SOIL AND GROUNDWATER MANAGEMENT PLAN

SUB-AREA I

BROOKS LANDING URBAN RENEWAL DISTRICT ROCHESTER, NEW YORK

AUGUST 2003

Prepared For:

CITY OF ROCHESTER DIVISION OF ENVIRONMENTAL QUALITY 30 CHURCH STREET, ROOM 300 B ROCHESTER, NEW YORK 14614

Prepared By:

SEAR-BROWN 85 METRO PARK ROCHESTER, NEW YORK 14623-2674

ARCHITECTURE ENGINEERING PLANNING CONSTRUCTION 85 Metro Park Rochester, NY 14623 585.475.1440 phone 585.272.1814 fax

www.searbrown.com

August 25, 2003

Mr. Joseph Biondolillo City of Rochester Division of Environmental Quality 30 Church Street, Room 300B Rochester, New York 14614-1278

RE: Soil and Groundwater Management Plan Sub-Area I Brooks Landing Urban Renewal District Rochester, New York 16835.11

Dear Joe:

Sear-Brown is pleased to submit this Soil and Groundwater Management Plan (2 copies) for Sub-Area I located in the Brooks Landing Urban Renewal District.

Should you have any questions or require further information, please do not hesitate to call.

Sincerely,

K. mayer for

Michael P. Storonsky Senior Associate

Kevin D. Ignaszak, P.E. Environmental Engineering Manager

Enclosure

c: Rick Rynski, REDCO, w/enclosure Ronald A. Christenson, Christenson Corporation, w/enclosure Paul Colucci, Costich Engineering, w/enclosure Peter Miller, NYSDEC, w/enclosure Joseph Albert, MCDOH, w/enclosure Pete Dawes, Rochester Gas and Electric, w/enclosure

M:16835.11\docs\SGMP\L0001-SMP.doc

SOIL AND GROUNDWATER MANAGEMENT PLAN

SUB-AREA I

BROOKS LANDING URBAN RENEWAL DISTRICT ROCHESTER, NEW YORK SOIL MANAGEMENT PLAN

AUGUST 2003

Prepared For:

CITY OF ROCHESTER DIVISION OF ENVIRONMENTAL QUALITY 30 CHURCH STREET, ROOM 300 B ROCHESTER, NEW YORK 14614

Prepared By:

SEAR-BROWN 85 METRO PARK ROCHESTER, NEW YORK 14623-2674

> COPYRIGHT©2003 SEAR-BROWN

TABLE OF CONTENTS

Section

Page 1

1.0	Intro	duction	
	1.1	Purpose	1
	1.2	Background	1
	1.3	Completed Remedial Actions	7
2.0	Deve	lopment and Pre-Excavation Planning	10
	2.1	Existing Information	10
	2.2	Construction/Design Considerations	15
3.0	Soil-I	Fill Characterization	17
	3.1	Pre-Construction Sampling	17
	3.2	Construction Sampling	17
4.0	Grou	ndwater Characterization	18
	4.1	Pre-Construction Sampling	18
	4.2	Construction Sampling	18
5.0	Moni	toring During Excavation	19
	5.1	Health and Safety Monitoring	19
	5.2	Soil/Fill/Groundwater Monitoring	20
6.0	Mana	gement of Impacted Material	22
	6.1	On-Site Re-Use of Excavated Materials	
	6.2	Off-Site Disposal of Excavated Materials	22
	6.3	Off-Site Disposal of Impacted Water	23
7.0	Flagg	ring System	

<u>Figures</u>

Figure	e 1	Site Location Map
	•	

Figure 2 Site Plan of Sub-Area I

Selected Drawings from Sear-Brown, December11, 2002, Phase II Environmental Investigation Report as noted:

