC-MS							
Sample ID: LCSD-51421	1 SampType: LCSD	TestCo	TestCode: SW8260_W		Prep Date:	05/10/10 11:29	11:29	Run I	Run ID: V1_100510A			
Client ID: LCSD-51421	H Batch ID: 51421	Uni	Units: µg/L		Analysis Date:	05/10/10 12:12	12:12	SeqN	SeqNo: 1281731			
Analyte	Result	MDL	Pal	SPK value	SPK Ref Val	%REC L	%REC LowLimit HighLimit	ighLimit	RPD Ref Val	%RPD RPDLimit	PDLimit	Qual
Dibromochloromethane	45.76	0.20	5.0	50.00	0	91.5	60	135	46.75	2.13	40	
1,2-Dibromoethane	47.16	0.31	5.0	50.00	0	94.3	80	120	49.83	5.51	40	
Chlorobenzene		0.23	5.0	50.00	0	83.7	80	120	43.76	4.43	40	
1,1,1,2-Tetrachloroethane		0.28	5.0	50.00	0	85.5	80	130	44.38	3.76	40	
Ethylbenzene	42.97	0.23	5.0	50.00	0 0	85.9	75	125	44.15	2.72	40	
m,p-Xylene	83.83	0.40	5.0	100.0	0 0	83.8	57	130	87.94	4.79	40	
o-Xylene	42.02	0.26		30.00 150 0		α4.C	80 81	121 121	43./8 131 7	4.LZ 1 56	40	
Aylerie (Lutal) Styrene	5.021 0.021	0.16	5.0	50.00) C	86.1	65 65	135	44.91	4 25	040	
Bromoform	49.05	0.44	5.0	50.00	0	98.1	70	130	48.12	1.9	40	
Isopropylbenzene	43.27	0.20	5.0	50.00	0	86.5	75	125	43.93	1.52	40	
1,1,2,2-Tetrachloroethane		0.23	5.0	50.00	0	96.2	65	130	44.74	7.18	40	
Bromobenzene	41.73	0.37	5.0	50.00	0	83.5	75	125	41.78	0.121	40	
1,2,3-Trichloropropane	51.73	0.72	5.0	50.00	0	103	75	125	49.87	3.66	40	
n-Propylbenzene	44.58	0.20	5.0	50.00	0	89.2	70	130	43.24	3.05	40	
2-Chlorotoluene	41.67	0.30	5.0	50.00	0	83.3	75	125	41.55	0.299	40	
1,3,5-Trimethylbenzene	43.30	0.12	5.0	50.00	0	86.6	75	130	42.43	2.03	40	
4-Chlorotoluene	42.15	0.43	5.0	50.00	0	84.3	75	130	42.15	0.0135	40	
tert-Butylbenzene	43.69	0.24	5.0	50.00	0	87.4	70	130	43.10	1.36	40	
1,2,4-Trimethylbenzene	42.90	0.15	5.0	50.00	0 0	85.8	75	130	42.84	0.161	40	
sec-Butylbenzene	45.11	0.19	5.U	50.00	5 0	90.2	0/	125	42.88	5.08	40	
4-Isopropyltoluene	40.33 01 01	11.0	n c n r	30.00 50 00		90.7 84.2	c/	125	43.31 17 06	/c.₽ 90 [40	
1,3-Dichlorobenzene	43.07	0.24	5.0	50.00	0	86.1	75	125	42.97	0.241	40	
n-Butvlbenzene	48.53	0.27	5.0	50.00	0	97.1	70	135	46.48	4.31	40	
1,2-Dichlorobenzene	44.17	0.24	5.0	50.00	0	88.3	70	120	42.66	3.46	40	
1,2-Dibromo-3-chloropropane	pane 55.65	0.35	5.0	50.00	0	111	50	130	49.95	10.8	40	
1,2,4-Trichlorobenzene	50.91	0.39	5.0	50.00	0	102	65	135	47.85	6.18	40	
Hexachlorobutadiene	41.05	0.41	5.0	50.00	0	82.1	50	140	39.98	2.66	40	
1,2,3-Trichlorobenzene	53.40	0.45	. 5.0	50.00	0	107	55	140	47.63	11.4	40	
Naphthalene	56.97	0.15	5.0	50.00	0	114	55	140	51.11	10.8	40	
Surrogate:	48.26	0	5.0	50.00	0	96.5	85	115	0	0	40	
Surrogate: 1.2-	50.78	0	5.0	50.00	0	102	70	120	0	0	40	
Chloroethane-d4												
Surrogate: Toluene-d8		0	5.0	50.00	0		85	120	0	0	40	
ᠠ Surrogate:	49.70	0	5.0	50.00	0	99 . 4	75	120	0	0	40	
			2	-								
Qualifiers: ND -	ND - Not Detected at the Reporting Limit	it	-s	- Spike Recovery outside accepted recovery limits	le accepted recovery	limits		B	B - Analyte detected in the associated Method Blank	the associate	ed Method	Blank

J - Analyte detected below quantitation limits

Client: Day Environmental Inc.

Client Sample ID: MW10-1 (8.5'-10')

Lab ID: J0944-02

Date: 27-May-10

 Project:
 151 Mt. Hope Ave.

 Collection Date:
 05/05/10 9:20

Analyses	Result Qual	RL Units	DF Date Analyzed	Batch ID
SW846 8270 SVOA by GC-MS	· · ·			SW8270_S
Phenol	ND	410 µg/Kg	1 05/26/2010 18:50	51450
Bis(2-chloroethyl)ether	ND	410 µg/Kg	1 05/26/2010 18:50	51450
2-Chlorophenol	ND	410 µg/Kg	1 05/26/2010 18:50	51450
1,3-Dichlorobenzene	ND	410 µg/Kg	1 05/26/2010 18:50	51450
1,4-Dichlorobenzene	ND	410 µg/Kg	1 05/26/2010 18:50	51450
1,2-Dichlorobenzene	ND	410 µg/Kg	1 05/26/2010 18:50	51450
2-Methylphenol	ND	410 µg/Kg	1 05/26/2010 18:50	51450
2,2'-oxybis(1-Chloropropane)	ND	410 µg/Kg	1 05/26/2010 18:50	51450
4-Methylphenol	ND	410 µg/Kg	1 05/26/2010 18:50	51450
N-Nitroso-di-n-propylamine	ND	410 µg/Kg	1 05/26/2010 18:50	51450
Hexachloroethane	ND	410 µg/Kg	1 05/26/2010 18:50	51450
Nitrobenzene	ND	410 µg/Kg	1 05/26/2010 18:50	51450
Isophorone	ND	410 µg/Kg	1 05/26/2010 18:50	51450
2-Nitrophenol	ND	410_µg/Kg	1 05/26/2010 18:50	51450
2,4-Dimethylphenol	ND	410 µg/Kg	1 05/26/2010 18:50	51450
2,4-Dichlorophenol	ND	410 µg/Kg	1 05/26/2010 18:50	51450
1,2,4-Trichlorobenzene	ND	410 µg/Kg	1 05/26/2010 18:50	51450
Naphthalene	ND	410 µg/Kg	1 05/26/2010 18:50	51450
4-Chloroaniline	ND	410 µg/Kg	1 05/26/2010 18:50	51450
Bis(2-chloroethoxy)methane	ND	410 µg/Kg	1 05/26/2010 18:50	51450
Hexachlorobutadiene	ND	410 μg/Kg	1 05/26/2010 18:50	51450
4-Chloro-3-methylphenol	ND	410 µg/Kg	1 05/26/2010 18:50	51450
2-Methylnaphthalene	ND	410 µg/Kg	1 05/26/2010 18:50	51450
Hexachlorocyclopentadiene	ND	410 µg/Kg	1 05/26/2010 18:50	51450
2,4,6-Trichlorophenol	ND	410 µg/Kg	1 05/26/2010 18:50	51450
2,4,5-Trichlorophenol	ND	830 µg/Kg	1 05/26/2010 18:50	51450
2-Chloronaphthalene	ND	410 µg/Kg	1 05/26/2010 18:50	51450
2-Nitroaniline	ND	830 µg/Kg	1 05/26/2010 18:50	51450
Dimethylphthalate	ND	410 µg/Kg	1 05/26/2010 18:50	51450
Acenaphthylene	ND	410 µg/Kg	1 05/26/2010 18:50	51450
2,6-Dinitrotoluene	ND	410 µg/Kg	1 05/26/2010 18:50	51450
3-Nitroaniline	ND	830 µg/Kg	1 05/26/2010 18:50	51450
Acenaphthene	ND	410 µg/Kg	1 05/26/2010 18:50	51450
2,4-Dinitrophenol	ND	830 µg/Kg	1 05/26/2010 18:50	51450
4-Nitrophenol	ND	830 µg/Kg	1 05/26/2010 18:50	51450
Dibenzofuran	ND	410 µg/Kg	1 05/26/2010 18:50	51450
2,4-Dinitrotoluene	ND	410 µg/Kg	1 05/26/2010 18:50	51450
Diethylphthalate	ND	410 µg/Kg	1 05/26/2010 18:50	51450
4-Chlorophenyl-phenylether	ND	410 µg/Kg	1 05/26/2010 18:50	51450

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Client: Day Environmental Inc.

Client Sample ID: MW10-1 (8.5'-10')

Lab ID: J0944-02

Date:	27-May-10
	207 Intery x 0

 Project:
 151 Mt. Hope Ave.

 Collection Date:
 05/05/10 9:20

Analyses	Result	Qual	RL	Units	DF Date Analyzed	Batch ID
SW846 8270 SVOA by GC-MS						SW8270_S
Fluorene	63	J	410	µg/Kg	1 05/26/2010 18:50	51450
4-Nitroaniline	ND		830	µg/Kg	1 05/26/2010 18:50	51450
4,6-Dinitro-2-methylphenol	ND		830	µg/Kg	1 05/26/2010 18:50	51450
N-Nitrosodiphenylamine	ND		410	µg/Kg	1 05/26/2010 18:50	51450
4-Bromophenyl-phenylether	ND		410	µg/Kg	1 05/26/2010 18:50	51450
Hexachlorobenzene	ND		410	µg/Kg	1 05/26/2010 18:50	51450
Pentachlorophenol	ND		830	µg/Kg	1 05/26/2010 18:50	51450
Phenanthrene	370	J	410	µg/Kg	1 05/26/2010 18:50	51450
Anthracene	120	J	410	µg/Kg	1 05/26/2010 18:50	51450
Carbazole	ND		410	µg/Kg	1 05/26/2010 18:50	51450
Di-n-butylphthalate	ND		410	µg/Kg	1 05/26/2010 18:50	51450
Fluoranthene	520		410	µg/Kg	1 05/26/2010 18:50	51450
Pyrene	460		410	µg/Kg	1 05/26/2010 18:50	51450
Butylbenzylphthalate	ND		410	µg/Kg	1 05/26/2010 18:50	51450
3,3'-Dichlorobenzidine	ND		410	µg/Kg	1 05/26/2010 18:50	51450
Benzo(a)anthracene	270	J	410	µg/Kg	1 05/26/2010 18:50	51450
Chrysene	230	J	410	µg/Kg	1 05/26/2010 18:50	51450
Bis(2-ethylhexyl)phthalate	ND		410	µg/Kg	1 05/26/2010 18:50	51450
Di-n-octylphthalate	ND		410	µg/Kg	1 05/26/2010 18:50	51450
Benzo(b)fluoranthene	190	J	410	µg/Kg	1 05/26/2010 18:50	51450
Benzo(k)fluoranthene	91	J	410	µg/Kg	1 05/26/2010 18:50	51450
Benzo(a)pyrene	140	J	410	µg/Kg	1 05/26/2010 18:50	51450
Indeno(1,2,3-cd)pyrene	ND		410	µg/Kg	1 05/26/2010 18:50	51450
Dibenzo(a,h)anthracene	ND		410	µg/Kg	1 05/26/2010 18:50	51450
Benzo(g,h,i)perylene	ND		410	µg/Kg	1 05/26/2010 18:50	51450
Surrogate: Nitrobenzene-d5	56.7		35-100	%REC	1 05/26/2010 18:50	51450
Surrogate: 2-Fluorobiphenyl	67.3		45-105	%REC	1 05/26/2010 18:50	51450
Surrogate: Terphenyl-d14	88.4		30-125	%REC	1 05/26/2010 18:50	51450
Surrogate: Phenol-d5	62.7		40-100	%REC	1 05/26/2010 18:50	51450
Surrogate: 2-Fluorophenol	73.0		35-105	%REC	1 05/26/2010 18:50	51450
Surrogate: 2,4,6-Tribromophenol	71.0		35-125	%REC	1 05/26/2010 18:50	51450

Qualifiers: ND

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range
- RL Reporting Limit

Client: Day Environmental Inc.

Client Sample ID: MW10-2 (8'-9.5')

Lab ID: J0944-05

Date: 27-May-10

Project: 151 Mt. Hope Ave. **Collection Date:** 05/05/10 11:25

Analyses	Result Qual	RL Units	DF Date Analyzed	Batch ID
SW846 8270 SVOA by GC-MS				SW8270_S
Phenol	ND	540 µg/Kg	1 05/26/2010 18:28	51450
Bis(2-chloroethyl)ether	ND	540 µg/Kg	1 05/26/2010 18:28	51450
2-Chlorophenol	ND	540 µg/Kg	1 05/26/2010 18:28	51450
1,3-Dichlorobenzene	ND	540 µg/Kg	1 05/26/2010 18:28	51450
1,4-Dichlorobenzene	ND	540 μg/Kg	1 05/26/2010 18:28	51450
1,2-Dichlorobenzene	ND	540 µg/Kg	1 05/26/2010 18:28	51450
2-Methylphenol	ND	540 µg/Kg	1 05/26/2010 18:28	51450
2,2'-oxybis(1-Chloropropane)	ND	540 µg/Kg	1 05/26/2010 18:28	51450
4-Methylphenol	ND	540 µg/Kg	1 05/26/2010 18:28	51450
N-Nitroso-di-n-propylamine	ND	540 µg/Kg	1 05/26/2010 18:28	51450
Hexachloroethane	ND	540 µg/Kg	1 05/26/2010 18:28	51450
Nitrobenzene	ND	540 µg/Kg	1 05/26/2010 18:28	51450
Isophorone	ND	540 µg/Kg	1 05/26/2010 18:28	51450
2-Nitrophenol	ND	540 µg/Kg	1 05/26/2010 18:28	51450
2,4-Dimethylphenol	ND	540 µg/Kg	1 05/26/2010 18:28	51450
2,4-Dichlorophenol	ND	540 µg/Kg	1 05/26/2010 18:28	51450
1,2,4-Trichlorobenzene	ND	540 µg/Kg	1 05/26/2010 18:28	51450
Naphthalene	380 J	540 µg/Kg	1 05/26/2010 18:28	51450
4-Chloroaniline	ND	540 µg/Kg	1 05/26/2010 18:28	51450
Bis(2-chloroethoxy)methane	ND	540 µg/Kg	1 05/26/2010 18:28	51450
Hexachlorobutadiene	ND	540 µg/Kg	1 05/26/2010 18:28	51450
4-Chloro-3-methylphenol	ND	540 µg/Kg	1 05/26/2010 18:28	51450
2-Methylnaphthalene	280 J	540 µg/Kg	1 05/26/2010 18:28	51450
Hexachlorocyclopentadiene	ND	540 µg/Kg	1 05/26/2010 18:28	51450
2,4,6-Trichlorophenol	ND	540 µg/Kg	1 05/26/2010 18:28	51450
2,4,5-Trichlorophenol	ND	1100 µg/Kg	1 05/26/2010 18:28	51450
2-Chloronaphthalene	ND	540 µg/Kg	1 05/26/2010 18:28	51450
2-Nitroaniline	ND	1100 µg/Kg	1 05/26/2010 18:28	51450
Dimethylphthalate	ND	540 µg/Kg	1 05/26/2010 18:28	51450
Acenaphthylene	590	540 µg/Kg	1 05/26/2010 18:28	51450
2,6-Dinitrotoluene	ND	540 µg/Kg	1 05/26/2010 18:28	51450
3-Nitroaniline	ND	1100 µg/Kg	1 05/26/2010 18:28	51450
Acenaphthene	800	540 µg/Kg	1 05/26/2010 18:28	51450
2,4-Dinitrophenol	ND	1100 µg/Kg	1 05/26/2010 18:28	51450
4-Nitrophenol	ND	1100 µg/Kg	1 05/26/2010 18:28	51450
Dibenzofuran	890	540 µg/Kg	1 05/26/2010 18:28	51450
2,4-Dinitrotoluene	ND	540 µg/Kg	1 05/26/2010 18:28	51450
Diethylphthalate	ND	540 µg/Kg	1 05/26/2010 18:28	51450
4-Chlorophenyl-phenylether	ND	540 µg/Kg	1 05/26/2010 18:28	51450

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Client: Day Environmental Inc.

Client Sample ID: MW10-2 (8'-9.5')

Lab ID: J0944-05

Date: 27	May-10)
-----------------	--------	---

 Project:
 151 Mt. Hope Ave.

 Collection Date:
 05/05/10 11:25

Analyses	Result	Qual RL	Units	DF Date Analyzed	Batch ID
SW846 8270 SVOA by GC-MS					SW8270_S
Fluorene	2100	540	µg/Kg	1 05/26/2010 18:28	51450
4-Nitroaniline	ND	1100	µg/Kg	1 05/26/2010 18:28	51450
4,6-Dinitro-2-methylphenol	ND	1100	µg/Kg	1 05/26/2010 18:28	51450
N-Nitrosodiphenylamine	ND	540	µg/Kg	1 05/26/2010 18:28	51450
4-Bromophenyl-phenylether	ND	540	µg/Kg	1 05/26/2010 18:28	51450
Hexachlorobenzene	ND	540	µg/Kg	1 05/26/2010 18:28	51450
Pentachlorophenol	ND	1100	µg/Kg	1 05/26/2010 18:28	51450
Phenanthrene	2500	540	µg/Kg	1 05/26/2010 18:28	51450
Anthracene	550	540	µg/Kg	1 05/26/2010 18:28	51450
Carbazole	ND	540	µg/Kg	1 05/26/2010 18:28	51450
Di-n-butylphthalate	ND	540	µg/Kg	1 05/26/2010 18:28	51450
Fluoranthene	1400	540	µg/Kg	1 05/26/2010 18:28	51450
Pyrene	2300	540	µg/Kg	1 05/26/2010 18:28	51450
Butylbenzylphthalate	ND	540	µg/Kg	1 05/26/2010 18:28	51450
3,3 [°] -Dichlorobenzidine	ND	540	µg/Kg	1 05/26/2010 18:28	51450
Benzo(a)anthracene	750	540	µg/Kg	1 05/26/2010 18:28	51450
Chrysene	610	540	µg/Kg	1 05/26/2010 18:28	51450
Bis(2-ethylhexyl)phthalate	ND	540	µg/Kg	1 05/26/2010 18:28	51450
Di-n-octylphthalate	ND	540	µg/Kg	1 05/26/2010 18:28	51450
Benzo(b)fluoranthene	500	J 540	µg/Kg	1 05/26/2010 18:28	51450
Benzo(k)fluoranthene	220	J 540	µg/Kg	1 05/26/2010 18:28	51450
Benzo(a)pyrene	350	J 540	µg/Kg	1 05/26/2010 18:28	51450
Indeno(1,2,3-cd)pyrene	170	J 540	µg/Kg	1 05/26/2010 18:28	51450
Dibenzo(a,h)anthracene	ND	540	µg/Kg	1 05/26/2010 18:28	51450
Benzo(g,h,i)perylene	84	J 540	µg/Kg	1 05/26/2010 18:28	51450
Surrogate: Nitrobenzene-d5	31.4	S 35-100	%REC	1 05/26/2010 18:28	51450
Surrogate: 2-Fluorobiphenyl	81.9	45-105	%REC	1 05/26/2010 18:28	51450
Surrogate: Terphenyl-d14	100	30-125	%REC	1 05/26/2010 18:28	51450
Surrogate: Phenol-d5	71.9	40-100	%REC	1 05/26/2010 18:28	51450
Surrogate: 2-Fluorophenol	77.7	35-105	%REC	1 05/26/2010 18:28	51450
Surrogate: 2,4,6-Tribromophenol	84.3	35-125	%REC	1 05/26/2010 18:28	51450

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Client: Day Environmental Inc.

Client Sample ID: MW10-3 (10'-12')

Lab ID: J0944-06

Date: 27-May-10

Project: 151 Mt. Hope Ave. Collection Date: 05/06/10 8:25

Analyses	Result	Qual	RL	Units	DF Date Analyzed	Batch ID
SW846 8270 SVOA by GC-MS						SW8270_S
Phenol	ND		450	µg/Kg	1 05/26/2010 18:05	51450
Bis(2-chloroethyl)ether	ND		450	µg/Kg	1 05/26/2010 18:05	51450
2-Chlorophenol	ND		450	µg/Kg	1 05/26/2010 18:05	51450
1,3-Dichlorobenzene	ND		450	µg/Kg	1 05/26/2010 18:05	51450
1,4-Dichlorobenzene	ND		450	µg/Kg	1 05/26/2010 18:05	51450
1,2-Dichlorobenzene	ND		450	µg/Kg	1 05/26/2010 18:05	51450
2-Methylphenol	ND		450	µg/Kg	1 05/26/2010 18:05	51450
2,2'-oxybis(1-Chloropropane)	ND		450	µg/Kg	1 05/26/2010 18:05	51450
4-Methylphenol	ND		450	µg/Kg	1 05/26/2010 18:05	51450
N-Nitroso-di-n-propylamine	ND		450	µg/Kg	1 05/26/2010 18:05	51450
Hexachloroethane	ND		450	µg/Kg	1 05/26/2010 18:05	51450
Nitrobenzene	ND		450	µg/Kg	1 05/26/2010 18:05	51450
Isophorone	ND		450	µg/Kg	1 05/26/2010 18:05	51450
2-Nitrophenol	ND		450	µg/Kg	1 05/26/2010 18:05	51450
2,4-Dimethylphenol	ND		450	µg/Kg	1 05/26/2010 18:05	51450
2,4-Dichlorophenol	ND		450	µg/Kg	1 05/26/2010 18:05	51450
1,2,4-Trichlorobenzene	ND		450	µg/Kg	1 05/26/2010 18:05	51450
Naphthalene	ND		450	µg/Kg	1 05/26/2010 18:05	51450
4-Chloroaniline	ND		450	µg/Kg	1 05/26/2010 18:05	51450
Bis(2-chloroethoxy)methane	ND		450	µg/Kg	1 05/26/2010 18:05	51450
Hexachlorobutadiene	ND		450	µg/Kg	1 05/26/2010 18:05	51450
4-Chloro-3-methylphenol	ND		450	µg/Kg	1 05/26/2010 18:05	51450
2-Methylnaphthalene	ND		450	µg/Kg	1 05/26/2010 18:05	51450
Hexachlorocyclopentadiene	ND		450	µg/Kg	1 05/26/2010 18:05	51450
2,4,6-Trichlorophenol	ND		450	µg/Kg	1 05/26/2010 18:05	51450
2,4,5-Trichlorophenol	ND		920	µg/Kg	1 05/26/2010 18:05	51450
2-Chloronaphthalene	ND		450	µg/Kg	1 05/26/2010 18:05	51450
2-Nitroaniline	ND		920	µg/Kg	1 05/26/2010 18:05	51450
Dimethylphthalate	ND		450	µg/Kg	1 05/26/2010 18:05	51450
Acenaphthylene	ND		450	µg/Kg	1 05/26/2010 18:05	51450
2,6-Dinitrotoluene	ND		450	µg/Kg	1 05/26/2010 18:05	51450
3-Nitroaniline	ND		920	µg/Kg	1 05/26/2010 18:05	51450
Acenaphthene	ND		450	µg/Kg	1 05/26/2010 18:05	51450
2,4-Dinitrophenol	ND		920	µg/Kg	1 05/26/2010 18:05	51450
4-Nitrophenol	ND			µg/Kg	1 05/26/2010 18:05	51450
Dibenzofuran	ND			µg/Kg	1 05/26/2010 18:05	51450
2,4-Dinitrotoluene	ND		450	µg/Kg	1 05/26/2010 18:05	51450
Diethylphthalate	ND			µg/Kg	1 05/26/2010 18:05	51450
4-Chlorophenyl-phenylether	ND			µg/Kg	1 05/26/2010 18:05	51450

Qualifiers: ND - Not

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Client: Day Environmental Inc.

Client Sample ID: MW10-3 (10'-12')

Lab ID: J0944-06

Date: 27-May-10

 Project:
 151 Mt. Hope Ave.

 Collection Date:
 05/06/10 8:25

Analyses	Result	Qual	RL	Units	DF Date Analyzed	Batch ID
SW846 8270 SVOA by GC-MS						SW8270_S
Fluorene	ND		450	µg/Kg	1 05/26/2010 18:05	51450
4-Nitroaniline	ND		920	µg/Kg	1 05/26/2010 18:05	51450
4,6-Dinitro-2-methylphenol	ND		920	µg/Kg	1 05/26/2010 18:05	51450
N-Nitrosodiphenylamine	ND		450	µg/Kg	1 05/26/2010 18:05	51450
4-Bromophenyl-phenylether	ND		450	µg/Kg	1 05/26/2010 18:05	51450
Hexachlorobenzene	ND		450	µg/Kg	1 05/26/2010 18:05	51450
Pentachlorophenol	ND		920	µg/Kg	1 05/26/2010 18:05	51450
Phenanthrene	69	J	450	µg/Kg	1 05/26/2010 18:05	51450
Anthracene	ND		450	µg/Kg	1 05/26/2010 18:05	51450
Carbazole	ND		450	µg/Kg	1 05/26/2010 18:05	51450
Di-n-butylphthalate	ND		450	µg/Kg	1 05/26/2010 18:05	51450
Fluoranthene	100	J	450	µg/Kg	1 05/26/2010 18:05	51450
Pyrene	120	J	450	µg/Kg	1 05/26/2010 18:05	51450
Butylbenzylphthalate	ND		450	µg/Kg	1 05/26/2010 18:05	51450
3,3'-Dichlorobenzidine	ND		450	µg/Kg	1 05/26/2010 18:05	51450
Benzo(a)anthracene	78	J	450	µg/Kg	1 05/26/2010 18:05	51450
Chrysene	87	J	450	µg/Kg	1 05/26/2010 18:05	51450
Bis(2-ethylhexyl)phthalate	ND		450	µg/Kg	1 05/26/2010 18:05	51450
Di-n-octylphthalate	ND		450	µg/Kg	1 05/26/2010 18:05	51450
Benzo(b)fluoranthene	83	J	450	µg/Kg	1 05/26/2010 18:05	51450
Benzo(k)fluoranthene	ND		450	µg/Kg	1 05/26/2010 18:05	51450
Benzo(a)pyrene	55	J	450	µg/Kg	1 05/26/2010 18:05	51450
Indeno(1,2,3-cd)pyrene	ND		450	µg/Kg	1 05/26/2010 18:05	51450
Dibenzo(a,h)anthracene	ND		450	µg/Kg	1 05/26/2010 18:05	51450
Benzo(g,h,i)perylene	ND		450	µg/Kg	1 05/26/2010 18:05	51450
Surrogate: Nitrobenzene-d5	59.1		35-100	%REC	1 05/26/2010 18:05	51450
Surrogate: 2-Fluorobiphenyl	64.0		45-105	%REC	1 05/26/2010 18:05	51450
Surrogate: Terphenyl-d14	84.4		30-125	%REC	1 05/26/2010 18:05	51450
Surrogate: Phenol-d5	62.3		40-100	%REC	1 05/26/2010 18:05	51450
Surrogate: 2-Fluorophenol	70.5		35-105	%REC	1 05/26/2010 18:05	51450
Surrogate: 2,4,6-Tribromophenol	65.1		35-125	%REC	1 05/26/2010 18:05	51450

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

S
ories
rate
abc
Ц
tkem
Ж

Day Environmental Inc. J0944

CLIENT: Work Order:

Date: 05/27/2010 16:47

H

REPORT
AMARY
QC SUN
TICAL
ANALY

SW8270_S

Tandic Lo MB 6469 Sam Di 5400 Tandicia SWR703 Pag Date 0110 MG Outro 2010 Sal Di 2400 Can Di 2400 Sal Di 24000 Sal Di 2400 Sal Di	are are		Cotrade: CM0270 S						
GB:rtd0 Each ID Frado Math Mot Mot Mot Mot Mot Math Mot POL POL Server	ID: MB-51450 nloroethyl)ether ophenol nlorobenzene nlorobenzene nlorobenzene nlorobenzene nloropylamine loroethane nzene one one one one one one one	50	Calcone. avor 10 a		Prep Date:		Kun ID: 53_100521A		
Read ND. PD. PD. SPC concint HighLinet ReD Rev Val Sector PDL Val Red PDR Val Sector PDL VAL <th>loroethyl)ether ophenol hiorobenzene hiorobenzene Alphenol /bis(1-Chloropropane) /lphenol so-di-n-propylamine loroethane nzene one one one one one one one one one</th> <th></th> <th>Units: µg/Kg</th> <th></th> <th>Analysis Date:</th> <th></th> <th>SeqNo: 1294044</th> <th></th> <th></th>	loroethyl)ether ophenol hiorobenzene hiorobenzene Alphenol /bis(1-Chloropropane) /lphenol so-di-n-propylamine loroethane nzene one one one one one one one one one		Units: µg/Kg		Analysis Date:		SeqNo: 1294044		
Nypetter No 29 330 Nypetter No 17 330 Nypetter No 17 330 Notenee No 17 330 Ancenee No 17 330 Choopropanely No 27 330 Choopropanely No 23 330 Choopropanely No 23 330 Choopropanely No 23 330 Ancene No 23 330 Ancene<	loroethyl)ether lorobenzene hlorobenzene hlorobenzene lorobenzene lorobenzene blorothane loroethane nzene one hlorophenol richlorobenzene alene alene oaniline	MDL	PQL	SPK value	SPK Ref Val	%REC LowLimit Highl		%RPD RPDLimit	Qual
typelter 11 330 typelter 10 17 330 attenee 10 17 330 totopolamele 10 27 330 choopolamele 10 6 330 choopolamele 10 6 330 choopolamele 10 5 330 choopolamele 10 5 330 choopolamele 10 17 330 choopolamele 10 17 330 tate 10 17 330 benol 10<	age (jeight)	29	330						
II 330 Rite 17 330 Rite 11 330 Chloopropare 11 330 Poolylamine 11 330 Pool 11 330 Pool 12 330 Pool 13	are e	74	330						
nome ND 21 330 nome ND 11 330 nome ND 12 330 nome ND 13 330 nome ND 13 330 nome ND 23 330 nome ND 23 330 nome ND 330 330 330 nome ND 330 330 330 330 nom	are are	17	330						
Intere Int 330 Interest Int 330 Interest Int 17 330 Interest Int 17 330 Interest Int 17 330 Interest Int 17 330 Interest Int 22 330 Interest Int 22 330 Interest Int 22 330 Interest Int 23 330 Interest Int 330 330 330 Interest Int 330 330 330 330 Interest Int Int 330 330 330 330 330 330 330 330 330 330 330 <td>a a a a a a a a a a a a a a a a a a a</td> <td>21</td> <td>330</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	a a a a a a a a a a a a a a a a a a a	21	330						
materie ND 17 330 oli ND 23 330 oli ND 23 330 oppolaritie ND 23 330 oppolaritie ND 23 330 oppolaritie ND 23 330 oppolaritie ND 21 330 oppolaritie ND 23 330 non ND 23 330 benol ND 330 330 benol ND 330 330 benol ND 330 330 benol ND 330 330 330 benol	are are	18	330						
II 23 330 Ofloropropane) ND 17 330 -propylamine ND 17 330 -propylamine ND 6 330 -propylamine ND 6 330 -propylamine ND 6 330 -propylamine ND 51 330 nenol ND 51 330 henol ND 22 330 henol ND 17 330 henol ND 21 330 henol ND 22 330 henol ND 20 <td>au e au</td> <td>17</td> <td>330</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	au e au	17	330						
Chlotopropane) ND 17 330 Chlotopropane) ND 17 330 propylamine ND 22 330 propylamine ND 18 330 propylamine ND 18 330 propylamine ND 18 330 propylamine ND 330 330 propylamine ND - NO 330 330 propylamine ND - Not Decendence ND - Not Decendence ND - Not Decendence	ane) are	23	330						
01 23 330 cproy/armine ND 6 330 cproy/armine ND 6 330 ame ND 6 330 nenol ND 51 330 nenol ND 51 330 nenol ND 51 330 nenol ND 76 330 nenol ND 76 330 nenol ND 76 330 nenol ND 23 330 nenol ND 23 330 nenol ND 23 330 nenol ND 23 330 nenol ND 21 330 nenol ND 330 330 nenol ND 21 330 nenol ND 22 330 nenol ND 22 330 nenol ND 22 330 <td>e e</td> <td>17</td> <td>330</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	e e	17	330						
-propylatinie RD 68 330 -propylatinie RD 68 330 ate ND 51 330 Anel ND 51 330 Benol ND 52 330 Benol ND 53 330 Benol ND 76 330 Denzene ND 76 330 Dozymethane ND 21 330 Dozymethane ND<-notation 330 330 Benel ND - Not Detected at the Reporting Limit 330	e e	22	330						
ane ND 96 330 and 18 330 330 ND 18 330 330 ND 22 330 330 And ND 53 330 And ND 53 330 And ND 53 330 And ND 76 330 And ND 330 330 And ND-Not Detected at the Reporting Limit ND-Not Detected at the Reporting Limit ND-Not Detected at the Reporting Limit	e	68	330						
ND 18 330 hend ND 51 330 hend ND 51 330 hend ND 53 330 hend ND 53 330 hend ND 53 330 hend ND 76 330 benzame ND 17 330 benzymethane ND 21 330 katlene ND 21 330 broxymethane ND 21 330 katlene ND 21 330 katlene ND 21 330 bronol ND 20 330 copentaciene ND 20 330 bronol ND 330 330 copentaciene ND 330 330 copentaciene ND 330 330 copentaciene ND 330 330 mol 10 <t< td=""><td>ë</td><td>96</td><td>330</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	ë	96	330						
ND 51 330 hendi ND 22 330 hendi ND 22 330 hendi ND 27 330 hendi ND 76 330 hendi ND 76 330 hendi ND 76 330 hendi ND-Not Detected at the Reporting Limit ND-Not Detected at the Reporting Limit 330	ě	18	330						
ND 22 330 Henol ND 53 330 enol ND 17 330 enol ND 17 330 enol ND 17 330 enol ND 17 330 enolymetrane ND 21 330 enolymetrane ND 21 330 enolymetrane ND 21 330 enolymetrane ND -Not Detected at the Reporting Limit S-Spite Rcovery Jimits	e	51	330						
henol ND 53 330 nenol ND 17 330 nenol ND 17 330 benzene ND 17 330 oxymethane ND 17 330 noxymethane ND 21 330 totol ND 21 330 hoxymethane ND 21 330 totol ND 21 330 totol ND 21 330 totol ND-Not Detected at the Reporting Limit S-Spike Recovery initis	an	22	330						
renol ND 17 330 bernzene ND 76 330 bernzene ND 17 330 e ND 17 330 hoxy/methane ND 21 330 hoxy/methane ND 21 330 hoxy/methane ND 21 330 tadiene ND 20 330 tadiene ND 20 330 thalene ND 20 330 phenol ND 20 330 phenol ND 20 330 phenol ND 5.5 570 phenol ND 5.5 570 phenol ND 6.5 330 phenol ND 6.70 330 phenol ND 6.70 330 phenol ND 8.4 330 phenol ND 8.4 330 phenol	ane	53	330						
ND 76 330 Oberizene ND 76 330 e ND 23 330 hoxy/methane ND 21 330 hoxy/methane ND 21 330 totaline ND 21 330 sthylphenol ND 20 330 tadiene ND 20 330 sthylphenol ND 20 330 tadiene ND 20 330 tadiene ND 53 670 ophenol ND 53 670 ophenol ND 5.5 330 ophenol ND 5.5 330 finale ND 5.6 330 finale ND - Not Detected at the Reporting Limit S-Spike Recovery outside accepted recovery limits	але	17	330						
mb ND 23 330 hoxymethane ND 17 330 hoxymethane ND 21 330 tadiene ND 21 330 tadiene ND 21 330 tadiene ND 20 330 tadiene ND - Not Zei 330 ophenol ND - Not Decentatione ND - Not Decentatione ND - Set	ane	76	330						
e ND 17 330 hoxy)methane ND 21 330 hoxy)methane ND 21 330 statiene ND 22 330 ethylphenol ND 20 330 ethylphenol ND 20 330 ethylphenol ND 20 330 ethylphenol ND 20 330 hylphenol ND 20 330 phenol ND 26 330 phenol ND-Not Detected at the Reporting Limit S-Spike Recovery outside accepted recovery limits	ane	23	330						
Inoxymethane ND 21 330 Itaciene ND 22 330 Latione ND 20 330 attyphenol ND 20 330 attyphenol ND 20 330 attyphenol ND 20 330 attyphenol ND-Not Detected at the Reporting Limit 52 330 attyphenol ND-Not Detected at the Reporting Limit 5.5 670	ane	17	330						
tadiene ND 32 330 tadiene ND 20 330 sthylphenol ND 32 330 halene ND 32 330 obpentatiene ND 32 330 ophenol ND 26 330 ophenol ND 53 670 ophenol ND 55 670 ophenol ND 6.5 330 ophenol ND 5.5 670 ophenol ND 8.8 330 ophenol ND 8.4 330		21	330						
sthylphenol ND 20 330 halene ND 20 330 bhenol ND 32 330 ophenol ND 26 330 ophenol ND 26 330 ophenol ND 53 670 ophenol ND 52 330 ophenol ND 52 330 ophenol ND 5.5 670 ophenol ND 8.8 330 alate ND 8.8 330 ene ND 100 6.5 330		32	330						
thalene ND 20 330 thalene ND 32 330 ophenol ND 26 330 ophenol ND 53 670 ophenol ND 53 670 ophenol ND 52 330 ophenol ND 5.5 670 ophenol ND 5.5 670 ophenol ND 5.5 670 alate ND 8.8 330 ene ND 8.8 330 ene ND 8.4 330 ol 100 6.70 ol ND 5.8 330		20	330						
Clopentadiene ND 32 330 Phenol ND 26 330 Phenol ND 53 670 Phenol ND 53 670 Phenol ND 52 330 Phenol ND 55 670 Phenol ND-Not Detected at the Reporting Limit S-Spike Recovery outside accepted recovery limits		20	330						
phenol ND 26 330 phenol ND 53 670 phenol ND 52 330 phenol ND 5 5 nd 5 670 5 nd ND 6.5 330 nd ND 6.5 330 nd ND 330 5 nd ND 330 5 nol ND 22 670 nol ND 100 670 ND 18 670 5 ND 5.8 330	adiene	32	330						
phenol ND 53 670 thalene ND 5.5 670 thalene ND 5.5 670 ND ND 6.5 330 alate ND 6.5 330 ne ND 8.8 330 ne ND 330 330 ne ND 8.8 330 no 10 330 330 no ND 8.4 330 no ND 100 670 ND 5.8 330		26	330						
Indeme ND 5.5 5.0 Indeme ND 5.5 670 Indeme ND 10 3.30 Indeme ND 10 3.30 Indeme ND 22 670 Indeme ND 100 670 Indeme ND 100 670 Indeme ND 330		53	670						
late 0.0 0.0 alate ND 6.5 330 ne ND 10 330 ene ND 8.8 330 nol ND 22 670 nol ND 100 670 ND 5.8 330			055						
MD 0.0 330 ne ND 10 330 ne ND 8.8 330 ene ND 8.8 330 nol ND 8.4 330 nol ND 100 670 ND<- Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits		•	0/0						
Image: ND 8.8 330 Image: ND 8.8 330 Image: ND 8.4 330 Image: ND 8.4 330 Image: ND 100 670 Image: ND 118 670 Image: ND 5.8 330 Image: ND 5.8 5.8	D		330						
Image: ND 22 50 ND - Not Detected at the Reporting Limit 5.8 330 ND - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits	c	α α	330						
ND - Not Detected at the Reporting Limit 8.4 330 ND - Not Detected at the Reporting Limit 8.4 330		22	670						
Inol ND 100 670 ND ND - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits	0	8.4	330						
ND 18 670 ND - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits	lot	100	670						
ND - Not Detected at the Reporting Limit 5.8 330 ND - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits		18	670						
rs: ND - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits		5.8	330						
		T imit		S - Snike Recovery outside	accented recovery	imite	D Andrite detected is	the according Mathe	Jului U
		111111		a - curve vecurely outside	accepted tecovery	SITURE	b - Analyte detected it	i the associated Metho	l Blank

151 Mt. Hope IB-51450	e Ave. SampTvpe: MBLK			1						
	ampTvpe: MBLK			SW846 8270 SVOA by GC-MS	OA by GC-M	S				
Client ID: MB-51450 Analyte 2,4-Dinifrotoluene Diethylphthalate 4-Chlorophenyl-phenylether Fluorene 4-Nitroaniline 4,6-Dinitro-2-methylphenol N-Nitrosodiphenylether Hexachlorophenol Pentachlorophenol		TestCo	TestCode: SW8270_S		Prep Date:	05/11/10 9:45		Run ID: S3_100521A		
Analyte 2,4-Dinitrotoluene Diethylphthalate 4-Chlorophenyl-phenylether Fluorene 4-Nitrosanline 4-Bromophenyl-phenylether Hexachlorophenol Pentachlorophenol	Batch ID: 51450	Cni 1	Units: µg/Kg		Analysis Date:	05/21/10 13:14		SeqNo: 1294044		
 2,4-Dinitrotoluene Diethylphthalate 4-Chlorophenyl-phenylether Fluorene 4,6-Dinitro-2-methylphenol N-Nitrosodiphenylamine 4-Bromophenyl-phenylether Hexachlorophenol 	Result	MDL	PQL	SPK value	SPK Ref Val	%REC Lov	%REC LowLimit HighLimit	RPD Ref Val	%RPD RPDLimit	Quai
Diethylphthalate 4-Chlorophenyl-phenylether Fluorene 4-Nitroaniline 4.6-Dinitro-2-methylphenol N-Nitrosodiphenylather Hexachlorobenzene Pentachlorophenol	ND	6.0	330							
 4-Chlorophenyl-phenylether Fluorene 4. 6-Dinitro-2-methylphenol 4. 6-Dinitro-2-methylphenol N-Nitrosodiphenylamine 4-Bromophenyl-phenylether Hexachlorophenol 	QN	8.0	330							
Fluorene 4-Nitroaniline 4.6-Dinitro-2-methylphenol N-Nitrosodiphenylamine 4-Bromophenyl-phenylether Hexachlorobhenol Pentachlorophenol	ND	15	330							
 4-Nitroaniline 4,6-Dinitro-2-methylphenol 4,6-Dinitro-2-methylphenol N-Nitrosodiphenylather 4-Bromophenyl-phenylether Hexachlorophenol Pentachlorophenol 	QN	7.8	330							
4,6-Dinitro-2-methylphenol N-Nitrosodiphenylamine 4-Bromophenyl-phenylether Hexachlorobenzene Pentachlorophenol	ND	25	670							
N-Nitrosodiphenylamine 4-Bromophenyl-phenylether Hexachlorobenzene Pentachlorophenol	ND	30	670							
4-Bromophenyl-phenylether Hexachlorobenzene Pentachlorophenol	UN	47	330							
Hexachlorobenzene Pentachlorophenol	UN		330							
Pentachlorophenol	ND	7.9	330							
Dhanathrond	ND		670							
rnenantniene	ND	6.9	330							
Anthracene	ND	19	330							
Carbazole	ND	10	330							
Di-n-butylphthalate	DN	5.8	330							
Fluoranthene	ND	18	330							
Pyrene	ND	. 7.4	330							
Butylbenzylphthalate	ND	6.3	330							
3,3'-Dichlorobenzidine	QN .	52	330							
Benzo(a)anthracene	ND	17	330							
Chrysene	DN .	25	330							
Bis(2-ethy/hexyl)phthalate	ND	8.6	330							
Di-n-octylphthalate	ND	44	330							
Benzo(b)fluoranthene	, UN	46	- 330						-	
Benzo(k)fluoranthene	ND	19	330							
Benzo(a)pyrene	ND	25	330							
Indeno(1,2,3-cd)pyrene	ND	8.9	330							
Dibenzo(a,h)anthracene	ND	5.8	330							
Benzo(g,h,i)perylene	ND	17	330							
Surrogate: Nitrobenzene-d5	1487	0	330	1667	0	89.2	35 100	0		
	1491	0	330	1667	0	89.4	45 105	0		
	1906	0	330	1667	0	114	30 125	0		
	2400	0	330	2500	0	96.0	40 100	0		
Surrogate: 2-Fluorophenol	2727	0	330	2500	0	109	35 105	0		ഗ
ц	2662	0	330	2500	0	106	35 125	0		
ribromophenol										
Qualifiers: ND - Not Detected a	ND - Not Detected at the Reporting Limit	it		S - Spike Recovery outside accepted recovery limits	accepted recovery	limits		B - Analyte detected in the associated Method Blank	the associated Method	Blank
mLIMS-002 I Anolista dataatad	I Andrita datastad halam anantitation limita				1			•		