- Drawing No. 3 Test Pit Location Map
- Drawing No. 5 Granular Fill Isopach (ft)
- Drawing No. 7 Peak PID Readings (10.2 ev) 0-4' bgs
- Drawing No. 8 Peak PID Readings (10.2 ev) 4-8' bgs
- Drawing No. 9 Peak PID Readings (10.2 ev) 8-12' bgs
- Drawing No. 10 Peak PID Readings (10.2 ev) 12-16' bgs
- Drawing No. 11 Peak PID Readings (10.2 ev) 16-20' bgs
- Drawing No. 13 Total Petroleum Related VOCs in Soils (ug/kg)

Selected Figures from Sear-Brown, May 2003, Phase II Environmental Investigation Report as noted:

Figure 3A	Soil Boring and Monitoring Well Location Map: Sub-Area I
Figure 4	Water Table Contour Map (Based on March 18, 2003 Data)
Figure 5	Isopach Map of Granular Fill (ft.) in Sub-Area I
Figure 6	Isopach Map of Black Carbon Deposits (ft.)
Figure 7	PID Readings (ppm), 0-4 Feet BGS: South End 1315 South Plymouth Ave/150
	Elmwood Avenue
Figure 8	PID Readings (ppm), 4-8 Feet BGS: South End 1315 South Plymouth Ave/150
	Elmwood Avenue
Figure 9	TCE in Groundwater (ug/L)
Figure 10	Total Petroleum Related Aromatic Hydrocarbons (ug/L)
Figure 10A	MTBE in Groundwater (ug/L)

Drawings from Costich Engineering, Brooks Landing Final Plans, "Advanced", July 28, 2003, as noted:

Drawing No. 2722-S4	Site Plan
Drawing No. 2722-S5	Utility Plan
Drawing No. 2722-S6	Grading and Erosion Control Plan
e	Site Plan (w/modifications made by Sear-Brown on 7/31/03 to reflect environmental issues)
e	Site Plan (w/modifications made by Sear-Brown on 8/12/03 to reflect environmental issues)

Drawings from Rochester Gas and Electric Corporation, Revised Utility Plans, "Preliminary", March 6, 2003, as noted:

Drawing No. 2722-S5	Electric-Revised Utility Plan
Drawing No. 2722-S5	Gas-Revised Utility Plan

<u>Tables</u>

Selected Tables from Sear-Brown, December11, 2002, Phase II Environmental Investigation Report as noted:

- Table 1Summary of PID Headspace Readings (ppm)
- Table 1A
 Summary of Peak PID Headspace Readings (ppm)
- Table 2Soil Sample Summary
- Table 3Well Completion Summary
- Table 4Well Development Summary
- Table 5Water Level Summary
- Table 6Groundwater Sample Summary
- Table 7Hydraulic Conductivity Summary
- Table 8Summary of TCL/STARS Volatile Organic Compounds in Soil (ug/kg)

- Table 9Summary of STARS Semi-Volatile Base Neutral Compounds in Soil (ug/kg)
- Table 10Summary of PCBs, Herbicides, and Total Petroleum Hydrocarbons in Soil (mg/kg)
- Table 11Summary of 8 RCRA Metals in Soil (mg/kg)
- Table 12
 Summary of TCL/STARS Volatile Organic Compounds in Groundwater (ug/L)
- Table 13Summary of STARS Semi-Volatile Base Neutral Compounds and Total Petroleum
Hydrocarbons in Groundwater (ug/L)
- Table 14Summary of TCLP VOC Results (ug/L)

Selected Tables from Sear-Brown, May 2003, Phase II Environmental Investigation Report as noted:

- Table 1A Summary of PID Headspace Readings (ppm): Sub-Area I
- Table 2ASoil Sample Summary: Sub-Area I
- Table 3AWell Completion Summary: Sub-Area I
- Table 4AWell Development Summary: Sub-Area I
- Table 5AWater Level Summary: Sub-Area I
- Table 6A Groundwater Sample Summary: Sub-Area I
- Table 7A Summary of TCL/STARS Volatile Organic Compounds in Soil (µg/kg): Sub-Area I
- Table 8A Summary of Semi-Volatile Base-Neutral Compounds in Soil (µg/kg): Sub-Area I
- Table 9A Summary of RCRA Metals in Soil (mg/kg): Sub-Area I
- Table 10A Summary of TCLP Arsenic and Mercury Results (mg/l): Sub-Area I
- Table 11A Summary of PCBs and Herbicides in Soil (mg/kg): Sub-Area I
- Table 12A Summary of TPH in Granular Fill (mg/kg)
- Table 13A Summary of TCL/STARS Volatile Organic Compounds in Groundwater (µg/L): Sub-Area I

<u>Appendices</u>

- Appendix A Sub-Area I Test Pit and Soil Boring Logs
- Appendix B Sewer Use Permit Information

1.0 Introduction

1.1 Purpose

This Soil Management Plan (SMP) has been developed at the request of the City of Rochester and pertains to the eight properties collectively identified as Sub-Area I of the Brooks Landing Urban Renewal District in the City of Rochester, New York (Figure 1). It has been developed to assist the City, developers and designers in planning for development, monitoring, management and characterization of impacted fill materials and groundwater that may be encountered during subsurface activities that will occur during development. At this time, the proposed development is to include a 5 story, 103 room hotel, a one story restaurant, a parking garage situated below the hotel, utility realignments and surface level parking lots and landscaped areas.

New York State Department of Environmental Conservation (NYSDEC) regulations require management of hazardous and non-hazardous solid waste as contained in 6 NYCRR Parts 371-376 and 6 NYCRR Part 360, respectively. Proper management will require that care be taken in planning, monitoring and characterizing the soil/fill materials and water to confirm their non-hazardous status and allow for proper off-site disposal or relocation on-site. This SMP provides guidance for planning and performing such monitoring, testing and management of excavated soil/fill materials or groundwater that may be encountered within Sub-Area I (hereto referred to as the Site).

1.2 Background

The Site is an approximate +/- 4.14 acre parcel of land which consists of 8 contiguous vacant and commercial tax parcels located at Genesee Street and Brooks Avenue in the City of Rochester, New York. A site plan of Sub-Area I is presented as Figure 2. A summary of each parcel's Tax ID number, street address, size, zoning and use is listed below.

Tax ID #	Address	Size (sq.ft.)	Zoning	Use
135.34-3-22	972 Genesee Street	8,535	Commercial	vacant, unimproved
135.34-3-23	15 Brooks Avenue	6,849	Residential	vacant, unimproved
135.34-3-24	998 Genesee Street	4,386	Commercial	NET office
135.42-2-1	1004 Genesee Street	3,376	Commercial	parking lot
135.42-2-2	1008 Genesee Street	6,620	Residential	vacant, unimproved

135.35-1-88 (part of only)	1315 South Plymouth Avenue	92,106 (part only)	Open Space
135.51-1-1 (part of only)	150 Elmwood Avenue	592,415 (part of only)	Open Space
135.35-1-16	1400 South Plymouth Avenue	Not Available	Open Space

Sear-Brown initially prepared a Phase I Environmental Site Assessment (ESA) in conformance with ASTM E 1527-00 Standard Practice for Environmental Site Assessments (ESAs): Phase I Environmental Site Assessment Process in September 2002, on the first five of the properties comprising the Site listed above.

Based upon the recognized environmental conditions in connection with the Site, the following recommendations were made:

- Given the proposed change in ownership, the inactivated spill file that exists for 972 Genesee Street and 15 Brooks Avenue (herein after collectively referred to as 972 Genesee Street), the inability to account for the removal of all the underground storage tanks (USTs) at 972 Genesee Street, the historical auto repair activities at 972 Genesee Street, the absence of any known investigation beneath the former building floor, the discontinuation of the pump and treat and soil venting systems in the former UST area at 972 Genesee Street with little improvement after the first six months of operation, and the available information which suggests that a source of off-site contamination from the adjacent upgradient property to the west (Brooks Auto Parts) may be impacting this parcel, it was recommended that further investigation involving soil borings, groundwater monitoring wells and associated soil and groundwater sampling be conducted on the 972 Genesee Street parcel. Prior to conducting that subsurface investigation, given the use of 972 Genesee Street as a gasoline station for over sixty years, and the uncertainty regarding the precise locations of historic tank fields and pump islands, it was recommended that a geophysical survey be performed to evaluate the potential presence of abandoned USTs or other underground structures such as distribution piping, drywells or hydraulic lifts that may present a site contamination concern;
- Given that railroad spurs traversed 15 Brooks Avenue and 1008 Genesee Avenue from approximately the 1890s to the 1970s and given that these parcels are gravel and/or grass-covered lots, it was recommended that a subsurface investigation program and associated soil sampling program be conducted to evaluate the potential presence of residual railroad related impacts;