CLIENT: D	Day Environmental Inc.			ANALY	ANALYTICAL QC SUMMARY REPORT	SUM	MAR	Y REP(ORT		
Work Order: J(J0944			SW8270 S							
	151 Mt. Hope Ave.			0,	SVOA by GC-MS	S					
Sample ID: LCS-51450	50 SampType: LCS	Te	TestCode: SW8270_S		Prep Date:	05/11/10 9:45	9:45	Run ID:	D: S3_100521A		
Client ID: LCS-51450	50 Batch ID: 51450		Units: µg/Kg		Analysis Date:	05/21/10 13:39	13:39	SeqN	SeqNo: 1294045		
Analyte	Result	MDL	PQL	SPK value	SPK Ref Val	%REC Lo	LowLimit HighLimit	ighLimit	RPD Ref Val	%RPD RPDLimit Q	Qual
Phenol	1467	29	330	1667	0	88.0	40	100	0]
Bis(2-chloroethyl)ether		74	330	1667	0	79.3	40	105	0		
2-Chlorophenol	1287	17	330	1667	0	77.2	45	105	0		
1,3-Dichlorobenzene	1265	21	330	1667	0	75.9	40	100	0		
1,4-Dichlorobenzene	1382	18	330	1667	0	82.9	35	105	0		
1,2-Dichlorobenzene	1290	17	330	1667	0	77.4	45	95	0		
2-Methylphenol		23	330	1667	0	75.9	40	105	0		
2,2'-oxybis(1-Chloropropane)		17	330	1667	0	r.rr	20	115	0		
4-Methylphenol	1253	22	330	1667	0	75.2	40	105	0		
N-Nitroso-di-n-propylamine		68	330	1667	0	72.1	40	115	0		
Hexachloroethane	1245	96	330	1667	0	74.7	35	110	0		
Nitrobenzene	1301	18	330	1667	0	78.0	40	115	0		
Isophorone	1413	51	330	1667	0	84.8	45	110	0		
2-Nitrophenol	1364	22	330	1667	0	81.8	40	110	0		
2,4-Dimethylphenol	802.6	53	330	1667	0	48.1	30	105	0		
2,4-Dichlorophenol	1337	17	330	1667	0	80.2	45	110	0		
1,2,4-Trichlorobenzene	1351	16	330	1667	0	81.0	45	110	0		
Naphthalene	1481	23	330	1667	0	88.9	40	105	0		
4-Chloroaniline		17	330	1667	0	32.8	10	95	0		
Bis(2-chloroethoxy)methane	thane 1501	21	330	1667	0	90.06	45	110	0		
Hexachlorobutadiene	1414	32	330	1667	0	84.8	40	115	0		
4-Chloro-3-methylphenol	ioi 1400	20	330	1667	0	84.0	45	115	0		
2-Methylnaphthalene	1341	20	330	1667	0	80.4	45	105	0		
Hexachlorocyclopentadiene		32	330	1667	0	95.1	8.0	148	0		
2,4,6-Trichlorophenol	1476	26	330	1667	0	88.6	45	110	0		
2,4,5-Trichlorophenol	1507	53	670	1667	0	90.4	50	110	0		
2-Chloronaphthalene	1500	52	330	1667	0	0.06	45	105	0		
2-Nitroaniline	1382	5.5	670	1667	0	82.9	45	120	0		
Dimethylphthalate	1359	6.5	330	1667	0	81.5	50	110	0		
Acenaphthylene	1492	10	330	1667	0	89.5	45	105	0		
2,6-Dinitrotoluene	1367	8.8	330	1667	0	82.0	50	110	0		
3-Nitroaniline	872.3	22	670	1667	0	52.3	25	110	0		
Acenaphthene	1483	8.4	330	1667	0	88.9	45	110	0		
at-2,4-Dinitrophenol	1146	100	670	1667	0	68.7	15	130	0		
	1190	18	670	1667	0	71.4	15	140	0		
Dibenzofuran	1454	5.8	330	1667	0	87.2	50	105	0		
2,4-Dinitrotoluene	1361	6.0	330	1667	0	81.6	50	115	0		
higher a											
Qualifiers: NI	ND - Not Detected at the Reporting Limit	nit		S - Spike Recovery outside accepted recovery limits	le accepted recovery l	limits		B - /	Analyte detected in	- Analyte detected in the associated Method Blank	ank
mLIMS-002	I A activity detected helene according to the test	limito		D DDD antrido accounted accounts	comment limite						
	Allaly is usicised below quantitianon	comfil		N - NI LI UUUUU WAYNA W	ו ובנטעקו אוווווש						

ype: LCS ID: 51450 Result	TestCode: SW8270_S TestCode: SW8270_S Units: µg/Kg MDL PQL 8.0 330 15 330 7.8 330 7.9 330 670 330 7.9 330 6.9 330 10 330 6.9 330 10 330 11 330 5.8 330 19 330 10 330 5.8 330 10 330 5.8 330 10 330 5.8 330 6.3 330	SW8276 SW846	D_S 82710 SVOA by GC-MS Prep Date: 05/11/10 9:45 Run ID: S3_ Analysis Date: 05/21/10 13:39 SeqNo: 129 SPK value SPK Ref Val %REC LowLimit HighLimit RPD 67 0 83.8 50 115 SeqNo: 129 67 0 88.6 45 110 67 115 67 115 67 0 88.6 50 115 115 115 115 67 0 88.6 50 115 115 115 67 0 88.6 50 115 115 67 0 88.6 50 115 115 67 0 91.9 45 115 115 67 0 78.8 55 116 115 67 0 91.0 55 110 56 110 67 0 91.0 55 120 56 120 67 0 91.0 55 <	S 05/11/10 9:45 05/21/10 9:45 05/21/10 13:39 88.6 45 88.6 45 88.6 45 88.6 45 88.6 45 88.6 45 91.0 45 91.0 45 91.0 45 91.0 55 88.4 55 88.4 55 88.4 55 88.4 55 91.0 55 91.0 55	0 9:45 Run ID: 0 13:39 SeqNo: 13:39 SeqNo: LowLimit HighLimit 50 50 115 50 115 35 110 50 115 45 110 50 115 45 110 50 115 45 115 45 115 50 115 51 120 55 105 55 115 55 115	Run ID: S3_100521A SeqNo: 1294045 t RPD Ref Val 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	%RPD RPDLimit Qual
SampType: LCS Batch ID: 51450 Batch ID: 51450 Result 1398 1477 1446 1156 1343 1478 1478 1584 1517 1478 1584 1517 1473 1473 1473 1584 1501 1584 1501 1724 1669 1583 1737 1669 1583 1737 1417			Prep Date: Analysis Date: SPK Ref Val 0 0 0 0 0 0 0 0 0 0 0 0 0		115 115 115 115 115 115 115 115 115 115		
Result 1398 1477 1446 1156 1478 1478 1517 1473 1517 1473 1517 1473 1517 1473 1501 1517 1669 1584 1669 1583 1737 1417 1854			SPK Ref Val 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		It HighLimi 115 110 110 115 115 115 115 115 115 115	RPD Ref Val 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
1398 1477 1446 1156 1156 1343 1478 1584 1517 1473 1473 1473 1684 1687 1687 1669 1583 1737 1854	0 8 6 6 8 4 6 9 9 9 8 7 9 9 9 8 7 9 9 9 9 9 9 9 9 9 9		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		115 110 110 110 115 115 115 115 110 110		
1000 1000	م م م م م م م	1667 1667 1667 1667 1667 1667 1667 1667			110 115 115 115 115 115 110 110 110 115		
112560 112560 112572 12584 12572 12572 12572 12572 12572 125844 125844 12584 12584 12584 12584 12584 12584 12584 1	യ് ത്ത്ത് ച്ന്	1667 1667 1667 1667 1667 1667 1667 1667	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 4 9 9 0 0 0 8 0 4 N O 9	110 115 115 115 115 120 120 110 110 110		
nethylphenol 1156 nethylphenol 1343 enylamine 1478 yl-phenylether 1584 nzene 1314 nzene 1473 alate 1583 enzidine 1583 oenzidine 1583 alate 1737 alate 13583 alate 1417 anthene 1854	من من ∞ ⊾.ن.	1667 1667 1667 1667 1667 1667 1667 1667	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 6 6 6 8 8 6 4 6 6 8	115 135 115 115 115 120 120 120 110 115 115		
methylphenol 1343 enylamine 1478 enylamine 1584 yl-phenylether 1532 nzene 1314 naenol 1314 1517 1517 1517 1517 1517 1517 1517 1517 1517 1473 alate 1534 enzidine 1634 enzidine 1583 olate 1583 alate 1737 alate 13583 orbiththalate 1583 alate 1417 anthene 1854	മ്മ്മ്പ്ന	1667 1667 1667 1667 1667 1667 1667 1667	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6609804008	135 115 115 115 120 120 110 115 115 115	• • • • • • • • • • • •	
1478 1584 1532 1532 1451 1457 1455 1455 1455 1634 1634 1634 12583 115687 12583 12583 12583 12583	o. o. ∞ ∢	1667 1667 1667 1667 1667 1667 1667 1667	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	909804006	115 115 120 120 110 115 115 115		
1584 1512 1513 1513 1451 1551 1551 1551 1569 1687 1684 1684 1684 125844 125844 125844 125844 125844 125844 125844 125844 125844 125844 125844 125844 125844 12584	თ. თ. თ. 4 [.] რ.	1667 1667 1667 1667 1667 1667 1667	0 0 0 0 0 0 0 0 <u>0</u> 0	44000400	115 120 120 110 115 115 115		
1532 1314 1314 1457 1457 1569 1584 1684 1684 1684 17584 12669 17584 1733 18417	രെം മ≁ന	1667 1667 1667 1667 1667 1667 1667	0 0 0 0 0 0 0 <u>0</u> C	0 0 0 4 N O 0 4 4 N O 0 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	120 120 110 115 115 1110	0 0 0 0 0 0 0	
1314 1517 1517 1459 1459 1459 1724 1669 1584 1583 1583 12583 12583 12583 12583 12583	oγ − co − 4 − co	1667 1667 1667 1667 1667 1667	0 0 0 0 0 0 0 <u>0</u> 0		120 110 105 115 110	000000	
1517 1453 1453 1501 1501 1634 687 1638 1683 1683 1583 1733 1737 1854 1237 1854	თ. დ. ფ. ფ. რ.	1667 1667 1667 1667 1667	0 0 0 0 0 <u>0</u> 0		110 105 115 110 115	00000	
1459 1459 1459 1449 1724 683 1724 683 1584 1569 1569 1233 3333	. co 4ª 69	1667 1667 1667 1667	0 0 0 0 0 0 C	4 S S S S S S S S S S S S S S S S S S S	105 115 110 115	0000	
1459 1501 1449 1634 1683 1683 1683 1683 1737 1737 1737 1854 12373	oo 4⊧.⇔.	1667 1667 1667 1667	0 0 0 <u>0</u> C	.5 .0 .9 .5 .5	115 110 115	000	
1501 1449 1449 1584 1584 1569 1569 11533 1233 1254 1233	8 4 0	1667 1667 1667	0 0 0 C	0 0 0	110 115	00	
1449 1724 1724 687 1588 1583 1583 1737 1417 1854	4	1667 1667	o o c	6.	115	0	
1724 1634 1634 1584 1563 1563 1737 1417		1667	<u>0</u> C				
1634 687 1584 1569 1569 1737 1417 1417			C	ব	125	0	
687 1584 1669 1583 1583 1737 1417		1667	>		125	0	
		1667	0		130	0	
		1667	0	.0	110	0	
		1667	0		110	0	
	.6	1667	0	94.9 45	125	0	
	44 330	1667	0		130	0	
		1667	0	.0 4	115	0	
		1667	0	ধ	125	0	
Benzo(a)pyrene 1505		1667	0		110	0	
Indeno(1,2,3-cd)pyrene 1293		1667	0	4	\sim	0	
Dibenzo(a,h)anthracene 1414	. 8	1667	0		125	0	
Benzo(g,h,i)perylene 1400	17 330	1667	0	4.0 4	125	0	
Surrogate: Nitrobenzene-d5 1417	330	1667	0	е С	100	0	
Surrogate: 2-Fluorobiphenyl 1464	0 330	1667	0	87.9 45	105	0	
Surrogate: Terphenyl-d14 1673	0 330	1667	0	Ċ	125	0	
Surrogate: Phenol-d5 2369	0 330	2500	0	.8	100	0	
Surrogate: 2-Fluorophenol 2445		2500	0	е. 8.		0	
Surrogate: 2,4,6- 2465	. 0 330	2500	0	98.6 35	125	0	
ribromophenol							

B - Analyte detected in the associated Method Blank

S - Spike Recovery outside accepted recovery limits
 R - RPD outside accepted recovery limits

ND - Not Detected at the Reporting Limit J - Analyte detected below quantitation limits

Qualifiers: mLIMS-002

Sw8270_S Sw8270_S Sw846 8270 - SVOA by GC-MS TestCode: SW8270_S Sw846 8270 - SVOA by GC-MS Of 111 Units: pg/Kg SPK Ref val Sfrahysis Date: Of 220 29 330 1667 0 79.3 211 330 1667 0 79.3 211 330 1667 0 79.3 211 330 1667 0 71.7 22 330 1667 0 71.7 21 330 1667 0 71.7 22 330 1667 0 71.7 23 330 1667 0 71.7 22 330 1667 0 71.7 23 330 1667 0 71.3 24.5 330 1667 0 71.4 23 330 1667 0 71.4 24.5 330 1667 0 71.4 25 330 166	CLIENT: Day Environmental Inc.			ANALY	ANALYTICAL QC SUMMARY REPORT		MAR	Y REPO	DRT		
(1) 151 ML. HODE Avc. SW0346 8270 - SV034 by GC-MS (1) LCSD-51450 Sampilyae Flag Date: OPTI D	-		S	W8270_S							
ID: LCSD-31430 SampType: TestCode: WR370_S Free Date Gra11 ID: LCSD-31450 BandType: LCSD Amaysis Date Gra11 ID: LCSD-31450 BandType: LCSD-31450 TestCode: WR37 Amaysis Date Gra11 ID: Fest M MDL PQL SPC Met Value SPC Met Va			S	1	OA by GC-M	S					
D: LCSD-51450 Batch ID: 51450 Units. pg/kg Ambysis bate Analysis bate Analysi			estCode: SW8270_S		Prep Date:	02/11/10	9:45	Run ID:	D: S3_100521A		
Result MOL PQL SPK value SPK ratue SPK ratue <th>LCSD-51450</th> <th>50</th> <th>Units: µg/Kg</th> <th></th> <th>Analysis Date:</th> <th></th> <th>14:04</th> <th>SeqNo:</th> <th>o: 1294046</th> <th></th> <th></th>	LCSD-51450	50	Units: µg/Kg		Analysis Date:		14:04	SeqNo:	o: 1294046		
International Internat		MDL	PQL	SPK value	SPK Ref Val		LowLimit HighLimit	ghLimit	RPD Ref Val	%RPD RPDLimit	DLimit Qual
Idence (hy) effer 122 74 330 1667 0 79.1 Incohenizane 1317 117 330 1667 0 79.1 Incohenizane 1311 117 330 1667 0 79.1 Incohenizane 1311 117 330 1667 0 79.1 Incohenizane 1231 177 330 1667 0 79.1 Incohenizane 1231 177 330 1667 0 79.1 Incohenizane 1236 23 330 1667 0 79.1 Incohenizane 1367 17 330 1667 0 74.1 Incohenizane 1367 17 330 1667 0 74.1 Incohenizane 1367 17 7 330 1667 0 74.1 Incohenizane 1367 17 17 330 1667 0 74.1 Incohonizane 1367 <	1533	29	330	1667	0	92.0	40	100	1467	4.39	40
1317 17 330 1667 0 77.0 e 1311 17 330 1667 0 74.0 e 1311 17 330 1667 0 74.0 propane) 1327 17 330 1667 0 74.0 propane) 1327 17 330 1667 0 74.1 propane) 1327 17 330 1667 0 74.1 propane) 1326 18 330 1667 0 74.1 propane) 1326 18 330 1667 0 74.1 propane) 1326 18 330 1667 0 74.1 propane) 1327 17 330 1667 0 74.1 propane) 1327 17 330 1667 0 74.1 propane) 1327 17 17 1667 0 74.1 propopane)<		74	330	1667	0	79.3	40	105	1321	0.0762	40
e 1295 21 330 1667 0 77.1 e 11403 18 330 1667 0 74.9 propares 1327 13 330 1667 0 74.1 propares 1327 17 330 1667 0 74.9 propares 1327 17 330 1667 0 74.1 propares 1327 17 330 1667 0 74.7 propares 1326 17 330 1667 0 74.7 propares 1268 330 1667 0 74.5 propares 1269 12 330 1667 0 74.5 propares 1269 16 330 1667 0 74.5 propares 1267 17 330 1667 0 74.5 propares 1367 16 330 1667 0 91.2 prop		17	330	1667	0	79.0	45	105	1287	2.32	40
e 1403 18 330 1667 0 84.1 e 1311 17 330 1667 0 74.9 pinopane/ 1327 17 330 1667 0 74.9 pinopane/ 1327 17 330 1667 0 74.9 pinopane/ 1326 96 330 1667 0 74.9 pinopane/ 1326 96 330 1667 0 74.9 pinopane/ 1367 18 330 1667 0 74.9 pinopane/ 1367 17 1667 0 74.9	zene	21	330	1667	0	7.77	40	100	1265	•	40
e 1111 17 330 1667 0 74.6 propanel 1248 23 330 1667 0 74.9 propanel 1224 23 330 1667 0 74.9 propanel 1226 96 330 1667 0 74.9 propanel 1206 96 330 1667 0 74.9 propanel 1266 96 330 1667 0 74.9 1206 96 330 1667 0 74.9 1208 13 330 1667 0 74.9 1499 21 330 1667 0 74.9 fend 147 330 1667 0 74.9 fend 1437 23 330 1667 0 74.9 fend 1437 23 330 1667 0 74.9 fend 1437 23 330 1667		18	330	1667	0	84.1	35	105	1382	1.5	40
1218 23 330 1667 0 74.9 propane) 1327 17 330 1667 0 74.0 familie 1244 68 330 1667 0 74.1 familie 1244 68 330 1667 0 74.1 familie 1244 68 330 1667 0 74.1 familie 1249 51 330 1667 0 74.1 familie 1249 51 330 1667 0 74.1 familie 1330 1667 0 74.1 77.3 familie 1409 22 330 1667 0 74.1 familie 1409 23 330 1667 0 84.5 familie 1500 23 330 1667 0 84.5 familie 1530 1667 0 73.0 1667 0 73.0 famo		17	330	1667	0	78.6	45	95	1290	1.57	40
Opropane) 127 17 330 1667 0 76.0 promaine 1244 68 330 1667 0 74.7 1286 96 330 1667 0 74.7 1286 96 330 1667 0 74.7 1288 118 330 1667 0 74.7 12449 21 330 1667 0 74.7 1449 23 330 1667 0 74.5 609.1 53 330 1667 0 74.5 609.1 53 330 1667 0 74.5 609.1 53 330 1667 0 74.5 7 1370 1667 0 84.5 69.7 7 177.0 17 330 1667 0 74.5 7 1400 21 330 1667 0 84.5 6 1512 2		23	330	1667	0	74.9	40	105	1266	1.38	40
1300 22 330 1667 0 74.7 1244 66 330 1667 0 74.7 1266 96 330 1667 0 74.7 1266 96 330 1667 0 74.7 1266 51 330 1667 0 74.7 1449 51 330 1667 0 74.5 609.1 53 330 1667 0 74.5 609.1 53 330 1667 0 74.5 609.1 53 330 1667 0 94.5 609.1 17 17 330 1667 0 94.5 61222 330 1667 0 94.5 94.5 61222 330 1667 0 94.5 94.5 611322 21 330 1667 0 94.5 610 1437 21 330		17	330	1667	0	79.6	20	115	1296	2.37	40
Mamine 1244 68 330 1667 0 74.7 1266 96 330 1667 0 75.9 1409 51 330 1667 0 75.9 1409 51 330 1667 0 76.9 1409 22 330 1667 0 76.9 1409 23 330 1667 0 76.9 609.1 13 330 1667 0 84.5 609.1 13 330 1667 0 84.5 609.1 17.0 17 0 14.5 0 96.5 170 17 17 330 1667 0 96.5 717.0 17 330 1667 0 96.5 60 1437 20 330 1667 0 96.5 141 1437 20 330 1667 0 96.5 1516 53		22	330	1667	0	78.0	40	105	1253	3.62	40
1266 96 330 1667 0 75.9 1438 18 330 1667 0 75.9 1449 51 330 1667 0 75.9 1409 51 330 1667 0 75.9 1409 53 330 1667 0 75.9 609.1 53 330 1667 0 75.9 609.1 53 330 1667 0 75.0 1109 74 330 1667 0 95.6 1140 21 330 1667 0 95.6 1141 21 330 1667 0 95.6 1141 21 330 1667 0 96.9 1141 23 330 1667 0 96.9 1141 23 330 1667 0 96.9 1141 5.5 670 1667 0 96.9	ropylamine	68	330	1667	0	74.7	40	115	1201	3.54	40
1288 18 330 1667 0 77.3 1449 51 330 1667 0 86.5 1409 51 330 1667 0 86.5 1409 53 330 1667 0 86.5 609.1 53 330 1667 0 84.5 609.1 17 330 1667 0 84.5 1367 17 17 330 1667 0 84.5 1109 76 330 1667 0 84.5 717.0 17 17 330 1667 0 84.5 nethane 1494 21 330 1667 0 80.2 e 1312 32 330 1667 0 80.2 e 1312 32 330 1667 0 90.7 e 1312 32 330 1667 0 90.7 e 1470 26 330 1667 0 90.7 e 1516 52 330 1667 0 91.6 e 1516 53 330 1667 0 91.6 e		96	330	1667	0	75.9	35	110	1245	1.69	40
1449 51 330 1667 0 86.9 1400 22 330 1667 0 84.5 1501 17 17 0 84.5 86.9 157 17 17 0 86.9 84.5 1520 23 330 1667 0 84.5 1520 23 330 1667 0 84.5 717.0 17 330 1667 0 84.5 717.0 17 330 1667 0 84.5 717.0 17 330 1667 0 90.7 methane 1494 21 330 1667 0 90.7 e 1392 20 330 1667 0 90.7 e 1516 22 330 1667 0 90.7 e 1512 330 1667 0 90.7 90.7 e 1516 52		18	330	1667	0	77.3	40	115	1301	0.962	40
1409 22 330 1667 0 84.5 609.1 53 330 1667 0 84.5 609.1 53 330 1667 0 84.5 609.1 7 7 330 1667 0 84.5 717.0 17 17 330 1667 0 84.5 717.0 17 330 1667 0 84.5 717.0 17 330 1667 0 91.2 717.0 17 330 1667 0 91.2 6 1437 20 330 1667 0 91.2 6 1446 21 330 1667 0 91.2 6 1550 32 330 1667 0 91.2 6 1516 52 330 1667 0 91.2 6 1516 52 330 1667 0 91.2		51	330	1667	0	9.	45	110	1413	2.49	40
609.1 53 330 1667 0 36.5 i1367 17 330 1667 0 82.0 i1367 17 330 1667 0 82.0 i1409 76 330 1667 0 91.2 717.0 17 330 1667 0 91.2 717.0 17 330 1667 0 91.2 717.0 17 330 1667 0 91.2 717.0 17 330 1667 0 91.2 henol 1437 20 330 1667 0 91.2 iadicine 1512 32 330 1667 0 92.3 ol 1392 20 330 1667 0 92.3 iadicine 1550 330 1667 0 92.3 i 1400 25 330 1667 0 92.3 i 1461 5.5 670 <th></th> <td>22</td> <td>330</td> <td>1667</td> <td>0</td> <td>84.5</td> <td>40</td> <td>110</td> <td>1364</td> <td>3.24</td> <td>40</td>		22	330	1667	0	84.5	40	110	1364	3.24	40
1367 17 330 1667 0 82.0 ene 1409 76 330 1667 0 84.5 1220 23 330 1667 0 84.5 717.0 17 330 1667 0 84.5 717.0 17 330 1667 0 84.5 methane 1494 21 330 1667 0 84.5 encl 1312 32 330 1667 0 86.2 encl 1313 20 330 1667 0 86.2 encl 1370 20 330 1667 0 86.2 oi 1437 20 330 1667 0 86.2 oi 1550 330 1667 0 86.2 oi 1553 330 1667 0 87.2 oi 1551 5.5 670 1667 0 87.2	609	53	330	1667	0		30	105	802.6	27.4	40
cene 1409 76 330 1667 0 84.5 717 1520 23 330 1667 0 91.2 717 171 171 171 0 173 0 91.2 Inclhane 1494 21 330 1667 0 90.5 methane 1512 32 330 1667 0 90.5 ne 1512 32 330 1667 0 90.5 ne 1392 20 330 1667 0 90.5 ne 1392 26 330 1667 0 91.6 ne 1539 53 670 1667 0 92.3 ne 1539 53 670 1667 0 91.6 ne 1539 1667 0 91.6 0 91.6 ne 1530 1667 0 91.6 0 91.6 ne		17	330	1667	0	82.0	45	110	1337	2.21	40
1520 23 330 1667 0 91.2 717.0 17 21 330 1667 0 93.0 1494 21 330 1667 0 93.0 1512 32 330 1667 0 90.7 1512 32 330 1667 0 93.5 1437 20 330 1667 0 93.5 1470 26 330 1667 0 92.3 1516 52 330 1667 0 93.5 1516 52 330 1667 0 92.3 1516 5.5 670 1667 0 92.3 1461 5.5 670 1667 0 91.6 1448 8.8 330 1667 0 91.6 1448 6.5 330 1667 0 91.6 1527 146 5.5 670 1667 0 <th>tene</th> <td>76</td> <td>330</td> <td>1667</td> <td>0</td> <td>84.5</td> <td>45</td> <td>110</td> <td>1351</td> <td>4.23</td> <td>40</td>	tene	76	330	1667	0	84.5	45	110	1351	4.23	40
717.0 17 330 1667 0 43.0 ane 1494 21 330 1667 0 89.6 1512 32 330 1667 0 80.7 1437 20 330 1667 0 86.2 1437 20 330 1667 0 86.2 1437 20 330 1667 0 86.2 1392 20 330 1667 0 87.6 1470 26 330 1667 0 87.2 1539 53 670 1667 0 97.6 1516 5.5 670 1667 0 97.6 1516 5.5 670 1667 0 97.6 1461 5.5 670 1667 0 97.6 1454 8.8 330 1667 0 97.6 1456 5.5 670 1667 0 97.6 1456 1466 0 97.6 1667 0 97.6 1457 10 330 1667 0 72.9 1458 330 1667 0 72.9 1466 <		23	330	1667	0	91.2	40	105	1481	2.62	40
ane 1494 21 330 1667 0 89.6 1512 32 330 1667 0 80.7 1437 20 330 1667 0 86.2 1437 20 330 1667 0 86.2 1437 20 330 1667 0 83.5 1470 26 330 1667 0 83.5 1539 53 670 1667 0 92.3 1516 52 330 1667 0 97.6 1461 5.5 670 1667 0 97.6 1461 5.5 330 1667 0 97.6 1461 5.5 330 1667 0 97.6 1524 8.8 330 1667 0 97.6 152 1461 5.2 670 0 97.6 152 1466 1667 0 72.9	717.	17	330	1667	0	∞	10	95	547.0	26.9	40
1512 32 330 1667 0 90.7 1437 20 330 1667 0 86.2 1437 20 330 1667 0 86.2 1392 20 330 1667 0 86.2 1437 20 330 1667 0 99.0 1430 26 330 1667 0 99.0 1410 26 330 1667 0 90.3 1539 53 670 1667 0 90.9 1461 5.5 670 1667 0 97.6 1461 5.5 670 1667 0 97.6 1461 5.5 330 1667 0 97.6 1468 8.8 330 1667 0 97.6 1452 98.5 22 870 1667 0 97.6 1450 1460 6.0 1667 0 97.6 16 1452 1460 16 1667 0 97.6		21	330	1667	0	89.6	45	110	1501	0.465	40
1437 20 330 1667 0 86.2 1392 20 330 1667 0 86.2 1470 26 330 1667 0 88.2 1470 26 330 1667 0 88.2 1470 26 330 1667 0 88.2 1516 53 670 1667 0 92.3 1516 5.5 670 1667 0 92.3 1516 5.5 670 1667 0 97.6 1461 5.5 670 1667 0 97.6 1461 5.5 670 1667 0 97.6 1461 5.5 670 1667 0 97.6 1452 10 330 1667 0 97.6 1452 8.8 330 1667 0 72.9 1450 8.4 330 1667 0 72.9 1215 100 670 1667 0 72.9 1228		32	330	1667	0	90.7	40	115	1414	6.74	40
1392 20 330 1667 0 83.5 1470 26 330 1667 0 99.0 1470 26 330 1667 0 99.0 1516 53 670 1667 0 99.3 1516 52 330 1667 0 97.6 1461 5.5 670 1667 0 97.6 1461 5.5 670 1667 0 97.6 1461 5.5 670 1667 0 97.6 1452 10 330 1667 0 97.6 1454 8.8 330 1667 0 97.2 986.5 22 670 1667 0 72.9 1466 8.4 330 1667 0 72.9 1215 100 670 1667 0 72.9 1216 1218 670 1667 0 72.9 1215 100 1667 0 72.9 16.0 1216		20	330	1667	0	86.2	45	115	1400	2.66	40
delene 1650 32 330 1667 0 99.0 1470 26 330 1667 0 99.0 1539 53 670 1667 0 92.3 1516 52 330 1667 0 90.9 1461 5.5 670 1667 0 97.6 1461 5.5 670 1667 0 97.6 1461 5.5 670 1667 0 97.6 1461 5.5 330 1667 0 97.6 1454 8.8 330 1667 0 87.2 986.5 22 670 1667 0 72.9 1480 8.4 330 1667 0 72.9 1215 100 670 1667 0 72.9 1215 100 670 1667 0 72.9 1215 100 670 1667 0 72.9 1215 100 670 1667 0 72.9 <t< th=""><th></th><th>20</th><th>330</th><th>1667</th><th>0</th><th>83.5</th><th>45</th><th>105</th><th>1341</th><th>3.73</th><th>40</th></t<>		20	330	1667	0	83.5	45	105	1341	3.73	40
1470 26 330 1667 0 88.2 1539 53 670 1667 0 92.3 1516 52 330 1667 0 92.3 1461 5.5 670 1667 0 92.3 1461 5.5 670 1667 0 92.3 1461 5.5 670 1667 0 97.6 1408 6.5 330 1667 0 94.5 1527 10 330 1667 0 97.6 986.5 22 670 1667 0 72.9 1480 8.4 330 1667 0 72.9 1215 100 670 1667 0 72.9 1228 18 670 1667 0 73.6 1377 6.0 330 1667 0 88.0 1377 6.0 330 1667 0 73.6 1528 18 670 1667 0 72.9 1376		32	330	1667	0	0.66	8.0	148	1585	4.04	40
153953670 1667 092.3151652330 1667 090.914615.5 670 1667 084.51408 6.5 330 1667 084.51408 6.5 330 1667 0 84.5 1408 6.5 330 1667 0 84.5 1457 10 330 1667 0 87.6 1454 8.8 330 1667 0 87.2 986.5 22 670 1667 0 87.2 1480 8.4 330 1667 0 72.9 1215 100 670 1667 0 72.6 1228 18 670 1667 0 73.6 1377 6.0 330 1667 0 82.6 $MD-Not Detected at the Reporting LimitS-Shike Recovery outside accented recovery limits$		26	330	1667	0	88.2	45	110	1476	0.458	40
1516 52 330 1667 0 90.9 1461 5.5 670 1667 0 87.6 1408 6.5 330 1667 0 84.5 1527 10 330 1667 0 84.5 1527 10 330 1667 0 87.6 1454 8.8 330 1667 0 87.2 986.5 2.2 670 1667 0 87.2 1480 8.4 330 1667 0 87.2 1215 100 670 1667 0 73.6 1228 18 670 1667 0 73.6 1246 5.8 330 1667 0 88.0 1377 6.0 330 1667 0 88.0 1377 6.0 330 1667 0 82.6		53	670	1667	0	92.3	50	110	1507	2.1	40
1461 5.5 670 1667 0 87.6 4 1408 6.5 330 1667 0 84.5 5 1527 10 330 1667 0 84.5 5 1454 8.8 330 1667 0 87.2 5 986.5 22 670 1667 0 87.2 5 1480 8.4 330 1667 0 87.2 5 1480 8.4 330 1667 0 72.9 1 1215 100 670 1667 0 72.9 1 1228 18 670 1667 0 73.6 1 1228 18 670 1667 0 73.6 1 1377 6.0 330 1667 0 88.0 5 1377 6.0 330 1667 0 82.6 5 JD-Not Detected at the Reporting Limit S-Sbike Recovery outside accepted recovery limits 0 82.6 5		52	330	1667	0	90.9	45	105	1500	1.05	40
a 1408 6.5 330 1667 0 84.5 5 1527 10 330 1667 0 91.6 4 1527 10 330 1667 0 91.6 4 986.5 22 670 1667 0 87.2 5 986.5 22 670 1667 0 87.2 2 1480 8.4 330 1667 0 72.9 1 1215 100 670 1667 0 72.9 1 1228 18 670 1667 0 73.6 1 1466 5.8 330 1667 0 73.6 1 1377 6.0 330 1667 0 82.6 5 ND-Not Detected at the Reporting Limit S-Shike Recovery outside accepted recovery limits 0 82.6 5		5.5	670	1667	0	87.6	45	120	1382	5.55	40
1527 10 330 1667 0 91.6 4 1454 8.8 330 1667 0 87.2 5 986.5 22 670 1667 0 87.2 5 1480 8.4 330 1667 0 72.9 1 1215 100 670 1667 0 72.9 1 1228 18 670 1667 0 73.6 1 1228 18 670 1667 0 73.6 1 1466 5.8 330 1667 0 88.0 5 1377 6.0 330 1667 0 82.6 5 ND-Not Detected at the Reporting Limit S-Shike Recovery outside accented recovery limits		6.5	330	1667	0	84.5		110	1359	3.52	40
96 1454 8.8 330 1667 0 87.2 5 986.5 22 670 1667 0 88.8 4 1480 8.4 330 1667 0 59.2 2 2 1480 8.4 330 1667 0 72.9 1 1215 100 670 1667 0 72.9 1 1228 18 670 1667 0 73.6 1 1466 5.8 330 1667 0 88.0 5 1377 6.0 330 1667 0 82.6 5 ND-Not Detected at the Reporting Limit S- Shike Recovery outside accented recovery limits		10	330	1667	0		45	105	1492	2.29	40
986.5 22 670 1667 0 59.2 1480 8.4 330 1667 0 88.8 1215 100 670 1667 0 72.9 1228 18 670 1667 0 72.9 1466 5.8 330 1667 0 73.6 1466 5.8 330 1667 0 88.0 1377 6.0 330 1667 0 82.6 ND-Not Detected at the Reporting Limit S-Snike Recovery outside accented recovery limits		8.8	330	1667	0		50	110	1367	6.17	40
1480 8.4 330 1667 0 88.8 1215 100 670 1667 0 72.9 1228 18 670 1667 0 73.6 1466 5.8 330 1667 0 73.6 1466 5.8 330 1667 0 73.6 1377 6.0 330 1667 0 82.0 ND-Not Detected at the Reporting Limit S-Snike Recovery outside accented recovery limits	986.	22	670	1667	0	6.		110	872.3	12.3	40
1215 100 670 1667 0 72.9 1228 18 670 1667 0 73.6 1466 5.8 330 1667 0 88.0 1377 6.0 330 1667 0 88.0 ND-Not Detected at the Reporting Limit S-Snike Recovery outside accepted recovery limits		•	330	1667	0	88.8	45	110	1483	0.169	40
1228 18 670 1667 0 73.6 1466 5.8 330 1667 0 88.0 9 1377 6.0 330 1667 0 88.0 ND-Not Detected at the Reporting Limit S-Snike Recovery outside accepted recovery limits		100	670	1667	0	•	15	130	1146	5.83	40
1466 5.8 330 1667 0 88.0 lene 1377 6.0 330 1667 0 82.6 ND - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits		18	670	1667	0	т. т	15	140	1190	3.13	40
Jene 1377 6.0 330 1667 0 82.6 ND - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits		5.8	330	1667	0		50	105	1454	0.845	40
ND - Not Detected at the Reporting Limit S -	iene -	6.0		1667	0	•	50	115	1361	1.16	40
ND - Not Detected at the Reporting Limit											
	ers: ND - Not Detected at the Reporting Limit	g Limit	S		e accepted recovery	limits		B	- Analyte detected in the associated Method Blank	the associate	ed Method Bla
mLIMS-002 T - Analyte detected helow quantitation limits R - RPD outside accented recovery limits		tion limits	Ľ		recovery limits						