- Based on the historical presence of an automobile repair shop and an automobile machine shop at 998 Genesee Street, USTs may have been installed at this parcel. There is also a potential that releases from the automotive repair operations may have impacted the site. Therefore, it was recommended that a geophysical survey be performed to evaluate the potential presence of abandoned tanks or other subsurface structures that may present a site contamination concern. It was further recommended that a subsurface investigation be performed to evaluate potential impacts from historic on-site operations; and
- If removal, demolition or maintenance of suspect ACBMs is planned in the future, it was recommended that the materials be sampled and analyzed for asbestos content at that time. If they are asbestos-containing (greater than one percent asbestos), or if they are assumed to be asbestos-containing, then abatement of these materials (repair, enclosure, encapsulation, or removal and disposal) prior to its disturbance should be supervised by a licensed asbestos contractor in accordance with state and federal regulations in effect at that time.

To address the concerns identified above with the five properties, Sear-Brown completed a Phase II Environmental Investigation which included the following field activities: a geophysical survey to search for USTs; a test pit program to investigate major geophysical anomalies; an Earthprobe® soil boring and soil sampling program to evaluate on-site soil conditions; groundwater monitoring well installations and groundwater sampling; and a limited survey of groundwater monitoring well head elevations. These tasks were summarized in Sear-Brown's December 11, 2002 Phase II Environmental Investigation Report.

The results from the Phase II Environmental Investigation identified the following environmental concerns:

- A geophysical survey and subsequent test pit investigation identified several buried pipes (e.g., vent pipes and gasoline distribution piping) associated with former USTs present on the 972 Genesee Street property. It was recommended that the buried pipes associated with the former USTs, and any associated affected soils be removed and properly disposed off-site.
- An estimated 335 cubic yards of black carbon fill located behind the NET building on the 1008 Genesee Street property and extending to the north onto 15 Brooks Avenue, appears to comprise an isolated source of solvent-related (trichloroethene with lower concentrations of cis-1,2-dichloroethene) volatile organic compound (VOC) contamination. Three of the six samples from this black carbon fill subjected to TCLP analyses exceed USEPA/NYSDEC hazardous waste regulatory thresholds for trichloroethene. It was recommended that a source removal program be undertaken to properly remove and dispose of the black carbon fill. If this material is disturbed, some

of the black carbon fill may have to be disposed of as a characteristic hazardous waste depending upon TCLP test results.