With Order: 1044 SW8270_S SW8270_S SW826 8:70 - SYOA by GC-MS Enclose: 151 Mi. Hippe Acc Fan. Distribution 554 (100 54) Fun. Distribution Sample: 151 Mi. Hippe Acc Fan. Distribution 559 (101 54) Run Distribution Sample: LESD54480 SampType: LGSD Texclose: SW877Ls Amines 06 (101 54) Run Distribution Sample: LESD54440 SampType: LGSD Texclose: SW877Ls Amines 06 (101 54) Run Distribution Complementation 101 POL	CLIENT: Day Envi	Day Environmental Inc.		ANALY	ANALYTICAL QC SUMMARY REPORT	C SUM	MAR	Y REPO	ORT		
t. 131 ML Hope Ave. SW0446 8270 – SYOA by GC-MS Ran Dispect LSD TeacCole SW270 S Preg pate 607110 948 Ran Dispect LSD TeacCole SW270 S Preg pate 6071101 946 Ran Dispect LSD TeacCole SW270 S Preg pate 6071101 946 Ran Dispect LSD TeacCole SW270 S Preg pate 6071101 946 Ran Dispect LSD TeacCole SW270 S Preg pate 6071101 946 Ran Dispect LSD TeacCole SW270 S Preg pate 6071101 946 Ran Dispect LSD Rean L RDD RV val RD RV val RD RV	-			SW8270_S							
It: LGSD51450 SampType LGSD TentCode: SW270_5 Pap Date: DATIO Ran ID S_100571 S_100571 D: LCSD51450 Batch ID: 5440 Units p(Kq Mayes Date: DCTIO1 44.44 SeqNt: 26-04tc SeqNt: 26-04tc SeqNt: 23-04tc D: LCSD51450 Batch ID: 5440 Units p(Kq SPC Mark SeqNt: SeqNt: 26-04tc SeqNt: 26-04tc SeqNt: 23-04tc RMMMether 1443 1-3 310 LEGT 0 RE-7 51 13-0 13-0 RMMether 1443 1-3 310 LEGT 0 RE-7 51 13-0 13-0 RMMether 1443 1-3 310 LEGT 0 RE-7 51 13-0 13-0 RMMether 1443 1-3 310 LEGT 0 RE-7 51 13-0 13-0 13-0 13-0 13-0 13-0 13-0 13-0 13-0 13-0 13-0 13-0 13-0		Hope Ave.		SW846 8270 SV	OA by GC-M	S					
D. L CSD-5140 Bich ID. 5140 Intit. ip/G3 Analysis Dite OS2*10 SerVic Ser	Sample ID: LCSD-51450	SampType: LCSD	TestCode: SW8270_	S	Prep Date:		9:45	Run I			
Rauth MOL POL SPK value SPK ret Val KREC Louchimt Hightlinit RPD Ret Val Initialise 146 8.10 330 1667 0 8.11 139 Initialise 1436 8.10 330 1667 0 8.12 139 Initialise 1436 8.10 330 1667 0 8.12 139 Initialise 1110 2.3 330 1667 0 8.1 139 Incohencie 1354 7.5 330 1667 0 8.5 10 134 Incohencie 1354 7.9 330 1667 0 9.5 113 144 Incohencie 1354 17.4 330 1667 0 9.1 134 9.1 144 Incohencie 1561 1267 0 13.1 134 144 Incohencie 1346 1667 0 9.1 144 144 Incohenci		Batch ID: 51450	Units: µg/Kg		Analysis Date:		14:04	SeqN	o: 1294046		
Ithe 0.0 330 1667 0 66.7 50 115 1396 Ither 14.6 1.0 330 1667 0 86.7 50 110 1475 Self 117 25 670 1667 0 86.7 50 113 Scherklyblenoi 1127 7 330 1667 0 86.7 50 113 Collementa 1367 67 330 1667 0 90.7 120 1374 other 1334 6.2 330 1667 0 90.7 120 1374 other 1334 6.2 330 1667 0 90.7 120 1273 ther 1334 6.2 330 1667 0 90.7 120 1273 there 1336 1667 0 91.7 50 120 120	Analyte	Result		SPK value	SPK Ref Val		wLimit Hi	ghLimit	RPD Ref Val	%RPD RPDLimit	DLimit Qual
phenylether 113 330 167 0 86.5 45 110 147 the 1170 25 670 1667 0 86.5 55 110 147 the 1170 25 670 1667 0 80.6 50 113 143 the 1171 25 670 1667 0 90.6 50 113 143 offer 134 2 330 1667 0 90.7 25 113 113 offer 134 2 330 1667 0 90.7 25 113 113 offer 134 2 330 1667 0 90.7 25 113 134 offer 134 2 330 1667 0 90.7 25 133 134 offer 134 16 330 1667 0 91.6 133 1467 ph	Diethylphthalate	1446		1667	0	86.7	50	115	1398	3.38	40
interpretation 143 7.8 310 1667 0 00.2 50 110 146 alme 1170 25 610 1667 0 00.2 50 113 134 alme 143 7 330 1667 0 95.2 50 113 134 adjointy/plending 1347 67 330 1667 0 95.2 50 113 134 adjointy/plending 1344 6.9 310 1667 0 95.1 25 135 134 coordentation 1344 6.9 310 1667 0 95.1 135 144 coordentation 1346 6.9 310 1667 0 91.1 155 155 icoordentation 1326 330 1667 0 91.1 155 154 154 icoordentation 1567 0 91.1 457 155 154 icoorda	4-Chlorophenvl-phenvlether	1475		1667	0	88.5	45	110	1477	0.139	40
Ifflee 1170 25 670 1667 0 70.2 35 115 1156 inderwijhendi 1473 27 670 1667 0 73.5 1135 1135 1135 1135 1136 1136 1136 1136 1136 1135 1136 1137 1330 1667 0 90.7 25 120 1314 Increme 1334 1330 1667 0 91.6 91.6 91.6 91.6 91.6 91.7 91.6 91.7 Increme 1346 1367 1667 0 91.6 100 100.7 1017 1017 Increme 1316 1330 1667 0 91.6 100 1017 <th< td=""><td>luorene</td><td>1443</td><td></td><td>1667</td><td>0</td><td>9</td><td>50</td><td>110</td><td>1446</td><td>0.227</td><td>40</td></th<>	luorene	1443		1667	0	9	50	110	1446	0.227	40
Inco2+methylphend 143 30 167 0 85.6 30 135 1343 Inco2+methylphendi 1377 7 330 1667 0 89.2 50 115 1343 Incophenetitie 1371 7 330 1667 0 89.2 50 115 1543 Incophenol 1344 13 7 9 330 1667 0 93.7 45 120 1543 Incompariant 1334 85 330 1667 0 94.6 45 110 1317 Incompariant 1536 5.8 330 1667 0 94.6 45 110 1317 Incompariant 1536 7.4 330 1667 0 94.9 123 1443 Incompariant 1531 131 1567 0 94.9 123 1443 Incompariant 1531 1467 0 94.3 143 143	Nitroaniline	1170		1667	0	70.2	35	115	1156	1.16	40
odiphenylamine 187 47 330 1667 0 99.2 50 115 147 prenyl-phenylamine 157 67 330 1667 0 99.2 50 115 154 oriophenol 1544 6.9 330 1667 0 99.1 55 120 1354 oriophenol 1513 1667 0 99.1 55 120 1354 incomplement 1513 1667 0 91.1 55 120 1344 incomplement 1667 0 91.1 55 120 1473 incomplement 1667 0 91.1 55 120 1473 ippleme 1571 15 330 1667 0 94.3 50 120 1673 ippleme 167 0 91.3 1667 0 94.3 50 131 ippleme 1571 174 167 0 94.3	I,6-Dinitro-2-methylphenol	1428		1667	0	85.6	30	135	1343	6.09	40
phenyl-phenyl	-Nitrosodiphenylamine	1487		1667	0	89.2	50	115	1478	0.614	40
orobentene 15(1 7.9 330 1667 0 93.7 45 120 1532 increme 1534 6.9 300 1667 0 93.1 45 120 1332 increme 1534 6.9 300 1667 0 91.1 55 110 1314 increme 1536 5.8 300 1667 0 91.1 55 110 1314 increme 1561 167 0 91.1 55 113 143 increme 1667 0 91.0 55 113 143 phynhalter 1561 17 300 1667 0 91.0 55 113 143 aphtracene 1511 17 300 1667 0 94.9 50 123 153 inforcentraline 1661 2 300 1667 0 94.9 153 153 153 153	-Bromophenyl-phenylether	1577		1667	0	94.6	45	115	1584	0.469	40
(orophendi1344826701667080.725120114(orophendi15346.93301667090.7251201314(here1534193301667091.1551051473(he13265.83301667091.1551051473(he13265.83301667091.1551051473(he16837.43301667091.1551031561(he16837.43301667091.1551131463(horohalale15826.33301667094.950123167(horohalale15826.33301667094.9501301667(horohalale15612.33301667094.3501101687(horohalale16018.63301667094.3501101687(horohalale1707443301667094.51251417(horohalale1707443301667094.51101669(horohalale1707443301667094.51251417(horohalale1707443301667094.51251417(horohalale170317040 <td>lexachlorobenzene</td> <td>1561</td> <td></td> <td>1667</td> <td>0</td> <td>93.7</td> <td>45</td> <td>120</td> <td>1532</td> <td>1.9</td> <td>40</td>	lexachlorobenzene	1561		1667	0	93.7	45	120	1532	1.9	40
Interve 1534 6.9 330 1667 0 92.0 50 110 1217 ene 13519 10 330 1667 0 92.0 50 110 1217 ene 1552 5.8 330 1667 0 91.1 55 110 1501 ophthalate 1552 5.8 330 1667 0 91.1 55 110 1501 split 1582 6.3 330 1667 0 91.1 55 110 1601 horobenzicine 655.1 32 330 1667 0 91.0 55 133 horobenzicine 655.1 32 330 1667 0 94.9 50 130 1667 0 95.1 130 horobenzicine 1601 330 1667 0 94.9 50 130 1667 0 horobenzicine 1601 330 1667 0 <td>entachiorophenol</td> <td>1344</td> <td></td> <td>1667</td> <td>0</td> <td>80.7</td> <td>25</td> <td>120</td> <td>1314</td> <td>2.31</td> <td>40</td>	entachiorophenol	1344		1667	0	80.7	25	120	1314	2.31	40
ene 1519 19 330 1667 0 9.1.1 55 105 1473 plant 1244 1 0 330 1667 0 9.1.1 55 110 1493 plant 1248 18 330 1667 0 91.5 55 110 140 thene 1484 18 330 1667 0 91.1 45 123 1449 thene 1571 53 330 1667 0 94.3 50 110 1564 thene 1571 17 330 1667 0 94.3 50 110 1564 thene 1571 17 330 1667 0 94.3 50 110 1564 173 thene 151 2 330 1667 0 94.3 50 110 1564 1667 1667 1667 1667 1667 1667 1667 166	henanthrene	1534		1667	0	92.0	50	110	1517	1.12	40
Image: Second	uthracene	1519		1667	0	91.1	55	105	1473	3.07	40
yphthalate15265.83301667091.5551101501hene1887.43301667091.5551101501hene16887.43301667091.0551131449rzyhpthalate15826.33301667094.9501251748horobenzidine605.1523301667094.9501201687horobenzidine157117173301667094.9501201687horobenzidine16018.63301667094.9501201687hythmalate16018.63301667094.5511417173hythmalate16018.63301667094.5501201563143hythmalate16018.63301667094.55012015631417hythmalate16018.63301667094.55012015631417hythmalate1503253301667094.55012015631417hythmalate1503253301667094.5511417173hythmalate1503253301667094.525141401.2.3-colphendi136917330<	arbazole	1484		1667	0	89.0	45	115	1459	1.73	40
hene 1484 18 330 1667 0 89.0 55 115 1449 norphihalate 1582 6.3 330 1667 0 101 45 125 1634 norphihalate 1571 17 330 1667 0 94.9 50 125 1634 norphihalate 1571 17 330 1667 0 94.9 50 110 1584 norphihalate 1561 25 330 1667 0 94.3 50 110 1584 norphihalate 1601 8.6 330 1667 0 94.5 45 117 norphihalate 1601 8.6 330 1667 0 90.2 125 1441 norphihalate 1409 46 330 1667 0 90.2 125 1417 norphihalate 1409 46 330 1667 0 90.2 125 1414	ji-n-butylphthalate	1526		1667	0	91.5	55	110	1501	1.66	40
1687.433016670101451251724Txyphthalate15826.33301667094.9501251634Txyphthalate1511173301667094.9501101368Monobarzidine6.5.15.23301667094.3501101368Monobarzidine1571173301667094.3501101368Monobarzidine1651253301667094.3501101568Monobarzidine16018.63301667094.3501101568Monobarzidine16018.63301667094.5401301737Mundalate1107443301667094.5401301737Mundalate16018.63301667094.5401301737Mundalate18031931667094.5451101301437Mundalate18031931667094.5451101301437Mundalate18031931667094.54513015050Mundalate18031931667094.5451331417Mundalate18031931667094.5451331417Mundalate <td>luoranthene</td> <td>1484</td> <td></td> <td>1667</td> <td>0</td> <td>0.68</td> <td>55</td> <td>115</td> <td>1449</td> <td>2.42</td> <td>40</td>	luoranthene	1484		1667	0	0.68	55	115	1449	2.42	40
1582 6.3 330 1667 0 94.9 50 125 1634 605.1 52 330 1667 0 94.3 50 110 1564 1551 22 330 1667 0 94.3 50 110 1564 1651 25 330 1667 0 94.3 50 110 1564 1707 44 330 1667 0 96.1 45 125 1373 11707 44 330 1667 0 96.1 45 125 1417 11707 44 330 1667 0 96.1 45 125 1417 11707 44 330 1667 0 96.1 45 125 1417 11707 44 330 1667 0 96.1 45 125 1417 11803 119 330 1667 0 96.1 45 125 1417 11803 117 330 1667 0 96.1 45 125 1417 11803 117 330 1667 0 96.1 45 125 1400 11867 1466 0 330 1667 0 96.1 45 120 1203 118667 146 126 0 98.1 45 126 100 11867 14667 0 98.1 45 126 100 11466 0 <	yrene	1688		1667	0	101	45	125	1724	2.11	40
605.1 52 330 1667 0 36.3 10 130 687.7 1571 17 330 1667 0 94.3 50 110 1584 1651 25 330 1667 0 94.3 50 110 1584 1707 8.6 330 1667 0 94.5 52 1309 1737 1707 44 330 1667 0 96.1 45 112 1417 1803 19 330 1667 0 96.1 45 125 1894 1503 25 330 1667 0 90.2 125 1414 0 1503 1737 0 96.1 45 125 1424 0 11414 5.8 330 1667 0 96.1 46 125 1414 0 <tr< td=""><td>tutylbenzylphthalate</td><td>1582</td><td></td><td>1667</td><td>0</td><td>94.9</td><td>50</td><td>125</td><td>1634</td><td>3.21</td><td>40</td></tr<>	tutylbenzylphthalate	1582		1667	0	94.9	50	125	1634	3.21	40
1571 17 330 1667 0 94.3 50 110 1584 1651 25 330 1667 0 94.3 50 110 1583 1651 25 330 1667 0 99.0 55 110 1669 1707 44 330 1667 0 99.0 55 110 1669 1409 46 330 1667 0 96.1 45 125 1417 1503 19 330 1667 0 84.4 130 1737 1503 25 330 1667 0 84.4 130 1737 1503 25 330 1667 0 84.4 125 1414 1503 25 330 1667 0 77.0 40 125 1440 1503 1167 330 1667 0 77.0 40 125 1440	,3'-Dichlorobenzidine	605.1		1667	0	36.3	10	130	687.7	12.8	40
I651 25 330 I667 0 99.0 55 110 1669 1707 44 330 1667 0 96.1 45 125 1583 1707 44 330 1667 0 96.1 45 125 1583 1803 1903 1667 0 1667 0 102 40 130 1737 1803 1903 25 330 1667 0 184.5 45 125 1854 1803 25 330 1667 0 102 40 120 1417 1503 25 330 1667 0 77.0 40 120 1414 1503 8.9 330 1667 0 77.0 40 120 1293 ne 1369 177 330 1667 0 77.0 40 120 1293 1366 13667 0 89.1 <td< td=""><td>enzo(a)anthracene</td><td>1571</td><td></td><td>1667</td><td>0</td><td>94.3</td><td>50</td><td>110</td><td>1584</td><td>0.798</td><td>40</td></td<>	enzo(a)anthracene	1571		1667	0	94.3	50	110	1584	0.798	40
late1601 8.6 3301667096.1451251583 1707 44 330 1667 0 96.1 45 125 1377 1409 46 330 1667 0 84.5 45 115 1417 1803 19 330 1667 0 84.5 45 125 1874 1503 25 330 1667 0 90.2 50 110 1505 0 1503 25 330 1667 0 77.0 40 120 1293 100 1503 25 330 1667 0 77.0 40 120 1293 100 1141 5.8 330 1667 0 77.0 40 125 1414 $0.$ 1369 177 330 1667 0 8.18 40 125 1414 $0.$ 1414 5.8 330 1667 0 8.11 45 120 120 120 200 1467 0 89.11 35 100 0 0 2414 1646 0 330 1667 0 99.7 30 125 0 2479 0 330 2500 0 99.1 35 100 0 2479 0 330 2500 0 99.1 35 105 0 2479 0 99.1 35 101 35 101 0	thrysene	1651		1667	0	0.06	55	110	1669	1.13	40
170744330166701024013017371409463301667084.54511514171803193301667084.54511514171503253301667090.250110150501503253301667090.25011012931503253301667077.040120129314145.83301667084.840125141413661773301667082.1401251400146603301667088.14510502ened5146603301667088.14510502ened5146603301667088.14510002ened5248603301667099.5401000247903302500099.135105026002537099.135101351050247903302500099.1351050247903302500099.1351250	is(2-ethylhexyl)phthalate	1601		1667	0	96.1	45	125	1583	1.18	40
1409463301667084.5451151417180319330166701084512518541503253301667090.250110150501503253301667090.25011015030150328.93301667077.0401201293ne14145.83301667084.84012514141369173301667082.1401251400146603301667089.13510002ened5148603301667089.1401251400146903301667089.1351000yl-d14164603301667099.7301250yl-d14164603302500099.7301250yl-d14164603302500099.1351000247903302500099.1351050247903302500099.1351250	ii-n-octylphthalate	1707		1.667	0	102	40	130	1737	1.77	40
180319330166701084512518541503253301667090.25011015050ne14145.83301667077.0401201293ne14145.83301667077.04012514140ne14145.83301667077.04012514140ne1369173301667084.8401251400zened5148603301667089.1401251400vidt4166603301667089.1451050biphenyl146903301667099.7301251400vidt4164603301667089.1451050biphenyl1667099.73012514000vidt4164603301667099.7301250vidt4164603302500099.7301250vidt4247903302500099.1351000247903302500099.1351250	enzo(b)fiuoranthene	1409		1667	0	84.5	45	115	1417	0.596	40
1503253301667090.25011015050ne1283 8.9 3301667077.0401201293ne1369 17 330 16670 84.8 4012514140.zene-d514860 330 16670 82.1 401251400zene-d514860 330 16670 82.1 401251400biphenyi14690 330 16670 89.1 35 1000v/-d1416460 330 16670 88.1 45 1050v/-d1416460 330 16670 98.1 45 1050v/-d1416460 330 16670 98.1 45 1050v/-d1416460 330 16670 98.1 45 1050v/-d1416460 330 16670 98.7 30 1250v/-d1416460 330 25000 99.5 40 1000v/-d14 2537 0 333 2500 0 99.1 35 1250v/-d14 2479 0 330 2500 0 99.1 35 1250v/-d14 2479 0 99.1 35 1250 0	tenzo(k)fluoranthene	1803		1667	0	108	45	125	1854	2.81	40
ne 1283 8.9 330 1667 0 77.0 40 120 1293 ne 1414 5.8 330 1667 0 84.8 40 125 1414 0. zene-d5 1369 17 330 1667 0 82.1 40 125 1414 0. zene-d5 1486 0 330 1667 0 82.1 40 125 1410 0 zene-d5 1486 0 330 1667 0 89.1 35 100 0 0 vibibenvi 1469 0 3330 1667 0 89.1 45 105 0 0 vibibenvi 1646 0 3330 1667 0 88.1 45 105 0 0 vibiblenvi 1646 0 3330 1667 0 98.7 30 125 100 0 vibiblenvi 1646 0 3330 1667 0 98.7 30 125 0 0	enzo(a)pyrene	1503		1667	0	90.2	50	110	1505	0.0832	40
Integrate 1414 5.8 330 1667 0 84.8 40 125 1414 0 Izene-d5 1369 17 330 1667 0 82.1 40 125 1400 Izene-d5 1486 0 330 1667 0 82.1 40 125 1400 Diphenyl 1469 0 330 1667 0 82.1 45 105 0 yl-d14 1646 0 330 1667 0 88.1 45 105 0 yl-d14 1646 0 330 1667 0 98.7 35 105 0 yl-d14 1667 0 98.7 30 125 0 0 d5 2486 0 3330 2500 0 99.7 35 100 0 0 d6 2537 0 3330 2500 0 99.1 35 105 0 lobenol 2537 0 3330 2500 0 99.1	ndeno(1,2,3-cd)pyrene	1283		1667	0	77.0	40	120	1293	0.823	40
1369 17 330 1667 0 82.1 40 125 1400 2 izene-d5 1486 0 330 1667 0 89.1 35 100 0 biphenyl 1469 0 330 1667 0 89.1 35 100 0 yl-d14 1646 0 330 1667 0 88.1 45 105 0 d5 2486 0 330 1667 0 99.7 30 125 0 d5 2479 0 330 2500 0 99.1 35 105 0 phenol 2537 0 333 2500 0 99.1 35 125 0 2479 0 330 2500 0 99.1 35 125 0)ibenzo(a,h)anthracene	1414		1667	0	84.8	40	125		0.00361	40
zene-d5148603301667089.135100biphenyl146903301667088.145105yl-d14164603301667098.730125d5248603302500099.730125phenol253703302500099.135100247903302500099.135125	senzo(g,h,i)perylene	1369		1667	0	82.1	40	125	1400	2.25	40
Iuorobiphenyi 1469 0 330 1667 0 88.1 45 105 rphenyl-d14 1646 0 330 1667 0 98.7 30 125 rphenyl-d15 2486 0 330 2500 0 99.5 40 100 coord-d5 2486 0 330 2500 0 99.5 40 100 coord-d5 2486 0 330 2500 0 99.5 40 100 coord-d5 2479 0 330 2500 0 99.1 35 105 2479 0 330 2500 0 99.1 35 125 2479 0 330 2500 0 99.1 35 125	Surrogate: Nitrobenzene-d5	1486		1667	0	89.1	35	100	0		
phenyl-d14 1646 0 330 1667 0 98.7 30 125 enol-d5 2486 0 330 2500 0 99.5 40 100 iluorophenol 2537 0 330 2500 0 101 35 105 iluorophenol 2479 0 330 2500 0 99.1 35 105 iluorophenol 2479 0 330 2500 0 99.1 35 125	Surrogate: 2-Fluorobiphenyl	1469		1667	0	88.1	45	105	0		
enoi-d5 2486 0 330 2500 0 99.5 40 100 Fluorophenol 2537 0 330 2500 0 101 35 105 -6- 2479 0 330 2500 0 99.1 35 125	Surrogate: Terphenyl-d14	1646		1667	0	98.7	30	125	0		
luorophenol 2537 0 330 2500 0 101 35 105 ,6. 2479 0 330 2500 0 99.1 35 125	Surrogate: Phenol-d5	2486		2500	0		40	100	0		
. 6- 2479 0 330 2500 0 99.1 35 125	Surrogate: 2-Fluorophenol	2537		2500	0	101	35	105	0		
	Surrogate: 2,4,6- ribromophenol	2479		2500	0	б	35	125	0		

0031

S - Spike Recovery outside accepted recovery limits R - RPD outside accepted recovery limits

J - Analyte detected below quantitation limits ND - Not Detected at the Reporting Limit

Qualifiers: mLIMS-002

B - Analyte detected in the associated Method Blank

Client: Day Environmental Inc.

Client Sample ID: MW10-1 (7'-8')

Lab ID: J0944-01

Date: 26-May-10

Project: 151 Mt. Hope Ave. Collection Date: 05/05/10 9:00

Analyses	Result Qual	RL	Units	DF Date Analyzed	Batch ID
SW846 6010 Metals by ICP					SW6010_S
Arsenic	8.6	1.0	mg/Kg	1 05/25/2010 12:05	51805
Barium	85	10	mg/Kg	1 05/25/2010 12:05	51805
Cadmium	0.23 J	0.26	mg/Kg	1.05/25/2010 12:05	51805
Chromium	9.0	1.0	mg/Kg	1 05/25/2010 12:05	51805
Lead	290	0.52	mg/Kg	1 05/25/2010 12:05	51805
Selenium	2.2	1.6	mg/Kg	1 05/25/2010 12:05	51805
Silver	ND	1.6	mg/Kg	1 05/25/2010 12:05	51805
SW846 7471 Mercury by FIA					SW7471
Mercury	0.55	0.045	mg/Kg	1 05/25/2010 11:33	51807

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Client: Day Environmental Inc.

Client Sample ID: MW10-1 (10'-11')

Lab ID: J0944-03

Date: 26-May-10

Project: 151 Mt. Hope Ave. Collection Date: 05/05/10 9:22

Analyses	Result Qual	RL	Units	DF Date Analyzed	Batch ID
SW846 6010 Metals by ICP					SW6010_S
Arsenic	36	1.2	mg/Kg	1 05/25/2010 12:08	51805
Barium	120	12	mg/Kg	1 05/25/2010 12:08	51805
Cadmium	0.28 J	0.31	mg/Kg	1 05/25/2010 12:08	51805
Chromium	11	1.2	mg/Kg	1 05/25/2010 12:08	51805
Lead	110	0.61	mg/Kg	1 05/25/2010 12:08	51805
Selenium	ND	1.8	mg/Kg	1 05/25/2010 12:08	51805
Silver	ND	1.8	mg/Kg	1 05/25/2010 12:08	51805
SW846 7471 Mercury by FIA					SW7471
Mercury	0.32	0.057	mg/Kg	1 05/25/2010 11:34	51807

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits

E - Value above quantitation range

Client: Day Environmental Inc.

Client Sample ID: MW10-2 (8'-9.5')

Lab ID: J0944-05

Date: 26-May-10

Project: 151 Mt. Hope Ave. Collection Date: 05/05/10 11:25

Analyses	Result Qual	RL	Units	DF Date Analyzed	Batch ID
SW846 6010 Metals by ICP					SW6010_S
Arsenic	9.1	0.83	mg/Kg	1 05/25/2010 12:11	51805
Barium	88	8.3	mg/Kg	1 05/25/2010 12:11	51805
Cadmium	0.29	0.21	mg/Kg	1 05/25/2010 12:11	51805
Chromium	11	0.83	mg/Kg	1.05/25/2010 12:11	51805
Lead	270	0.41	mg/Kg	1 05/25/2010 12:11	51805
Selenium	1.3	1.2	mg/Kg	1 05/25/2010 12:11	51805
Silver	ND	1.2	mg/Kg	1 05/25/2010 12:11	51805
SW846 7471 Mercury by FIA					SW7471
Mercury	0.27	0.054	mg/Kg	1 05/25/2010 11:35	51807

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Client: Day Environmental Inc.

Client Sample ID: MW10-3 (10'-12')

Lab ID: J0944-06

Date: 26-May-10

 Project:
 151 Mt. Hope Ave.

 Collection Date:
 05/06/10 8:25

Analyses	Result Qual	RL	Units	DF Date Analyzed	Batch ID
SW846 6010 Metals by ICP					SW6010_S
Arsenic	10	1.1	mg/Kg	1 05/25/2010 12:14	51805
Barium	260	11	mg/Kg	1 05/25/2010 12:14	51805
Cadmium	0.71	0.27	mg/Kg	1 05/25/2010 12:14	51805
Chromium	12	1.1	mg/Kg	1 05/25/2010 12:14	51805
Lead	26	0.54	mg/Kg	1 05/25/2010 12:14	51805
Selenium	1.2 J	1.6	mg/Kg	1 05/25/2010 12:14	51805
Silver	ND	1.6	mg/Kg	1 05/25/2010 12:14	51805
SW846 7471 Mercury by FIA					SW7471
Mercury	ND	0.050	mg/Kg	1 05/25/2010 11:37	51807

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Client: Day Environmental Inc.

Client Sample ID: MW10-3 (13')

Lab ID: J0944-07

Date: 26-May-10

 Project:
 151 Mt. Hope Ave.

 Collection Date:
 05/06/10 8:30

Analyses	Result Qual	RL Unit	s DF Date Analyzed	Batch ID
SW846 6010 Metals by ICP				SW6010_S
Arsenic	6.3	0.78 mg/Kg	1 05/25/2010 12:17	51805
Barium	97	7.8 mg/Kg	1 05/25/2010 12:17	51805
Cadmium	0.79	0.19 mg/Kg	1 05/25/2010 12:17	51805
Chromium	31	0.78 mg/Kg	1 05/25/2010 12:17	51805
Lead	110	0.39 mg/Kg	1 05/25/2010 12:17	51805
Selenium	5.6	1.2 mg/Kg	1 05/25/2010 12:17	51805
Silver	2.9	1.2 mg/Kg	1 05/25/2010 12:17	51805
SW846 7471 Mercury by FIA				SW7471
Mercury	0.27	0.057 mg/Kg	1 05/25/2010 11:38	51807

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Mitkem Laboratories	uboratorie	SS								Date: (Date: 05/26/2010 16:56	
CLJENT: Work Order: Project:	Day Envi J0944 151 Mt. J	Day Environmental Inc. J0944 151 Mt. Hope Ave.			ANALYTICAL C SW6010_S SW846 6010 Metals by ICP	ANALYTICAL QC SUMMARY REPORT _S 6010 Metals by ICP	C SUM	IMAR'	Y REP(ORT		
Sample ID: MB-51805 Client ID: MB-51805	MB-51805 MB-51805	SampType: MBLK Batch ID: 51805	TestCod- Units	TestCode: SW6010_S Units: mg/Kg		Prep Date: Analysis Date:	: 05/24/10 12:10 : 05/25/10 11:59	12:10 11:59	Run II SeqN	Run ID: OPTIMA3_100525C SeqNo: 1298446	0525C	
Analyte		Result	MDL	PQL	SPK value	SPK Ref Val	%REC L	%REC LowLimit HighLimit	ghLimit	RPD Ref Val	%RPD RPDLimit	Qual
Arsenic Barium		QN DN	0.16 0.38	1.0								
Cadmium Chromium		DN DN	0.013 0.054	0.25								
Lead		UN	0.14	0.50								
Selenium Silver		UN UN	0.079	1.5							:	
Sample ID: LCS-51805	-51805	SampType: LCS	TestCod	TestCode: SW6010_S		Prep Date:	: 05/24/10 12:10	12:10	Run ID:	D: OPTIMA3_100525C	0525C	
Client ID: LCS	LCS-51805	Batch ID: 51805	Units	Units: mg/Kg		Analysis Date:	: 05/25/10 12:01	12:01	SeqN	SeqNo: 1298447		
Analyte		Result	MDL	PQL	SPK value	SPK Ref Val	%REC L	LowLimit HighLimit	ghLimit	RPD Ref Val	%RPD RPDLimit	Qual
Arsenic		24.56	0.16	1.0	22.75	0	108	80	120	0		
Barium		494.5	0.38	10	455.0	0	109	80	120	0		
Cadmium		12.12	0.013	0.25	11.35	0	107	80	120	0		
Chromium		48.12	0.054		45.50	0 0	106	80	120	0		
Selenium		22.96	0.78 0.78	1.5	22.75		101	a n B n	120			
Silver		60.76	0.079	1.5	56.50	0	108	75	120	0		
00												
Qualifiers:	ND - Not De	ND - Not Detected at the Reporting Limit			S - Spike Recovery outside accepted recovery limits	le accepted recovery	limits		B - A	unalyte detected in	B - Analyte detected in the associated Method Blank	d Blank
mLIMS-002	J - Analyte d	J - Analyte detected below quantitation limits	mits		R - RPD outside accepted recovery limits	l recovery limits	1					

	Day Environmental Inc.		ANALY	TICAL QC	ANALYTICAL QC SUMMARY REPORT	REPORT	
Work Order: J0944 Project: 151 Mt	J0944 151 Mt. Hope Ave.		SW7471 SW846 7471 Mercury by FIA	rcury by FIA			
Sample ID: MB-51807 Client ID: MB-51807	SampType: MBLK Batch ID: 51807	TestCode: SW7471 Units: mg/Kg		Prep Date: Analysis Date:	Prep Date: 05/24/10 18:30 Analysis Date: 05/25/10 11:14	Run ID: FIMS1_100525A SeqNo: 1297594	
Analyte Mercury	Result	MDL PQL 0.0048 0.033	SPK value	SPK Ref Val	%REC LowLimit HighLimit	RPD Ref Val	%RPD RPDLimit Qual
Sample ID: LCS-51807 Client ID: LCS-51807	SampType: LCS Batch ID: 51807	TestCode: SW7471 Units: mg/Kg		Prep Date: Analysis Date:	Prep Date: 05/24/10 18:30 Analysis Date: 05/25/10 11:16	Run ID: FIMS1_100525A SeqNo: 1297595	
Analyte	Result	MDL PQL	SPK value	SPK Ref Val	SPK Ref Val %REC LowLimit HighLimit	RPD Ref Val	%RPD RPDLimit Qual
Mercury	0.7960	0.0048 0.033	0.7580	Ð	105 80	120 0	

Qualifiers:

0038

mLIMS-002

ND - Not Detected at the Reporting Limit J - Analyte detected below quantitation limits

S - Spike Recovery outside accepted recovery limits
 R - RPD outside accepted recovery limits

WorkOrder: J0944

Project: 151 Mt. Hope Ave. WO Name: 151 Mt. Hope Ave.

Client ID: DAY

Location: 151_MT_HOPE,

Comments: N/A

05/11/2010 11:56

Case: SDG:

PO: 4302S-09

Mitkem Laboratories

Report Level: LEVEL 2 EDD: GISKEY Special Program: HC Due: 05/19/10 Fax Report: Fax Due:

Lab Samp ID	Client Sample ID	Collection Date	Date Recv'd	MAUTIX	Test Code	Samp / Lab Test Comments	HF HT MS SEL Storage
J0944-01A	MW10-1 (7'-8')	05/05/2010 09:00	05/07/2010	Soil	PMoist	1	5
J0944-01A	MW10-1 (7'-8')	05/05/2010 09:00	05/07/2010	Soil	SW6010_S	/ RCRA8	Y 12
J0944-01A	MW10-1 (7'-8')	05/05/2010 09:00	05/07/2010	Soil	SW7471	/ RCRA8	71
J0944-02A	MW10-1 (8.5'-10')	05/05/2010 09:20	05/07/2010	Soil	PMoist		L2
J0944-02A	MW10-1 (8.5'-10')	05/05/2010 09:20	05/07/2010	Soil	SW8270_S		21
J0944-03A	MW10-1 (10'-11')	05/05/2010 09:22	05/07/2010	Soil	PMoist	1	2
J0944-03A	MW10-1 (10'-11')	05/05/2010 09:22	05/07/2010	Soil	SW6010_S	/ RCRA8	۲ ۲2
J0944-03A	MW10-1 (10'-11')	05/05/2010 09:22	05/07/2010	Soil	SW7471	/ RCRA8	21
J0944-04A	MW10-2 (5.5'-6')	05/05/2010 11:10	05/07/2010	Soil	PMoist		VOA
J0944-04A	MW10-2 (5.5'-6')	05/05/2010 11:10	05/07/2010	Soil	SW8260_LOW_S	1	VOA
J0944-05A	MW10-2 (8'-9.5')	05/05/2010 11:25	05/07/2010	Soil	PMoist		2
J0944-05A	MW10-2 (8'-9.5')	05/05/2010 11:25	05/07/2010	Soil	SW6010_S	/ RCRA8	۲ ا2
J0944-05A	MW10-2 (8'-9.5')	05/05/2010 11:25	05/07/2010	Soil	SW7471	/ RCRA8	21
J0944-05B	MW10-2 (8'-9.5')	05/05/2010 11:25	05/07/2010	Soil	SW8270_S		٢٦
J0944-06A	MW10-3 (10'-12')	05/06/2010 08:25	05/07/2010	Soil	PMoist		ដ
J0944-06A	MW10-3 (10'-12')	05/06/2010 08:25	05/07/2010	Soil	SW6010_S	/ RCRA8	Y L2
J0944-06A	MW10-3 (10'-12')	05/06/2010 08:25	05/07/2010	Soil	SW7471	/ RCRA8	21
J0944-06B	MW10-3 (10'-12')	05/06/2010 08:25	05/07/2010	Soil	SW8270_S		L2
J0944-07A	MW10-3 (13')	05/06/2010 08:30	05/07/2010	Soil	PMoist	1	12
J0944-07A	MW10-3 (13')	05/06/2010 08:30	05/07/2010	Soil	SW6010_S	/ RCRA8	۲ ار
J0944-07A	MW10-3 (13')	05/06/2010 08:30	05/07/2010	Soil	SW7471	/ RCRA8	21

Page 01 of 02

Lab Client Rep: Agnes R Ng

WorkOrder: J0944			05/11/	02/11/2010 11:56	Mit	Mitkem Laboratories	
Client ID: DAY Project: 151 Mt. Hope Ave. WO Name: 151 Mt. Hope Ave. Location: 151_MT_HOPE, Comments: N/A			L SD	Case: SDG: PO: 4302S-09	HC Due: 05/19/10 Fax Due: Fax Report:	Report Level: LEVEL 2 Special Program: EDD: GISKEY	
Lab Samp ID Client Sample ID	Collection Date	Date Recv'd	Matrix	Test Code	Samp / Lab Test Comments	HF HT	MS SEL Storage
J0944-08A TB050610	05/06/2010 00:00	05/07/2010	Aqueous	SW8260_W			VOA
 HF = Fraction logged in but all tests have been placed on hold K 	s have been placed on	hold			H	HT = Test logged in but has been placed on hold	placed on hold
Lab Client Rep: Agnes R Ng							Page 02 of 02

,

Page 02 of 02

Special Handling: Standard TAT - 7 to 10 business days Rush TAT - Date Needed: • All TATs subject to laboratory approval. • Min. 24-hour notification needed for rushes. • Samples disposed of after 60 days unless otherwise instructed.	H302 5-09	Hepe Avenue	State: NY	42403	w: QA/QC Reporting Notes:		Provide MA DEF MCF CAM Report Provide CT DPH RCP Report	QA/QC Reporting Level		State specific reporting standards:														ratied 🗖 Fridge temp0C 🔲 Freezer temp0C
	Project No.: H302	Site Name: 151 MT. Hepe	Location: Rechester	Sampler(s): C. Hannyter	List preservative code below	C / Analyses:	eas 128	ر ۱۷۱۶	WE 2AQ	אנעא דכר ל	×	×	×		××	×	×				Temp ^C DEDD Format	E-mail to	1	Ambient 🗆 Iced 🗖 Refrigerated 🗖 Fridge temp
OF CUSTODY RECORD	SAME			RQN:	7=CH ₃ OH	Containers:	20	. Glas 22255 23255 2325 2325 2325 2325 2325 2	V AO Imber Jear (lastic	V 10 # A 10 # O 10 # I 10 4				×				× X	-	i		5-6-10 -2/6:00	517/10 9:40 2°C	
CHAIN OF CU	Invoice To:			P.O. No.:	5=NaOH 6=Ascorbic Acid	WW=Wastewater	ge A=Air		3	T Type Type	1:00 50 0	9.20 50 6	9,22 50 0	11:10 50 6	11:25 50 6	8:25 50 6	8:30 50 C	- 4,0			Received by:	X S	2 L S	
CL	MEC V TNC			0210×114	3=H ₂ SO ₄ 4=HNO ₃		S		C=Composite	Date:	5-5-10		5-5-10	_	5-5-10	5-6-10) 5-6-10				Rece	Ted F	Vine	•
SPECTRUM ANALYTICAL, INC. Featuring HANIBAJ, TECHNOLOGY	Report To: JELL Dan II'N	40 COMMERCINE	HESTER N	Telephone #: 565 H54 Project Mgr.	520 ₃ 2=HCI	>	>		G=Grab C=	Lab Id: Sample Id:	70744 01 MWIO-1 (7'-8')	1-01 MW	- 03 MW 10-1 (10-11')	· 04 MW 10-2 (5.5-6)	- 05 MW10-2 (8-9.5	-06 MM 10-3/10-12	4 - 07 MN 10-3 (13')	JOA44 - 08 1B650610			Relinquished by:	(2L-16)	Feder	

11 Almgren Drive • Agawam, MA 01001 • 413-789-9018 • FAX 413-789-4076 • www.spectrum-analytical.com

MITKEM LABORATORIES Sample Condition Form

		•	١					Page	<u> </u>	of	1
Received By: Vをい	Reviewed By	r. Č	AW		Dates	517110	Mitke	m Wo	rk Ord	er #:	70944
Client Project: 151 M	T HOPE			<u> </u>	Clien	DP					Soil Headspace o
					Preservation (1	VOA	Air Bubble ≥
	~		Samp	1	HNO ₃	H₂SO₄	HCI	NaOH	H ₃ PO ₄	Matrix	1/4"
1) Cooler Sealed	(Yes)/No	200	144	01							
	0			09							
2) Custody Seal(s)	Rresent / Absent			03						.US	VEC" 517110
	Coolers / Bottles			A						US	
	Antact / Broken			05							
	\bigcirc			06							
3) Custody Seal Number(AN 18		л Т	07							
		200		08						н	
		50	(,,								
	\sum										/
4) Chain-of-Custody	Rresent)/ Absent										/
				L							
5) Cooler Temperature	<u></u> MT-1										
IR Temp Gun ID	MT-1										
Coolant Condition	ICE								\bigvee		
								7			
6) Airbill(s)	Present / Absent							7			
Airbill Number(s)	FEDEX						Š				
	870986444720										
	<u>8 10 1 8 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</u>		64° -			.t.					
						₹ Z					
	· · · · · · · · · · · · · · · · · · ·										
	\frown			┣──	/						
7) Samples Bottles	Intact / Broken / Leaking			/	<u> </u>						
				/							
8) Date Received	517110		/	Í							
		_									
9) Time Received	g:40										
		$\overline{\nabla}$									
Preservative Name/Lot No	D.:	-									
		k		VOA	Matrix	Key:		L			
					US =	Unpre	serve	d Soil		A = A	ir
						Unpre	serve	d Aque	eous	H = H	
					M = N		_			E = E	
00	Quadition Notification (Quad		A atian F	<u> </u>		aHSO	4			$\mathbf{F} = \mathbf{F}$	reeze
See Sample Form ID: QAF.0006	Condition Notification/Corre	scuve /	SCUON P	om	yes /(U)		Rad (ОК уе	s / no	

Last Page of Data Report

Report Date: 18-Jun-10 11:38

I Final Repo	ort
C Re-Issued	Report
Revised Re	eport

A DIVISION OF SPECTRUM ANALYTICAL, INC. Featuring HANIBAL TECHNOLOGY *Laboratory Report*

Work Order: J1185

Project #:

Project : 151 Mt. Hope Ave.

Day Environmental Inc. 40 Commercial Street Rochester, NY 14614-1008

Attn: Jeff Danzinger

Laboratory ID	<u>Client Sample ID</u>		Matrix	Date Sampled	Date Received
J1185-01	MW10-1		Aqueous	04-Jun-10 13:45	08-Jun-10 08:45
J1185-02	MW10-2		Aqueous	04-Jun-10 15.15	08-Jun-10 08:45
J1185-03	MW10-3		Aqueous	04-Jun-10 11:15	08-Jun-10 08:45
J1185-04	TB6/4/10		Aqueous	04-Jun-10 00:00	08-Jun-10 08:45

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. The results relate only to the samples(s) as received.

All applicable NELAC or USEPA CLP requirments have been meet.

Mitkem Laboratories is accredited under the National Environmental Laboratory Approval Program (NELAP) and is certified by several States, as well as USEPA and US Department of Defense. The current list of our laboratory approvals and certifications is available on the Certifications page our web site at www.mitkem.com.

Please contact the Laboratory or Technical Director at 401-732-3400 with any questions regarding the data contained in the laboratory report.

Department of Defense Connecticut Delaware Maine Massachusetts New Hampshire New Jersey New York North Carolina Pennsylvania Rhode Island Texas USDA USEPA - ISM USEPA - SOM N/A PH-0153 N/A 2007037 M-RI907 2631 RI001 11522 581 68-00520 LAI00301 T104704422-08-TX P330-08-00023 EP-W-09-039 EP-W-05-030

Authorized by:

Yihai Ding Laboratory Director

Technical Reviewer's Initials:

Analytical Data Package for Day Environmental Inc.

Client Project: 151 Mt. Hope Ave.

Mitkem Work Order ID: J1185

June 18, 2010

Prepared For:

Day Environmental Inc. 40 Commercial Street Rochester, NY 14614 Attn: Mr. Jeff Danzinger

Prepared By:

Mitkem Laboratories 175 Metro Center Boulevard Warwick, RI 02886 (401) 732-3400 **Client: Day Environmental Inc.**

Client Project: 151 Mt. Hope Ave.

Lab Project ID: J1185

Date samples received: 06/08/10

Project Narrative

This data report includes the analysis results for four (4) samples that were received from Day Environmental Inc. on June 8, 2010. Analyses were performed per specification on the Chain of Custody form. For reference, a copy of the Mitkem Sample Log-In form is included for cross-referencing the client sample ID and the laboratory sample ID.

Percent recoveries for surrogate standards for volatiles analysis were within the QC limits. The recoveries and percent RPDs for the volatile laboratory control samples were within the QC limits. No other unusual observations were made during sample analysis.

Percent recoveries for surrogate standards for semivolatiles analysis were within the QC limits. The recoveries for semivolatile laboratory control samples were within the QC limits with the exception of marginally high recovery of pentachlorophenol and low recovery of 3,3'-dichlorobenzidine in LCS-52173 and marginally low recovery of hexachlorocyclopentadiene in LCSD-52173. Percent RPDs were within the QC limits with the exception of several analytes. No other unusual observations were made during sample analysis.

Spike recoveries for the laboratory control sample for metals were within the QC limits. Serial dilution was performed on sample MW10-3. Percent RPD were within the QC limits with the exception of barium and selenium. No other unusual observations were made during sample analysis.

The pages in this report have been numbered consecutively, which starts with the title page and ends with the page labeled as "Last Page of data Report".

This data report has been reviewed and is authorized for release as evidenced by the signature below.

ligner Huntly

Agnes Huntley CLP Project Manager

Date: 17-Jun-10

Client: Day Environmental Inc. Client Sample ID: MW10-1 Lab ID: J1185-01

 Project:
 151 Mt. Hope Ave.

 Collection Date:
 06/04/10 13:45

Analyses	Result Qual	RL U	Units	DF Date Analyzed	Batch ID
SW846 8260C VOC by GC-MS					SW8260_W
Dichlorodifluoromethane	ND	5.0 µ	ug/L	1 06/14/2010 16:49	52287
Chloromethane	ND	5.0 µ	ug/L	1 06/14/2010 16:49	52287
Vinyl chloride	ND	5.0 µ	ug/L	1 06/14/2010 16:49	52287
Bromomethane	ND	5.0 µ	ug/L	1 06/14/2010 16:49	52287
Chloroethane	ND	5.0 µ	ug/L	1 06/14/2010 16:49	52287
Trichlorofluoromethane	ND	5.0 µ	ug/L	1 06/14/2010 16:49	52287
1,1-Dichloroethene	ND	5.0 µ	ug/L	1 06/14/2010 16:49	52287
Acetone	ND	5.0 µ	ug/L	1 06/14/2010 16:49	52287
lodomethane	ND	5.0 µ	ug/L	1 06/14/2010 16:49	52287
Carbon disulfide	ND	5.0 µ	⊔g/L	1 06/14/2010 16:49	52287
Methylene chloride	ND	5.0 µ	⊔g/L	1 06/14/2010 16:49	52287
trans-1,2-Dichloroethene	ND	5.0 µ	ug/L	1 06/14/2010 16:49	52287
Methyl tert-butyl ether	ND	5.0 µ	Jg/L	1 06/14/2010 16:49	52287
1,1-Dichloroethane	ND	5.0 µ	Jg/L	1 06/14/2010 16:49	52287
Vinyl acetate	ND	5.0 µ	ıg/L	1 06/14/2010 16:49	52287
2-Butanone	ND	5.0 µ	ıg/L	1 06/14/2010 16:49	52287
cis-1,2-Dichlorœthene	ND	5.0 µ	ıg/L	1 06/14/2010 16:49	52287
2,2-Dichloropropane	ND	5.0 µ	ıg/L	1 06/14/2010 16:49	52287
Bromochloromethane	ND	5.0 µ	Jg/L	1 06/14/2010 16:49	52287
Chloroform	ND	5.0 μ	ıg/L	1 06/14/2010 16:49	52287
1,1,1-Trichloreethane	ND	5.0 μ	⊔g/L	1 06/14/2010 16:49	52287
1,1-Dichloropropene	ND	5.0 µ	Jg/L	1 06/14/2010 16:49	52287
Carbon tetrachloride	ND	5.0 µ	⊿g/L	1 06/14/2010 16:49	52287
1,2-Dichloroethane	ND	5.0 µ	µg/L	1 06/14/2010 16:49	52287
Benzene	ND	5.0 µ	ug/L	1 06/14/2010 16:49	52287
Trichloroethene	ND	5.0 µ	ug/L	1 06/14/2010 16:49	52287
1,2-Dichloropropane	ND	5.0 µ	ug/L	1 06/14/2010 16:49	52287
Dibromomethane	ND	5.0 µ	ug/L	1 06/14/2010 16:49	52287
Bromodichloromethane	ND	5.0 µ	ug/L	1 06/14/2010 16:49	52287
cis-1,3-Dichloropropene	ND	5.0 µ	Jg/L	1 06/14/2010 16:49	52287
4-Methyl-2-pentanone	ND	5.0 µ	Jg/L	1 06/14/2010 16:49	52287
Toluene	ND	5.0 µ	ug/L	1 06/14/2010 16:49	52287
trans-1,3-Dichloropropene	ND	5.0 µ	ug/L	1 06/14/2010 16:49	52287
1,1,2-Trichloroethane	ND	5.0 µ	ug/L	1 06/14/2010 16:49	52287
1,3-Dichloropropane	ND	5.0 µ	ug/L	1 06/14/2010 16:49	52287
Tetrachloroethene	ND	5.0 µ	ug/L	1 06/14/2010 16:49	52287
2-Hexanone	ND	5.0 µ	ug/L	1 06/14/2010 16:49	52287
Dibromochloromethane	ND	5.0 µ	Jg/L	1 06/14/2010 16:49	52287
1,2-Dibromoethane	ND	5.0 µ	Jg/L	1 06/14/2010 16:49	52287

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Client: Day Environmental Inc. Client Sample ID: MW10-1 Lab ID: J1185-01 Date: 17-Jun-10

 Project:
 151 Mt. Hope Ave.

 Collection Date:
 06/04/10 13:45

Analyses Resul	t Qual RL	Units	DF Date Analyzed	Batch ID
SW846 8260C VOC by GC-MS	····			SW8260_W
Chlorobenzene	5.0	μg/L	1 06/14/2010 16:49	52287
1,1,1,2-Tetrachloroethane N		μg/L	1 06/14/2010 16:49	52287
Ethylbenzene N	5.0	μg/L	1 06/14/2010 16:49	52287
m,p-Xylene N	5.0		1 06/14/2010 16:49	52287
o-Xylene NI	5.0	μg/L	1 06/14/2010 16:49	52287
Xylene (Total) N	5.0	μg/L	1 06/14/2010 16:49	52287
Styrene N	5.0	µg/L	1 06/14/2010 16:49	52287
Bromoform NI	5.0	µg/L	1 06/14/2010 16:49	52287
Isopropylbenzene NI	5.0	μg/Ľ	1 06/14/2010 16:49	52287
1,1,2,2-Tetrachloroethane NI	5.0	μg/L	1 06/14/2010 16:49	52287
Bromobenzene NI	5.0	μg/L	1 06/14/2010 16:49	52287
1,2,3-Trichloropropane NI	5.0	μg/L	1 06/14/2010 16:49	52287
n-Propylbenzene NI	5.0	μg/L	1 06/14/2010 16:49	52287
2-Chlorotoluene NI	5.0	μg/L	1 06/14/2010 16:49	52287
1,3,5-Trimethylbenzene NI	5.0	μg/L	1 06/14/2010 16:49	52287
4-Chlorotoluene NI	5.0	μg/L	1 06/14/2010 16:49	52287
tert-Butylbenzene NI	5.0	μg/L	1 06/14/2010 16:49	52287
1,2,4-Trimethylbenzene NI	5.0	μg/L	1 06/14/2010 16:49	52287
sec-Butylbenzene Ni	5.0	µg/L	1 06/14/2010 16:49	52287
4-Isopropyltoluene NI	5.0	µg/L	1 06/14/2010 16:49	52287
1,3-Dichlorobenzene Ni	5.0	μg/L	1 06/14/2010 16:49	52287
1,4-Dichlorobenzene N	5.0	μg/L	1 06/14/2010 16:49	52287
n-Butylbenzene NI	5.0	μg/L	1 06/14/2010 16:49	52287
1,2-Dichlorobenzene NI	5.0	μg/L	1 06/14/2010 16:49	52287
1,2-Dibromo-3-chloropropane NI	5.0	µg/L	1 06/14/2010 16:49	52287
1,2,4-Trichlorobenzene NI	ວ ໌ 5.0	µg/L	1 06/14/2010 16:49	52287
Hexachlorobutadiene N	5.0	μg/L	1 06/14/2010 16:49	52287
1,2,3-Trichlorobenzene Ni	5.0	μg/L	1 06/14/2010 16:49	52287
Naphthalene N	5.0	µg/L	1 06/14/2010 16:49	52287
Surrogate: Dibromofluoromethane 10	1 85-115	%REC	1 06/14/2010 16:49	52287
Surrogate: 1,2-Dichloroethane-d4 10	3 70-120	%REC	1 06/14/2010 16:49	52287
Surrogate: Toluene-d8 93.	5 85-120	%REC	1 06/14/2010 16:49	52287
Surrogate: Bromofluorobenzene 94.	5 75-120	%REC	1 06/14/2010 16:49	52287

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Client: Day Environmental Inc. Client Sample ID: MW10-2

Lab ID: J1185-02

Date: 17-Jun-10

 Project:
 151 Mt. Hope Ave.

 Collection Date:
 06/04/10 15:15

Analyses	Result Qua	I RL	Units	DF Date Analyzed	Batch ID
SW846 8260C VOC by GC-MS					SW8260_W
Dichlorodifluoromethane	ND	5.0	µg/L	1 06/14/2010 17:17	52287
Chloromethane	ND	5.0	μg/L	1 06/14/2010 17:17	52287
Vinyl chloride	ND	5.0	μg/L	1 06/14/2010 17:17	52287
Bromomethane	ND	5.0	µg/L	1 06/14/2010 17:17	52287
Chloroethane	ND	5.0	µg/L	1 06/14/2010 17:17	52287
Trichlorofluoromethane	ND	5.0	µg/L	1 06/14/2010 17:17	52287
1,1-Dichloroethene	ND	5.0	µg/L	1 06/14/2010 17:17	52287
Acetone	ND	5.0	µg/L	1 06/14/2010 17:17	52287
lodomethane	ND	5.0	µg/L	1 06/14/2010 17:17	52287
Carbon disulfide	ND	5.0	µg/L	1 06/14/2010 17:17	52287
Methylene chloride	ND	5.0	µg/L	1 06/14/2010 17:17	52287
trans-1,2-Dichloroethene	ND	5.0	µg/L	1 06/14/2010 17:17	52287
Methyl tert-butyl ether	ND	5.0	µg/L	1 06/14/2010 17:17	52287
1,1-Dichloroethane	ND	5.0	µg/L	1 06/14/2010 17:17	52287
Vinyl acetate	ND	5.0	µg/L	1 06/14/2010 17:17	52287
2-Butanone	ND	5.0	µg/L	1 06/14/2010 17:17	52287
cis-1,2-Dichloroethene	ND	5.0	µg/L	1 06/14/2010 17:17	52287
2,2-Dichloropropane	ND	5.0	µg/L	1 06/14/2010 17:17	52287
Bromochloromethane	ND	5.0	µg/Ľ	1 06/14/2010 17:17	52287
Chloroform	ND	5.0	µg/L	1 06/14/2010 17:17	52287
1,1,1-Trichloroethane	ND	5.0	µg/L	1 06/14/2010 17:17	52287
1,1-Dichloropropene	ND	5.0	µg/L	1 06/14/2010 17:17	52287
Carbon tetrachloride	ND	5.0	µg/L	1 06/14/2010 17:17	52287
1,2-Dichloroethane	ND	5.0	µg/L	1 06/14/2010 17:17	52287
Benzene	ND	5.0	µg/L	1 06/14/2010 17:17	52287
Trichloroethene	ND	5.0	µg/L	1 06/14/2010 17:17	52287
1,2-Dichloropropane	ND	5.0	µg/L	1 06/14/2010 17:17	52287
Dibromomethane	ND	5.0	µg/L	1 06/14/2010 17:17	52287
Bromodichloromethane	ND	5.0	µg/L	1 06/14/2010 17:17	52287
cis-1,3-Dichloropropene	ND	5.0	µg/L	1 06/14/2010 17:17	52287
4-Methyl-2-pentanone	ND	5.0	µg/L	1 06/14/2010 17:17	52287
Toluene	ND	5.0	µg/L	1 06/14/2010 17:17	52287
trans-1,3-Dichloropropene	ND	5.0	µg/L	1 06/14/2010 17:17	52287
1,1,2-Trichloroethane	ND	5.0	µg/L	1 06/14/2010 17:17	52287
1,3-Dichloropropane	ND	5.0	µg/L	1 06/14/2010 17:17	52287
Tetrachloroethene	ND	5.0	µg/L	1 06/14/2010 17:17	52287
2-Hexanone	ND	5.0	µg/L	1 06/14/2010 17:17	52287
Dibromochloromethane	ND	5.0	µg/L	1 06/14/2010 17:17	52287
1,2-Dibromoethane	ND	5.0	μg/L	1 06/14/2010 17:17	52287

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Client: Day Environmental Inc. Client Sample ID: MW10-2

Lab ID: J1185-02

Date: 17-Jun-10

 Project:
 151 Mt. Hope Ave.

 Collection Date:
 06/04/10 15:15

Analyses	Result	Qual I	RL	Units	DF Date Analyzed	Batch ID
SW846 8260C VOC by GC-MS						SW8260_W
Chlorobenzene	ND		5.0	µg/L	1 06/14/2010 17:17	52287
1,1,1,2-Tetrachloroethane	ND		5.0	µg/L	1 06/14/2010 17:17	52287
Ethylbenzene	ND		5.0	µg/L	1 06/14/2010 17:17	52287
m,p-Xylene	ND		5.0	µg/L	1 06/14/2010 17:17	52287
o-Xylene	ND		5.0	µg/L	1 06/14/2010 17:17	52287
Xylene (Total)	ND		5.0	µg/L	1 06/14/2010 17:17	52287
Styrene	ND		5.0	µg/L	1 06/14/2010 17:17	52287
Bromoform	ND		5.0	µg/L	1 06/14/2010 17:17	52287
Isopropylbenzene	ND		5.0	µg/L	1 06/14/2010 17:17	52287
1,1,2,2-Tetrachloroethane	ND		5.0	µg/L	1 06/14/2010 17:17	52287
Bromobenzene	ND		5.0	µg/L	1 06/14/2010 17:17	52287
1,2,3-Trichloropropane	ND		5.0	µg/L	1 06/14/2010 17:17	52287
n-Propylbenzene	ND		5.0	µg/L	1 06/14/2010 17:17	52287
2-Chlorotoluene	ND		5.0	µg/L	1 06/14/2010 17:17	52287
1,3,5-Trimethylbenzene	ND		5.0	µg/L	1 06/14/2010 17:17	52287
4-Chlorotoluene	ND		5.0	µg/L	1 06/14/2010 17:17	52287
tert-Butylbenzene	ND		5.0	µg/L	1 06/14/2010 17:17	52287
1,2,4-Trimethylbenzene	ND		5.0	µg/L	1 06/14/2010 17:17	52287
sec-Butylbenzene	ND		5.0	µg/L	1 06/14/2010 17:17	52287
4-lsopropyltoluene	ND		5.0	µg/L	1 06/14/2010 17:17	52287
1,3-Dichlorobenzene	ND		5.0	µg/L	1 06/14/2010 17:17	52287
1,4-Dichlorobenzene	ND		5.0	µg/L	1 06/14/2010 17:17	52287
n-Butylbenzene	ND		5.0	µg/L	1 06/14/2010 17:17	52287
1,2-Dichlorobenzene	ND		5.0	µg/L	1 06/14/2010 17:17	52287
1,2-Dibromo-3-chloropropane	ND		5.0	µg/L	1 06/14/2010 17:17	52287
1,2,4-Trichlorobenzene	ND		5.0	µg/L	1 06/14/2010 17:17	52287
Hexachlorobutadiene	ND		5.0	µg/L	1 06/14/2010 17:17	52287
1,2,3-Trichlorobenzene	ND		5.0	µg/L	1 06/14/2010 17:17	52287
Naphthalene	ND		5.0	µg/L	1 06/14/2010 17:17	52287
Surrogate: Dibromofluoromethane	106	85-	115	%REC	1 06/14/2010 17:17	52287
Surrogate: 1,2-Dichloroethane-d4	101	70-	120	%REC	1 06/14/2010 17:17	52287
Surrogate: Toluene-d8	94.1	85-	120	%REC	1 06/14/2010 17:17	52287
Surrogate: Bromofluorobenzene	93.0	75-	120	%REC	1 06/14/2010 17:17	52287

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Client: Day Environmental Inc. Client Sample ID: MW10-3 Lab ID: J1185-03 Date: 17-Jun-10

 Project:
 151 Mt. Hope Ave.

 Collection Date:
 06/04/10 11:15

Analyses	Result	Qual	RL	Units	DF Date Analyzed	Batch ID
SW846 8260C VOC by GC-MS						SW8260_W
Dichlorodifluoromethane	ND		5.0	µg/L	1 06/14/2010 17:46	52287
Chloromethane	ND		5.0	µg/L	1 06/14/2010 17:46	52287
Vinyl chloride	ND		5.0	µg/L	1 06/14/2010 17:46	52287
Bromomethane	ND		5.0	µg/L	1 06/14/2010 17:46	52287
Chloroethane	ND		5.0	µg/L	1 06/14/2010 17:46	52287
Trichlorofluoromethane	ND		5.0	µg/L	1 06/14/2010 17:46	52287
1,1-Dichloroethene	ND		5.0	µg/L	1 06/14/2010 17:46	52287
Acetone	ND		5.0	µg/L	1 06/14/2010 17:46	52287
lodomethane	ND		5.0	µg/L	1 06/14/2010 17:46	52287
Carbon disulfide	ND		5.0	µg/L	1 06/14/2010 17:46	52287
Methylene chloride	ND		5.0	µg/L	1 06/14/2010 17:46	52287
trans-1,2-Dichloroethene	ND		5.0	µg/L	1 06/14/2010 17:46	52287
Methyl tert-butyl ether	ND		5.0	µg/L	1 06/14/2010 17:46	52287
1,1-Dichloroethane	ND		5.0	µg/L	1 06/14/2010 17:46	52287
Vinyl acetate	ND		5.0	μg/L	1 06/14/2010 17:46	52287
2-Butanone	ND		5.0	µg/L	1 06/14/2010 17:46	52287
cis-1,2-Dichloroethene	ND		5.0	µg/L	1 06/14/2010 17:46	52287
2,2-Dichloropropane	ND		5.0	µg/L	1 06/14/2010 17:46	52287
Bromochloromethane	ND		5.0	µg/L	1 06/14/2010 17:46	52287
Chloroform	ND		5.0	µg/L	1 06/14/2010 17:46	52287
1,1,1-Trichloroethane	ND		5.0	µg/L	1 06/14/2010 17:46	52287
1,1-Dichloropropene	ND		5.0	µg/L	1 06/14/2010 17:46	52287
Carbon tetrachloride	ND		5.0	µg/L	1 06/14/2010 17:46	52287
1,2-Dichloroethane	ND		5.0	µg/L	1 06/14/2010 17:46	52287
Benzene	ND		5.0	µg/L	1 06/14/2010 17:46	52287
Trichloroethene	ND		5.0	µg/L	1 06/14/2010 17:46	52287
1,2-Dichloropropane	ND		5.0	µg/L	1 06/14/2010 17:46	52287
Dibromomethane	ND		5.0	µg/L	1 06/14/2010 17:46	52287
Bromodichloromethane	ND		5.0	µg/L	1 06/14/2010 17:46	52287
cis-1,3-Dichloropropene	. ND		5.0	µg/L	1 06/14/2010 17:46	52287
4-Methyl-2-pentanone	ND		5.0	µg/L	1 06/14/2010 17:46	52287
Toluene	ND		5.0	µg/L	1 06/14/2010 17:46	52287
trans-1,3-Dichloropropene	ND		5.0	µg/L	1 06/14/2010 17:46	52287
1,1,2-Trichloroethane	ND		5.0	µg/L	1 06/14/2010 17:46	52287
1,3-Dichloropropane	ND		5.0	µg/L	1 06/14/2010 17:46	52287
Tetrachloroethene	ND		5.0	µg/L	1 06/14/2010 17:46	52287
2-Hexanone	ND		5.0	µg/L	1 06/14/2010 17:46	52287
Dibromochloromethane	ND		5.0	µg/L	1 06/14/2010 17:46	52287
1,2-Dibromoethane	ND		5.0	µg/L	1 06/14/2010 17:46	52287

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Client: Day Environmental Inc. Client Sample ID: MW10-3 Lab ID: J1185-03 Date: 17-Jun-10

 Project:
 151 Mt. Hope Ave.

 Collection Date:
 06/04/10 11:15

Analyses	Result	Qual	RL	Units	DF Date Analyzed	Batch ID
SW846 8260C VOC by GC-MS						SW8260_W
Chlorobenzene	ND		5.0	µg/L	1 06/14/2010 17:46	52287
1,1,1,2-Tetrachloroethane	ND		5.0	µg/L	1 06/14/2010 17:46	52287
Ethylbenzene	ND		5.0	µg/L	1 06/14/2010 17:46	52287
m,p-Xylene	ND		5.0	µg/L	1 06/14/2010 17:46	52287
o-Xylene	ND		5.0	µg/L	1 06/14/2010 17:46	52287
Xylene (Total)	ND		5.0	µg/L	1 06/14/2010 17:46	52287
Styrene	ND		5.0	µg/L	1 06/14/2010 17:46	52287
Bromoform	ND		5.0	µg/L	1 06/14/2010 17:46	52287
Isopropylbenzene	ND		5.0	µg/L	1 06/14/2010 17:46	52287
1,1,2,2-Tetrachloroethane	ND		5.0	µg/L	1 06/14/2010 17:46	52287
Bromobenzene	ND		5.0	µg/L	1 06/14/2010 17:46	52287
1,2,3-Trichloropropane	ND		5.0	µg/L	1 06/14/2010 17:46	52287
n-Propylbenzene	ND		5.0	µg/L	1 06/14/2010 17:46	52287
2-Chlorotoluene	ND		5.0	µg/L	1 06/14/2010 17:46	52287
1,3,5-Trimethylbenzene	ND		5.0	µg/L	1 06/14/2010 17:46	52287
4-Chlorotoluene	ND		5.0	μg/L	1 06/14/2010 17:46	52287
tert-Butylbenzene	ND		5.0	µg/L	1 06/14/2010 17:46	52287
1,2,4-Trimethylbenzene	ND		5.0	µg/L	1 06/14/2010 17:46	52287
sec-Butylbenzene	ND		5.0	µg/L	1 06/14/2010 17:46	52287
4-Isopropyltoluene	ND		5.0	µg/L	1 06/14/2010 17:46	52287
1,3-Dichlorobenzene	ND		5.0	µg/L	1 06/14/2010 17:46	52287
1,4-Dichlorobenzene	ND		5.0	µg/L	1 06/14/2010 17:46	52287
n-Butylbenzene	ND		5.0	µg/L	1 06/14/2010 17:46	52287
1,2-Dichlorobenzene	ND		5.0	µg/L	1 06/14/2010 17:46	52287
1,2-Dibromo-3-chloropropane	. ND		5.0	µg/L	1 06/14/2010 17:46	52287
1,2,4-Trichlorobenzene	ND		5.0	µg/L	1 06/14/2010 17:46	52287
Hexachlorobutadiene	ND		5.0	µg/L	1 06/14/2010 17:46	52287
1,2,3-Trichlorobenzene	ND		5.0	µg/L	1 06/14/2010 17:46	52287
Naphthalene	ND		5.0	µg/L	1 06/14/2010 17:46	52287
Surrogate: Dibromofluoromethane	105		85-115	%REC	1 06/14/2010 17:46	52287
Surrogate: 1,2-Dichloroethane-d4	102		70-120	%REC	1 06/14/2010 17:46	52287
Surrogate: Toluene-d8	94.3		85-120	%REC	1 06/14/2010 17:46	52287
Surrogate: Bromofluorobenzene	92.9		75-120	%REC	1 06/14/2010 17:46	52287

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Date: 17-Jun-10

Client: Day Environmental Inc. Client Sample ID: TB6/4/10 Lab ID: J1185-04

 Project:
 151 Mt. Hope Ave.

 Collection Date:
 06/04/10 0:00

Analyses	Result Q	Qual RL	Units	DF Date Analyzed	Batch ID
SW846 8260C VOC by GC-MS					SW8260_W
Dichlorodifluoromethane	. ND	5.0	µg/L	1 06/14/2010 15:52	52287
Chioromethane	ND	5.0		1 06/14/2010 15:52	52287
Vinyl chloride	ND	5.0		1 06/14/2010 15:52	52287
Bromomethane	ND		μg/L	1 06/14/2010 15:52	52287
Chloroethane	ND	5.0		1 06/14/2010 15:52	52287
Trichlorofluoromethane	ND		µg/L	1 06/14/2010 15:52	52287
1,1-Dichloroethene	ND		μg/L	1 06/14/2010 15:52	52287
Acetone	ND	5.0	μg/L	1 06/14/2010 15:52	52287
lodomethane	ND	5.0	μg/L	1 06/14/2010 15:52	52287
Carbon disulfide	ND		μg/L	1 06/14/2010 15:52	52287
Methylene chloride	ND		μg/L	1 06/14/2010 15:52	52287
trans-1,2-Dichloroethene	ND		μg/L	1 06/14/2010 15:52	52287
Methyl tert-butyl ether	ND		μg/L	1 06/14/2010 15:52	52287
1,1-Dichloroethane	ND		μg/L	1 06/14/2010 15:52	52287
Vinyl acetate	ND		μg/L	1 06/14/2010 15:52	52287
2-Butanone	ND		μg/L	1 06/14/2010 15:52	52287
cis-1,2-Dichloroethene	ND		μg/L	1 06/14/2010 15:52	52287
2,2-Dichloropropane	ND		μg/L	1 06/14/2010 15:52	52287
Bromochloromethane	ND		μg/L	1 06/14/2010 15:52	52287
Chloroform	ND		µg/L	1 06/14/2010 15:52	52287
1,1,1-Trichloroethane	ND		μg/L	1 06/14/2010 15:52	52287
1,1-Dichloropropene	ND		μg/L	1 06/14/2010 15:52	52287
Carbon tetrachloride	ND	5.0		1 06/14/2010 15:52	52287
1,2-Dichloroethane	ND	5.0	µg/L	1 06/14/2010 15:52	52287
Benzene	ND		µg/L	1 06/14/2010 15:52	52287
Trichloroethene	ND		µg/L	1 06/14/2010 15:52	52287
1,2-Dichloropropane	ND	5.0	µg/L	1 06/14/2010 15:52	52287
Dibromomethane	ND	5.0	µg/L	1 06/14/2010 15:52	52287
Bromodichloromethane	ND		µg/L	1 06/14/2010 15:52	52287
cis-1,3-Dichloropropene	ND	5.0	µg/L	1 06/14/2010 15:52	52287
4-Methyl-2-pentanone	ND	5.0	µg/L	1 06/14/2010 15:52	52287
Toluene	ND		μg/L	1 06/14/2010 15:52	52287
trans-1,3-Dichloropropene	ND		μg/L	1 06/14/2010 15:52	52287
1,1,2-Trichloroethane	ND		μg/L	1 06/14/2010 15:52	52287
1,3-Dichloropropane	ND		μg/L	1 06/14/2010 15:52	52287
Tetrachloroethene	ND		μg/L	1 06/14/2010 15:52	52287
2-Hexanone	ND		μg/L	1 06/14/2010 15:52	52287
Dibromochloromethane	ND		μg/L	1 06/14/2010 15:52	52287
1.2-Dibromoethane	ND		μg/L	1 06/14/2010 15:52	52287

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Date: 17-Jun-10

Client: Day Environmental Inc. Client Sample ID: TB6/4/10 Lab ID: J1185-04

 Project:
 151 Mt. Hope Ave.

 Collection Date:
 06/04/10 0:00

Analyses	Result Q	ual RL	Units	DF Date Analyzed	Batch ID
SW846 8260C VOC by GC-MS					SW8260_W
Chlorobenzene	ND	5.0	µg/L	1 06/14/2010 15:52	52287
1,1,1,2-Tetrachloroethane	ND	5.0	µg/L	1 06/14/2010 15:52	52287
Ethylbenzene	ND	5.0	µg/L	1 06/14/2010 15:52	52287
m,p-Xylene	ND	5.0	µg/L	1 06/14/2010 15:52	52287
o-Xylene	ND	5.0	µg/L	1 06/14/2010 15:52	52287
Xylene (Total)	ND	5.0	µg/L	1 06/14/2010 15:52	52287
Styrene	ND	5.0	µg/L	1 06/14/2010 15:52	52287
Bromoform	ND	5.0	µg/L	1 06/14/2010 15:52	52287
Isopropylbenzene	ND	5.0	µg/L	1 06/14/2010 15:52	52287
1,1,2,2-Tetrachloroethane	ND	5.0	µg/L	1 06/14/2010 15:52	52287
Bromobenzene	ND	5.0	µg/L	1 06/14/2010 15:52	52287
1,2,3-Trichloropropane	ND	5.0	µg/L	1 06/14/2010 15:52	52287
n-Propylbenzene	ND	5.0	µg/L	1 06/14/2010 15:52	52287
2-Chlorotoluene	ND	5.0	µg/L	1 06/14/2010 15:52	52287
1,3,5-Trimethylbenzene	ND	5.0	µg/L	1 06/14/2010 15:52	52287
4-Chiorotoluene	ND	5.0	µg/L	1 06/14/2010 15:52	52287
tert-Butylbenzene	ND	5.0	µg/L	1 06/14/2010 15:52	52287
1,2,4-Trimethylbenzene	ND	5.0	µg/L	1 06/14/2010 15:52	52287
sec-Butylbenzene	ND	5.0	µg/L	1 06/14/2010 15:52	52287
4-Isopropyltoluene	ND	5.0	µg/L	1 06/14/2010 15:52	52287
1,3-Dichlorobenzene	ND	5.0	µg/L	1 06/14/2010 15:52	52287
1,4-Dichlorobenzene	ND	5.0	µg/L	1 06/14/2010 15:52	52287
n-Butylbenzene	ND	5.0	µg/L	1 06/14/2010 15:52	52287
1,2-Dichlorobenzene	ND	5.0	µg/L	1 06/14/2010 15:52	52287
1,2-Dibromo-3-chloropropane	ND	5.0	µg/L	1 06/14/2010 15:52	52287
1,2,4-Trichlorobenzene	ND	5.0	µg/L	1 06/14/2010 15:52	52287
Hexachlorobutadiene	ND	5.0	µg/L	1 06/14/2010 15:52	52287
1,2,3-Trichlorobenzene	ND	5.0	µg/L	1 06/14/2010 15:52	52287
Naphthalene	ND	5.0	µg/L	1 06/14/2010 15:52	52287
Surrogate: Dibromofluoromethane	107	85-115	%REC	1 06/14/2010 15:52	52287
Surrogate: 1,2-Dichloroethane-d4	106	70-120	%REC	1 06/14/2010 15:52	52287
Surrogate: Toluene-d8	93.6	85-120	%REC	1 06/14/2010 15:52	52287
Surrogate: Bromofluorobenzene	92.4	75-120	%REC	1 06/14/2010 15:52	52287

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

CLIENT:	Day Enviro	Day Environmental Inc.		C	ANALY	TICAL Q	ANALYTICAL QC SUMMARY REPORT	Y REPO	IRT		
Work Order: Project:	J1185 151 Mt. Hope Ave.	pe Ave.			SW8260_W SW846 8260C VOC by GC-MS	OC by GC-M	S				
Sample ID: MB-52287 Client ID: MB-52287	MB-52287 MB-52287	SampType: MBLK Batch ID: 52287	TestCode: SW8260_W Units: µg/L	W8260_W g/L		Prep Date: Analysis Date:	06/14/10 8:54 06/14/10 11:11	Run ID: SeqNo:	Run ID: V1_100614C SeqNo: 1314153		
		Result	MDL	PQL	SPK value	SPK Ref Val	%REC LowLimit HighLimit	ighLim it	RPD Ref Val	%RPD RPDLimit	Qual
Dichlorodifluor omethane	ethane	UN	0.47	5.0							
Chloromethane		ND	0.54	5.0							
Vinvl chloride		ND	0.78	5.0							
Bromomethane		ND	0.74	5.0							
Chloroethane		ND	0.89	5.0							
Frichlorofluoro methane	sthane	ND	0.60	5.0							
1,1-Dichloroethene	Je	UN	0.64	5.0							
Acetone		UN	4.6	5.0							
odomethane		ND	0.37	5.0							
Carbon dis ulfide		ND	0.34	5.0							
Methylene chloride	le	ND	0.83	5.0							
trans-1,2-Dichloroethene	bethene	ND	0.37	5.0							
Methyl tert-but yl ether	ether	QN	0.25	5.0							
1,1-Dichloroethane	Te	ND	0.24	5.0							
Vinyl acetate		ND	0.43	5.0							
2-Butanone		UN	2.0	5.0							
cis-1,2-Dichloroethene	thene	ND	0.34	•							
2,2-Dichloropropane	ane	DN	0.22	5.0							
Bromochlorom ethane	hane	ON II	0.30	•							
Chloroform			0.30	•							
1,1,1-Trichloroethane	lane		0.18								
1,1-Dichloropropene	ene	UN UN	0.38	0.0							
Carbon tetrachloride	lde		11.0	0 0 0 1							
1, 2-Dichloroe mane Bonzene	Je		0 1 0	0.C							
Trichloroethen e		QN	0.25	5.0							
1 2-Dichloronronane	eut	ND	0.24	5.0							
Dihromomethane	2	ND	0.26	5.0							
Bromodichloromethane	sthane	, UN	0.20	5.0							
cis-1 3-Dichloropropene	ronene	UN	0.22	5.0							
4-Methyl-2-pentanone	none	UN	1.5	5.0							
Toluene		ND	0.15	5.0							
Thans-1,3-Dichloropropene	opropene	ND	0.27	5,0							
1,2-Trichloroethane	lane	ЦN	0.29	5.0							
1,3-Dichloropropane	ane	ΩN	0.26	5.0							
Tetrachloroethene	Ð	ΠŊ	0.27	5.0							
Onalifiers:	ND - Not Detec	ND - Not Detected at the Reporting Limit	t	S	S - Spike Recovery outside accepted recovery limits	accepted recovery	limits	B - An	alvte detected in t	B - Analyte detected in the associated Method Blank	4 Rlank
		-			•	•					

Act: J1185 SW936 I51 Mt. Hope Ave. SW936 SW936 MB-52287 SampType: MBLK TestCode: SW6260_W MB-52287 Batch ID: 52287 Units: jg/L MB-52287 MDL POL MB-52287 MDL POL MB-52287 MDL POL MB ND 0.21 5.0 MB ND 0.23 5.0 MD ND 0.23 5.0 MD ND 0.23 5.0 MD 0.23 5.0 5.0 MD	CLIENT: Day Env	Day Environmental Inc.			ANALY	ANALYTICAL OC SUMMARY REPORT	C SUM	MARY	/ REPO	RT		
USI: J.I.M. Hope Aur. SWARG BOD - MOD Sector SWARG BOD - MOD Sector MILE				5	W8260 W							
maje D. Mb.2237 Samylyar MD.X TexDita: Strate MD.X Strat MD.X Strate MD.X		Hope Ave.			W846 8260C V	/OC by GC-N	SV					
Intellity Marcentry Description Output Service Control Met And MOL Service Service </th <th>Sample ID: MB-52287</th> <th>SampType: MBLK</th> <th>TestCo</th> <th>de: SW8260_W</th> <th></th> <th>Prep Date</th> <th></th> <th>8:54</th> <th>Run ID:</th> <th>V1_100614C</th> <th></th> <th></th>	Sample ID: MB-52287	SampType: MBLK	TestCo	de: SW8260_W		Prep Date		8:54	Run ID:	V1_100614C		
Optimization Real OD. OD. PN-value S/R-C Londrian Lingthant R-D //R //R //R //R //R //R //R //R //R //		Batch ID: 52287	'n	its: µg/L		Analysis Date		11:11	SeqNo:	1314153		
Advance 10 1.1 5.0 Contronteltane 00 0.21 5.0 Contronteltane 00 0.21 5.0 Contronteltane 00 0.23 5.0 Contronteltane 00 0.23 5.0 Advance 0.0 0.23 5.0 Advance 0.0 0.26 5.0 Advance 0.0 0.26 5.0 Advance 0.0 0.26 5.0 Advance 0.0 0.23	Analyte	Result	MDL	PQL	SPK value	SPK Ref Val	%REC L	owLimit Hig	hLimit	RPD Ref Val	%RPD RPDLimit	Qual
CDBronotleamentation BI 0.20 5.0 CDBronotleamentation BI 0.21 5.0 CDBronotleamentation BI 0.23 5.0 Advicence BI 0.23 5.0 Advicence BI 0.23 5.0 Advicence BI 0.26 5.0 Advicence BI 0.21 5.0 Advicence BI 0.21 5.0 Advicence BI 0.21 5.0 Advicence BI 0.23 5.0 Advicence BI 0.23 5.0 Advicence BI 0.23 5.0 Advicence BI 0.23 5.0 Advicence B	2-Hexanone	QN	1.1	5.0								
Non-molectione 00 0.31 5.0 Non-molectione 00 0.28 5.0 Non-molectione 00 0.23 5.0 Non-molectione 00 0.23 5.0 Non-molectione 00 0.23 5.0 Non-molectione 00 0.26 5.0 Non-molectione 00 0.23 5.0 Non-molectione 00 0.23 5.0 Non-molectione 00 0.23 5.0 Strictlython-molectione 0.23 <th>Dibrom ochlorom ethane</th> <td>DN</td> <td>0.20</td> <td>5.0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Dibrom ochlorom ethane	DN	0.20	5.0								
1(2) Tenzen Informetione 20 0.23 5.0 Mylenzene 20 0.23 5.0 Mylenzene 20 0.23 5.0 Mylenzene 20 0.23 5.0 Mylenzene 20 0.26 5.0 Mylenzene 20 0.26 5.0 Mylenzene 20 0.26 5.0 Mylenzene 20 0.23 5.0 Mylenzene 20 <td< td=""><th>1,2-Dibrom oethane</th><td>ΠN</td><td>0.31</td><td>5.0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	1,2-Dibrom oethane	ΠN	0.31	5.0								
I,1,2-Trans honorthane N 0 2 5 PAYAnane N 0 2 2	Chlorobenzen e	UN	0.23	5.0								
Myllenzene S.0 O.23 S.0 Myllenzene R.0 0.23 S.0 Myllenzene R.0 0.26 S.0 Myllenzene R.0 0.26 S.0 Strong 0.22 S.0 S.0 Strong 0.22 S.0 S.0 Strong 0.22 S.0 S.0 S.0 Strong 0.22 S.0 S.0 S.0 S.0 Strong 0.22 S.0 S.0 S.0 S.0 S.0 Strong 0.22 S.0 S.0 S.0 S.0 S.0 S.0 S.0 Strong 0.22 S.0	1,1,1,2-Tetrac hloroethane	ND	0.28	5.0								
p.b.Valent ND 0.40 5.0 p.b.Valent ND 0.26 5.0 proven ND 0.26 5.0 propribenzation ND 0.23 5.0 controllation ND 0.23 5.0	Ethylbenzene	UN .	0.23	5.0								
Wolere With the field (Total) With the field (Total) <th< td=""><th>m,p-Xylene</th><td>QN</td><td>07.0</td><td>5.0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	m,p-Xylene	QN	07.0	5.0								
(nee (Tota)) ND 0.26 5.0 (nee (Tota)) ND 0.26 5.0 (nee (Tota)) ND 0.26 5.0 (nee (Tota)) ND 0.21 5.0 (not offmane) ND 0.23 5.0 (2.2 Totablenzene) ND 0.23 5.0 (2.3 Totablenzene) ND 0.23 5.0 (2.4 Totablenzene) ND 0.23 5.0 (2.5 Theth/orgonarie) ND 0.23 5.0 (2.5 Theth/orgonarie) ND 0.23 5.0 (2.5 Theth/orgonarie) ND 0.23 5.0 (2.1 meth/orgonarie) ND 0.12 5.0 (3.1 meth/orgonarie) ND 0.13 5.0 (3.1 meth/ordorarie)	o-Xylene	ND	0.26	5.0								
Note Not 0.16 5.0 conform 80 0.24 5.0 controllence 80 0.24 5.0 controllence 80 0.23 5.0 controllence 80 0.12 5.0 controllence 80 0.13 5.0 controllence	Xylene (Total)	UN	0.26	5.0								
ontoform ND 0.44 5.0 popplerzene ND 0.22 5.0 popplerzene ND 0.27 5.0 popplerzene ND 0.27 5.0 0.122-ferachorostrane ND 0.77 5.0 0.122-ferachorostrane ND 0.72 5.0 0.122-ferachorostrane ND 0.72 5.0 0.112-ferachorostrane ND 0.72 5.0 0.110 0.12 5.0 5.0 0.110 0.12 5.0 5.0 0.110 0.12 5.0 5.0 0.110 0.12 5.0 5.0 0.110 0.13 5.0 5.0 0.110 0.13 5.0 5.0 0.110 0.13 5.0 5.0 0.110 0.13 5.0 5.0 0.110 0.13 5.0 5.0 0.110 0.13 5.0 5.0 0.110 0.11	Styrene	CN	0.16	5.0								
proprilemzene RD 0.20 5.0 1(2) Effect klonentiane RD 0.23 5.0 000-binstane RD 0.23 5.0 Proprilemzene RD 0.23 5.0 Proprilemzene RD 0.20 5.0 Proprilemzene RD 0.21 5.0 Proprilemzene RD 0.12 5.0 Ontoolkustane RD 0.13 5.0 S.F Tim ethylbenzene RD 0.13 5.0 Ontoolkustane RD 0.13 5.0 Editylbenzene RD 0.13 5.0	Bromoform	QN	0.44	5.0								
1.2.2-Tetrac hloroethane ND 0.23 5.0 0.00berzene ND 0.23 5.0 0.00berzene ND 0.22 5.0 Propyhenzene ND 0.22 5.0 Propyhenzene ND 0.20 5.0 Propyhenzene ND 0.21 5.0 Onorobienzene ND 0.12 5.0 Chlorobienne ND 0.12 5.0 Chlorobienzene ND 0.13 5.0 Chloroberzene ND 0.13 5.0 Chloroberzene ND 0.13 5.0 Chloroberzene ND 0.13 5.0 Obloroberzene ND 0.13 5.0 Obloroberzene ND 0.13 5.0 Obloroberzene ND 0.13 5.0 Obloroberzene ND 0.23 5.0 Subloroberzene ND 0.13 5.0 Subloroberzene ND 0.13 5.0 Subloroberzene ND 0.13 5.0 Subloroberzen	Isopropylbenzene	ND	0.20	5.0								
ontolenzene ND 0.37 5.0 2.3 Trichtopropane ND 0.72 5.0 2.3 Trichtopropane ND 0.72 5.0 2.3 Trichtopropane ND 0.30 5.0 Chlorotoluene ND 0.12 5.0 5.1 Trimethybenzene ND 0.12 5.0 5.1 Trimethybenzene ND 0.13 5.0 5.1 Trimethybenzene ND 0.13 5.0 5.1 Trimethybenzene ND 0.13 5.0 6.4Uybenzene ND 0.13 5	1,1,2,2-Tetrac hloroethane	UN	0.23	5.0								
3.3 Trichloropropane ND 0.72 5.0 3.5 Trine throhonopane ND 0.20 5.0 Ohoorobluene ND 0.21 5.0 Ohoorobluene ND 0.12 5.0 Ohoorobluene ND 0.12 5.0 S.5 Trime thrybenzene ND 0.12 5.0 ABuybenzene ND 0.13 5.0 2.4 Trime thrybenzene ND 0.13 5.0 ABuybenzene ND 0.13 5.0 Cebuybenzene ND 0.13 5.0 ABrikhonobenzene ND 0.24 5.0 ABrikhonobenzene ND 0.41 5.0 <th>Bromobenzene</th> <td>UN</td> <td>0.37</td> <td>5.0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Bromobenzene	UN	0.37	5.0								
Propylbenzene ND 0.20 5.0 Propylbenzene ND 0.13 5.0 Chlorotoluene ND 0.13 5.0 Chlorotolenzene ND 0.13 5.0 Stopropyltolene ND 0.13 5.0 Chlorotoenzene ND 0.13 5.0 Ottohoenzene ND 0.24 5.0 Stopropyltolene ND 0.23 5.0 Chlorotoenzene ND 0.24 5.0 <	1,2,3-Trichloropropane	DN	0.72	5.0								
Chlorotolene e ND 0.30 5.0 Chlorotolene e ND 0.12 5.0 A-Trim ethylbenzene ND 0.12 5.0 Chlorotolene e ND 0.12 5.0 Chlorotolene e ND 0.12 5.0 Chlorotolene e ND 0.13 5.0 Chlorotolenzene ND 0.13 5.0 Subplenzene ND 0.13 5.0 Bulylbenzene ND 0.13 5.0 Subplenzene ND 0.24 5.0 Subplenzene ND 0.23 5.0 Chlorobenzene ND 0.24 5.0 Chlorobenzene ND 0.24 5.0 Chlorobenzene ND 0.23 5.0 Chlorobenzene ND 0.33 5.0 Chlorobenzene ND 0.35 5.0 Chlorobenzene ND 0.33 5.0 Chlorobenzene ND 0.35 3.0	n-Propylbenzene	(IN)	0.20	5.0								
5.7 Trim ethylbenzene ND 0.12 5.0 Chloroleurene ND 0.13 5.0 Chloroleurene ND 0.13 5.0 Californoleurene ND 0.13 5.0 Californoleurene ND 0.13 5.0 Californoleurene ND 0.19 5.0 Californoleurene ND 0.19 5.0 Sutylbenzene ND 0.21 5.0 Californoleurene ND 0.21 5.0 Sutylbenzene ND 0.23 5.0 Eutylbenzene ND 0.21 5.0 Sutylbenzene ND 0.23 5.0 Sutylbenzene ND 0.21 5.0 Sutylbenzene ND 0.23 5.0 Sutylbenzene ND 0.23 5.0 Sutylbenzene ND 0.35 5.0 Sutylbenzene ND 0.14 5.0 Sutylbenzene ND 0.15 5.0 Sutylbenzene ND 0.14 5.0 Sutylbenzene ND 0.14 5.0 Sutylbenzene ND 0.15 5.0 Sutylbenzene ND 0.16 9.4 <th>2-Chlorotoluen e</th> <td>ND</td> <td>0.30</td> <td>5.0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	2-Chlorotoluen e	ND	0.30	5.0								
Chlorotoluene ND 0.43 5.0 Heuylbenzene ND 0.13 5.0 Heuylbenzene ND 0.13 5.0 Oblotobenzene ND 0.11 5.0 Oeluylbenzene ND 0.11 5.0 Oeluylbenzene ND 0.11 5.0 Oblotobenzene ND 0.24 5.0 Oblotobenzene ND 0.24 5.0 ADEnhorobenzene ND 0.24 5.0 Adentodueren ND 0.35 5.0 Adentodueren ND 0.35 5.0 Adentodueren ND 0.41 5.0 5.0 Adentodueren ND 0.35 5.0 5.0 5.0 Adentoduerenzene N	1,3,5-Trim ethylbenzene	DN	0.12	5.0								
t-Buylbenzene ND 0.24 5.0 2.4-Timethylbenzene ND 0.15 5.0 2.4-Timethylbenzene ND 0.17 5.0 6.2000brizene ND 0.17 5.0 6.2000brizene ND 0.17 5.0 6.2000brizene ND 0.17 5.0 6.2000brizene ND 0.24 5.0 4.Dichlorobenzene ND 0.23 5.0 Buylbenzene ND 0.24 5.0 Buylbenzene ND 0.23 5.0 Buylbenzene ND 0.24 5.0 Buylbenzene ND 0.24 5.0 Buylbenzene ND 0.35 5.0 2.4-Trichlorobenzene ND 0.41 5.0 Surogate: 5.0 5.0 5.0 Surogate: 5.0 5.0 5.0 Surogate: 5.0 5.0 5.0 Surogate: 1.4 49.19 0 101 85 120 Surogate: 1.4 49.19 0	4-Chlorotoluen e	ND	0.43	5.0								
2.4.Trim ethylbenzene ND 0.15 5.0 c.ebuylbenzene ND 0.19 5.0 6.ebuylbenzene ND 0.19 5.0 1.6briorbenzene ND 0.19 5.0 8.ebuylbenzene ND 0.19 5.0 8.briorbonzene ND 0.29 5.0 8.briorbonzene ND 0.24 5.0 2.bliorhorbenzene ND 0.35 5.0 2.bliorhorbenzene ND 0.33 5.0 2.bliorhorbenzene ND 0.33 5.0 2.bliorhorbenzene ND 0.35 5.0 2.bliorhorbenzene ND 0.33 5.0 2.bliorhorbenzene ND 0.14 5.0 2.bliorhorbenzene ND 0.15 5.0 2.bliorhorbenzene ND 0.16 8 2.bliorhorbenzene ND 0.16 9 9 2.bliorhorbenzene ND 0.11 8 115 2.bliorhorbenzene ND 0.15 5.0 9 120	tert-Butylben zene	ND	0.24	5.0								
C-Buylbenzene ND 0.19 5.0 Stopropytloluene ND 0.17 5.0 ADichlorobenzene ND 0.19 5.0 4Dichlorobenzene ND 0.24 5.0 4Dichlorobenzene ND 0.27 5.0 4Dichlorobenzene ND 0.27 5.0 4Dichlorobenzene ND 0.27 5.0 2Dichlorobenzene ND 0.35 5.0 2Dichlorobenzene ND 0.35 5.0 2Dichlorobenzene ND 0.35 5.0 2.1 Trichlorobenzene ND 0.11 5.0 2.3 Trichlorobenzene ND 0.35 5.0 2.4 Trichlorobenzene ND 0.41 5.0 2.4 Trichlorobenzene ND 0.15 5.0 2.4 Trichlorobenzene ND 0.15 5.0 2.5 Trichlorobenzene ND 0.12 5.0 2.4 Trichlorobenzene ND 0.15 5.0 Surrogate: <t< th=""><th>1,2,4-Trim ethylbenzene</th><th>UN</th><th>0.15</th><th>5.0</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>	1,2,4-Trim ethylbenzene	UN	0.15	5.0								
Isopropyloluene ND 0.17 5.0 3-Dichlorobenzene ND 0.19 5.0 4-Dichlorobenzene ND 0.24 5.0 4-Dichlorobenzene ND 0.24 5.0 Buylbenzene ND 0.24 5.0 Buylbenzene ND 0.24 5.0 Subiono-3-chloropropane ND 0.24 5.0 Valichlorobenzene ND 0.39 5.0 2,4-Trichlorobenzene ND 0.41 5.0 2,4-Trichlorobenzene ND 0.41 5.0 Surrogate: 5.0 5.0 5.0 Surrogate: 50.69 0 5.0 50.00 Surrogate: 1,2 49.19 0 5.0 50.00 0 101 65 115 Surrogate: 1,2 49.19 0 5.0 50.00 0 96.4 70 120 Surrogate: 1,2 49.19 0 5.0 50.00 0 96.4 70	sec-Butylbenzene	UN	0.19	5.0								
S-Dichlorobenzene ND 0.19 5.0 4-Dichlorobenzene ND 0.24 5.0 4-Dichlorobenzene ND 0.21 5.0 8uylbenzene ND 0.23 5.0 2-Dichlorobenzene ND 0.24 5.0 2-Dichlorobenzene ND 0.35 5.0 2-Dichlorobenzene ND 0.35 5.0 2-Dichlorobenzene ND 0.35 5.0 2-Dichlorobenzene ND 0.39 5.0 2-Strichlorobenzene ND 0.41 5.0 Surcogate: 5.0 5.0 5.0 Surrogate: 5.0 5.0 98.4 70 Surrogate: 5.0 5.0 98.4 70 120 Surogate: 5.0 5.0 50.00 0 98.4 70 120 Surogate: 1.2. 47.69 0 50.00 0 98.4 70 120 Surogate: 1.2. 47.69 0 50.00 0 98.4 70 120 Surogate: 1.2. 5.0 5.0 50.00 0 98.4 70 120 Surogate: 1.2. 5.0 5.	4-Isopropyltoluene	UN	0.17	5.0								
4-Dichlorobenzene ND 0.24 5.0 Butylbenzene ND 0.27 5.0 Butylbenzene ND 0.24 5.0 2-Dichlorobenzene ND 0.24 5.0 2-Dichlorobenzene ND 0.35 5.0 2-Tichlorobenzene ND 0.39 5.0 2-Tichlorobenzene ND 0.41 5.0 sxachlorobutadiene ND 0.41 5.0 strongate: 5.0 5.0 5.0 Surrogate: 50.69 0 5.0 0.101 85 Surrogate: 1.2 49.19 0 5.0 0 95.0 0 120 Surrogate: 1.2 47.69 0 5.0 50.00 0 95.4 85 120 Surogate: Toluene-d8 47.69 0 5.0 50.00 0 95.4 85 120 Surogate: Toluene-d8 47.69 0 5.0 0 95.4 85 120 Surogate: Toluene-d8 47.69 0 <th>1,3-Dichlorobenzene</th> <th>ND</th> <th>0.19</th> <th>5.0</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	1,3-Dichlorobenzene	ND	0.19	5.0								
Butylbenzene ND 0.27 5.0 2-Dichlorobenzene ND 0.24 5.0 2-Dichlorobenzene ND 0.35 5.0 2-Dichlorobenzene ND 0.35 5.0 2-Dichlorobenzene ND 0.39 5.0 2-Dichlorobenzene ND 0.39 5.0 2-Trichlorobenzene ND 0.41 5.0 xacchlorobutadiene ND 0.15 5.0 aphthalene ND 0.15 5.0 aphthalene ND 0.15 5.0 Surrogate: 50.69 0 5.0 50.00 Surrogate: 1,2- 49.19 0 5.0 50.00 0 120 Surrogate: 1,2- 49.19 0 5.0 50.00 0 120 Surrogate: 1,2- 49.19 0 5.0 50.00 0 120 Surrogate: 1,2- 49.19 0 5.0 50.00 0 <	1,4-Dichlorobenzene	DN	0.24	5.0								
2-Dichlorobenzene ND 0.24 5.0 2-Trichlorobenzene ND 0.33 5.0 2-Trichlorobenzene ND 0.39 5.0 2-Trichlorobenzene ND 0.39 5.0 2-Trichlorobenzene ND 0.41 5.0 2-Trichlorobenzene ND 0.41 5.0 2-Trichlorobenzene ND 0.15 5.0 2-Trichlorobenzene ND 0.10 101 8-Trogate: 1/2 49.19 0 5.0 50.00 0 120 Surrogate: 1/2 47.69 0 5.0 50.00 0 95.4 85 120 Surrogate: 1/2 ND-not betected at the Reporting Limit 5.0 50.00 <th>n-Butylbenzene</th> <td>DN</td> <td>0.27</td> <td>5.0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	n-Butylbenzene	DN	0.27	5.0								
2-Ubrom -3-chloropropane ND 0.35 5.0 2,4-Trichlorobenzene ND 0.39 5.0 xachlorobutadiene ND 0.41 5.0 xachlorobutadiene ND 0.41 5.0 xachlorobutadiene ND 0.45 5.0 2,3-Trichlorobenzene ND 0.45 5.0 aphthalene ND 0.15 5.0 Aphthalene ND 0.15 5.0 Surrogate: 50.69 0 5.0 Surrogate: 1,2- 49.19 0 Surrogate: 1,2- 49.19 0 Surrogate: 1,2- 5.0 50.00 0 Surrogate: 1,2- 5.0 5.0 50.00 0 95.4 85 Surrogate: Tolurene-d8 47.69 0 5.0 50.00 0 95.4 85 Surrogate: Tolurene-d8 17.69 0 5.0 50.00 0 95.4 85 <th>1,2-Dichlorobenzene</th> <td>CIN :</td> <td>0.24</td> <td>0.c</td> <td></td> <td></td> <td></td> <td>~</td> <td></td> <td></td> <td></td> <td></td>	1,2-Dichlorobenzene	CIN :	0.24	0.c				~				
Z_{4} -InchorobenizationNU 0.39 5.0 exachlorobutadieneND 0.41 5.0 exachlorobutadieneND 0.45 5.0 sachlorobutadieneND 0.15 5.0 aphthaleneND 0.15 5.0 surrogate: 5.0 0 101 85 Surrogate: $1,2$ 49.19 0 5.0 98.4 70 Surrogate: $1,2$ 49.19 0 5.0 50.00 0 98.4 70 Surrogate: $1,2$ 49.19 0 5.0 50.00 0 98.4 70 120 Surrogate: $1,2$ 49.19 0 5.0 50.00 0 98.4 70 120 Surrogate:Toulorethane-d4 47.69 0 5.0 50.00 0 95.4 85 120 Surrogate:Toluene-d8 47.69 0 5.0 50.00 0 95.4 85 120 Surrogate:Toluene-d8 47.69 0 5.0 50.00 0 95.4 85 120 Surrogate:Toluene-d8 47.69 0 5.0 50.00 0 95.4 85 120 Surrogate:Not Detected at the Reporting Limit 8.7 R) Analyte accepted recovery outside accepted recovery limits $0.06.14$ 1.4 Analyte detected helow numiniation limitsSubstantiation limitsNot Detected helow numiniation limits 8.7 R) Doutside accepted recovery limits 8.7 R) Doutside ac	1,2-Dibrom o-3-chloropropane	ON 1	0.35	5.0 2								
xachlorobutadiene ND 0.41 5.0 0.41 5.0 2,3-Trichlorobenzene ND 0.45 5.0 5.0 101 85 115 aphthalene ND 0.15 5.0 50.00 0 101 85 115 Surrogate: $1,2$ - 49.19 0 5.0 50.00 0 98.4 70 120 Surrogate: $1,2$ - 49.19 0 5.0 50.00 0 98.4 70 120 Surrogate: $1,2$ - 49.19 0 5.0 50.00 0 98.4 70 120 Surrogate: $1,2$ - 47.69 0 5.0 50.00 0 95.4 85 120 Surrogate: Toluene-d8 47.69 0 5.0 50.00 0 95.4 85 120 Surrogate: Toluene-d8 17.69 0 5.0 50.00	1,2,4-Irichlorobenzene		0.39	0.0								
2,3-Trichlorobenzene ND 0.45 5.0 aphthalene ND 0.15 5.0 Burrogate: 5.0 5.0 50.00 0 Surrogate: 1,2 49.19 0 5.0 50.00 0 Surrogate: 1,2 49.19 0 5.0 50.00 0 98.4 70 Surrogate: 1,2 49.19 0 5.0 50.00 0 95.4 85 120 chloroethan e-d4 47.69 0 5.0 50.00 0 95.4 85 120 surrogate: Toluene-d8 47.69 0 5.0 50.00 0 95.4 85 120 pailifiers: ND - Not Detected at the Reporting Limit 5.0 5.00 0 0 95.4 85 120	Hexachlorobutadiene	ND	0.41	0.0								
aphthalene ND 0.15 5.0 50.00 0 101 85 115 Surrogate: 50.69 0 5.0 50.00 0 101 85 115 bromofluoromethane 50.69 0 5.0 50.00 0 98.4 70 120 Surrogate: 1,2- 49.19 0 5.0 50.00 0 98.4 70 120 Chloroethan e-d4 47.69 0 5.0 50.00 0 95.4 85 120 surrogate: Toluene-d8 47.69 0 5.0 50.00 0 95.4 85 120 walifiers: ND - Not Detected at the Reporting Limit 5.0 50.00 0 95.4 85 120	1,2,3-Trichlorobenzene	ND	0.45	5.0								
Surrogate: 50.00 0 101 85 115 bromofluoromethane 5.0 5.0 50.00 0 101 85 115 Surrogate: 1,2- 49.19 0 5.0 50.00 0 98.4 70 120 Surrogate: 1,2- 49.19 0 5.0 50.00 0 98.4 70 120 chloroethan e-d4 47.69 0 5.0 50.00 0 95.4 85 120 surrogate: Toluene-d8 47.69 0 5.0 50.00 0 95.4 85 120 walifiers: ND - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits 0.66.11.A I - Analyze detected helow countritation limits R - RPD outside accepted recovery limits 0.06.11.A R - RPD outside accepted recovery limits	Naphthalene	ΠN	0.15	5.0								
Surrogate: 1,2- 49.19 0 5.0 50.00 0 98.4 70 120 Surrogate: 1,2- 49.19 0 5.0 50.00 0 95.4 85 120 chloroethan e-d4 47.69 0 5.0 50.00 0 95.4 85 120 nalifiers: ND - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits 8. RPD outside accepted recovery limits	Surrogate:	50.69	0	5.0	50,00	0	101	85	115	0		
chloroethan e-d4 Surrogate: Toluene-d8 47.69 0 5.0 5.0 0 0 95.4 85 120 valifiers: ND - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits 0.06.11.A 1 - Analyze detected helve cumuitation limits R - RPD outside accented recovery limits	Surrogate: 1,2-	49.19	0	5.0	50.00	0	98.4	70	120	0		
Surrogate: Toluene-d8 47.69 0 5.0 50.00 0 95.4 85 120 pualifiers: ND - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits 0.06.11.A I - Analyze detected helow quantitation limits R - RPD outside accented recovery limits	Chloroethan e-d4											
jualifiers: ND - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits 0.06.11.A T - Analyze detected below quantitation limits R - R PD outside accented recovery limits	Surrogate: Toluene-d8	47.69	0	5.0	50.00	0	95.4	85	120	0		
rs: ND - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits I - Analyte detected below quantitation limits R - R PD outside accented recovery limits	11 12 12											
I - Analyte detected helow anantitation limits		betected at the Reporting Lim	it	S.	Spike Recovery outsid	e accepted recovery	' limits		B - An	alyte detected in	the associated Methoo	Blank
		detected below quantitation	limits	R -	RPD outside accented	recovery limits						

Work Order: J1185 Project: 151 Mt. Hope Ave. Sample ID: MB-52287 Samp1 Client ID: MB-52287 Batch Analyte	pe Ave. SampType: MBLK Batch ID: 52287 Result MDL 48.00 0	TestCode: SW8260_W Units: µg/L PQL 5.0	SW8260_W SW846 8260C VOC by GC-MS Prep Date: 0 Analysis Date: 0 SPK value SPK Ref Val % 50.00 0	DC by GC-MS Prep Date: Analysis Date: SPK Ref Val	S 06/14/10 8:54 R 06/14/10 11:11 S %REC LowLimit HighLimit 96.0 75 120	nu lD: eq No:		%RPD RPDLimit Qual
Sample ID: MB-52287 Client ID: MB-52287 Analyte Surrogate: Bromofluorobenzene			SPK value 50.00		06/14/10 8:54 06/14/10 11:11 %REC LowLimit H 96.0 75	Run ID: V1_1 SeqNo: 1314 lighLimit RPD 120 (
Analyte Surrogate: Bromofluorob enzene			SPK value 50.00		%REC LowLimit H 96.0 75		, ,	
Surrogate: Bromofluorob enzene	48.00		50.00		96.0 75			
						• • •		
		·						
0013								
)ualifiers:	ND - Not Detected at the Reporting Limit	Š	S - Spike Recovery outside accepted recovery limits	accepted recovery li	mits	B - Analyte d	etected in the a	B - Analyte detected in the associated Method Blank
	J - Analyte detected below quantitation limits		- RPD outside accepted recovery limits	covery limits				

CLIENT:	Day Envir	Day Environmental Inc.	-		ANALY	ANALYTICAL OC SUMMARY REPORT	SUN	IMAR	IX REP	ORT		
Work Order:	J1185			S	SW8260_W	I						
Project:	151 Mt. Hope Ave.	ope Ave.		S	N N	- VOC by GC-MS	IS					
Sample ID: LCS-52287	52287	SampType: LCS	TestCo	TestCode: SW8260_W		Prep Date:	06/14/10 8:54	3 8:54	Run	Run ID: V1_100614C		
Client ID: LCS-	LCS-52287	Batch ID: 52287	'n	Units: µg/L		Analysis Date:	06/14/10 9:11	0 9:11	Seqh	SeqNo: 1314151		
Analyte		Result	MDL	PQL	SPK value	SPK Ref Val	%REC I	LowLimit HighLimit	łighLim it	RPD Ref Val	%RPD RPDLimit	Qual
Dichlorodifluor omethane	thane	43.89	74.0	5.0	50.00	0	87.8	30	155	0		
Chloromethane		50.01	0.54	5.0	50.00	0	100	40	125	0		
Vinyl chloride		45.74	0.78	5.0	50.00	0	91.5	50	145	0		
Bromomethane		56.91	0.74	5.0	50.00	0	114	30	145	0		
Chloroethane		49.22	0.89	5.0	50.00	0	98.4	60	135	0		
Trichlorofluoro methane	hane	53.06	0.60	5.0	50.00	0	106	60	145	0		
1,1-Dichloroethene	đ	48.33	0.64	•	50.00	O	96.7	70	130	0		
Acetone		42.02	4.6	5.0	50.00	0	84.0	40	140	0		
lodomethane		50.30	0.37	5.0	50.00	o	101	72	121	0		
Carbon disulfide		47.74	0.34	5.0	50.00	0	95.5	35	160	0		
Methylene chloride	đ	51.08	0.83	5.0	50.00	0	102	55	140	0		
trans-1,2-Dichloroethene	ethene	49.38	0.37	5.0	50.00	0	98.8	60	140	0		
Methyl tert-but yl ether	ther	52.23	0.25	•	50.00	0	104	65	125	0		
1,1-Dichloroethane	Ø	47.64	0.24		50.00	0	95.3	70	135	0		
Vinyl acetate		47.84	0.43	5.0	50.00	0	95.7	38	163	0		
2-Butanone		49.11	2.0	5.0	50.00	0	98.2	30	150	0		
cis-1,2-Dichloroethene	ene	51.63	0.34	5.0	50.00	0	103	70	125	0		
2,2-Dichloropropane	ne	.42.61	0.22	5.0	50.00	0	85.2	70	135	0		
Bromochlorom ethane	ane	52.70	0.30	5.0	50.00	0	105	65	130	0		
Chloroform		49.25	0.30	5.0	50.00	0	98.5	65	135	0		
1,1,1-Trichloroethane	ane	45.21	0.18	5.0	50.00	0	90.4	65	130	0		
1,1-Dichloropropene	ne	52.64	0.38	5.0	50.00	0	105	75	130	0		
Carbon tetrachloride	de	51.01	0.11	5.0	50.00	0	102	65	140	0		
1,2-Dichloroethane	đ	50.14	0.16	5.0	50.00	0	100	70	130	0		
Benzene		49.19	0.12	•	50.00	0	98.4	80	120	0		
Trichloroethen e		48.58	0.25	5.0	50.00	0	97.2	70	125	0		
1,2-Dichloropropane	ne	49.03	0.24	5.0	50.00	0	98.1	75	125	0		
Dibromomethane		49.96	0.26	5.0	50.00	0	6.96	75	125	0		
Bromodichloromethane	thane	48.84	0.20	5.0	50.00	0	97.7	75	120	0		
cis-1,3-Dichloropropene	opene	49.17	0.22	5.0	50.00	0	98.3	70	130	0		
4-Methyl-2-pen tanone	one	46.70	1.5	5.0	50.00	0	93.4	60	135	0		
Toluene		49.36	0.15	5.0	50.00	0	7.86	75	120	0		
trans-1,3-Dichloropropene	propene	48.47	0.27	5.0	50.00	0	96.9	55	140	0		
1,2-Trichloroethane	ane	51.00	0.29	5.0	50.00	0	102	75	125	0		
3-Dichloropropa	he	47.74	0.26	5.0	50.00	Ó	95.5	75	125	0		
Letrachloroethene		44.67	0.27	5.0	50.00	0	89.3	45	150	0		
2-Hexanone		47.46	1.1	5.0	50.00	0	6.16	55	130	0		
						-			"			
Qualifiers:	ND - Not Dett	ND - Not Detected at the Reporting Limit	ait	- 2	S - Spike Recovery outside accepted recovery limits	ie accepted recovery	limits		- -	Analyte detected in	B - Analyte detected in the associated Method Blank	Blank
m10.06.11.A	J - Analyte de	J - Analyte detected below quantitation limits	limits	R -	R - RPD outside accepted recovery limits	I recovery limits						

R - RPD outside accepted recovery limits

J - Analyte detected below quantitation limits

Work Onter: Intel: INIS SWRAG BAO. Anote Onter: ISI M. Exp. A. SWRAG BAOC. AND	CLIENT: Day	Day Environmental Inc.			ANALY	ANALYTICAL QC SUMMARY REPORT	C SUM	MAR	Y REP	ORT		
I51 Mr. Höpe Ave. Swald 83.60C – VOC by GC-MS Bar hilb szar Units pgl. Frep Date GMr/4108:44 Ku Bar hilb szar Units pgl. Frep Date GMr/4108:44 Ku Bar hilb szar Units pgl. SPP rep Date GMr/4108:44 Ku Bar hilb szar Units pgl. SPP rep Date GMr/4108:44 Ku Bar hilb szar MDL POL SPP rep Date GMr/4108:44 Ku Bar hilb szar 0.21 0.20 0.20 0.20 0.21 50 0.21 50 Bar hilb szar 0.21 0.21 50 0.00 0 101 50 Bar hilb szar 0.21 0.21 50 000 0 102 50 Bar hilb szar 0.21 0.2		85		S	V8260 W	1						
Barth Type: TestCode: Structure Analysis Dirity of the content o		Mt. Hope Ave.		S		VOC by GC-N	S V		-			
Batch ID: Szö7 Init: Jpf. Ambyais Date: Article IC Sci Sci </th <th>Sample ID: LCS-52287</th> <th>SampType: LCS</th> <th>TestCo</th> <th>de: SW8260_W</th> <th></th> <th>Prep Date:</th> <th></th> <th>8:54</th> <th>Run</th> <th>D: V1_100614C</th> <th></th> <th></th>	Sample ID: LCS-52287	SampType: L CS	TestCo	de: SW8260_W		Prep Date:		8:54	Run	D: V1_100614C		
Fishedity NDL POL SPK radie SPK Radie SPK Calculation SPK Radie SPK Calculation SPK Radie SPK Radie <thspk radie<="" th=""> <thspk radie<="" th=""> <ths< th=""><th></th><th>Batch ID: 52287</th><th>Uni</th><th>ts: µg/L</th><th></th><th>Analysis Date</th><th></th><th>9:11</th><th>Seq</th><th>4o: 1314151</th><th></th><th></th></ths<></thspk></thspk>		Batch ID: 52287	Uni	ts: µg/L		Analysis Date		9:11	Seq	4o: 1314151		
10 51.30 0.20 50.00 0 103 50 103	Analyte	Result	MDL	PQL	SPK value	SPK Ref Val		owLimit H	ighLim it	RPD Ref Val	%RPD RPDLimit	Qual
1 5 0 30 0 103	Dibrom och lorom ethane	51.30	0.20	5.0	50.00	0	103	60	135	0		
(6.0) (0.2) <t< td=""><td>1,2-Dibrom oethane</td><td>51.45</td><td>0.31</td><td>5.0</td><td>50.00</td><td>0</td><td>103</td><td>80</td><td>120</td><td>0</td><td></td><td></td></t<>	1,2-Dibrom oethane	51.45	0.31	5.0	50.00	0	103	80	120	0		
Index 46.02 0.28 5.0 000 0 96.0 96	Chlorobenzene		0.23	5.0	50.00	0	98.0	80	120	0		
497 023 5.0 000 097 75 125 97.68 026 5.0 00.00 0 967 75 122 1169 0.26 5.0 5000 0 967 75 122 1169 0.26 5.0 5000 0 967 75 122 1169 0.23 5.0 5000 0 967 75 125 1169 023 5.0 5000 0 967 75 125 1169 023 5.0 5000 0 967 75 125 1169 023 5.0 5000 0 967 75 125 1169 023 5.0 0000 0102 75 126 1169 023 024 5.0 0000 00102 75 125 <	1,1,1,2-Tetrac hloroethane		0.28	5.0	50.00	0	96.0	80	130	0		
97.66 0.40 5.0 100.0 0 97.7 75 130 146.9 0.26 5.0 100.0 0 97.9 61 121 146.9 0.26 5.0 50.00 0 96.0 65 133 146.9 0.23 5.0 50.00 0 96.2 75 133 146.9 0.23 5.0 50.00 0 96.3 65 133 146.9 0.23 5.0 50.00 0 96.3 75 130 91.31 0.73 5.0 50.00 0 97.3 70 130 91.31 0.73 5.0 50.00 0 97.3 70 130 91.31 0.73 5.0 50.00 0 97.4 70 130 91.32 0.32 0.13 0.30.00 0 97.3 70 130 91.33 0.33 0.13 0.30.00 0 97.3 <td>Ethylbenzene</td> <td>49.37</td> <td>0.23</td> <td>5.0</td> <td>50.00</td> <td>0</td> <td>98.7</td> <td>75</td> <td>125</td> <td>0</td> <td></td> <td></td>	Ethylbenzene	49.37	0.23	5.0	50.00	0	98.7	75	125	0		
49.24 0.26 5.0 90.00 0 91.5 81 120 146.2 0.16 5.0 50.00 0 96.4 75 120 40.12 0.244 5.0 50.00 0 96.5 65 120 40.12 0.244 5.0 50.00 0 96.6 65 120 40.12 0.23 5.0 50.00 0 96.6 65 120 50.24 0.23 5.0 50.00 0 96.7 75 125 6 91.31 0.23 5.0 50.00 0 96.7 75 126 6 91.31 0.23 5.0 50.00 0 97.7 75 126 6 91.30 0.43 5.0 50.00 0 97.3 127 7 91.40 5.0 0.24 5.0 100 75 126 81.31 0.13 5.0 0.14 <t< td=""><td>m,p-Xylene</td><td>97.68</td><td>0.40</td><td>5.0</td><td>100.0</td><td>0</td><td>97.7</td><td>75</td><td>130</td><td>0</td><td></td><td></td></t<>	m,p-Xylene	97.68	0.40	5.0	100.0	0	97.7	75	130	0		
146.9 0.26 5.0 150.0 0 97.9 61 121 48.10 0.14 5.0 50.00 0 96.4 75 125 48.10 0.12 5.0 50.00 0 96.4 75 125 69.21 0.23 5.0 50.00 0 96.4 75 125 50.31 0.32 5.0 50.00 0 96.4 75 126 50.31 0.32 5.0 50.00 0 96.4 75 126 50.31 0.22 5.0 50.00 0 97.6 75 126 61 130 0.12 5.0 50.00 0 96.7 75 130 61 13.0 0.12 5.0 50.00 0 96.7 75 130 62 13.1 0.12 5.0 50.00 0 96.7 75 130 61 13.0 0.12 5.	o-Xylene	49.24	0.26	5.0	50.00	0	98.5	80	120	0		
48.102 0.16 5.0 50.00 0 96.0 55 135 Hele 9 0.23 5.0 50.00 0 96.2 75 125 61 5.0 50.00 0 96.2 75 125 61 51.31 0.23 5.0 50.00 0 96.2 75 125 61 51.31 0.23 5.0 50.00 0 96.2 75 123 61 51.31 0.23 5.0 50.00 0 96.2 75 123 62 133 50.00 0.12 5.0 50.00 0 96.3 75 123 61 49.30 0.13 5.0 50.00 0 96.3 75 123 63 49.30 0.13 5.0 50.00 0 97.1 75 130 64 49.3 0.11 0.24 5.0 90.00 99.3 76 130 </td <td>Xylene (Total)</td> <td>146.9</td> <td>0.26</td> <td>5.0</td> <td>150.0</td> <td>0</td> <td>9.76</td> <td>81</td> <td>121</td> <td>0</td> <td></td> <td></td>	Xylene (Total)	146.9	0.26	5.0	150.0	0	9.76	81	121	0		
48.19 0.44 5.0 59.00 0 96.4 70 130 faile 48.19 0.22 5.0 59.00 0 96.4 75 125 6 51.31 0.23 5.0 59.00 0 96.6 65 130 6 51.31 0.23 5.0 59.00 0 96.6 65 130 6 51.31 0.23 5.0 59.00 0 99.7 75 125 7 51.31 0.24 5.0 59.00 0 99.7 75 130 7 51.31 0.24 5.0 50.00 0 99.7 75 130 7 51.32 50.00 0 91.3 75 130 80 91.30 91.30 91.30 91.3 91.3 91.3 81.41 91.30 91.30 91.30 91.3 91.3 91.3 91.42 91.30 91.3	Styrene	48.02	0.16	5.0	50.00	0	96.0	65	135	0		
Rate 48.09 0.20 5.0 50.00 0 96.2 75 125 e 50.11 0.27 5.0 50.00 0 96.2 75 125 e 45.01 0.27 5.0 50.00 0 96.5 75 125 e 45.01 0.212 5.0 50.00 0 96.5 75 126 131 0.212 5.0 50.00 0 96.5 75 126 14 0.12 5.0 50.00 0 96.5 75 130 16 49.24 0.12 5.0 50.00 0 96.5 75 130 16 49.25 0.13 5.0 50.00 0 97.4 75 130 17 9.13 9.00 9.00 9.00 9.00 9.10 9.10 9.10 9.10 9.10 9.10 9.10 18 18.2 9.00 9.00 <	Bromoform	48.19	0.44	0.0	50.00	0 (96.4	70	130	0		
India 48.29 0.123 5.0 50.00 0 102 55 123 6 45.01 0.123 5.0 50.00 0 102 75 123 61.31 0.20 5.0 50.00 0 103 75 123 61.31 0.20 5.0 50.00 0 101 75 123 61.32 0.30 5.0 50.00 0 101 75 123 80.73 0.13 5.0 50.00 0 101 75 123 80.73 0.13 5.0 50.00 0 101 75 130 80.73 0.13 5.0 50.00 0 101 75 130 80.73 0.13 5.0 50.00 0.00 0 101 75 130 81.75 0.12 5.0 50.00 0.00 <td>Isopropylbenzene</td> <td></td> <td>0.20</td> <td>0.0</td> <td>50.UU</td> <td>0</td> <td>96.2</td> <td>¢/.</td> <td>125</td> <td>0</td> <td></td> <td></td>	Isopropylbenzene		0.20	0.0	50.UU	0	96.2	¢/.	125	0		
0.241 0.37 5.0 50.00 0 102 75 125 6 45.01 0.272 5.0 50.00 0 102 75 125 6 45.01 0.272 5.0 50.00 0 102 75 123 6 49.24 0.12 5.0 50.00 0 101 75 123 6 50.65 0.243 5.0 50.00 0 101 70 130 6 96.65 0.24 5.0 50.00 0 90.1 70 120 47.54 0.17 5.0 50.00 0 90.1 70 120 47.54 0.24 5.0 50.00 0 90.1 70 120 47.54 0.24 5.0 50.00 0 90.1 70 120 47.54 0.24 5.0	1,1,2,2-Tetrac hloroethane		0.23	2.0	50.00	0 0	96.6	65	130	0		
e 45.01 0.72 5.0 50.00 0 103 75 125 ne 49.24 0.12 5.0 50.00 0 103 75 120 ne 49.24 0.12 5.0 50.00 0 103 75 120 ne 49.45 0.12 5.0 50.00 0 101 75 120 ne 49.45 0.12 5.0 50.00 0 101 75 120 ne 49.45 0.12 5.0 50.00 0 90.1 75 120 47.01 0.12 5.0 50.00 0 90.1 75 120 47.01 0.24 5.0 50.00 0 90.1 75 125 47.01 0.23 5.0 50.00 0 90.1 75 125 poppane 39.22 0.3	Bromobenzene	50.91	0.37	5.0	50.00	0	102	75	125	0		
51.31 0.20 5.0 50.00 0 99.7 75 123 16 49.28 0.13 5.0 50.00 0 99.7 75 123 16 49.24 0.13 5.0 50.00 0 99.7 75 130 16 59.73 0.43 5.0 50.00 0 99.7 75 130 16 49.26 0.119 5.0 50.00 0 99.1 75 130 16 49.55 0.19 5.0 50.00 0 99.1 75 130 16 49.53 0.119 5.0 50.00 0 99.1 75 130 17 18 0.12 5.0 50.00 0 96.1 75 130 17 13 50.00 0 96.0 75 125 17 13 50.00 0 96.0 75 125 14 12	1,2,3-Trichloropropane	45.01	0.72	5.0	50.00	0	0.06	75	125	0		
49.13 0.30 5.0 50.00 0 99.7 75 125 ne 49.24 0.12 5.0 50.00 0 101 75 130 ne 49.24 0.12 5.0 50.00 0 101 75 130 ne 48.30 0.13 5.0 50.00 0 101 70 130 ne 48.30 0.19 5.0 50.00 0 99.3 70 130 49.53 0.117 5.0 50.00 0 99.1 70 130 49.53 0.129 5.0 50.00 0 99.1 70 125 49.10 0.24 5.0 50.00 0 96.0 75 125 propane 39.22 0.35 5.0 50.00 0 70 120 e 32.22 0.39 5.0 50.00 0 70 120 e 28.03 0	n-Propylbenzene	51.31	0.20	5.0	50.00	0	103	7.0	130	o		
Inc 49.24 0.12 5.0 50.00 0 96.5 75 130 Inc 36.365 0.24 5.0 50.00 0 101 75 130 Inc 49.65 0.13 5.0 50.00 0 96.6 75 130 Inc 49.65 0.19 5.0 50.00 0 96.6 75 130 49.65 0.17 5.0 50.00 0 96.6 75 130 47.01 0.24 5.0 50.00 0 96.0 76.1 <t< td=""><td>2-Chlorotoluen e</td><td>49.83</td><td>0.30</td><td>5.0</td><td>50.00</td><td>0</td><td>99.7</td><td>75</td><td>125</td><td>0</td><td></td><td></td></t<>	2-Chlorotoluen e	49.83	0.30	5.0	50.00	0	99.7	75	125	0		
50.73 0.43 5.0 50.00 0 101 75 130 ne 49.65 0.24 5.0 50.00 0 101 75 130 a 49.65 0.115 5.0 50.00 0 90.1 75 130 a 49.65 0.119 5.0 50.00 0 91.1 75 130 a 49.63 0.119 5.0 50.00 0 91.1 75 130 a 47.03 0.13 5.0 50.00 0 91.1 75 130 a 47.03 0.24 5.0 50.00 0 91.1 75 132 a 47.01 0.24 5.0 50.00 0 91.1 76 125 a 39.22 0.33 5.0 50.00 0 76.4 50 130 a 31.21 5.0 50.00 0 126 126	1,3,5-Trim ethylbenzene	49.24	0.12	5.0	50.00	0	•	75	130	0		
50.65 0.24 5.0 50.00 0 101 70 130 ne 48.30 0.119 5.0 50.00 0 96.6 75 130 49.55 0.119 5.0 50.00 0 96.6 75 130 49.53 0.117 5.0 50.00 0 95.1 70 130 47.61 0.24 5.0 50.00 0 96.0 75 125 47.01 0.23 5.0 50.00 0 96.0 75 125 47.01 0.24 5.0 50.00 0 96.0 75 125 47.01 0.24 5.0 50.00 0 96.0 76 70 130 a7.22 0.33 5.0 50.00 0 67.1 50 140 a7.01 0.13 50.00 0 67.1 55 140 a7.23 0.15 50.00 0 67.1	4-Chlorotoluen e	50.73	0.43	5.0	50.00	0	101	75	130	0		
ne 48.30 0.15 5.0 50.00 0 96.6 75 130 49.65 0.117 5.0 50.00 0 99.1 75 130 47.63 0.17 5.0 50.00 0 96.6 75 130 47.63 0.17 5.0 50.00 0 96.7 75 125 47.01 0.24 5.0 50.00 0 96.0 75 125 47.01 0.24 5.0 50.00 0 96.1 75 125 47.01 0.24 5.0 50.00 0 96.1 70 126 47.01 0.24 5.0 50.00 0 96.1 75 126 47.01 0.24 5.0 50.00 0 91.0 76.4 50 130 6 28.01 6 12.126 120 33.56	tert-Butylben zene	50.65	0.24	5.0	50.00	0		70	130	0		
49.65 0.19 5.0 50.00 0 99.3 70 125 49.53 0.17 5.0 50.00 0 99.1 75 130 47.64 0.19 5.0 50.00 0 95.1 75 125 47.54 0.27 5.0 50.00 0 94.0 75 125 47.01 0.24 5.0 50.00 0 94.0 75 125 47.01 0.24 5.0 50.00 0 94.0 75 135 47.01 0.24 5.0 50.00 0 94.0 70 126 47.01 0.24 5.0 50.00 0 94.0 70 135 e 39.92 0.33 5.0 50.00 0 94.0 50 140 e 28.03 0.15 5.0 50.00 0 94.0 50 140 e 28.07 0 10 10 16 140 140 e 49.10 0 10 10	1,2,4-Trim ethylbenzene	48.30	0.15	5.0	50.00	0	96.6	75	130	0		
49.53 0.17 5.0 50.00 0 99.1 75 130 47.83 0.19 5.0 50.00 0 95.7 75 125 46.01 0.24 5.0 50.00 0 95.1 75 125 47.01 0.27 5.0 50.00 0 94.0 75 125 47.01 0.27 5.0 50.00 0 94.0 75 125 47.01 0.24 5.0 50.00 0 94.0 70 120 arcolor 0.39 5.0 50.00 0 76.4 50 130 are 39.92 0.39 5.0 50.00 0 76.4 50 140 arcolor 0.41 5.0 50.00 0 76.4 50 140 arcolor 0.45 0.15 50.00 0 101 95.14 0 arcolor 0.45 50.00 0 0.10 <	sec-Butylbenzene	49.65	0.19	5.0	50.00	0	.99.3	70	125	0		
47.63 0.19 5.0 50.00 0 95.7 75 125 48.01 0.24 5.0 50.00 0 96.0 75 125 47.01 0.24 5.0 50.00 0 94.0 70 135 propane 37.22 0.35 5.0 50.00 0 94.0 70 130 ne 38.22 0.33 5.0 50.00 0 94.0 70 130 ne 38.22 0.33 5.0 50.00 0 94.0 70 130 ne 39.92 0.39 5.0 50.00 0 94.0 70 130 ne 28.03 0.41 5.0 50.00 0 84.0 50 140 ne 28.03 0.15 5.0 50.00 0 96.1 55 140 ne 28.01 0 50.00 0 96.2 65 120 e 49.10 0 5.0 50.00 0 96.2 65 120 </td <td>4-Isopropyltoluene</td> <td>49.53</td> <td>0.17</td> <td>5.0</td> <td>50.00</td> <td>0</td> <td>99.1</td> <td>75</td> <td>130</td> <td>0</td> <td></td> <td></td>	4-Isopropyltoluene	49.53	0.17	5.0	50.00	0	99.1	75	130	0		
48.01 0.24 5.0 50.00 0 96.0 75 125 47.54 0.27 5.0 50.00 0 95.1 70 135 47.01 0.24 5.0 50.00 0 94.0 70 120 propare 38.22 0.35 5.0 50.00 0 94.0 70 120 ne 39.92 0.39 5.0 50.00 0 76.4 50 130 ne 39.92 0.39 5.0 50.00 0 70.1 70 120 ne 28.03 0.41 5.0 50.00 0 70.1 55 140 ne 28.03 0.15 5.0 50.00 0 96.1 55 140 e 28.03 0.15 5.0 50.00 0 96.2 70 120 e 29.33.56 0.15 5.0 50.00 0 96.2 70 120 e 49.10 0 5.0 50.00 0 96.2 70	1,3-Dichlorobenzene	47.83	0.19	5.0	50.00	0	95.7	75	125	0		
47.54 0.27 5.0 50.00 0 95.1 70 135 propane 37.01 0.24 5.0 50.00 0 94.0 70 120 propane 38.22 0.35 5.0 50.00 0 76.4 50 130 ne 38.22 0.39 5.0 50.00 0 76.4 50 130 ne 38.22 0.39 5.0 50.00 0 79.8 65 130 ne 28.03 0.41 5.0 50.00 0 79.8 65 140 ne 28.03 0.45 5.0 50.00 0 67.1 55 140 e 33.56 0.15 5.0 50.00 0 101 85 115 e 49.10 0 5.0 50.00 0 98.2 70 120 d8 48.60 0 5.0 50.00 0 98.2 120 d8 48.60 0 5.0 50.00 0 98.2 <	1,4-Dichlorobenzene	48.01	0.24	5.0	50.00	0	96.0	75	125	0		
47.01 0.24 5.0 50.00 0 94.0 70 120 propane 38.22 0.35 5.0 50.00 0 76.4 50 130 ne 39.92 0.39 5.0 50.00 0 76.4 50 130 ne 39.92 0.39 5.0 50.00 0 74.0 50 130 ne 39.92 0.41 5.0 50.00 0 74.0 50 140 ne 28.03 0.45 5.0 50.00 0 67.1 55 140 ne 28.03 0.15 5.0 50.00 0 67.1 55 140 ne 49.10 0 5.0 50.00 0 98.2 70 120 dB 49.10 0 5.0 50.00 0 96.2 85 120 dB 48.10 0 5.0 50.00 0 97.2 75 120 dB 48.60 0 50.00 0 97.2 75	n-Butylbenzene	47.54	0.27	5.0	50.00	0	95.1	70	135	0		
propane 38.22 0.35 5.0 50.00 0 76.4 50 130 ne 39.92 0.39 5.0 50.00 0 79.8 65 135 ne 39.92 0.39 5.0 50.00 0 79.8 65 136 ne 28.03 0.41 5.0 500 0 70 84.0 50 140 ne 28.03 0.15 5.0 50.00 0 67.1 55 140 s33.56 0.15 5.0 50.00 0 67.1 55 140 ef 49.10 0 5.0 50.00 0 98.2 70 120 dB 48.60 0 5.0 50.00 0 97.2 75 120 dB 48.60 0 50.00 0 97.2 75 120 dS 48.8D 50.00 0 97.2 75 120 120	1,2-Dichlorobenzene		0.24	5.0	50.00	0	94.0	70	120	0		
1e 39.92 0.39 5.0 50.00 0 79.8 65 135 12 12 0.41 5.0 50.00 0 84.0 50 140 12 12 140 50 50.00 0 67.1 55 140 13 56.33 0.15 5.0 50.00 0 67.1 55 140 13 50.33 0 5.0 50.00 0 101 85 115 16 49.10 0 5.0 50.00 0 98.2 70 120 d8 48.12 0 5.0 50.00 0 96.2 85 120 d8 48.12 0 5.0 50.00 0 97.2 75 120 d9 18.60 0 5.0 50.00 0 97.2 75 120 d10 10.1 5.0 50.00 0 97.2 75 120 d10 10 5.0 50.00 0 97.2 75 120 <td>1,2-Dibrom o-3-chloroprop</td> <td></td> <td>0.35</td> <td>5.0</td> <td>50.00</td> <td>0</td> <td>76.4</td> <td>50</td> <td>130</td> <td>0</td> <td></td> <td></td>	1,2-Dibrom o-3-chloroprop		0.35	5.0	50.00	0	76.4	50	130	0		
42.01 0.41 5.0 50.00 0 84.0 50 140 140 33.56 0.45 5.0 50.00 0 67.1 55 140 150 33.56 0.15 5.0 50.00 0 67.1 55 140 16 33.56 0.15 5.0 50.00 0 67.1 55 140 16 49.10 0 5.0 50.00 0 98.2 70 120 17 49.10 0 5.0 50.00 0 96.2 85 120 18 48.12 0 5.0 50.00 0 97.2 75 120 10 48.60 0 5.0 50.00 0 97.2 75 120 10 Not Detected at the Reporting Limit 5.0 50.00 0 97.2 75 120 10 10 5.0 50.00 0 97.2 75 120 10 10 5.0 50.00 0 97.2 75 120 </td <td>1,2,4-Trichlorobenzene</td> <td>39.92</td> <td>0.39</td> <td>5.0</td> <td>50.00</td> <td>0</td> <td>79.8</td> <td>65</td> <td>135</td> <td>0</td> <td></td> <td></td>	1,2,4-Trichlorobenzene	39.92	0.39	5.0	50.00	0	79.8	65	135	0		
1e 28.03 0.45 5.0 50.00 0 56.1 55 140 33.56 0.15 5.0 50.00 0 67.1 55 140 6 50.33 0 5.0 50.00 0 101 85 115 1e 49.10 0 5.0 50.00 0 98.2 70 120 d8 48.12 0 5.0 50.00 0 96.2 85 120 d8 48.12 0 5.0 50.00 0 97.2 75 120 d0 10.1 5.0 50.00 0 97.2 75 120 d10 10 5.0 50.00 0 97.2 75 120 d10 10.1 5.0 50.00 0 97.2 75 120 d10 10 5.0 50.00 0 97.2 75 120 d10 10 120 10 120 120 120 120 d10 10 5.0 <td>Hexachlorobut adiene</td> <td>42.01</td> <td>0.41</td> <td>5.0</td> <td>50.00</td> <td>0</td> <td>84.0</td> <td>50</td> <td>140</td> <td>0</td> <td></td> <td></td>	Hexachlorobut adiene	42.01	0.41	5.0	50.00	0	84.0	50	140	0		
33.56 0.15 5.0 50.00 0 67.1 55 140 50.33 0 5.0 5.0 50.00 0 101 85 115 e 49.10 0 5.0 5.0 50.00 0 98.2 70 120 d8 48.12 0 5.0 5.0 50.00 0 96.2 85 120 d8 48.12 0 5.0 5.0 50.00 0 97.2 75 120 d0 - Not Detected at the Reporting Limit 5.0 50.00 0 0 97.2 75 120 d1 - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits B R PD Intride accepted recovery limits B	1,2,3-Trichlorobenzene	28.03	0.45	5.0	50.00	0	56.1	55	140	0		
50.33 0 5.0 50.00 0 101 85 115 e 49.10 0 5.0 50.00 0 98.2 70 120 d8 48.12 0 5.0 50.00 0 96.2 85 120 d8 48.60 0 5.0 5.0 50.00 0 97.2 75 120 d0 Not Detected at the Reporting Limit 5.0 50.00 0 97.2 75 120 d10 Not Detected at the Reporting Limit S- Spike Recovery outside accepted recovery limits 8. RPD outside accepted recovery limits B	Naphthalene	33.56	0.15	5.0	50.00	0	67.1	55	140	0		
ed 49.10 0 5.0 50.00 0 98.2 70 120 ed8 48.12 0 5.0 50.00 0 96.2 85 120 d8 48.12 0 5.0 50.00 0 97.2 75 120 d9 Not Detected at the Reporting Limit 5.0 50.00 0 97.2 75 120 Andreaded detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits B R PD Intride accented recovery limits B	Surrogate:	50.33	0	5.0	50.00	0	101	85	115	0		
-d8 48.12 0 5.0 50.00 0 96.2 85 120 48.60 0 5.0 5.0 50.00 0 97.2 75 120 iD - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits B R. RPD outside accepted recovery limits B	Dibrofitoriuoroore: 1.2-	49.10	0	5.0	50.00	0		70	120	0		
-d8 48.12 0 5.0 50.00 0 96.2 85 120 48.60 0 5.0 5.0 50.00 0 97.2 75 120 VD - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits B Analyze detected helovorumitation limits B	bichloroethan e-d4											
48.60 0 5.0 50.00 0 97.2 75 120 4D - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits B	Surrogate: Toluene-d8	48.12	0	5.0	50.00	0	96.2	85	120	0		
vD - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits B A nature detected helow outside R - RPD outside accepted recovery limits B	Surrogate:	48.60	0	5.0	50.00	0	97.2	75	120	0		
rs: ND - Not Detected at the Reporting Limit S - Spike Recovery outside accepted recovery limits B 1. Analytic detected helowy quantitation limits R - RPD outside accented recovery limits												
I - Analyta dataotad halow muantitation limite		Not Detected at the Reporting Limi	it	S-	Spike Recovery outsic	le accepted recovery	limits			Analyte detected in	the associated Metho	l Blank
		I activity and before another the		۵	D DD outside accented	vacarrows limita						

CLIENT: Dav	Dav Environmental Inc.			ANALY	ANALYTICAL OC SUMMARY REPORT	MIN	MAR	V REPO	DRT			
ler:	5		SW	SW8260 W		}						
	151 Mt. Hope Ave.		SW)C –	VOC by GC-MS	S						
Sample ID: LCSD-52287	SampType: LCSD	TestCode: SW8260_W	260_W		Prep Date:	06/14/10 8:54	8:54	Run ID:	D: V1_100614C			
Client ID: LCSD-52287	Batch ID: 52287	Units: µg/L			Analysis Date:	06/14/10 9:39	9:39	SeqN	SeqNo: 1314152			
Analyte	Result	MDL PQL	_	SPK value	SPK Ref Val	%REC Lo	LowLimit HighLimit	ghLim it	RPD Ref Val	%RPD RPDLimit	DLimit	Qual
Dichlorodifluor omethane	45.13	0.47	5.0	50.00	0	90.3	30	155	43.89	2.79	40	
Chlorom ethane	50.49	0.54	5.0	50.00	0	101	40	125	50.01	0.962	40	
Vinyl chloride	48.53	0.78	5.0	50.00	0	97.1	50	145	45.74	5.92	40	
Bromomethane	59.76	0.74	5.0	50.00	0	120	30	145	56.91	4.87	40	
Chloroethane	52.50	0.89	5.0	50.00	D	105	60	135	49.22	6.44	40	
Trichlorofluoro methane	55.60	0.60	5.0	50.00	0	111	60	145	53.06	4.66	40	
1,1-Dichloroethene	53.14	0.64	5.0	50.00	0	106	70	130	48.33	9.48	40	
Acetone	47.61	4.6	5.0	50.00	0	95.2	40	140	42.02	12.5	40	
lodomethane	53.87	0.37	5.0	50.00	0	108	72	121	50.30	6.85	40	
Carbon disulfide	49.85	0.34	5.0	50.00	0	99.7	35	160	47.74	4.33	40	
Methylene chloride	51.64	0.83	5.0	50.00	0	103	55	140	51.08	1.09	40	
trans-1,2-Dichloroethene	51.80	0.37	5.0	50.00	0	104	60	140	49.38	4.78	40	
Methyl tert-but yl ether	54.36	0.25	5.0	50.00	0	109	65	125	52.23	3.99	40	
1,1-Dichloroethane	50.18	0.24	5.0	50.00	0	100	70	135	47.64	5.19	40	
Vinyl acetate	50.33	0.43	5.0	50.00	0	101	38	163	47.84	5.07	40	
2-Butanone	49.80	2.0	5.0	50.00	0	99.66	30	150	49.11	1.38	40	
cis-1,2-Dichloroethene	53.42	0.34	5.0	50.00	0	107	70	125	51.63	3.41	40	
2,2-Dichloropropane	47.58	0.22	5.0	50.00	0	95.2	70	135	42.61	11	40	
Bromochloromethane	53.41	0.30	5.0	50.00	0	107	65	130	52.70	1.34	40	
Chloroform	49.84	0.30	5.0	50.00	0	7.66	65	135	49.25	1.21	40	
1,1,1-Trichloroethane	49.03	0.18	5.0	50.00	0	98.1	65	130	45.21	8.09	40	
1,1-Dichloropropene	54.64	0.38	5.0	50.00	0	109	75	130	52.64	3.74	40	
Carbon tetrachloride	54.25	0.11	5.0	50.00	0	108	65	140	51.01	6.16	40	
1,2-Dichloroethane	50.89	0.16	5.0	50.00	0	102	70	130	50.14	1.48	40	
Benzene	50.78	0.12	5.0	50.00	0	102	80	120	49.19	3.18	40	
Trichloroethen e	50.35	0.25	5.0	50.00	0	101	70	125	48.58	3.57	40	
1,2-Dichloropropane	53.31	0.24	5.0	50.00	0	107	75	125	49.03	8.36	40	
Dibromomethane	51.86	0.26	5.0	50.00	0	104	75	125	49.96	3.73	40	
Bromodichloromethane	51.18	0.20	5.0	50.00	0	102	75	120	48.84	4.69	40	
cis-1,3-Dichloropropene	50.17	0.22	5.0	50.00	0	100	70	130	49.17	2.02	40	
4-Methyl-2-pentanone	48.45	1.5	5.0	50.00	0	96.9	60	135	46.70	3.66	40	
Toluene	51.53	0.15	5.0	50.00	0	103	75	120	49.36	4.3	40	
trans-1,3-Dichloropropene	51.14	0.27	5.0	50.00	0	102	55	140	48.47	5.37	40	
1,2-Trichloroethane	53.13	0.29	5.0	50.00	0	106	75	125	51.00	4.1	40	
3-Dichloropropane	49.15	0.26	5.0	50.00	0	98.3	75	125	47.74	2.91	40	
Letrachloroethene	46.71	0.27	5.0	50.00	0	93.4	45	150	44.67	4.46	40	
2 Hexanone	46.72	1.1	5.0	50.00	0	93.4	55	130	47.46	1.58	40	
Qualifiers: ND - N	ND - Not Detected at the Reporting Limit	lit	S-S	Spike Recovery outside accepted recovery limits	e accepted recovery l	limits		B-/	- Analyte detected in the associated Method Blank	the associate	d Method	Blank
			1	:								

R - RPD outside accepted recovery limits

J - Analyte detected below quantitation limits

m10.06.11.A

CLIENT:	Day Environmental Inc.
Work Order:	J1185
Ductort.	1 5 1 M4 11 ama Auro

ANALYTICAL QC SUMMARY REPORT

Project: I Mi. Flop Art. SW846 8200C – VOC by CCMS Rmit: V_1004 (5) Rmit: V_1004 (5)<		Unne Ave				VUC PA CC	10						
Z311 SampType: LC50 TentConc: SW020.M Parp Date: Out/10 E: S1 Turn D: V_1 V_		nope Ave.		1			2						
2207 Bairly U. Szav Units put Spit Mat Mat Mat Mat Spit	Sample ID: LCSD-52287	SampType: LCSD	TestCode:	SW8260_W		Prep Date:		8:54	Run I				
Field DDI PCI SPK value		Batch ID: 52287	Units:	µg/L		Analysis Date:		9:39	SeqN	o: 1314152			
00 50:3 0.20 50:0 0 101 60 135 0.10 41.14 0.21 5.0 90.00 0 97.4 80 120 91.4 41.24 0.23 5.0 90.00 0 97.4 80 120 91.4 41.3 0.23 5.0 90.00 0 101 75 120 91.4 41.51 0.26 5.0 90.00 0 101 75 120 91.4 150.4 0.26 5.0 90.00 0 101 75 120 91.4 150.4 0.26 5.0 90.00 0 91.7 75 120 91.4 150.4 0.26 5.0 90.00 0 91.4 75 120 91.4 150.4 0.26 5.0 90.00 0 91.4 75 120 91.4 150.4 0.26 5.0 90.00 0 100	Analyte	Result	MDL	PQL	SPK value	SPK Ref Val	%REC Lo	owLimit H	ighLim it	RPD Ref Val	%RPD F	RPDLimit	Qual
51.4 0.31 5.0 90.00 0 102 60 120 61.46 46.31 0.23 5.0 90.00 0 97.4 60 120 61.46 101.6 0.23 5.0 90.00 0 97.4 60 120 61.46 101.6 0.23 5.0 90.00 0 97.4 60 120 61.46 101.6 5.0 90.00 5.0 90.00 0 97.3 97.3 97.3 101.6 5.0 90.00 0 91.3 7 121 169.3 101.6 5.0 90.00 0 91.3 7 123 91.3 110.6 5.0 90.00 0 91.3 7 123 91.3 111 91.3 91.3 91.3 91.3 91.3 91.3 91.3 111 91.3 91.3 91.3 91.3 91.3 91.3 91.3 91.3 <th< th=""><th>Dibrom ochlorom ethane</th><th>50.53</th><th>0.20</th><th>5.0</th><th>50.00</th><th>0</th><th>101</th><th>60</th><th>135</th><th>51.30</th><th>1.51</th><th>40</th><th></th></th<>	Dibrom ochlorom ethane	50.53	0.20	5.0	50.00	0	101	60	135	51.30	1.51	40	
(6.2) (0.2) <th< td=""><td>1,2-Dibrom oethane</td><td>51.14</td><td>0.31</td><td>5.0</td><td>50.00</td><td>0</td><td>102</td><td>80</td><td>120</td><td>51.45</td><td>0.591</td><td>40</td><td></td></th<>	1,2-Dibrom oethane	51.14	0.31	5.0	50.00	0	102	80	120	51.45	0.591	40	
Moto 10.71 0.28 5.0 90.00 0 171 7 121 90.00 90.01	Chlorobenzene	48.92	0.23	5.0	50.00	0	97.8	80	120	48.98	0.122	40	
11.33 0.23 5.0 90.00 0 113 75 125 49.37 10.88 0.46 5.0 90.00 0 101 12 12 97.36 40.90 0.46 5.0 90.00 0 99.2 12 146.9 40.91 0.46 5.0 90.00 0 99.2 70 133 46.9 46.61 0.44 5.0 90.00 0 99.2 70 133 46.9 46.61 0.44 5.0 90.00 0 101 75 123 46.19 90.46 0.37 0.37 90.00 0 101 75 123 46.19 90.45 0.37 0.30 90.00 0 101 75 123 46.19 91.47 0.23 5.0 90.00 0 101 75 123 46.19 91.45 0.37 0.31 0.31 13 46.19 4	1,1,1,2-Tetrac hloroethane	48.71	0.28	5.0	50.00	0	97.4	80	130	48.02	1.42	40	
	Ethylbenzene	51.53	0.23	5.0	50.00	0	103	75	125	49.37	4.28	40	
	m,p-Xylene	100.8	0.40		100.0	0	101	75	130	97.68	3.14	40	
	o-Xylene	49.59	0.26	5.0	50.00	0	99.2	80	120	49.24	0.708	40	
48.84 0.16 5.0 50.00 0 97.7 65 135 46.02 47.51 0.23 5.0 50.00 0 93.2 70 130 46.13 46.13 47.55 0.23 5.0 50.00 0 93.2 70 130 46.13 46.13 50.66 0.23 5.0 50.00 0 91.2 75 122 46.03 51.42 0.23 5.0 50.00 0 91.5 75 123 46.03 61.43 0.13 5.0 50.00 0 91.7 75 123 46.03 61.43 0.13 5.0 50.00 0 91.3 70 123 69.03 61 17.2 0.13 5.0 50.00 0 91.3 70 123 49.03 61 17.2 0.13 0.13 10.23 10.23 10.23 10.23 61 10.23 5.0	Xylene (Total)	150.4	0.26	•	150.0	0	100	81	121	146.9	2.33	40	
46.61 0.44 5.0 50.00 0 93.2 70 130 40.19 flame 50.66 0.27 5.0 50.00 0 110 75 120 64.09 flame 50.66 0.27 5.0 50.00 0 111 75 123 64.09 flame 50.66 0.27 5.0 50.00 0 111 75 123 64.01 flame 64.77 0.20 50.00 0 111 75 123 64.01 flame 64.77 0.20 50.00 0 111 75 123 64.01 flame 64.77 0.20 50.00 0 101 75 123 64.01 flame 64.73 0.21 50 50.00 0 101 75 123 64.01 flame 64.74 0.24 50 50.00 0 123 75 123 76 123	Styrene	48.84	0.16	5.0	50.00	0	7.76	65	135	48.02	1.71	40	
Hate 99.7 0.20 5.0 90.00 0 99.5 75 125 60.09 Hate 50.06 0.273 5.0 90.00 0 102 65 130 61.09 Fe 51.42 0.273 5.0 50.00 0 101 75 125 61.01 Fe 51.42 0.270 50.00 0 101 75 125 61.01 61.77 0.12 5.0 50.00 0 103 70 130 51.33 61.01 61.7 0.12 5.0 50.00 0 99.5 75 130 69.01 61.43 0.12 5.0 50.00 0 99.5 75 130 69.01 61.44 0.12 5.0 50.00 0 99.5 75 130 99.01 99.01 61.47 0.13 50.00 0 96.3 75 130 90.01 90.01 90.01	Bromoform	46.61	0.44	5.0	50.00	0	93.2	70	130	48.19	3.33	40	
Hane 50.68 0.23 5.0 50.00 0 102 65 130 46.29 e 35.77 0.27 5.0 50.00 0 111 75 125 50.01 0 e 35.47 0.23 5.0 50.00 0 91.5 75 125 50.01 0 e 35.47 0.230 5.0 50.00 0 91.5 75 125 45.01 0 a 49.47 0.12 5.0 50.00 0 91.5 75 120 49.43 a 49.47 0.13 5.0 50.00 0 91.6 75 130 49.33 a 49.47 0.13 5.0 50.00 0 91.6 70 130 49.33 49.33 a 49.47 5.0 50.00 0 91.6 70 130 49.33 49.33 a 49.31 0.13 0.13 <	lsopropylbenzene	49.75	0.20	5.0	50.00	0	99.5	75	125	48.09	3.39	40	
50.66 0.37 5.0 50.00 0 101 75 125 50.91 0 a 14.77 0.72 5.0 50.00 0 91.5 75 125 50.01 0 a 14.77 0.72 5.0 50.00 0 91.5 75 120 51.01 91.03 a 49.03 0.30 5.0 50.00 0 91.5 75 130 51.03 51.03 a 49.03 0.12 5.0 50.00 0 91.5 75 130 69.13 a 47.62 0.13 5.0 50.00 0 91.6 75 130 69.23 69.23 a 49.12 0.13 5.0 50.00 0.01 0 91.6 75 130 69.24 a 49.16 0.13 0.12 5.0 50.00 0 91.6 70 133 91.65 91.65 a	1,1,2,2-Tetrac hloroethane	50.88	0.23	5.0	50.00	0	102	65	130	48.29	5.2	40	
45.77 0.72 5.0 96.00 0 91.5 75 125 45.01 49.77 0.120 5.0 90.00 0 93.7 75 120 49.13 49.77 0.120 5.0 90.00 0 93.7 75 120 49.23 97.45 0.23 5.0 90.00 0 99.5 75 130 49.23 97.45 0.24 5.0 90.00 0 99.5 75 130 49.23 97.62 0.13 5.0 90.00 0 99.5 75 130 49.45 91.70 0.17 5.0 90.00 0 99.5 75 130 49.45 91.70 0.17 5.0 50.00 0 99.6 75 130 49.45 91.75 0.13 5.0 90.00 0 96.3 75 120 49.45 91.75 0.13 0.24 50 130	Bromobenzene	50.66	0.37		50.00	0	101	75	125	50.91	0.494	40	
51.42 0.20 5.0 50.00 0 103 70 130 51.31 0 48.43 0.30 5.0 50.00 0 97.7 75 123 94.83 50.33 49.45 0.12 5.0 50.00 0 97.7 75 130 59.23 69.45 0.12 5.0 50.00 0 94.5 75 130 59.24 50.24 0.12 5.0 50.00 0 94.5 75 130 50.45 61.7 0.13 5.0 50.00 0 94.5 75 130 50.45 61.7 0.19 5.0 50.00 0 94.2 75 130 49.35 75 49.17 0.19 5.0 50.00 0 96.3 75 123 49.45 74.49 41.71 0.12 5.0 50.00 0 96.3 75 125 47.49 76.11 76.12	1,2,3-Trichloropropane	45.77	0.72	5.0	50.00	0	91.5	75	125	45.01	1.66	40	
48.83 0.30 5.0 50.00 0 97.7 75 125 49.24 49.77 0.12 5.0 50.00 0 99.5 75 130 50.73 49.77 0.12 5.0 50.00 0 99.5 75 130 50.73 99.65 75 130 50.65 99.66 75 130 50.65 47.62 0.19 5.0 50.00 0 99.6 75 130 50.65 49.17 0.19 5.0 50.00 0 99.6 75 130 99.65 49.17 0.19 5.0 50.00 0 96.3 75 123 12.13 12.13 48.17 0.27 5.0 50.00 0 96.3 75 12.6 49.16 48.17 0.24 5.0 50.00 0 96.3 75 120 <	n-Propylben zene	51.42	0.20	5.0	50.00	0	103	70	130	51.31	0.228	40	
and 49.77 0.12 5.0 50.00 0 99.5 75 130 49.24 99.45 0.43 5.0 50.00 0 99.5 75 130 50.73 99.45 0.13 5.0 50.00 0 100 70 130 50.73 91.62 0.13 5.0 50.00 0 90.6 75 130 49.65 49.17 0.19 5.0 50.00 0 90.6 75 130 49.65 49.17 0.19 5.0 50.00 0 90.6 79 1701 91.65 49.17 0.19 5.0 50.00 0 96.3 75 123 41.01 0 41.77 0.19 5.0 50.00 0 96.3 75 123 410.01 0 41.77 0.24 50 50.00 0	2-Chlorotoluen e	48.83	0.30	5.0	50.00	0	97.7	75	125	49.83	2.02	40	
49.45 0.43 5.0 50.00 0 98.9 75 130 50.73 97.62 0.13 5.0 50.00 0 95.2 75 130 50.65 97.62 0.13 5.0 50.00 0 95.2 75 130 50.65 91.62 0.13 5.0 50.00 0 95.2 75 130 49.33 0 49.17 0.19 5.0 50.00 0 96.3 75 125 49.61 0 48.17 0.19 5.0 50.00 0 96.3 75 125 49.61 0 48.17 0.24 5.0 50.00 0 96.3 75 125 49.61 0 48.17 0.24 5.0 50.00 0 96.3 75 125 49.01 0 49.16 0.23 5.0 50.00 0 96.3 75 120 20.13 10	1,3,5-Trim ethylbenzene	49.77	0.12	5.0	50.00	0	99. 5	75	130	49.24	1.08	40	
50.24 0.24 5.0 50.00 0 100 70 130 50.65 47.62 0.13 5.0 50.00 0 95.7 75 130 48.30 49.82 0.13 5.0 50.00 0 95.6 75 130 48.30 49.17 0.19 5.0 50.00 0 95.6 75 130 48.30 49.17 0.19 5.0 50.00 0 96.3 75 125 49.60 48.17 0.24 5.0 50.00 0 96.3 75 126 47.93 48.17 0.24 5.0 50.00 0 96.3 75 127 47.61 47.97 0.24 5.0 50.00 0 96.3 75 126 47.01 47.11 0.23 5.0 50.00 0 96.3 75 130 36.50 propare 42.11 0.33 50 140	4-Chlorotoluen e	49.45	0.43	5.0	50.00	0	98.9	75	130	50.73	2.57	40	
and 47.62 0.15 5.0 50.00 0 95.2 75 130 48.30 49.82 0.17 5.0 50.00 0 99.6 70 125 49.65 49.30 0.17 5.0 50.00 0 99.6 70 125 49.53 48.17 0.19 5.0 50.00 0 96.5 70 125 47.61 48.17 0.24 5.0 50.00 0 96.5 70 133 47.61 48.17 0.24 5.0 50.00 0 96.5 70 133 47.61 48.25 0.35 5.0 50.00 0 96.5 70 133 47.61 47.97 0.24 5.0 50.00 0 96.5 70 133 59.2 47.18 0.35 50.00 0 96.5 70 120 47.01 7 42.85 5.0 50.00 0 84	tert-Butylben zene	50.24	0.24	5.0	50.00	0	100	70	130	50.65	0.82	40	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1,2,4-Trim ethylbenzene	47.62	0.15	5.0	50.00	0	95.2	75	130	48.30	1.42	40	
49.30 0.17 5.0 50.00 0 98.6 75 130 49.53 48.17 0.19 5.0 50.00 0 96.3 75 125 47.83 48.17 0.19 5.0 50.00 0 96.3 75 125 41.01 48.17 0.24 5.0 50.00 0 96.3 75 125 41.01 48.17 0.24 5.0 50.00 0 96.3 75 125 41.01 48.26 0.24 5.0 50.00 0 96.5 70 135 36.22 propare 42.15 0.33 5.0 50.00 0 84.2 50 140 26.03 ne 42.25 0.45 50.00 0 84.5 50 140 28.03 ne 32.02 0.412 50 140 55 140 37.6 ne 32.02 0.15 50 0 1	sec-Butylbenzene	49.82	0.19	5.0	50.00	0	99.6	70	125	49.65	0.34	40	
48.17 0.19 5.0 50.00 0 66.3 75 125 47.63 48.17 0.24 5.0 50.00 0 96.3 75 125 48.01 48.17 0.24 5.0 50.00 0 96.3 75 125 48.01 48.26 0.27 5.0 50.00 0 96.5 70 135 47.54 47.97 0.24 5.0 50.00 0 96.5 70 130 38.22 are 42.11 0.35 5.0 50.00 0 84.5 50 140 42.01 are 42.25 0.41 5.0 50.00 0 84.5 50 140 28.03 are 42.85 0.41 50 0 140 55 140 28.03 are 32.02 0.14 50 10 10 10 10 10 10 10 10 10	4-lsopropyltoluene	49.30	0.17	5.0	50.00	0	98.6	75	130	49.53	0.466	40	
48.17 0.24 5.0 50.00 0 96.3 75 125 46.01 48.26 0.27 5.0 50.00 0 96.5 70 135 47.54 propane 47.1 0.24 5.0 50.00 0 96.5 70 135 47.01 propane 42.11 0.35 5.0 50.00 0 96.5 70 120 47.01 propane 42.11 0.35 5.0 50.00 0 96.5 70 120 47.01 ne 42.25 0.39 5.0 50.00 0 84.5 65 133 95.2 ne 42.85 0.41 5.0 50.00 0 84.5 65 140 28.03 32.02 0.41 5.0 50.00 0 64.0 71.9 70 120 91.01 33.56 37.02 0.15 50.00 0 71.9 55 140 28.03	1,3-Dichlorobenzene	48.17	0.19	5.0	50.00	0	96.3	75	125	47.83	0.713	40	
48.26 0.27 5.0 50.00 0 96.5 70 135 47.54 1 apropane 47.97 0.24 5.0 50.00 0 95.9 70 120 47.01 2 apropane 42.11 0.35 5.0 50.00 0 95.9 70 120 47.01 2 and 42.11 0.35 5.0 50.00 0 84.5 55 140 42.01 1 and 42.85 0.41 5.0 50.00 0 84.5 55 140 28.03 13 and 42.85 0.41 5.0 50.00 0 84.5 55 140 28.03 13 and 32.02 0.45 5.0 0.410 55 140 28.03 13 and 32.02 0.15 50.00 0 0 0 0 0 0 0 0 0 0 0 0	1,4-Dichlorobenzene	48.17	0.24	5.0	50.00	0	96.3	75	125	48.01	0.328	40	
47.97 0.24 5.0 50.00 0 95.9 70 120 47.01 2 propane 42.11 0.35 5.0 50.00 0 84.5 50 130 38.22 9 ne 42.15 0.39 5.0 50.00 0 84.5 55 130 38.22 9 ne 42.15 0.39 5.0 50.00 0 84.5 55 140 42.01 1 ne 32.02 0.41 5.0 50.00 0 84.5 55 140 28.03 13 ne 32.02 0.45 5.0 50.00 0 64.0 55 140 28.03 13 ne 32.02 0.15 5.0 50.00 0 17.9 55 140 28.03 13 16 35.13 0 120 50.00 0 120 0 0 16 35.16 6 50.00 <td>n-Butylbenzene</td> <td>48.26</td> <td>0.27</td> <td>5.0</td> <td>50.00</td> <td>0</td> <td>96.5</td> <td>70</td> <td>135</td> <td>47.54</td> <td>1.5</td> <td>40</td> <td></td>	n-Butylbenzene	48.26	0.27	5.0	50.00	0	96.5	70	135	47.54	1.5	40	
propane 42.11 0.35 5.0 50.00 0 84.2 50 130 38.22 9 ne 42.25 0.39 5.0 50.00 0 84.5 65 135 39.92 5 ne 42.25 0.41 5.0 50.00 0 84.5 65 135 39.92 5 ne 32.02 0.41 5.0 50.00 0 84.5 65 13 13 ne 32.02 0.45 5.0 50.00 0 64.0 55 140 28.03 13 ne 32.02 0.15 5.0 50.00 0 11.9 55 140 28.03 13 32.02 0.15 5.0 50.00 0 11.9 55 140 28.03 13 16 50.13 12 0 50.00 0 120	1,2-Dichlorobenzene	47.97	0.24	5.0	50.00	0	95.9	70	120	47.01	2.03	40	
ne 42.25 0.39 5.0 50.00 0 84.5 65 135 39.92 5 ne 42.85 0.41 5.0 50.00 0 85.7 50 140 42.01 1 ne 32.02 0.45 5.0 50.00 0 65.7 50 140 42.01 1 ne 32.02 0.15 5.0 50.00 0 64.0 55 140 28.03 13 35.95 0.15 5.0 50.00 0 71.9 55 140 33.56 6 50.13 0 50.00 0 71.9 55 140 33.56 6 6 49.16 0 5.0 50.00 0 100 85 115 0 0 0 6 47.71 0 5.0 50.00 0 95.4 75 120 0 0 6 47.69 0 50.00	1,2-Dibrom o-3-chloropropane	42.11	0.35	5.0	50.00	0	84.2	50	130	38.22	9.71	40	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1,2,4-Trichlorobenzene	42.25	0.39	5.0	50.00	0	84.5	65	135	39.92	5.67	40	
ne 32.02 0.45 5.0 50.00 0 64.0 55 140 28.03 13 ne 35.95 0.15 5.0 50.00 0 71.9 55 140 28.03 13 ne 35.95 0.15 5.0 50.00 0 71.9 55 140 28.03 13.56 6 ne 49.16 0 5.0 50.00 0 98.3 70 120 0 0 rd8 47.71 0 5.0 50.00 0 95.4 85 120 0 0 0 rd8 47.76 0 5.0 50.00 0 95.4 75 120 0 0 0	Hexachlorobutadiene	42.85	0.41	5.0	50.00	0	85.7	50	140	42.01	•	40	
35.95 0.15 5.0 50.00 0 71.9 55 140 33.56 6 50.13 0 5.0 50.00 0 100 85 115 0 0 1e 49.16 0 5.0 50.00 0 98.3 70 120 0 0 .48 47.71 0 5.0 50.00 0 95.4 85 120 0 0 .47.69 0 5.0 50.00 0 95.4 75 120 0 0	1,2,3-Trichlorobenzene	32.02	0.45	5.0	50.00	0	64.0	55	140	œ	13.3	40	
50.13 0 5.0 50.00 0 100 85 115 0 •d8 49.16 0 5.0 50.00 0 98.3 70 120 0 •d8 47.71 0 5.0 50.00 0 95.4 85 120 0 •d8 47.69 0 5.0 50.00 0 95.4 75 120 0	Naphthalene	35.95	0.15	5.0	50.00	0	71.9	55	140	ŝ.	6.88	40	
-48 47.71 0 5.0 50.00 0 98.3 70 120 0 120 0 120 0 120 0 120 0 120 0 140 0 95.4 85 120 0 0 120 0 0 120 0 0 120 0 0 120 0 0 120 0 0 120 0 0 0 120 0 0 0 120 0 0 0 120 0	Surrogate:	50.13	0	5.0	50.00	0	100	85	115	0	0	40	
49.10 0 5.0 5.0 5.0 0 95.4 85 120 0 ne-d8 47.71 0 5.0 5.0 0 95.4 85 120 0 ne-d8 47.69 0 5.0 5.0 0 95.4 75 120 0 ne-d8 47.69 0 5.0 50.00 0 95.4 75 120 0			c	с 1		c		1		ı			
-d8 47.71 0 5.0 50.00 0 95.4 85 120 0 47.69 0 5.0 0 95.4 75 120 0	Surrogate: 1,2-	43.LO	D	D.C	00.00	Ð	5°86	70	120	0	0	40	
47.69 0 5.0 50.00 0 95.4 75 120 0	Surrogate: Toluene-d8	47.71	0	5.0	50.00	0	5.	85	120	0	0	40	
Baronofiloroben zene	Surrogate:	47.69	0	5.0	50.00	0	95.4	75	120	0	0	40	
	Bromofluorobenzene												

B - Analyte detected in the associated Method Blank

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

J - Analyte detected below quantitation limits ND - Not Detected at the Reporting Limit

Qualifiers:

mi0.06.11.A

Date: 17-Jun-10

Client: Day Environmental Inc.

Client Sample ID: MW10-1

Lab ID: J1185-01

Project: 151 Mt. Hope Ave. Collection Date: 06/04/10 13:45

Analyses	Result Qual	RL Units	DF Date Analyzed	Batch ID
SW846 8270D SVOA by GC-MS				SW8270_W
Phenol	ND	10 µg/L	1 06/11/2010 15:39	52173
Bis(2-chloroethyl)ether	ND	10 µg/L	1 06/11/2010 15:39	52173
2-Chiorophenol	ND	10 µg/L	1 06/11/2010 15:39	52173
1,3-Dichlorobenzene	ND	10 µg/L	1 06/11/2010 15:39	52173
1,4-Dichlorobenzene	ND	10 µg/L	1 06/11/2010 15:39	52173
1,2-Dichlorobenzene	ND	10 µg/L	1 06/11/2010 15:39	52173
2-Methylphenol	ND	10 µg/L	1.06/11/2010 15:39	52173
2,2'-oxybis(1-Chloropropane)	ND	10 µg/L	1 06/11/2010 15:39	52173
4-Methylphenol	ND	10 µg/L	1 06/11/2010 15:39	52173
N-Nitroso-di-n-propylamine	ND	10 µg/L	1 06/11/2010 15:39	52173
Hexachloroethane	ND	10 µg/L	1 06/11/2010 15:39	52173
Nitrobenzene	ND	10 µg/L	1 06/11/2010 15:39	52173
Isophorone	ND	10 µg/L	1 06/11/2010 15:39	52173
2-Nitrophenol	ND	10 µg/L	1 06/11/2010 15:39	52173
2,4-Dimethylphenol	ND	10 µg/L	1 06/11/2010 15:39	52173
2,4-Dichlorophenol	ND	10 µg/L	1 06/11/2010 15:39	52173
1,2,4-Trichlorobenzene	ND	10 µg/L	1 06/11/2010 15:39	52173
Naphthalene	ND	10 µg/L	1 06/11/2010 15:39	52173
4-Chloroaniline	ND	10 µg/L	1 06/11/2010 15:39	52173
Bis(2-chloroethoxy)methane	ND	10 µg/L	1 06/11/2010 15:39	52173
Hexachlorobutadiene	ND	10 µg/L	1 06/11/2010 15:39	52173
4-Chloro-3-methylphenol	ND	10 µg/L	1 06/11/2010 15:39	52173
2-Methylnaphthalene	ND	10 µg/L	1 06/11/2010 15:39	52173
Hexachlorocyclopentadiene	ND	10 µg/L	1 06/11/2010 15:39	52173
2,4,6-Trichlorophenol	ND	10 µg/L	1 06/11/2010 15:39	52173
2,4,5-Trichlorophenol	ND	20 µg/L	1 06/11/2010 15:39	52173
2-Chloronaphthalene	ND	10 µg/L	1 06/11/2010 15:39	52173
2-Nitroaniline	ND	20 µg/L	1 06/11/2010 15:39	52173
Dimethylphthalate	ND	10 µg/L	1 06/11/2010 15:39	52173
Acenaphthylene	ND	10 µg/L	1 06/11/2010 15:39	52173
2,6-Dinitrotoluene	ND	10 µg/L	1 06/11/2010 15:39	52173
3-Nitroaniline	ND	20 µg/L	1 06/11/2010 15:39	52173
Acenaphthene	ND	10 µg/L	1 06/11/2010 15:39	52173
2,4-Dinitrophenol	ND	20 µg/L	1 06/11/2010 15:39	52173
4-Nitrophenol	ND	20 µg/L	1 06/11/2010 15:39	52173
Dibenzofuran	ND	10 µg/L	1 06/11/2010 15:39	52173
2,4-Dinitrotoluene	ND	10 µg/L	1 06/11/2010 15:39	52173
Diethylphthalate	ND	10 µg/L	1 06/11/2010 15:39	52173
4-Chlorophenyl-phenylether	ND	10 µg/L	1 06/11/2010 15:39	52173

Qualifiers: ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Date: 17-Jun-10

Client: Day Environmental Inc.

Client Sample ID: MW10-1

Lab ID: J1185-01

Project: 151 Mt. Hope Ave. **Collection Date:** 06/04/10 13:45

Analyses	Result Qual	RL Units	DF Date Analyzed	Batch ID
SW846 8270D SVOA by GC-MS				SW8270_W
Fluorene	ND	10 µg/L	1 06/11/2010 15:39	52173
4-Nitroaniline	ND	20 µg/L	1 06/11/2010 15:39	52173
4,6-Dinitro-2-methylphenol	ND	20 µg/L	1 06/11/2010 15:39	52173
N-Nitrosodiphenylamine	ND	10 µg/L	1 06/11/2010 15:39	52173
4-Bromophenyl-phenylether	ND	10 µg/L	1 06/11/2010 15:39	52173
Hexachlorobenzene	ND	10 µg/L	1 06/11/2010 15:39	52173
Pentachlorophenol	ND	20 µg/L	1 06/11/2010 15:39	52173
Phenanthrene	ND	10 µg/L	1 06/11/2010 15:39	52173
Anthracene	ND	10 µg/L	1 06/11/2010 15:39	52173
Carbazole	ND	10 µg/L	1 06/11/2010 15:39	52173
Di-n-butyiphthalate	ND	10 µg/L	1 06/11/2010 15:39	52173
Fluoranthene	ND	10° µg/L	1 06/11/2010 15:39	52173
Pyrene	ND	10 µg/L	1 06/11/2010 15:39	52173
Butylbenzylphthalate	ND	10 µg/L	1 06/11/2010 15:39	52173
3,3'-Dichlorobenzidine	ND	10 µg/L	1 06/11/2010 15:39	52173
Benzo(a)anthracene	ND	10 µg/L	1 06/11/2010 15:39	52173
Chrysene	ND	10 µg/L	1 06/11/2010 15:39	52173
Bis(2-ethylhexyl)phthalate	ND	10 µg/L	1 06/11/2010 15:39	52173
Di-n-octylphthalate	ND	10 µg/L	1 06/11/2010 15:39	52173
Benzo(b)fluoranthene	ND	10 µg/L	1 06/11/2010 15:39	52173
Benzo(k)fluoranthene	ND	10 µg/L	1 06/11/2010 15:39	52173
Benzo(a)pyrene	ND	10 µg/L	1 06/11/2010 15:39	52173
Indeno(1,2,3-cd)pyrene	ND	10 µg/L	1 06/11/2010 15:39	52173
Dibenzo(a,h)anthracene	ND	10 µg/L	1 06/11/2010 15:39	52173
Benzo(g,h,i)perylene	ND	10 µg/L	1 06/11/2010 15:39	52173
Surrogate: Nitrobenzene-d5	74.5	40-110 %REC	1 06/11/2010 15:39	52173
Surrogate: 2-Fluorobiphenyl	88.4	50-110 %REC	1 06/11/2010 15:39	52173
Surrogate: Terphenyl-d14	106	50-135 %REC	1 06/11/2010 15:39	52173
Surrogate: Phenol-d5	85.9	10-115 %REC	1 06/11/2010 15:39	52173
Surrogate: 2-Fluorophenol	88.5	20-110 %REC	1 06/11/2010 15:39	52173
Surrogate: 2,4,6-Tribromophenol	95.0	40-125 %REC	1 06/11/2010 15:39	52173

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range

Client: Day Environmental Inc.

Client Sample ID: MW10-2

Lab ID: J1185-02

Date: 17-Jun-10

 Project:
 151 Mt. Hope Ave.

 Collection Date:
 06/04/10 15:15

Analyses	Result Qual	RL Units	DF Date Analyzed	Batch ID
SW846 8270D SVOA by GC-MS				SW8270_W
Phenol	ND	10 µg/L	1 06/11/2010 16:03	52173
Bis(2-chloroethyl)ether	ND	10 µg/L	1 06/11/2010 16:03	52173
2-Chlorophenol	ND	10 µg/L	1 06/11/2010 16:03	52173
1,3-Dichlorobenzene	ND	10 µg/L	1 06/11/2010 16:03	52173
1,4-Dichlorobenzene	ND	10 µg/L	1 06/11/2010 16:03	52173
1,2-Dichlorobenzene	ND	10 µg/L	1 06/11/2010 16:03	52173
2-Methylphenol	ND	10 µg/L	1 06/11/2010 16:03	52173
2,2'-oxybis(1-Chloropropane)	ND	10 µg/L	1 06/11/2010 16:03	52173
4-Methylphenol	ND	10 µg/L	1 06/11/2010 16:03	52173
N-Nitroso-di-n-propylamine	ND	10 µg/L	1 06/11/2010 16:03	52173
Hexachloroethane	ND	10 µg/L	1 06/11/2010 16:03	52173
Nitrobenzene	ND	10 µg/L	1 06/11/2010 16:03	52173
Isophorone	ND	10 µg/L	1 06/11/2010 16:03	52173
2-Nitrophenol	ND	10 µg/L	1 06/11/2010 16:03	52173
2,4-Dimethylphenol	ND	10 µg/L	1 06/11/2010 16:03	52173
2,4-Dichlorophenol	ND	10 µg/L	1 06/11/2010 16:03	52173
1,2,4-Trichlorobenzene	ND	10 µg/L	1 06/11/2010 16:03	52173
Naphthalene	ND	10 µg/L	1 06/11/2010 16:03	52173
4-Chloroaniline	ND	10 µg/L	1 06/11/2010 16:03	52173
Bis(2-chloroethoxy)methane	ND	10 µg/L	1 06/11/2010 16:03	52173
Hexachlorobutadiene	ND	10 µg/L	1 06/11/2010 16:03	52173
4-Chloro-3-methylphenol	ND	10 µg/L	1 06/11/2010 16:03	52173
2-Methylnaphthalene	ND	10 µg/L	1 06/11/2010 16:03	52173
Hexachlorocyclopentadiene	ND	10 µg/L	1 06/11/2010 16:03	52173
2,4,6-Trichlorophenol	ND .	10 µg/L	1 06/11/2010 16:03	52173
2,4,5-Trichlorophenol	ND	20 µg/L	1 06/11/2010 16:03	52173
2-Chloronaphthalene	ND	10 µg/L	1 06/11/2010 16:03	52173
2-Nitroaniline	ND	20 µg/L	1 06/11/2010 16:03	52173
Dimethylphthalate	ND	10 µg/L	1 06/11/2010 16:03	52173
Acenaphthylene	ND	10 µg/L	1 06/11/2010 16:03	52173
2,6-Dinitrotoluene	ND	10 µg/L	1 06/11/2010 16:03	52173
3-Nitroaniline	ND	20 µg/L	1 06/11/2010 16:03	52173
Acenaphthene	1.7 J	10 µg/L	1 06/11/2010 16:03	52173
2,4-Dinitrophenol	ND	20 µg/L	1 06/11/2010 16:03	52173
4-Nitrophenol	ND	20 µg/L	1 06/11/2010 16:03	52173
Dibenzofuran	ND	10 µg/L	1 06/11/2010 16:03	52173
2,4-Dinitrotoluene	ND	10 µg/L	1 06/11/2010 16:03	52173
Diethylphthalate	ND	10 µg/L	1 06/11/2010 16:03	52173
4-Chlorophenyl-phenylether	ND	10 µg/L	1 06/11/2010 16:03	52173

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Client: Day Environmental Inc.

Client Sample ID: MW10-2

Lab ID: J1185-02

Date: 17-Jun-10

Project: 151 Mt. Hope Ave. **Collection Date:** 06/04/10 15:15

Analyses	Result Qual	RL Units	DF Date Analyzed	Batch ID
SW846 8270D SVOA by GC-MS				SW8270_W
Fluorene	1.5 J	10 µg/L	1 06/11/2010 16:03	52173
4-Nitroaniline	ND	20 µg/L	1 06/11/2010 16:03	52173
4,6-Dinitro-2-methylphenol	ND	20 µg/L	1 06/11/2010 16:03	52173
N-Nitrosodiphenylamine	ND	10 µg/L	1 06/11/2010 16:03	52173
4-Bromophenyl-phenylether	ND	10 µg/L	1 06/11/2010 16:03	52173
Hexachlorobenzene	ND	10 µg/L	1 06/11/2010 16:03	52173
Pentachlorophenol	ND	20 µg/L	1 06/11/2010 16:03	52173
Phenanthrene	ND	10 µg/L	1 06/11/2010 16:03	52173
Anthracene	ND	10 µg/L	1 06/11/2010 16:03	52173
Carbazole	ND	10 µg/L	1 06/11/2010 16:03	52173
Di-n-butylphthalate	ND	10 µg/L	1 06/11/2010 16:03	52173
Fluoranthene	ND	10 µg/L	1 06/11/2010 16:03	52173
Pyrene	ND	10 µg/L	1 06/11/2010 16:03	52173
Butylbenzylphthalate	ND	10 µg/L	1 06/11/2010 16:03	52173
3,3'-Dichlorobenzidine	ND	10 µg/L	1 06/11/2010 16:03	52173
Benzo(a)anthracene	ND	10 µg/L	1 06/11/2010 16:03	52173
Chrysene	ND	10 µg/L	1 06/11/2010 16:03	52173
Bis(2-ethylhexyl)phthalate	ND	10 µg/L	1 06/11/2010 16:03	52173
Di-n-octylphthalate	ND	10 µg/L	1 06/11/2010 16:03	52173
Benzo(b)fluoranthene	ND	10 µg/L	1 06/11/2010 16:03	52173
Benzo(k)fluoranthene	ND	10 µg/L	1 06/11/2010 16:03	52173
Benzo(a)pyrene	ND	10 µg/L	1 06/11/2010 16:03	52173
Indeno(1,2,3-cd)pyrene	ND	10 µg/L	1 06/11/2010 16:03	52173
Dibenzo(a,h)anthracene	ND	10 µg/L	1 06/11/2010 16:03	52173
Benzo(g,h,i)perylene	ND	10 µg/L	1 06/11/2010 16:03	52173
Surrogate: Nitrobenzene-d5	66.0	40-110 %REC	1 06/11/2010 16:03	52173
Surrogate: 2-Fluorobiphenyl	88.9	50-110 %REC	1 06/11/2010 16:03	52173
Surrogate: Terphenyl-d14	96.9	50-135 %REC	1 06/11/2010 16:03	52173
Surrogate: Phenol-d5	97.5	10-115 %REC	1 06/11/2010 16:03	52173
Surrogate: 2-Fluorophenol	102	20-110 %REC	1 06/11/2010 16:03	52173
Surrogate: 2,4,6-Tribromophenol	98.5	40-125 %REC	1 06/11/2010 16:03	52173

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range

Client: Day Environmental Inc.

Client Sample ID: MW10-3

Lab ID: J1185-03

Date: 17-Jun-10

Project: 151 Mt. Hope Ave. Collection Date: 06/04/10 11:15

Analyses	Result	Qual	RL	Units	DF Date Analyzed	Batch ID
SW846 8270D SVOA by GC-MS						SW8270_W
Phenol	ND		10	µg/L	1 06/11/2010 18:02	52173
Bis(2-chloroethyl)ether	ND		10	µg/L	1 06/11/2010 18:02	52173
2-Chlorophenol	ND		10	µg/L	1 06/11/2010 18:02	52173
1,3-Dichlorobenzene	ND		10	µg/L	1 06/11/2010 18:02	52173
1,4-Dichlorobenzene	ND		10	µg/L	1 06/11/2010 18:02	52173
1,2-Dichlorobenzene	ND		10	µg/L	1 06/11/2010 18:02	52173
2-Methylphenol	ND		10	µg/L	1 06/11/2010 18:02	52173
2,2'-oxybis(1-Chloropropane)	ND		10	µg/L	1 06/11/2010 18:02	52173
4-Methylphenol	ND		10	µg/L	1 06/11/2010 18:02	52173
N-Nitroso-di-n-propylamine	ND		10	µg/L	1 06/11/2010 18:02	52173
Hexachloroethane	ND		10	µg/L	1 06/11/2010 18:02	52173
Nitrobenzene	ND		10	µg/L	1 06/11/2010 18:02	52173
Isophorone	ND		10	µg/L	1 06/11/2010 18:02	52173
2-Nitrophenol	ND		10	µg/L	1 06/11/2010 18:02	52173
2,4-Dimethylphenol	ND		10	µg/L	1 06/11/2010 18:02	52173
2,4-Dichlorophenoł	ND		10	µg/L	1 06/11/2010 18:02	52173
1,2,4-Trichlorobenzene	ND		10	µg/L	1 06/11/2010 18:02	52173
Naphthalene	ND		10	µg/L	1 06/11/2010 18:02	52173
4-Chloroaniline	ND		10	µg/L	1 06/11/2010 18:02	52173
Bis(2-chloroethoxy)methane	ND		10	µg/L	1 06/11/2010 18:02	52173
Hexachlorobutadiene	ND		10	µg/L	1 06/11/2010 18:02	52173
4-Chloro-3-methylphenol	ND		10	µg/L	1 06/11/2010 18:02	52173
2-Methylnaphthalene	ND		10	µg/L	1 06/11/2010 18:02	52173
Hexachlorocyclopentadiene	ND		10	µg/L	1 06/11/2010 18:02	52173
2,4,6-Trichlorophenol	ND		10	µg/L	1 06/11/2010 18:02	52173
2,4,5-Trichlorophenol	ND		20	µg/L	1 06/11/2010 18:02	52173
2-Chloronaphthalene	ND		10	µg/L	1 06/11/2010 18:02	52173
2-Nitroaniline	ND		20	µg/L	1 06/11/2010 18:02	52173
Dimethylphthalate	ND		10	µg/L	1 06/11/2010 18:02	52173
Acenaphthylene	ND		10	µg/L	1 06/11/2010 18:02	52173
2,6-Dinitrotoluene	ND		10	µg/L	1 06/11/2010 18:02	52173
3-Nitroaniline	ND		20	µg/L	1 06/11/2010 18:02	52173
Acenaphthene	ND		10	µg/L	1 06/11/2010 18:02	52173
2,4-Dinitrophenol	ND		20	µg/L	1 06/11/2010 18:02	52173
4-Nitrophenol	ND		20	µg/L	1 06/11/2010 18:02	52173
Dibenzofuran	ND		10	µg/L	1 06/11/2010 18:02	52173
2,4-Dinitrotoluene	ND		10	µg/L	1 06/11/2010 18:02	52173
Diethylphthalate	ND		10	µg/L	1 06/11/2010 18:02	52173
4-Chlorophenyl-phenylether	ND		10	µg/L	1 06/11/2010 18:02	52173

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Date: 17-Jun-10

Client: Day Environmental Inc.

Client Sample ID: MW10-3

Lab ID: J1185-03

 Project:
 151 Mt. Hope Ave.

 Collection Date:
 06/04/10 11:15

Analyses	Result Qual	RL Units	DF Date Analyzed	Batch ID
SW846 8270D SVOA by GC-MS		······································		SW8270_W
Fluorene	ND	10 µg/L	1 06/11/2010 18:02	52173
4-Nitroaniline	ND	20 µg/L	1 06/11/2010 18:02	52173
4,6-Dinitro-2-methylphenol	ND	20 µg/L	1 06/11/2010 18:02	52173
N-Nitrosodiphenylamine	ND	10 µg/L	1 06/11/2010 18:02	52173
4-Bromophenyl-phenylether	ND	10 µg/L	1 06/11/2010 18:02	52173
Hexachlorobenzene	ND	10 µg/L	1 06/11/2010 18:02	52173
Pentachlorophenol	ND	20 µg/L	1 06/11/2010 18:02	52173
Phenanthrene	ND	10 µg/L	1 06/11/2010 18:02	52173
Anthracene	ND	10 µg/L	1 06/11/2010 18:02	52173
Carbazole	ND	10 µg/L	1 06/11/2010 18:02	52173
Di-n-butylphthalate	ND	10 µg/L	1 06/11/2010 18:02	52173
Fluoranthene	ND	10 µg/L	1 06/11/2010 18:02	52173
Pyrene	ND	10 µg/L	1 06/11/2010 18:02	52173
Butylbenzylphthalate	ND	10 µg/L	1 06/11/2010 18:02	52173
3,3'-Dichlorobenzidine	ND	10 µg/L	1 06/11/2010 18:02	52173
Benzo(a)anthracene	ND	10 µg/L	1 06/11/2010 18:02	52173
Chrysene	ND	10 µg/L	1 06/11/2010 18:02	52173
Bis(2-ethylhexyl)phthalate	ND	10 µg/L	1 06/11/2010 18:02	52173
Di-n-octylphthalate	ND	10 µg/L	1 06/11/2010 18:02	52173
Benzo(b)fluoranthene	ND	10 µg/L	1 06/11/2010 18:02	52173
Benzo(k)fluoranthene	ND	10 µg/L	1 06/11/2010 18:02	52173
Benzo(a)pyrene	ND	10 µg/L	1 06/11/2010 18:02	52173
Indeno(1,2,3-cd)pyrene	ND	10 µg/L	1 06/11/2010 18:02	52173
Dibenzo(a,h)anthracene	ND	10 µg/L	1 06/11/2010 18:02	52173
Benzo(g,h,i)perylene	ND	10 µg/L	1 06/11/2010 18:02	52173
Surrogate: Nitrobenzene-d5	68.6	40-110 %REC	1 06/11/2010 18:02	52173
Surrogate: 2-Fluorobiphenyl	86.5	50-110 %REC	1 06/11/2010 18:02	52173
Surrogate: Terphenyl-d14	95.8	50-135 %REC	1 06/11/2010 18:02	52173
Surrogate: Phenol-d5	86.1	10-115 %REC	1 06/11/2010 18:02	52173
Surrogate: 2-Fluorophenol	94.0	20-110 %REC	1 06/11/2010 18:02	52173
Surrogate: 2,4,6-Tribromophenol	96.6	40-125 %REC	1 06/11/2010 18:02	52173

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range
- RL Reporting Limit

CLIENT:Day EnvironmentaWork Order:J1185Project:151 Mt. Hope Ave	Day Environmental Inc.			ANALY	ANALYTICAL QC SUMMARY REPORT	SUMMARY	REPORT		
rder:					•				
			~ `	SW8270_W					
	lope Ave.			SW846 8270D S	SVOA by GC-MS	MS			
ö	SampType: MBLK	TestCode: 8	TestCode: SW8270_W		Prep Date:		Run ID: S1_100611A	A	
Client ID: MB-52173	Batch ID: 52173	Units: µg/L	hg/L		Analysis Date:	06/11/10 12:04	SeqNo: 1314465		
Analyte	Result	MDL	PQL	SPK value	SPK Ref Val	%REC LowLimit HighLimit	hLimit RPD Ref Val	I %RPD RPDLimit	Qual
Phenol	DN	0.22	10						
Bis(2-chloroethyl)ether	UN	0.28	10						
2-Chlorophenol	ND	1.6	10						
1,3-Dichlorobenzene	ND	0.66	10						
1,4-Dichlorobenzene	ND	0.67	10						
1,2-Dichlorobenzene	ND	0.72	10						
2-Methylphenol	ND	1.6	10						
2,2'-oxybis(1-Chloropropane)	ND	0.62	10						
4-Methylphenol	ND	1.2	10						
N-Nitroso-di-n-propylamine	ND	0.31	10						
Hexachloroethane	ND	0.75	10						
Nitrobenzene	ND	0.67	10						
Isophorone	ND	0.26	10						
2-Nitrophenol	ND	0.59	10						
2,4-Dimethylphenol	QN	3.8	10						
2,4-Dichlorophenol	UN	0.74	10						
1,2,4-Trichlorobenzene	QN	0.77	10						
Naphthalene	ND	0.65	10						
4-Chloroaniline	ND	0.55	10						
Bis(2-chloroethoxy)methane	ND	0.22	10						
Hexachlorobutadiene	ND	0.77	10						
4-Chloro-3-methylphenol	ND	1.1	10						
2-Methylnaphthalene	QN	0.55	10						
Hexachlorocyclopentadiene		2.4	10						
z,4,0-1 ricniorophenoi		20.0 10.0	D T O						
2,4,3-1/iciiorophenoi			07						
2-Outoron apprictations 2-Mitroponitions	QN UN	0.30	0 1 0			••			
Dimethylohthalate	CIN N	0.21	0 2						
Acenanhthylene	QN	0.73	10						
2.6-Dinitrotoluene	QN	0.12	10						
3-Nitroaniline	DN	2.2	20						
C Acenaphthene	UN	0.85	10						
C2,4-Dinitrophenol	ND	2.2	20						
1. 14-Nitrophenol	ND	1.7	20						
Dibenzofuran	ND	0.75	10						
Ouslifiars: ND - Not Det	ND - Not Detected at the Renorting I imit			 Calle Decompart outside accented account limits 	a nonented socrame.	imito			-
		_		- apire record outsin	ic accepted tecovery t	IIIIIS	B - Analyte detected 1.	b - Analyte detected in the associated Method Blank	Slank
mic.vo.ii.A J - Analyte de	J - Analyte detected below quantitation limits	mits		R - RPD outside accepted recovery limits	recovery limits				

Date: 06/17/2010 09:52

Mitkem Laboratories

5 Mt. Hope	Ave. SamoTvpe: MBLK		ά α ³	SW8270 W	M	} ≥)					
ft. Hope	ve. mDTvpe: MBLK		עס ב								
	noTvoe: MBLK		2	- Q(SVOA by GC-MS	SM-					
		TestCod	TestCode: SW8270_W		Prep Date:		06/09/10 17:00	Run	Run ID: S1_100611A		
Analyte 2,4-Dinitrotoluene Diethylphthalate 4-Chlorophenyl-phenylether Fluorene 4-Nitroaniline	Batch ID: 52173	Units	Units: µg/L		Analysis Date:		06/11/10 12:04	Seql	SeqNo: 1314465		
2,4-Dinitrotoluene Diethylphthalate 4-Chlorophenyl-phenylether Fluorene 4-Nitroaniline	Result	MDL	PQL	SPK value	SPK Ref Val		%REC LowLimit HighLimit	HighLimit	RPD Ref Vai	%RPD RPDLimit	Qual
Diethylphthalate 4-Chlorophenyl-phenylether Fluorene 4-Nitroaniline	DN	0.17	10								
4-Chlorophenyl-phenylether Fluorene 4-Nitroaniline	ND	0.22	10								
Fluorene 4-Nitroaniline	ND	0.85	10								
4-Nitroaniline	ND	0.67	10								
	UN	2.8	20								
4, 6-Dinitro-Z-methyiphenol	UN	1.0	20								
N-Nitrosodiphenylamine	QN	0.62	10								
4-Bromophenyl-phenylether	QN	0.59	10								
Hexachlorobenzene	QN CI	0.74	10								
Pentachiorophenoi	UN DA	2.0	0.7								
) C								
Carbazola	CIN UN	ים קיים קיים	0 0								
Oarbazote Di-n-butvlohthalate	ON D	1.7	0 1 1								
Fluoranthene	QN	1.6	10								
Pyrene	QN	1.8	10								
Butylbenzylphthalate	ND	1.8	10								
3,3 - Dichlorobenzidine	UN	1.9	10								
Benzo(a)anthracene	DN	0.29	10								
Chrysene	ND	2.2	10								
Bis(2-ethylhexyl)phthalate	ND	0.37	10								
Di-n-octylphthalate	UN.	0.28	10								
Benzo(b)fluoranthene	ND	0.58	10								
Benzo(k)fluoranthene	ND	0.98	10								
Benzo(a)pyrene	UN .	ר. ייע	10								
Indeno(1,2,3-cd)pyrene Dihanzo(a h)anthracana	UN UN	ر. ا م									
Benzo(g,h,i)perylene	DN	0.23	10								
izene-d5	33,95	0	10	50.00	0	67.9	40	110	0		
	42.50	0	10	50.00	0	85.0	50	110) O		
	56.79	0	10	50.00	0	114	50	135	0		
	53.32	0	10	75.00	0	71.1	10	115	0		
Surrogate: 2-Fluorophenol	58.21	0	10	75.00	0	77.6	20	110	0		
4	68.05	0	10	75.00	0	90.7	40	125	0		
	2				•						
rs:	the Reporting Limit			S - Spike Recovery outside accepted recovery limits	accepted recover	y limits		В-	B - Analyte detected in the associated Method Blank	he associated Metho	d Blank
m10.06.11.A J - Analyte detected below quantitation limits	slow quantitation lin	nits	R	R - RPD outside accepted recovery limits	recovery limits						

CLIENT:	Day Environmental Inc.			ANALY	ANALYTICAL QC SUMMARY REPORT	SUM	MAR	Y REP	ORT		
Work Order:	J1185			SW8270 W	I						
Project:	151 Mt. Hope Ave.			(I)	SVOA by GC-MS	SM					
Sample ID: LCS-52173	173 SampType: LCS	TestCo	TestCode: SW8270_W		Prep Date:	06/09/10 17:00	17:00	Run ID:	D: S1_100611A		
Client ID: LCS-52173	173 Batch ID: 52173		Units: µg/L		Analysis Date:	06/11/10 12:29	12:29	SeqN	SeqNo: 1314466		
Analyte	Result	MDL	PQL	SPK value	SPK Ref Val	%REC Lo	LowLimit HighLimit	ighLimit	RPD Ref Val	%RPD RPDLimit	Qual
Phenol	41.66	0.22	10	50.00	0	83.3	0	115	0		
Bis(2-chloroethyl)ether	er 42.74	0.28	10	50.00	0	85.5	35	110	0		
2-Chlorophenol	50.06	1.6	10	50.00	0	100	35	105	0		
1,3-Dichlorobenzene	40.41	0.66	10	50.00	0	80.8	30	100	0		
1,4-Dichlorobenzene	40	0.67	10	50.00	0	81.0	30	100	0		
1,2-Dichlorobenzene	45.78	0.72	10	50.00	0	91.6	35	100	0		
2-Methylphenol		1.6	10	50.00	0	94.6	40	110	0		
2,2'-oxybis(1-Chloropropane)		0.62	10	50.00	0	73.9	30	123	0		
4-Methylphenol	48	1.2	10	50.00	0	96.3	30	110	0		
N-Nitroso-di-n-propylamine	43	0.31	10	50.00	0	86.9	35	130	0		
Hexachloroethane	42.68	0.75	10	50.00	0	85.4	30	95	0		
Nitrobenzene	34.33	0.67	10	50.00	0	68.7	45	110	0		
Isophorone	40.33	0.26	10	50.00	0	80.7	50	110	0		
2-Nitrophenol	42.85	0.59	10	50.00	0	85.7	40	115	0		
2,4-Dimethylphenol	49.07	•	10	50.00	0	98.1	30	110	0		
2,4-Dichlorophenol		0.74	10	50.00	0	93.4	50	105	0		
1,2,4-Trichlorobenzene		0.77	10	50.00	0	80.3	35	105	0		
Naphthalene	40.60	0.65	10	50.00	0	81.2	40	100	0		
4-Chioroaniine	10.80	0.55	10	50.00	0 0	21.6	15	110	0		
bis(z-chloroethoxy)methane		77.0		50.00	5 0	0.01	40 1	50T	5		
Hexachiorobutadiene		0.//	07	50.00	0 0	0.8/	25	105	0		
4-Unioro-3-metnyipnenoi	3001 43.41 AA 77	и 1 - Г - Г		00.00	-	αρ.α 00	40	110	5 0		
z-iweurymaprunaene Hevachlorocyclonentadiene		0.00	01	50.00		00°00	4.0 7	COT	5 0		
2.4.6-Trichlorophenol		0.59	10	50.00	0	103	50	115			
2,4,5-Trichlorophenol		0.85	20	50.00	0	9.66	50	110	0		
2-Chloronaphthalene	43.40	0.50	10	50.00	0	86.8	50	105	0		
2-Nitroaniline	41.22	0.61	20	50.00	0	82.4	50	115	0		
Dimethylphthalate	50.52	0.21	10	50.00	0	101	25	125	0		
Acenaphthyiene	43.65	0.73	10	50.00	0	87.3	50	105	0		
2,6-Dinitrotoluene	50.24	0.12	10	50.00	0	100	50	115	0		
3-Nitroaniline	11.77	2.2	20	50.00	0	23.5	20	125	0		ŋ
Acenaphthene	46.64	0.85	10	50.00	0	93.3	45	110	0		
R 2,4-Dinitrophenol	53.50	2.2	20	50.00	0	107	15	140	0		
4-Nitrophenol	61.98	1.7	20	50.00	0	124	0	125	0		
Dibenzofuran	45.79	0.75	10	50.00	0	91.6	55	105	0		
2,4-Dinitrotoluene	51.20	0.17	10	50.00	0	102	50	120	0		
								1			
.s.	NU - NOL DETECTED AT THE REPORTING LIMIT	imit	n		e accepted recovery	limits		В-/	Analyte detected in	- Analyte detected in the associated Method Blank	Blank
m10.06.11.A J	J - Analyte detected below quantitation limits	on limits	R	- RPD outside accepted recovery limits	recovery limits						

Project: 151 Mt. Hope Ave. Sample ID: LCS-52173 Sample ID: CS-52173 Client ID: LCS-52173 Batc Analyte 52 Diethylphthalate 52 Fluorene 52	Ave.										
a ID: LCS-52173 Si D: LCS-52173 hthalate ophenyl-phenylether e			SV	SW846 8270D - S	SVOA by GC-MS	AS		-			
D: LCS-52173 htthalate ophenyl-phenylether e	SampType: LCS	TestCod	TestCode: SW8270_W		Prep Date:	06/09/10 17:00	17:00	Run ID:	D: S1_100611A		
Analyte Diethylphthalate 4-Chlorophenyl-phenylether Fluorene	Batch ID: 52173	Unit	Units: µg/L		Analysis Date:	06/11/10 12:29	12:29	SeqN	SeqNo: 1314466		
Diethylphthalate 4-Chlorophenyl-phenylether Fluorene	Result	MDL	PQL	SPK value	SPK Ref Val	%REC Lo	%REC LowLimit HighLimit	JhLimit	RPD Ref Val	%RPD RPDLimit	Qual
4-Chiorophenyl-phenylether Fluorene	52.63	0.22	10	50.00	0	105	40	120	0		
Fluorene	50.57	0.85	10	50.00	0	101	50	110	0		
	52.70	0.67	10	50.00	0	105	50	110	0		
4-Nitroaniline	39.54	2.8	20	50.00	0	79.1	35	120	0		
4,6-Dinitro-2-methylphenol	53.35	1.0	20	50.00	0	107	40	130	0		
N-Nitrosodiphenylamine	30.29	0.62	10	50.00	0	60.6	50	110	0		
4-Bromophenyl-phenylether	52.37	0.59	10	50.00	0	105	50	115	0		
Hexachlorobenzene	52.65	0.74	10	50.00	0	105	50	110	0		
Pentachlorophenol	58.34	2.0	20	50.00	0	117	40	115	0		ß
Phenanthrene	49.67	0.35	10	50.00	0	99.3	50	115	0		
Anthracene	49.91	1.5	10	50.00	0	99.8	55	110	0		
Carbazole	43.38	1.8	10	50.00	0	86.8	50	115	0		
Di-n-butylphthalate	49.98	1.7	10	50.00	0	100	55	115	0		
Fluoranthene	48.68	1.6	10	50.00	0	97.4	55	115	0		
Pyrene	51.36	1.8	10	50.00	0	103	50	130	0		
Butylbenzylphthalate	54.94	1.8	10	50.00	0	110	45	115	0		
3,3'-Dichlorobenzidine	2.156	1.9	10	50,00	0	4.31	20	110	0		JS
Benzo(a)anthracene	48.84	0.29	10	50.00	0	97.7	55	110	0		
Chrysene	48.47	2.2	10	50.00	0	96.9	55	110	0		
Bis(2-ethylhexyl)phthalate	52.26	0.37	10	50.00	0	105	40	125	0		
Di-n-octylphthalate	62.35	0.28	10	50.00	0	125	35	135	0		
Benzo(b)fluoranthene	59.20	0.58	10	50.00	0	118	45	120	0		
Benzo(k)fluoranthene	56.59	0.98	10	50.00	0	113	45	125	0		
Benzo(a)pyrene	52.42	1.9	10	50.00	0	105	55	110	0		
Indeno(1,2,3-cd)pyrene	58.89	1.5	10	50.00	0	118	45	125	0		
Dibenzo(a,h)anthracene	58.25	0.56	10	50.00	0	117	40	125	0		
Benzo(g,h,i)perylene	58.43	0.23	10	50.00	0	117	40	125	0		
Surrogate: Nitrobenzene-d5	36.03	0	10	50.00	0	72.1	40	110	0		
Surrogate: 2-Fluorobiphenyl	49.64	. 0	10	50.00	0	99.3	50	110	0		
Surrogate: Terphenyl-d14	56.62	0	10	50.00	0	113	50	135	0		
Surrogate: Phenol-d5	72.32	0	10	75.00	0	96.4	10	115	0		
Surrogate: 2-Fluorophenol	77.87	0	10	75.00	0	104	20	110	0		
Surrogate: 2,4,6-	86.86	0	10	75.00	0	116	40	125	0		
Tribromophenol											

J - Analyte detected below quantitation limits

m10.06.11.A

R - RPD outside accepted recovery limits

Werk Deter: 1185. SWRJD.W Persite: ISI ML ILDRAVIE SWRJG.SCT0D = XVLATION SWRJG.SCT0D = XVLATION Persite: ISI ML ILDRAVIE SWRJG.SCT0D = XVLATION SWRJG.SCT0D = XVLATION Persite: ISI ML ILDRAVIE SWRJG.SCT0D = XVLATION Month UTAL Month UTAL Persite: SURVIE Persite: Month UTAL Month UTAL Month UTAL Persite: SURVIE SURVIE Month UTAL Month UTAL Month UTAL Persite: Month UTAL Month UTAL Month UTAL Month UTAL Month UTAL Persite: Month UTAL Month UTAL Month UTAL Month UTAL Month UTAL Persite: Month UTAL Month UTAL Month UTAL Month UTAL Month UTAL Persite: Month UTAL Month UTAL Month UTAL Month UTAL Month UTAL Persite: Month UTAL Month UTAL Month UTAL Month UTAL Month UTAL Persite: Month UTAL Month UTAL Month UTAL Month UTAL Month UTAL	CLIENT: Day En	Day Environmental Inc.			ANALY	ANALYTICAL QC SUMMARY REPORT	C SUM	MAR	Y REP	ORT			
I31 Mit Höpe Ava. Swads 62,700 – SVOA by GC-MS GSD-2713 Samp'rope: LGSD Tent Costs Mail No Fap Diate Fap Diat Fap Diate Fap					W8270_W								
Cubencianti Terrutive LCD Terrutive		t. Hope Ave.		S	1	SVOA by GC-	MS				· .		
Gas Gar 1 Lets to the control of car 1 Lets to the control of car 1 Server car car 1 Server ca	Sample ID: LCSD-52173	SampType: LCSD	TestC	ode: SW8270_W		Prep Date:		17:00	Run				
Feat AD. POL Serv returned Serv r		Batch ID: 52173	5	hits: µg/L		Analysis Date:		12:52	Seq	No: 1314467			
Hypelene 7.38 0.22 10 50.0 0 15 0 15 0 15 0 15 0 16 0 16 0 16 0 16 0 16 0 16 0 16 0 16	Analyte	Result	MDL	PQL	SPK value	SPK Ref Val	%REC L	owLimit H	ighLimit	RPD Ref Val	%RPD R	t PDL imit	Qual
Millioner 31.39 0.28 10 90.01 0 64.0 35 110 62.0 64.0 35 110 62.0 64.0 35 110 62.0 32.4 110 52.4 110 52.3 110 52.3 120 120 120.3 120.3 120.3 120.3 120.4 120.3	Phenol	27.58	0.22	10	50.00	0	55.2	0	115	41.66	40.7	40	R
off 31.3 1.6 1.0 30.00 0 30.1 30.00 30.1 30.0 30.	Bis(2-chloroethyl)ether	31.99	0.28	10	50.00	0	64.0	35	110	42.74	28.8	40	
entente 23:3 0.56 10 30.00 0 31.7 0 10.7 13.7 0 entente 34.16 0.75 10 30.00 0 64.3 31.7 31.7 31.7 31.7 chronoportane 34.16 0.75 10 30.00 0 64.3 31.7 32.3 34.3 chronoportane 27.30 0.12 10 30.00 0 64.3 31.7 32.3 34.3 chronoportane 27.3 0.13 10 30.00 0 64.3 31.7 34.3 3	2-Chlorophenol	34.52	1.6	10	50.00	0	69.0	35	105	50.06	36.7	40	
Refere 33.9 0.7 10 30.00 0 51.0 30.10 40.51 31.2 40.51 40.51 40.51 40.51 40.51 40.51 40.51 40.51 40.51 40.51 40.51 40.51 40.51 40.51 40.51 40.51 40.51 40.51	1,3-Dichlorobenzene	29.34	0.66	10	50.00	0	58.7	30	100	40.41	31.7	40	
entence 33.08 0.72 10 30.00 0 66.2 30 100 45.71 32.22 0 Chlorsprogram 37.16 0.72 10 30.00 0 66.2 30 100 45.71 32.2 Chlorsprogram 27.26 0.27 10 30.00 0 66.3 30 110 47.31 32.2 0 Chlorsprogram 27.26 0.27 10 30.00 0 66.3 30 110 47.31 32.2 0 Sprophante 23.45 0.27 10 30.00 0 66.3 30 100 47.31 32.3 0 Sprophante 23.45 0.27 10 30.00 0 66.3 30 101 47.3 32.3 0 Sprophante 23.45 0.26 10 30.00 0 66.3 30.00 0 66.3 30.3 30.3 30.3 30.3 30.3 30.3	1,4-Dichlorobenzene	28.98	0.67	10	50.00	0	58.0	30	100	40.51	33.2	40	
Chloroporgane) 34.16 16 10 50.00 0 64.3 40 110 7.31 23.3	1,2-Dichlorobenzene	33.08	0.72	10	50.00	0	66.2	35	100	45.78	32.2	40	
Clocoproparies $2.7.29$ 0.22 10 50.00 0 54.6 30.2 36.33 30.2 40.34 30.2 40.34 30.2 40.34 30.2 40.34 30.2 40.34 30.2 40.34 30.2 40.34 30.2 40.34 30.2 40.34 30.2 40.34 30.2 40.34 30.2 40.34 30.2 40.34 30.2 40.34 30.2 40.34 30.2 40.34 30.2 40.34 30.2 40.34 30.2 40.34 30.24 30.24 30.24 30.24 30.24 30.24 30.24 30.24 30.24 30.24 30.34 30.24 40.33 30.24 40.33 30.24 40.33 30.24 40.33 30.24 40.33 30.24 40.34 40.34 40.34 40.34 40.34 40.34 40.34 40.34 40.34 40.34 40.34 40.34 40.34	2-Methylphenol	с .	1.6	10	50.00	0	68.3	40	110	47.31	32.3	40	
of polyalitine 32.67 1.2 10 50.00 0 65.3 30 110 40.15 39.3 60.15 39.3 60.15 39.3 60.15 39.3 60.15 39.3 60.15 39.3 60.15 39.3 60.15 39.3 60.15 39.3 60.15 30.3 100 50.3 100 50.3 100 50.3 100 50.3 100 50.3 50.10 0 61.3 30.3 100 50.3 100 50.3 100 50.3 100 50.3 100 50.3 100 50.3 100 50.3 50.3 100 50.3 <th>2,2'-oxybis(1-Chloropropane)</th> <td>2</td> <td>0.62</td> <td>10</td> <td>50.00</td> <td>0</td> <td>54.6</td> <td>30</td> <td>123</td> <td>36.93</td> <td>30</td> <td>40</td> <td></td>	2,2'-oxybis(1-Chloropropane)	2	0.62	10	50.00	0	54.6	30	123	36.93	30	40	
perpondiative 29.45 0.31 10 50.00 0 54.7 30.5 30.6 30.4 30.6 3	4-Methylphenol	32.67	1.2	10	50.00	0		30	110	48.15	38.3	40	
late 29.38 0.75 10 50.00 0 59.8 30 62.68 30.9 30.	N-Nitroso-di-n-propylamine	29.45	0.31	10	50.00	0		35	130	43.47	38.5	40	
24.46 0.67 10 50.00 0 61.0 34.33 31.3 31.5 31.3 31.5 31.5 31.6 </td <th>Hexachioroethane</th> <td>29.38</td> <td>0.75</td> <td>10</td> <td>50.00</td> <td>0</td> <td>58.8</td> <td>30</td> <td>95</td> <td>42.68</td> <td>36.9</td> <td>40</td> <td></td>	Hexachioroethane	29.38	0.75	10	50.00	0	58.8	30	95	42.68	36.9	40	
30.63 0.26 10 50.00 0 61.3 50 10 10.33 27.3 10 hend 32.74 0.59 10 50.00 0 61.71 21.74 10 hend 32.74 0.774 10 50.00 0 65.71 21.74 2	Nitrobenzene	24.48	0.67	10	50.00	0	49.0	45	110	34.33	33.5	40	
31.66 0.59 10 50.00 0 69.7 40 115 20.5 40 Ibnol 36.37 0.77 10 50.00 0 69.7 40 100 30.5 40.0 Denol 36.37 0.77 10 50.00 0 77.2 10 100 36.7 40 37.2 100 36.7 40.7 30.7 40.7 30.7 40.7 30.7 40.77 30.7 40.7 30.7 40.7 30.7 40.77 30.7 40.77 30.7 40.77 30.7 40.77 30.7 40.77 30.7 40.77 30.7 40.77 30.7 40.77 30.7 40.77 30.7 40.77 30.7 40.77 30.7 40.77 30.7 40.77 30.7 40.77 30.7 40.77 30.7 40.77 30.7 40.77 30.7 40.77 30.7	Isophorone	30.63	0.26	10	50.00	0	61.3	50	110	40.33	27.3	40	
Intendi 32.74 3.8 10 50.00 0 65.5 30 110 90.07 39.9 0 hendi 32.74 3.8 10 50.00 0 65.5 30 100 30.9 0 hendi 28.61 0.77 10 50.00 0 57.5 15 110 90.07 34.7 40 hendi 32.73 0.255 10 50.00 0 57.5 10 10.90 34.7 40 hendi 32.45 1.1 10 50.00 0 67.5 10 66.71 22.7 40 ethyl 32.45 1.1 10 50.00 0 67.5 10.7 10.9 10.9 10.9 10.7 10.7 10.9 10.7 10.9 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7	2-Nitrophenol	34.86	0.59	10	50.00	0	69.7	40	115	42.85	20.5	40	
Ibenol 56.45 0.74 10 50.00 0 72.9 56.71 24.71 24.7 40 obscare 28.45 0.77 10 50.00 0 57.9 35 10.5 46.71 24.71 24.7 40 obscare 28.45 0.55 10 50.00 0 57.9 35 13.73 10.60 10.3 40.75 12 10.90 10.3 40 thosymethane 23.46 0.72 10 50.00 0 57.4 10 10.96 10.2 10.96 10.2 10.96 10.2 10.96 10.2 10.96 10.26 1	2,4-Dimethylphenol	32.74	3.8	10	50.00	0	65.5	30	110	49.07	39.9	40	
Observation $29,33$ 0.77 10 $50,00$ 0 $59,3$ 105 40.15 $29,2$ 40 e $33,73$ 0.555 10 $50,00$ 0 $57,2$ 40 100 40.65 $24,7$ 40 thosy/methane $23,43$ 1.1 10 $50,00$ 0 $57,2$ 40 100 $140,7$ $24,77$ 20 thosy/methane $23,45$ 1.1 10 $50,00$ 0 $57,2$ 40 100 $141,77$ $23,24$ 10 $20,23$ 40 thosy/methane $32,45$ 1.1 10 $50,00$ 0 $61,8$ $52,39$ 102 40 102 40 102 40 102	2,4-Dichlorophenol	36.45	0.74	10	50.00	0		50	105	46.71	24.7	40	
28.61 0.65 10 50.00 0 57.2 40 100 40.60 34.7 40 text 33.73 0.55 10 50.00 0 57.5 15 110 10.9 10.3 40 text/methane 29.4 0.25 11 10 50.00 0 57.5 15 110 10.3 40 text/phenol 35.45 1.1 10 50.00 0 67.5 15 110 10.3 40 tethere 32.45 1.1 10 50.00 0 70.9 45 112 20.2 40 tethere 32.45 1.1 10 50.00 0 70.5 45 105 32.5 40 tethere 35.66 0.59 10 50.00 0 71.3 50 117 22.2 80 101 40 41 41 41 41 41 41 41 41 41 <th>1,2,4-Trichlorobenzene</th> <td>29.93</td> <td>0.77</td> <td>10</td> <td>50.00</td> <td>0</td> <td>•</td> <td>35</td> <td>105</td> <td>40.15</td> <td>29.2</td> <td>40</td> <td></td>	1,2,4-Trichlorobenzene	29.93	0.77	10	50.00	0	•	35	105	40.15	29.2	40	
is 33.73 0.55 10 50.00 0 67.5 110 10.80 10.3 40 hoxy/methane 33.73 0.55 10 50.00 0 67.5 15 10 10.80 10.3 40 hoxy/methane 30.90 0.77 10 50.00 0 61.8 53.53 39.53 39.12 40 ethylphenol 35.45 1.1 10 50.00 0 61.8 53.53 41.77 32.5 40 ethylphenol 35.45 1.1 10 50.00 0 71.2 21.7 40.7 32.5 40 ethol 35.66 0.59 10 50.00 0 71.2 21.4 20.2 40 ophenol 35.67 0.55 10 50.00 0 71.2 21.4 21.2 40 0 0.50 $0.50.00$ 0	Naphthalene	28.61	0.65	10	50.00	ο,	57.2	40	100	40.60	34.7	40	
thoxy/methane 23.43 0.22 10 50.00 0 59.0 45 105 35.39 18.2 40 thydrine 33.45 1.1 10 50.00 0 61.8 55 105 33.23 41.77 32.2 40 ethylphenol 33.45 1.1 10 50.00 0 61.8 55 105 33.23 40 ethylphenol 33.45 0.13 10 50.00 0 64.5 45 107 32.2 40 ethylphenol 33.47 0.59 10 51.0 0 41.77 32.5 40 otherol 33.60 0.59 10 51.00 0 71.3 50 117 32.2 40 otherol 33.60 0.59 10 71.3 50 117 32.2 40 otherol 30.09 0.61 0.61	4-Chloroaniline	33.73	0.55	10	50.00	0	67.5	15	110	10.80	103	40	Ц
tackiene 30.90 0.77 10 50.00 0 61.8 25 105 39.28 23.9 40 ethylphenol 35.45 1.1 10 50.00 0 70.9 45 110 43.41 20.2 40 ethylphenol 35.45 1.1 10 50.00 0 70.9 45 110 43.71 20.2 40 ethylphenol 35.45 0.59 10 50.00 0 70.9 45 117 22.2 40 ethylphenol 35.66 0.59 10 50.00 0 71.3 50 117 22.24 31.9 40 ophenol 36.77 0.85 20 50.00 0 71.3 50 110 49.61 36.7 ophenol 36.77 0.85 20 10 50.00 0 71.3 50 110 49.61 40 ophenol 36.77 0.85 20 0.50 0 71.3 50 110 49.61 30.1 40 ophenol 36.77 0.85 0.72 10 50.00 0 71.3 50 110 50.52 40 ophenol 36.77 0.72 10 50.00 0 71.3 50 112 21.40 36.7 40 ophenol 36.77 0.72 10 50.00 0 71.25 50.24 30.4 40 thalene 32.45 2.22 200 <t< td=""><th>Bis(2-chloroethoxy)methane</th><td>29.49</td><td>0.22</td><td>10</td><td>50.00</td><td>0</td><td>59.0</td><td>45</td><td>105</td><td>35.39</td><td>18.2</td><td>40</td><td></td></t<>	Bis(2-chloroethoxy)methane	29.49	0.22	10	50.00	0	59.0	45	105	35.39	18.2	40	
ethylphenol 35.45 1.1 10 50.00 0 70.9 45 110 43.41 20.2 40 thalene 37.24 0.55 10 550.00 0 64.5 45 105 41.77 32.5 40 thalene 313.08 2.44 10 550.00 0 64.5 45 107 22.24 51.9 40 clopenoid 35.77 0.59 10 550.00 0 73.5 50 1137 22.24 51.9 40 36.77 0.85 10 550.00 0 73.5 50 1137 22.24 51.9 40 36.77 0.85 10 550.00 0 73.5 50 1127 22.24 51.9 40 36.77 0.85 10 550.00 0 73.5 50 1127 20.2 40 27.54 0.85 10 550.00 0 73.5 50 1127 32.87 40 36.77 0.87 0.73 10 550.00 0 75.1 22 28.1 40 36.98 0.73 10 550.00 0 55.1 22 28.1 40 $atel32.880.7310550.00074.050112728.228.140atel32.880.7310550.000550.1220.228.140atel$	Hexachlorobutadiene	30.90	77.0	10	50.00	0	61.8	25	105	39.28	23.9	40	
thele 32.24 0.55 10 50.00 0 64.5 45 10.7 32.5 40 clopentaciene 13.08 2.4 10 50.00 0 26.2 27 147 22.24 51.9 40 ophenol 35.76 0.59 10 50.00 0 71.3 50 110 22.24 51.9 40 ophenol 35.76 0.59 10 50.00 0 71.3 50 110 49.11 30.1 ophenol 37.79 0.85 20 50.00 0 73.5 50 110 41.22 22.24 51.9 40 ophenol 30.07 0.85 20 100 0 71.3 50 110 41.22 22.24 51.9 40 ophenol 30.07 0.61 20 50.00 0 73.5 50 110 41.22 22.24 21.4 ophenol 30.07 0.61 20 10 73.5 50 110 41.22 22.24 41 ophenol 32.74 0.61 20.71 20.76 65.7 50 115 41.22 28.1 40 ophenol 32.85 0.73 10 50.00 0 74.0 50 115 41.22 28.1 40 on 32.85 0.73 10 50.00 0 66.9 20 125 40 on 32.45 222 200 0.74 <	4-Chloro-3-methylphenol	35.45	1.1	10	50.00	0	70.9	45	110	43.41	20.2	40	
clopentadiene13.08 2.4 10 50.00 0 26.2 27 147 22.24 51.6 36.5 40 ophenol 35.66 0.59 10 50.00 0 71.3 50 115 51.60 36.5 40 ophenol 36.77 0.85 10 55.000 0 71.3 50 110 49.81 30.1 40 ophenol 36.77 0.650 10 55.000 0 71.3 50 110 49.81 30.1 40 ophenol 30.09 0.561 20 50.000 0 71.3 50 110 49.2 40 alde 37.76 0.611 10 50.000 0 76.1 25 112 41.22 30.4 40 alte 32.85 0.77 0.21 10 50.000 0 76.1 25 102 40 40 alte 32.85 0.77 0.21 10 50.00 0 74.0 50.24 30.4 40 alte 32.88 0.77 0.12 10 50.00 0 74.0 50 115 41.22 28.2 40 alte 32.88 0.122 10 50.00 0 74.0 50 115 40.6 40 alte 32.288 0.122 10 50.20 0 65.8 45 40 and 32.288 0.87 10 50.00 0	2-Methylnaphthalene	32.24	0.55	10	50.00	0	64.5	45	105	44.77	32.5	40	
ophenol 35.66 0.59 10 50.00 0 71.3 50 115 51.60 36.5 40 ophenol 36.77 0.85 20 50.00 0 73.5 50 110 49.81 30.1 40 thalene 36.77 0.85 20 50.00 0 73.5 50 110 49.81 30.1 40 thalene 36.77 0.85 10 50.00 0 57.1 50 115 41.22 39.8 40 alte 38.07 0.61 20 50.00 0 57.1 50 115 41.22 39.8 40 alte 38.07 0.73 10 50.00 0 57.1 50 115 41.22 39.8 40 alte 33.45 2.72 20 50.00 0 74.0 55 115 41.22 39.6 40 alte 33.45 2.22 20 $0.74.0$ 0 74.0 55 1177 90.2 42 33.45 2.22 20.00 0 66.9 45 110 46.64 34.6 40 33.45 2.22 20.00 0 64.5 15 140 $55.23.2$ 40 33.45 2.22 20.10 0 66.9 45 10 40 32.233 22.22 20 0 10 10 10 10 10 37.16 0.75 10 <t< th=""><th>Hexachlorocyclopentadiene</th><th>13.08</th><th>2.4</th><th>10</th><th>50.00</th><th>0</th><th>26.2</th><th>27</th><th>147</th><th>22.24</th><th>51.9</th><th>40</th><th>SR</th></t<>	Hexachlorocyclopentadiene	13.08	2.4	10	50.00	0	26.2	27	147	22.24	51.9	40	SR
ophenol 36.77 0.85 20 50.00 0 73.5 50 110 49.81 30.1 40 thalene 30.09 0.50 10 50.00 0 60.2 50 115 41.22 39.8 40 thalene 310.09 0.61 20 50.00 0 60.2 50 115 41.22 39.8 40 alate 38.07 0.61 20 50.00 0 55.1 50 115 41.22 39.8 40 alate 38.07 0.21 10 50.00 0 76.1 25 112 30.4 40 alate 38.07 0.21 10 50.00 0 76.1 25 1122 39.8 40 37.85 0.73 10 50.00 0 76.1 25 1127 30.4 40 37.85 0.73 10 50.00 0 74.0 50 1177 95.9 40 37.88 0.122 10 50.00 0 66.9 20 11777 95.9 40 37.288 0.87 $0.85.00$ 0 66.9 20 11777 95.9 40 37.288 0.870 $0.85.00$ 0 66.9 20 11777 95.9 40 37.16 0.731 1.77 20 50.00 0 74.3 55 100 20.66 40 37.16 0.775 10 74.3 <th>2,4,6-Trichlorophenol</th> <th>35.66</th> <th>0.59</th> <th>10</th> <th>50.00</th> <th>0</th> <th>71.3</th> <th>50</th> <th>115</th> <th>51.60</th> <th>36.5</th> <th>40</th> <th></th>	2,4,6-Trichlorophenol	35.66	0.59	10	50.00	0	71.3	50	115	51.60	36.5	40	
thalene 30.09 0.50 10 50.00 0 60.2 50 105 43.40 36.2 40 27.54 0.61 20 50.00 0 55.1 50 115 41.22 39.8 40 alate 38.07 0.21 10 50.00 0 76.1 25 125 50.52 28.1 40 $alate$ 32.85 0.73 10 50.00 0 76.1 25 125 43.65 28.2 40 ale 32.85 0.73 10 50.00 0 74.0 50 115 41.22 39.4 40 $alate$ 33.45 2.2 20.72 10 50.00 0 74.0 50 115 40 40 $alate$ 33.45 2.2 20.72 10 50.24 30.4 40 40 $alate$ 32.88 0.85 10 50.00 0 74.0 50 115 40 40 $alate$ 32.23 2.22 200 0 0 66.9 20 125 40 40 $anol$ 32.23 22.22 20.00 0 66.9 20 125 40 40 $anol$ 32.23 22.22 20.00 0 74.3 55 105 40 40 $anol$ 37.16 0.75 10 $0.74.3$ 55 105 40.9 40 $anol$ 37.16 0.77	2,4,5-Trichlorophenol	36.77	0.85	20	50.00	0	73.5	50	110	49.81	30.1	40	
27.54 0.61 20 50.00 0 55.1 50 115 41.22 39.8 40 alate 38.07 0.21 10 50.00 0 76.1 25 125 50.52 28.1 40 ne 38.07 0.21 10 50.00 0 76.1 25 125 50.52 28.1 40 ne 32.85 0.73 10 50.00 0 65.7 50 105 43.65 28.2 40 alate 33.45 2.22 20 50.00 0 66.9 20 1177 95.9 40 and 33.45 2.22 20 50.00 0 66.9 20 1177 95.9 40 and 32.88 0.85 10 50.00 0 66.9 20 1177 95.9 40 and 32.23 2.22 20.20 50.00 0 66.9 20 1177 95.9 40 and 32.23 2.22 20.20 50.00 0 66.4 55 110 46.64 34.6 40 and 32.23 2.22 20.00 0 0 141 0 53.50 49.6 40 and 32.23 20.41 1.77 20 50.00 0 1011 0 125 61.98 20.6 20.41 1.77 20 80.01 0 1011 0 125 100 20.8 <	2-Chloronaphthalene	30.09	0.50	10	50.00	0	60.2	50	105	43.40	36.2	40	
alate 38.07 0.21 10 50.00 0 76.1 25 125 50.52 28.1 40 ne 32.85 0.73 10 50.00 0 65.7 50 105 43.65 28.2 40 alete 32.85 0.12 10 50.00 0 74.0 50 115 50.24 30.4 40 alete 36.98 0.12 10 50.00 0 65.7 50 11.77 95.9 40 33.45 2.2 20 50.00 0 66.9 20 11.77 95.9 40 33.45 2.22 20 50.00 0 66.9 20 11.77 95.9 40 33.45 2.22 20 50.00 0 66.9 20 11.77 95.9 40 33.45 2.22 20 50.00 0 66.9 20 11.77 95.9 40 32.88 0.85 10 66.9 20 110 46.64 34.6 40 32.13 2.22 20 $0.84.5$ 15 110 46.64 34.6 40 32.13 2.22 20 $0.81.7$ 50 120 127 21.6 40 32.13 2.22 20 0.95 10 127 51.20 20.6 40 37.16 0.775 10 50.00 0 101 0 120 51.20 20.8 40	2-Nitroaniline	27.54	0.61	20	50.00	0	55.1	50	115	41.22	39.8	40	
ine 32.85 0.73 10 50.00 0 65.7 50 105 43.65 28.2 40 iene 36.98 0.12 10 50.00 0 74.0 50 115 50.24 30.4 40 iene 36.98 0.12 10 50.00 0 74.0 50 115 50.24 30.4 40 iene 33.45 2.2 20 50.00 0 66.9 20 1125 11.77 95.9 40 iene 32.28 0.85 10 50.00 0 66.9 20 125 1107 46.64 34.6 40 iene 32.23 2.2 20 50.00 0 64.5 15 140 53.50 49.6 40 iene 32.23 2.2 20 50.00 0 64.5 15 140 53.50 49.6 40 iene 50.41 1.7 20 50.00 0 74.3 55 105 45.79 20.6 40 37.16 0.75 10 50.00 0 82.0 50 120 51.20 20.2 40 iene 40.99 0.17 10 50.00 0 82.0 50 120 45.79 20.8 40 iene 40.99 0.17 10 50.00 0 82.0 50 120 20.2 20.2 40	Dimethylphthalate	38.07	0.21	10	50.00	0	76.1	25	125	50.52	28.1	40	
Jene 36.98 0.12 10 50.00 0 74.0 50 115 50.24 30.4 40 33.45 2.2 2.2 20 50.00 0 66.9 20 125 11.77 95.9 40 32.88 0.85 10 50.00 0 66.9 20 125 11.77 95.9 40 32.23 2.2 20 50.00 0 64.5 15 140 53.50 49.6 40 50.41 1.7 20 50.00 0 101 0 125 61.98 20.6 40 37.16 0.75 10 50.00 0 74.3 55 105 45.79 20.8 40 40.99 0.17 10 50.00 0 82.0 50.105 0 20.8 45.79 20.6 40 40.99 0.17 10 50.00 0 82.0 50 125 120 20.8 40	Acenaphthylene	32.85	0.73	10	50.00	0	65.7	50	105	43.65	28.2	40	
33.45 2.2 20 50.00 0 66.9 20 125 11.77 95.9 40 anol 32.88 0.85 10 50.00 0 65.8 45 110 46.64 34.6 40 anol 32.23 2.2 20 50.00 0 64.5 15 140 53.50 49.6 40 50.41 1.7 20 50.00 0 64.5 15 140 53.50 49.6 40 37.16 0.75 10 50.00 0 74.3 55 105 45.79 20.6 40 37.16 0.775 10 50.00 0 74.3 55 105 45.79 20.6 40 ene 40.99 0.17 10 50.00 0 82.0 50 120 51.20 22.2 40	2,6-Dinitrotoluene	36.98	0.12	10	50.00	0	74.0	50	115	50.24	30.4	40	
e 32.88 0.85 10 50.00 0 65.8 45 110 46.64 34.6 40 and 32.23 2.2 20 50.00 0 64.5 15 140 53.50 49.6 40 50.41 1.7 20 50.00 0 64.5 15 140 53.50 49.6 40 50.41 1.7 20 50.00 0 101 0 125 61.98 20.6 40 37.16 0.775 10 50.00 0 74.3 55 105 45.79 20.8 40 iene 40.99 0.17 10 50.00 0 82.0 50 120 51.20 22.2 40	3-Nitroaniline	33.45	2.2	20	50.00	0	66.9	20	125	11.77	95.9	40	Ж
and 32.23 2.2 20 50.00 0 64.5 15 140 53.50 49.6 40 50.41 1.7 20 50.00 0 101 0 125 61.98 20.6 40 37.16 0.75 10 50.00 0 74.3 55 105 45.79 20.8 40 lene 40.99 0.17 10 50.00 0 82.0 50 120 51.20 22.2 40	Acenaphthene	32.88	0.85	10	50.00	0	65.8	45	110	46.64	34.6	40	
50.41 1.7 20 50.00 0 101 0 125 61.98 20.6 37.16 0.75 10 50.00 0 74.3 55 105 45.79 20.8 lene 40.99 0.17 10 50.00 0 82.0 50 120 51.20 22.2	2,4-Dinitrophenol	32.23	2.2	20	50.00	0	64.5	15	140	53.50	49.6	40	ų
37.16 0.75 10 50.00 0 74.3 55 105 45.79 20.8 lene 40.99 0.17 10 50.00 0 82.0 50 120 51.20 22.2	A-Nitrophenol	50.41	1.7	20	50.00	0	101	0	125	61.98	20.6	40	
40.99 0.17 10 50.00 0 82.0 50 120 51.20 22.2	Dibenzofuran	37.16	0.75	10	50.00	0		55	105	45.79	20.8	40	
	1,2,4-Dinitrotoluene	40.99	0.17	10	50.00	0	•	50	120	51.20	22.2	40	
	and a second												
					,	•			I				

R - RPD outside accepted recovery limits

J - Analyte detected below quantitation limits

m10.06.11.A

Jer: LCSD-5. LCSD-5. LCSD-5. LCSD-5. LCSD-5. LCSD-5. LCSD-5. Phenol phenol phenol phenol phenol phenol phenol phenol conthalate event phenol phenol conthalate obthalate of thalate or of thalate of thalate of thalate or of thalate of thalate of thalate or of thalate of thala	CLIENT: D	Dav Environmental Inc.		ANALY	TICAL OC	MIIS	MAR	V REP(DRT			
C I ML Hope Ave. SWeld 62700 – SVOA by GC.MS I: 0: 1C3D-23713 Samp1'yer. (C3) bit (C3D-23713 TartCoare: SM8270, M (C1C3D-23713 Pap Date: (C1C3D-23713 Monitor (C1C) (C1C3D-23713 Monitor (C1C) (C1C	ler:	1185		SW8270 W		2						
I. D. LGB-27.13 Sum/Type: LGB TextCold: SW27.0, Market Durit Fail District Analysis Durit Analysis Durit Analysis Durit Analysis Durit Surfact Su		51 Mt. Hope Ave.		1	VOA by GC-I	NS						
D. LG22471 Barb D: 2473 Mar Jack Advisibute Advisib	Sample ID: LCSD-52				Prep Date:	06/09/10	17:00	Run I	D: S1_100611A			
Result MOL POL SPC field SPC field <th></th> <th>. –</th> <th></th> <th></th> <th>Analysis Date:</th> <th>06/11/10</th> <th>12:52</th> <th>SeqN</th> <th>o: 1314467</th> <th></th> <th></th> <th></th>		. –			Analysis Date:	06/11/10	12:52	SeqN	o: 1314467			
Metalentic 35-31 0.22 10 99.0 71-9 64 100 95.7 30<	Analyte	Result		SPK value	SPK Ref Val		owLimit Hi	ghLimit	RPD Ref Val	%RPD RI	DLimit	Qual
phonolycher 51.4 0.05 10 50.00 10 72.9 50 110 50.75 32.56 nite 37.30 2.4 0.05 10 50.30 10 50.35 60.73 32.56 32.56 32.56 32.56 32.56 32.56 32.56 32.56 32.56 32.56 32.56 32.56 32.56 32.56 <t< td=""><td>Diethylphthalate</td><td>38.91</td><td></td><td>50.00</td><td>0</td><td>77.8</td><td>40</td><td>120</td><td>52.63</td><td>30</td><td>40</td><td></td></t<>	Diethylphthalate	38.91		50.00	0	77.8	40	120	52.63	30	40	
• 57.0 0.67 10 57.1 0 27.0 <td>4-Chlorophenyl-phenyl</td> <td></td> <td></td> <td>50.00</td> <td>0</td> <td></td> <td>50</td> <td>110</td> <td>50.57</td> <td>32.5</td> <td>40</td> <td></td>	4-Chlorophenyl-phenyl			50.00	0		50	110	50.57	32.5	40	
Total 39,81 2.8 30,91 3	Fluorene			50.00	0	•	50	110	2	33.2	40	
Constrained 33.15 1.0 20.0 66.3 60 130 63.3 64.7 64.7 Copensympter 37.3 0.52 1.0 53.3 64.7 64.7 64.7 Copensympter 37.3 0.53 1.0 53.3 64.7 64.7 64.7 Componynter 37.3 0.53 1.0 0.33 1.0 53.3 34.3 34.3 Componynter 37.1 1.3 1.0 53.3 1.0 37.3 53.3 34.3<	4-Nitroaniline	39,83		50.00	0	79.7	35	120	5	0.734	40	
Optimize 32.0 0.6 10 90.00 0 44.2 50 110 30.23 5.77 30.0 Optimize 32.1 0.23 0.24 10 90.00 0 44.2 50 110 30.23 5.77 30.0 Optimize 33.1 0.74 10 50.00 0 74.8 50.11 52.27 33.4 0 Incombination 31.1 1.1 10 50.00 0 74.8 50.11 52.27 33.4 0 Incombination 31.1 1.1 10 50.00 0 70.2 50.11 52.7 31.4 60.9 Optimation 31.1 1.1 10 50.00 0 71.2 21.3 21.4	4,6-Dinitro-2-methylph	EE		50.00	0	66.3	40	130	с. С	46.7	40	አ
	N-Nitrosodiphenylamin			50.00	0	64.2	50	110	\sim	5.77	40	
Orochontene $39,51$ 0.74 10 $50,00$ 0 $79,0$ $50,00$ 5	4-Bromophenyl-phenyl			50.00	0	4	50	115	52.37	33.4	40	
	Hexachlorobenzene		. 74	50.00	0	თ	50	110	52.65	28.5	40	
Image 35.10 0.35 10 50.00 0 70.2 50 115 34.4 0 ene 35.20 1.5 10 50.00 0 70.4 50.47 1.5 34.4 0 pythmatate 35.20 1.7 1.0 50.00 0 70.4 50.10 0 70.4 50.31 41.42 21.44 40.9 pythmatate 34.00 10 50.00 0 70.4 50.10 20.44 50.31 20.44 50.31 20.44 <th< td=""><td>Pentachlorophenol</td><td>42.75</td><td>.0</td><td>50.00</td><td>0</td><td>85.5</td><td>40</td><td>115</td><td>•</td><td>30.9</td><td>40</td><td></td></th<>	Pentachlorophenol	42.75	.0	50.00	0	85.5	40	115	•	30.9	40	
ene 37.7 1.5 10 50.00 0 55.5 55 110 60.1 61.1 <td>Phenanthrene</td> <td>35.10</td> <td>.35</td> <td>50.00</td> <td>0</td> <td>70.2</td> <td>50</td> <td>115</td> <td>б</td> <td>34.4</td> <td>40</td> <td></td>	Phenanthrene	35.10	.35	50.00	0	70.2	50	115	б	34.4	40	
ieit 35.2 1.8 10 50.00 0 70.4 50 115 43.38 20.0 40 pyththalte 34.60 1.7 10 50.00 0 70.4 50 115 43.38 30.18 40.28 31.4 40 pyththalte 40.21 1.8 10 50.00 0 70.4 50 115 43.38 30.4 40 pyththalte 40.21 1.8 10 50.00 0 77.2 55 113 54.34 40 80	Anthracene	32.77		50.00	0		55	110	თ	41.5	40	Я
yphthalate $35,31$ 1.7 10 $50,00$ 0 $70,6$ 55 115 $31,4$ 40 here $35,31$ 1.7 10 $50,00$ 0 $70,6$ 55 115 $31,43$ 40.4 ryphthalate 41.12 1.16 10 $50,00$ 0 $80,4$ $51,36$ $24,94$ $28,6$ $31,46$ 40 ryphthalate $37,86$ 0.23 10 $50,00$ 0 $81,47$ $17,7$ 40 ryphthalate $37,86$ 0.23 10 $50,00$ 0 $71,7$ $54,94$ $28,13$ 40 pyththalate $37,86$ 0.23 10 $50,00$ 0 $71,7$ $24,11$ $17,7$ 40 pyththalate $37,86$ 0.23 10 $50,00$ 0 $77,2$ $24,11$ $17,7$ 40 pyththalate $33,23$ 0.28 10 $50,00$ 0	Carbazole	35.20		50.00	0	70.4	50	115	т	20.8	40	
here 34.60 1.6 10 50.00 0 69.2 5 113 41.66 33.8 40.66 33.38 40.66 33.38 40.66 33.38 40.66 33.38 40.66 33.35 11.9 110 50.00 0 80.74 50.110 51.36 23.14 40.66 Nobleshighthalate 31.65 11.9 10 50.00 0 80.74 50.110 51.36 21.36 23.48 20.66 20.66 21.36 21.36 22.46 20.76 20.66 21.36 22.36 21.76 22.66 22.36 22.66 22.36 22.66 22.36 22.66 22.36 22.66 22.36 22.66 22.36 22.66 22.36 22.66 22.36 22.66 22.66 22.66 22.66 22.66 22.66 22.36 22.66 22.36 22.66 22.32 22.32 22.32 22.66	Di-n-butylphthalate	35,31	1.7 10	50.00	0	70.6	55	115	<i>б</i>	4.	40	
attraction attractintratraction attraction	Fluoranthene	34.60		50.00	0		55	115	ω.	т. т	40	
41.12 1.8 10 50.00 0 82.2 45 115 51.94 28.18 40 37.65 1.2 10 10 10 50.00 0 77.7 50 10 2.156 19 40 37.66 0.29 10 50.00 0 77.7 50 10 48.47 77.7 40 37.66 0.29 10 50.00 0 81.2 55 10 25.26 26.8 40 37.16 1.9 10 50.00 0 81.2 55.26 56.23 40 37.16 1.9 10 50.00 0 74.3 51.26 56.23 41.2 40 37.16 1.9 50.00 0 74.3 55.26 54.2 40 37.10 0.98 10 50.00 0 74.3 51.25 56.23	Pyrene	40.21		50.00	0	80.4	50 '	130	•	4.	40	
38.59 1.9 10 50.00 0 77.2 20 110 2.156 179 40 38.59 1.0 0.29 10 50.00 0 77.2 20 117 74 23.3 40 25.35 410 25.35 410 25.35 410 25.35 117 41.47 33 132.23 0.28 110 50.00 0 79.7 35 110 48.47 177 40 39.32 0.28 110 50.00 0 79.7 35 110 35.36 177 25 117 40 39.31 1.5 10 50.00 0 74.5 120 52.35 52.35 52.35 411 40 31.16 1.9 100 50.00 0 74.35 120 56.52 3117 40 31.16 1.0 50.00 0 <	Butylbenzyiphthalate	41.12		50.00	0	82.2	45	115	•	ω	40	
37.86 0.29 10 50.00 0 75.7 55 110 48.47 17.7 40 90.60 2.2 10 50.00 0 75.7 55 110 48.47 17.7 40 90.60 0.37 10 50.00 0 78.7 55.26 52.26 52.26 40.47 17.7 40 91.33 0.58 10 50.00 0 78.7 45.2 40 31.16 1.9 50.00 0 78.7 45 127 40 31.16 1.9 50.00 0 78.7 45 127 40 31.10 0.56 10 50.00 0 74.3 55.26 56.23 41.17 17.7 40 31.10 0.56 10 52.00 0 74.3 56.23 56.23 41.13 40 31.10 31.10	3,3'-Dichlorobenzidine	38,59		50.00	0	77.2	20	110	.15	179	40	ሊ
40.60 2.2 10 56.00 0 81.2 55 110 48.47 17.7 40 39.90 0.37 10 56.00 0 81.2 55 110 55.26 56.8 40 39.35 0.28 10 50.00 0 79.8 125 55.26 26.8 40 41.09 0.98 10 50.00 0 66.5 45 125 55.26 31.7 40 37.16 1.9 10 50.00 0 62.2 45 125 55.26 31.7 40 37.16 1.9 10 50.00 0 82.2 11.3 40 52.42 34.1 40 37.16 1.9 10 50.00 0 74.3 55.12 41.3 41.3 40 37.10 0 10 10 10 10 1	Benzo(a)anthracene	37.86		50.00	0	75.7		110	48.84	25.3	40	
39,90 0.37 10 50.00 0 79.8 40 125 52.26 26.8 40 39.33 0.28 10 50.00 0 78.7 35 135 52.26 26.8 40 31.32 0.58 10 50.00 0 78.7 35 113 52.26 55.2 45.2 40 41.09 0.58 10 50.00 0 78.7 45 125 55.2 41.2 40 37.16 1.9 10 50.00 0 78.7 45 125 56.29 31.7 40 38.31 0.56 10 50.00 0 74.3 55.42 31.1 40 38.31 0.56 10 50.00 0 74.3 56.43 31.1 40 38.31 0.56 10 10.5 10.5 10.5 10.5	Chrysene		.2	50.00	0	81.2		110	48.47	17.7	40	
39.35 0.28 10 50.00 0 78.7 35 135.2 45.2 40 33.23 0.58 10 50.00 0 66.5 45 120 55.20 56.2 40 41.09 0.98 10 50.00 0 66.5 45 120 55.20 40 37.16 1.9 10 50.00 0 74.3 55 110 55.242 41 40 37.16 1.9 10 50.00 0 74.8 45 125 55.242 41.3 40 38.31 0.56 10 50.00 0 74.8 45 125 55.242 41.3 40 38.31 0.56 10 50.00 0 76.8 40 125 58.43 39.1 40 39.32 0.23 10 50.00 0 76.6 40 125 58.43 39.1 40 47.77 47 77.0	Bis(2-ethylhexyl)phthal	39	.37	50.00	0	79.8	40	125	52.26	26.8	40	
33.23 0.58 10 50.00 0 66.5 45 120 56.2 40 41.09 0.98 10 50.00 0 82.2 45 125 56.59 31.7 40 37.16 1.9 10 50.00 0 74.3 55 110 52.42 34.1 40 37.31 0.56 10 50.00 0 74.3 55 110 52.42 34.1 40 38.31 0.56 10 50.00 0 74.3 55 110 52.42 34.1 40 38.31 0.56 10 50.00 0 76.6 40 125 58.43 39.1 40 39.32 0.23 10 50.00 0 76.6 40 125 58.43 39.1 40 34.70 0 10 10 125 58.43 39.1 40 34.77 0 10 10	Di-n-octylphthalate	39.35	.28	50.00	0	78.7	35	135	62.35	45.2	40	Я
41.09 0.98 10 50.00 0 82.2 45 125 56.59 31.7 40 37.16 1.9 10 50.00 0 74.3 55 110 52.42 34.1 40 38.31 0.56 10 50.00 0 74.3 55 110 52.42 34.1 40 38.31 0.56 10 50.00 0 76.8 45 125 58.25 41.3 40 38.31 0.56 10 50.00 0 76.6 40 125 58.43 39.1 40 38.31 0.53 10 50.00 0 76.6 40 125 58.43 39.1 40 39.12 0 10 50.00 0 78.6 40 125 58.43 39.1 40 14 23.17 0 125 50 125 58.43 39.1 40 14 23.17 0 10 10 10 125 58.43 39.1 40 <	Benzo(b)fluoranthene	33.23		50.00	0	66.5		120	59.20	9	40	۲. ۲
37.16 1.9 10 50.00 0 74.3 55 110 52.42 34.1 40 38.38 1.5 10 50.00 0 76.8 45 125 58.89 42.2 40 38.31 0.56 10 55.00 0 76.6 40 125 58.43 39.1 40 39.32 0.23 10 55.00 0 76.6 40 125 58.43 39.1 40 39.11 0 50.00 0 76.6 40 125 58.43 39.1 40 39.17 0 10 50.00 0 76.6 40 110 0 10	Benzo(k)fluoranthene	41.09		50.00	0	82.2	45	125	S	31.7	40	
38.38 1.5 10 50.00 0 76.8 45 125 58.89 42.2 40 38.31 0.56 10 50.00 0 76.6 40 125 58.43 39.1 40 38.31 0.23 10 50.00 0 76.6 40 125 58.43 39.1 40 34.70 0 10 50.00 0 78.6 40 110 0 34.70 0 10 50.00 0 78.6 40 110 0 34.70 0 10 10 10 110 0 0 34.70 0 10 10 10 110 0 110 0 34.70 0 10 10 10 110 0 0 144 42.75 0 10 10 110 0 0 144 52.04 0 10 10 <t< td=""><td>Benzo(a)pyrene</td><td></td><td></td><td>50.00</td><td>0</td><td>74.3</td><td></td><td>110</td><td>4.</td><td>34.1</td><td>40</td><td></td></t<>	Benzo(a)pyrene			50.00	0	74.3		110	4.	34.1	40	
38.31 0.56 10 50.00 0 76.6 40 125 58.25 41.3 40 39.32 0.23 10 50.00 0 78.6 40 125 58.43 39.1 40 39.32 0.23 10 50.00 0 78.6 40 110 0 14 34.70 0 10 50.00 0 56.4 50.10 0 14 42.75 0 10 50.00 0 69.4 50 110 0 14 42.75 0 10 10 125 0 0 14 42.75 0 10 0 10 110 0 0 0 0 14 42.75 0 10 10 110 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Indeno(1,2,3-cd)pyrent			50.00	0	76.8	45	125	8.8	2.	40	አ
Idea 39.32 0.23 10 50.00 0 78.6 40 125 58.43 39.1 robenzene-d5 28.41 0 10 50.00 0 56.8 40 110 0 rluorobiphenyi 34.70 0 10 50.00 0 56.8 40 110 0 rluorobiphenyi 34.70 0 10 50.00 0 69.4 50 110 0 rluorobiphenyi 34.70 0 10 50.00 0 69.4 50 110 0 rluorobiphenyi 42.75 0 10 10 50.00 0 69.4 50 110 0 rluorobiphenyi 42.75 0 10 10 75.00 0 69.4 10 115 0 rluorobhenoi 48.59 0 10 10 75.00 0 64.8 40 125 0 6 - 65.06 0 10 75.00 0 66.8 40 125 0 6 - 65.06 0 10 10 75.00 0 86.8 40 125 0	Dibenzo(a,h)anthracen	38		50.00	0		40	125	8.2		40	R
robenzene-d5 28.41 010 50.00 0 56.8 40110iluorobiphenyi 34.70 010 50.00 0 69.4 50 110phenyl-d14 42.75 010 50.00 0 69.4 50 135phenyl-d15 52.04 010 75.00 0 69.4 50 115iluorophenol 48.59 010 75.00 0 64.8 20 110 .6- 65.06 010 75.00 0 64.8 20 110 .6- 65.06 010 75.00 0 86.8 40 125	Benzo(g,h,i)perylene	39.32	.23	50.00	0		40	125	4		40	
!lorobiphenyl 34.70 010 50.00 0 69.4 50110 phenyl-d14 42.75 01050.000 85.5 50135 phenyl-d5 52.04 01075.000 69.4 10115(uorophenol 48.59 01075.000 64.8 20110 .6- 65.06 01075.000 86.8 40 125	Surrogate: Nitrobenz	28		50.00	0	.9	40	110	0			
phenyl-d14 42.75 0 10 50.00 0 85.5 50 135 enol-d5 52.04 0 10 75.00 0 69.4 10 115 iluorophenol 48.59 0 10 75.00 0 64.8 20 110 .6- 65.06 0 10 75.00 0 86.8 40 125	Surrogate: 2-Fluorob	34		50.00	0	б	50	110	0			
enol-d5 52.04 0 10 75.00 0 69.4 10 115 iluorophenol 48.59 0 10 75.00 0 64.8 20 110 6 - 65.06 0 10 75.00 0 86.8 40 125 6 - 65.06 0 10 75.00 0 86.8 40 125	Surrogate: Terphenyi	42		50.00	0	5	50	135	0			
luorophenol 48.59 0 10 75.00 0 64.8 20 110 .6. 65.06 0 10 75.00 0 86.8 40 125	Surrogate: Phenol-d£		0 10	S	0	С	10	115	0			
.6- 65.06 0 10 75.00 0 86.8 40 125	Surrogate: 2-Fluorop			S	0	4.	20	110	0			
	Surrogate: 2,4,6-	•	0	ŝ	0	6.	40	125	0			

B - Analyte detected in the associated Method Blank

S - Spike Recovery outside accepted recovery limits R - RPD outside accepted recovery limits

ND - Not Detected at the Reporting Limit J - Analyte detected below quantitation limits

Qualifiers: m10.06.11.A

Client: Day Environmental Inc. Client Sample ID: MW10-1

Lab ID: J1185-01

Date: 16-Jun-10

Project: 151 Mt. Hope Ave. Collection Date: 06/04/10 13:45

Analyses	Result Qual	RL Units	DF Date Analyzed	Batch ID
SW846 6010C Metals by ICP				SW6010_W
Arsenic	ND	20 µg/L	1 06/10/2010 12:58	52197
Barium	150 J	200 µg/L	1 06/10/2010 12:58	52197
Cadmium	ND	5.0 µg/L	1 06/10/2010 12:58	52197
Chromium	ND	20 µg/L	1 06/10/2010 12:58	52197
Lead	ND	10 µg/L	1 06/10/2010 12:58	52197
Selenium	ND	30 µg/L	1 06/10/2010 12:58	52197
Silver	ND	30 µg/L	1 06/10/2010 12:58	52197
SW846 7470A Mercury by FIA				SW7470
Mercury	ND	0.20 µg/L	1 06/10/2010 11:24	52196

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range
- RL Reporting Limit

Date: 16-Jun-10

Client: Day Environmental Inc. Client Sample ID: MW10-2

Lab ID: J1185-02

 Project:
 151 Mt. Hope Ave.

 Collection Date:
 06/04/10 15:15

Analyses	Result Qual	RL Units	DF Date Analyzed	Batch ID
SW846 6010C Metals by ICP				SW6010_W
Arsenic	ND	20 µg/L	1 06/10/2010 13:01	52197
Barium	210	200 µg/L	1 06/10/2010 13:01	52197
Cadmium	ND	5.0 µg/L	1 06/10/2010 13:01	52197
Chromium	ND	20 µg/L	1 06/10/2010 13:01	52197
Lead	ND	10 µg/L	1 06/10/2010 13:01	52197
Selenium	ND	30 µg/L	1 06/10/2010 13:01	52197
Silver	ND	30 µg/L	1 06/10/2010 13:01	52197
SW846 7470A Mercury by FIA				SW7470
Mercury	ND	0.20 µg/L	1 06/10/2010 11:25	52196

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range

Date: 16-Jun-10

Client: Day Environmental Inc.

Client Sample ID: MW10-3

Lab ID: J1185-03

Project: 151 Mt. Hope Ave. Collection Date: 06/04/10 11:15

Analyses	Result Qual	RL Units	DF Date Analyzed	Batch ID
SW846 6010C Metals by ICP				SW6010_W
Arsenic	ND	20 µg/L	1 06/10/2010 13:04	52197
Barium	38 J	200 µg/L	1 06/10/2010 13:04	52197
Cadmium	ND	5.0 µg/L	1 06/10/2010 13:04	52197
Chromium	ND	20 µg/L	1 06/10/2010 13:04	52197
Lead	ND	10 µg/L	1 06/10/2010 13:04	52197
Selenium	ND	30 µg/L	1 06/10/2010 13:04	52197
Silver	ND	30 µg/L	1 06/10/2010 13:04	52197
SW846 7470A Mercury by FIA				SW7470
Mercury	ND	0.20 µg/L	1 06/10/2010 11:27	52196

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range
- RL Reporting Limit

Mitkem Laboratories	S								Date: 0	Uate: 00/10/2010 09:09	60.6	
CLIENT: Dav Envi	Dav Environmental Inc.			ANALY	ANALYTICAL OC SUMMARY REPORT	C SUM	MAR	V REPC	IRT			
ler:				SW6010 W								
Project: 151 Mt. F	151 Mt. Hope Ave.			с С	Metals by ICP				:			
Sample ID: MB-52197	SampType: MBLK	TestCoo	TestCode: SW6010_W		Prep Date:	06/09/10 11:30	11:30	Run ID:	: OPTIMA2_100610A)610A		
Client ID: MB-52197	Batch ID: 52197	Unit	Units: µg/L		Analysis Date:	06/10/10 12:33	12:33	SeqNo	SeqNo: 1314219			
Analyte	Result	MDL	PQL	SPK value	SPK Ref Val	%REC Lo	%REC LowLimit HighLimit	ghLimit	RPD Ref Val	%RPD RPDLimit		Qual
Arsenic	DN	3.1	20						-			
Barium	ND	2.9	200									
Cadmium	0.5172	0.50	5.0									Ŀ
Chromium	DN	0.50	20									
Lead Selonium	QN CN	2.1	30									
Silver	QN	2.4	30									
Sample ID: LCS-52197	SampType: LCS	TestCoo	TestCode: SW6010_W		Prep Date:	06/09/10 11:30	11:30	Run ID:	: OPTIMA2 100610A)610A		
Client ID: LCS-52197	Batch ID: 52197	Uni	Units: µg/L		Analysis Date:	06/10/10 12:36	12:36	SeqNo	SeqNo: 1314220			
Analyte	Result	MDL	PQL	SPK value	SPK Ref Val	%REC Lo	LowLimit HighLimit	ahLimit	RPD Ref Val	%RPD RPDLimit		Qual
Areanio	428 4	۲ ۲	20	455 D	0		Ūα	120	c			
Barium	9083	5.0	200	9100	0	4.FC 99.8	80	120	0			
Cadmium	208.4	0.50	5.0	227.0	0	91.8	80	120	0			മ
Chromium	888.7	0.50	20	910.0	0	97.7	80	120	0			
Lead	422.5	2.1	10	455.0	0	92.9	80	120	0			
Selenium	413.8	10	30	455.0	0 (90.9	80	120	0 (
Silver	1164	5.4	30	0611	D	TU3	80	120	O			
Sample ID: LCSD-52197	SampType: LCSD	TestCoo	TestCode: SW6010_W		Prep Date:	06/09/10 11:30	11:30	Run ID	Run ID: OPTIMA2_100610A	0610A		
Client ID: LCSD-52197	Batch ID: 52197	Uni	Units: µg/L		Analysis Date:	06/10/10 12:39	12:39	SeqNo:	1314221			
Analyte	Result	MDL	PQL	SPK value	SPK Ref Val	%REC Lo	LowLimit HighLimit	ghLimit	RPD Ref Val	%RPD RPDLimit		Qual
Arsenic	420.5	3.1	20	455.0	0	92.4	80	120	428.4		20	1
Barium	9292	2.9	200	9100	0	102	80	120	9083		20	
Cadmium	209.0	0.50	5.0	227.0	0 0	92.1	08	120	208.4	0.303	20	В
	423.2	2.1	10	455.0) O	0.66	0080	120	422.5		20	
Selenium	411.3	10	30	455.0	0	90.4	80	120	413.8		20	
Silver	1181	2.4	30	1130	0	105	80	120	1164		20	
Oualifiers: ND - Not De	ND - Not Detected at the Reporting Limit	it		S - Spike Recovery outside accepted recovery limits	le accented recoverv	limits		B - A1	- Analyte detected in the associated Method Blank	the associated 1	Method B	lank
;	1 - Analyte detected helow mantitation limits	limits		R - RPD ontside accented recovery limits	recovery limits				ומולוה מרוכינים ווו			ALL DI
				Jaar and a star of the								

Date: 06/16/2010 09:09

Mitkem Laboratories

CLIENT: Work Order: Proiect:	Day Env J1185 151 Mt.	Day Environmental Inc. J1185 151 Mt. Hope Ave.			ANALYTICAL QC SW6010_W SW846 6010C - Metals by ICP	ANALYTICAL QC SUMMARY REPORT)_W 6010C Metals by ICP	C SUN	IMAR	Y REP	ORT			
Samnie ID: .11185-03BSD	85-03RSD	SamnTvne: SD	Test	TestCode SW6010 W		Pren Date	06/09/10 11 30	0.11-30	Rin	Run ID: OPTIMA2 100610A	J0610A		
Client ID: MW10-3	10-3	Batch ID: 52197	-	Units: µg/L	:	Analysis Date:		0 13:07	SeqN	SeqNo: 1314235			
Analyte		Result	MDL	PQL	SPK value	SPK Ref Val	%REC L	%REC LowLimit HighLimit	ighLimit	RPD Ref Val		%RPD RPDLimit	Qual
Arsenic		UN	. 16	100	0	0	0	0	0	0	0	10	
Barium		43.25	15	1000	0	0	0	0	0	38.11	12.6	10	JR
Cadmium		DN	2.5	25	0	0	0	0	0	0	0	10	
Chromium		QN	2.5	100	0	0	0	0	0	0	0	10	
Lead		LO CO	11	, 100	0 0	0 0	0 0	0 0	0 0	0 0	0 0	10	ļ
Selenium Silver			00	150 150							002	01	ЧK

S - Spike Recovery outside accepted recovery limits
 R - RPD outside accepted recovery limits

ND - Not Detected at the Reporting Limit J - Analyte detected below quantitation limits

,

B - Analyte detected in the associated Method Blank

8034

Qualifiers: m10.06.11.A

CLIENT: Day Enviro	Day Environmental Inc.		ANALY	TICAL QC	ANALYTICAL QC SUMMARY REPORT	REPORT	
rder:	•		SW7470				
Project: 151 Mt. Hope Ave.	pe Ave.		SW846 7470A Mercury by FIA	Aercury by FL	A		
Sample ID: MB-52196	SampType: MBLK	TestCode: SW7470		Prep Date:	Prep Date: 06/09/10 12:10	Run ID: FIMS1_100610A	
Client ID: MB-52196	Batch ID: 52196	Units: µg/L		Analysis Date:	06/10/10 11:16	SeqNo: 1311782	
Analyte	Result	MDL	SPK value	SPK Ref Val	%REC LowLimit HighLimit	RPD Ref Val	%RPD RPDLimit Qual
Mercury	DN	0.056 0.20					
Sample ID: LCS-52196	SampType: LCS	TestCode: SW7470		Prep Date:	Prep Date: 06/09/10 12:10	Run ID: FIMS1_100610A	
Client ID: LCS-52196	Batch ID: 52196	Units: µg/L		Analysis Date:	Analysis Date: 06/10/10 11:18	SeqNo: 1311783	
Analyte	Result	MDL PQL	SPK value	SPK Ref Val	%REC LowLimit HighLimit	RPD Ref Val	%RPD RPDLimit Qual
Mercury	4.984	0.056 0.20	4.550	0	110 80	120 0	
Sample ID: LCSD-52196	SampType: LCSD	TestCode: SW7470		Prep Date:	Prep Date: 06/09/10 12:10	Run ID: FIMS1_100610A	
Client ID: LCSD-52196	Batch ID: 52196	Units: µg/L		Analysis Date:	06/10/10 11:19	SeqNo: 1311784	
Analyte	Result	MDL	SPK value	SPK Ref Val	SPK Ref Val %REC LowLimit HighLimit	RPD Ref Val	%RPD RPDLimit Qual
Mercury	4.957	0.056 0.20	4.550	0	109 80	120 4.984 0.548	20

S - Spike Recovery outside accepted recovery limits
 R - RPD outside accepted recovery limits

0035

WorkOrder: J1185

Client ID: DAY Project: 151 Mt. Hope Ave. WO Name: 151 Mt. Hope Ave. Location: 151_MT_HOPE, Comments: N/A

06/11/2010 18:16

Case: SDG:

Mitkem Laboratories

HC Due: 06/18/10Report Level:LEVEL 2Fax Due:Special Program:Fax Report:EDD:GISKEY

PO: 4302S-09

Lab Samp ID	Lab Samp ID Client Sample ID	Collection Date Date Recv'd	Date Recv'd	Matrix	Test Code	Samp / Lab Test Comments	HF HT MS SEL Storage
J1185-01A	MW10-01	06/04/2010 13:45 06/08/2010		Aqueous	SW8260_W	1	VOA
J1185-01B J1185-01B	MW10-01 MW10-01	06/04/2010 13:45 06/04/2010 13:45	06/08/2010 06/08/2010	Aqueous Aqueous	SW6010_W SW7470	/ RCRA8 / RCRA8	Y M5 M5
J1185-01C	MW10-01	06/04/2010 13:45 06/08/2010	06/08/2010	Aqueous	SW8270_W		H
J1185-02A	MW10-02	06/04/2010 15:15 06/08/2010	06/08/2010	Aqueous	SW8260_W		VOA
J1185-02B J1185-02B	MW10-02 MW10-02	06/04/2010 15:15 06/08/2010 06/04/2010 15:15 06/08/2010	06/08/2010 06/08/2010	Aqueous Aqueous	SW6010_W SW7470	/ RCRA8 / RCRA8	Y M5 M5
J1185-02C	MW10-02	06/04/2010 15:15	06/08/2010	Aqueous	SW8270_W		Ŧ
J1185-03A	MW10-03	06/04/2010 11:15	06/08/2010	Aqueous	SW8260_W		VOA
J1185-03B J1185-03B	MW10-03 MW10-03	06/04/2010 11:15 06/08/2010 06/04/2010 11:15 06/08/2010	06/08/2010 06/08/2010	Aqueous Aqueous	SW6010_W SW7470	/ RCRA8 / RCRA8	Y M5 M5
J1185-03C	MW10-03	06/04/2010 11:15 06/08/2010	06/08/2010	Aqueous	SW8270_W		Ħ
J1185-04A	TB6/4/10	06/04/2010 00:00 06/08/2010	06/08/2010	Aqueous	SW8260_W		VOA

HF = Fraction logged in but all tests have been placed on hold
 HF

Lab Client Rep: Agnes R Ng

HT = Test logged in but has been placed on hold

T- Indi All TA tin. 24-h amples d herwise	Why Hape has state My	de below: Notes: QA/QC Reporting Level	Level I Level II Level III Level IV Other	State specific reporting standards:			Date:	4/2/10 42 4/2/10 5:45
RECORD	Project No.: <i>LuTu</i> Site Name: <i>ISL</i> Location: <i>ISL</i> Sampler(s): <i>M</i>	List preservative code below: 2 4 Analyses:	57 2604 041 124 06 68 0701 -+ 124	4727 2/0109 245+ 5015 5 077-2007			Received by:	red EX Copylan
DF CUSTODY RECORI	S M S	6=Ascorbic Acid 7=CH ₃ OH 11= Containers:	A Vials DA Vials Par Glass Par Glass Paric	nA 10 # 6		»	Relinquished by:	willy ward all
	Anc Invoice To:	=HNO ₃ 5=NaOH 10= WW=Wastewater	SI ite	Time:	1/5/ 0//		prail. ret	
MITKEM LABORATORIES ADVISION OF SPECTRUM ANALYTICAL, INC. Featuring HANBAL TECHNOLOGY	Report To: JET UAN EN AND AND AND AND AND AND AND AND AND AN	O 1=Na ₂ S2O ₃ 2=HCl 3=H ₂ SO ₄ 8= NaHSO ₄ 9= DW=Drinking Water GW=Groundwater		Sample Id: Da	hla -co-Olmu	TB 614/10 2	X E-mail to Jon Zroger 2 day nail	EDD Format <i>LUT</i> Condition upon receipt:

MITKEM LABORATORIES Sample Condition Form

	Sam			••			Page	1	of	1
Received By: Cur	Reviewed By	r: Sr				Mitke				1185
-	MT Hope			Clien	t D	bre				Soil
					Prese	rvatio	n (pH)		VOA	Headspace or Air Bubble ≥
		Lab Samp	le ID	HNO ₃	H₂SO₄	HCI	NaOH	H₃PO₄		1/4"
1) Cooler Sealed	Yes No	J1185	01						н	
		1	02						1	
		t-	1							
2) Custody Seal(s)	Present Absent		03	1					V.	
	Cooters & Bottles	J1185	04	-					H	
	Intact / Broken			<u> </u>						/_
	1.									
3) Custody Seal Number	(s) / A									
									\checkmark	
			1			<u> </u>			Y	
			1							
4) Chain-of-Custody	Present Absent	-								
		-,					/			
5) Cooler Temperature	310									
IR Temp Gun ID	mT-1						/			
Coolant Condition	TCP	·				$\overline{\mathbf{x}}$	/			
Coolant Condition						N.	0			
					Ň	/5	\			
6) Airbill(s)	Present/Absent		-		<u> </u>	40				
Airbill Number(s)	Fed Ex					ڻ ک				
	713610524082									
				\Box						
				\checkmark						
7) Complee Dettles	Intrat / Prokon / Looking		$+ \neq$					••••		
7) Samples Bottles	Intact Broken / Leaking		\bigvee							
	1 lal		4		-					
8) Date Received	<u>6/8/10</u> <u>9:45</u>	/ ·								
9) Time Received	8:45									
Preservative Name/Lot N	lo ·					and the second secon				
TESCIVALIVE INAME/LULI	10		VOA	Matrix	Kev:		L			No. of Concession, Name of Street, or other
· · · · · · · · · · · · · · · · · · ·	<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>				Unpre	serve	d Soil		A = A	ir
					Unpre					
·····					/leOH		-1		E=E	
	······				laHSO	4			F = F	
See Sample	e Condition Notification/Corre	ective Action	Form				•			*** ••
Form ID: QAF.0006							Rad C	DK Øe	s) no	

Agnes Huntley [Mitkem]

From: Kelly Crandall [KCrandall@daymail.net]

Sent: Monday, June 14, 2010 9:34 AM

To: Agnes Huntley [Mitkem]

Cc: Charles Hampton

Subject: RE: COC

Thanks Agnes, can you please use the following sample IDs for the report:

MW10-1 MW10-2 MW10-3

Kelly

From: Agnes Huntley [Mitkem] [mailto:agnes_ng@mitkem.com] Sent: Monday, June 14, 2010 9:25 AM To: Kelly Crandall Subject: COC

Agnes Huntley CLP Project Manager Mitkem Laboratories A Division of Spectrum Analytical. Featuring Hanibal Technology (P) 401-732-3400 (F) 401-732-3499

This message is intended for the use of the individual to whom it is addressed and may contain information that is privileged, confidential and exempt from disclosure under applicable law. If the reader of this message in not the intended recipient, or the employee responsible for delivering the message to the intended recipient, you are hereby notified that any dissemination, distribution or copying of this communication is strictly prohibited. If you have received this communication in error, please notify us immediately by telephone at 401-732-3400.

Last Page of Data Report

APPENDIX G

Table 5 from "Supplemental Groundwater and Background Surface Soil SamplingReport, Former APCO Property, 79 Woodstock Road, Rochester, New York" datedFebruary 6, 1998 and prepared by the Sear-Brown Group

TABLE 5 SUMMARY OF DETECTED SEMI-VOLATILE ORGANIC COMPOUNDS-BACKGROUND SURFACE SOIL SAMPLES (ug/kg)

	TAGM ⁽¹⁾	SS-17	SS-18	SS-19	SS-20	SS-21
Semi-Volatile Organic Compounds	030 10 - 20					
Anthracene	50,000.	4,200. U	43. J	560. JD	670. JD	9,000, U
Benzo(a)anthracene	224.	1,400, JD	240. J	2,000. JD	2,900. JD	1,900. JD
Benzo(a)pyrene	61.	1,700. JD	330. J	2,800. JD	3,900. JD	3,000, JD
Benzo(b)fluoranthene	1,100,	1,900. JD	340. J	3,000. JD	4,400. D	3,500, JD
Benzo(ghi)perylene	50,000.	970. JD	140, J	1,300. JD	1,400. JD	1,500. JD
Benzo(k)fluoranthene	1,100.	1,600. JD	380. J	2,400. JD	3,700. JD	2,700. JD
Bis(2-ethylhexyl) phthalate	50,000.	940. JBD	210. JB	1,000. JBD	760, JBD	2,100. JBD
Butyl benzyl phthalate	50,000.	430. JD	54. J	4,200. U	4,000. U	9,000. U
Carbazole	NG	4,200. U	420, U	4,200. U	550. JD	9,000. U
Chrysene	400.	1,700. JD	300. J	2,400. JD	3,600. JD	2,400. JD
Di-n-butyl phthalate	8,100.	4,200. J	120. JB	4,200. J	4,000. J	9,000. J
Dibenzo(a,h)anthracene	14.	500. JD	70. J	4,200. U	710, JD	9,000. U
Fluoranthene	50,000.	3,800. JD	520.	5,000. D	7,600. D	3,600. JD
Indeno(1,2,3-cd)pyrene	3,200.	1,000. JD	160. J	1,400, JD	1,700. JD	1,700. JD
Phenanthrene	50,000.	1,800. JD	260, J	2,800. JD	4,200. D	1,300. JD
Pyrene	50,000.	2,700. JD	430.	3,800. JD	5,800. D	3,100. JD

Notes:

- NYSDEC. January 24, 1994. Determination of Soil Cleanup Objectives and Cleanup Levels, Division of Hazardous Waste Remediation, Technical and Administrative Guidance Memorandum (TAGM) HWR 94-4046 (Revised).
- 2. All values expressed in micrograms per kilogram (ug/kg) which is equivalent to parts per billion.
- 3. Samples collected by Sear-Brown on January 23, 1998.
- 4. Laboratory analysis of SVOCs for all samples except SS-18 involved sample dilution.
- 5. Concentrations exceeding TOGS shown in BOLD.
- 6. NG = no guidance value established.