- Chlorinated VOC contamination (trichloroethene and cis-1,2-dichloroethene) • is present in the groundwater beneath the 998 and 1008 Genesee Street properties. These groundwater impacts appear to be related to the above referenced carbon fill. The easterly extent (i.e., toward the proposed Brooks Landing Hotel and restaurant and the Genesee River) of the chlorinated VOC impacts to groundwater has not been identified. It was recommended that additional investigation be conducted to evaluate the potential easterly extent of the chlorinated VOC impacts to groundwater. Contingent on the extent and magnitude of the chlorinated VOC plume, the extent to which the previously recommended source removal activities are successful in reducing the chlorinated VOC concentrations in groundwater, and the requirements of the regulatory agencies, remediation of the chlorinated VOCs in groundwater may be required. In addition, as a precautionary measure, it was recommended that provisions be made for the incorporation of a sub-slab vapor suppression system into the design and construction of the new restaurant to minimize the potential for infiltration of vapors.
- Elevated VOC contamination related to residual petroleum in soils has been documented at a depth near and below the water table (approximately 13-15 feet below ground surface) beneath a portion of the 972 Genesee Street property and 15 Brooks Avenue properties. This contamination appears to be related to historic underground storage tanks and is centered around soil boring GP-1 (monitoring well PZ-1). Prior source removal activities by the historic owner appear to have removed most of the impacted soil in the vadose zone. A Soil Management Plan was recommended to address any residual soil or groundwater contamination that may be encountered during construction activities as a result of the former underground storage tanks, fuel pumps and the associated piping.
- Residual petroleum product, determined to be gasoline by TPH analyses, was observed floating on or near the water table at the PZ-1 monitoring well location on the 972 Genesee Street property. The thickness of the floating product is uncertain due to apparent emulsification that renders the base of the product poorly defined. It was recommended that the floating product be removed and properly disposed off-site.
- Petroleum-related groundwater contamination was observed at the 972 Genesee Street and 15 Brooks Avenue properties. This contamination appears to be emanating from the PZ-1 – PZ-17 area. The extent of the petroleum groundwater impacts to the east has been confirmed to extend across the 1315 South Plymouth Avenue and 150 Elmwood Avenue parcels.

To evaluate the potential remedial cost associated with the environmental concerns identified during the Phase I ESA and Phase II Environmental Investigation, Sear-Brown completed an evaluation of potential remedial options for the Site considering the proposed future developments. Our findings were summarized in a December 11, 2002 Evaluation of Remedial Options and Opinion of Probable Cost letter.

In November 2002, Sear-Brown completed a Phase I ESA of twenty-three parcels within the Brooks Landing Urban Renewal District which included the remaining three properties comprising Sub-Area I: 1315 South Plymouth Avenue, 150 Elmwood Avenue and 1400 South Plymouth Avenue.

In May 2003, Sear-Brown completed a Phase II Environmental Investigation which included these three properties. The scope of the Phase II Investigation was based on the findings and recommendations contained in the Phase I ESA.

Based upon the evidence of recognized environmental conditions (RECs) noted during the Phase I ESA, the following recommendations were made for Sub-Area I as denoted by bullets and italics. The Phase II investigation tasks that were completed to evaluate these RECs and the findings of those investigations are as follows:

• Contingent on the outcome of the ongoing Phase II investigation at 972 Genesee Street and 15 Brooks Avenue, additional investigation may be warranted on the 1315 South Plymouth Avenue parcel.

The Phase II investigation at the upgradient 972 Genesee Street, 15 Brooks Avenue and adjoining 998 and 1008 Genesee Street parcels confirmed the presence of both soil and groundwater impacts by petroleum and chlorinated solvents. Five soil borings were completed with monitoring wells on the 150 Elmwood Avenue property. The results of soil and groundwater sampling confirmed that a plume of both petroleum and chlorinated VOC-impacted groundwater extends from the upgradient source areas eastward across the 1315 South Plymouth Avenue and 150 Elmwood Avenue parcels.

Based upon the findings of a trichloroethylene (TCE)-impacted black carbon fill deposit on the 1008 Genesee Street and 15 Brooks Avenue properties, which has been removed as part of a DEC approved Corrective Action Plan, an additional 47 soil borings were installed in several phases on the 1315 South Plymouth Avenue/150 Elmwood Avenue parcels to investigate the composition of fill materials. The initial soil investigation involving 30 borings revealed the presence of a second large deposit of black carbon fill beneath the southern portion of Sub-Area I. The deposit is estimated to contain 1,890 cubic yards of material. Laboratory analyses of six samples of the black carbon did not yield detectable concentrations of any volatile organic compounds. The initial soil boring program also confirmed the presence of a shallow cinder-rich, granular fill beneath the 1315 South Plymouth Avenue and 150 Elmwood Avenue parcels in Sub-Area I in the general vicinity of the former railroad tracks. These materials were the subject of a supplemental program involving 17 additional borings. The fill deposit within Sub-Area I is estimated to contain 7,400 cubic yards of fill material. At one location, boring B159, a 0.3 foot thick petroleum-impacted tar deposit was encountered embedded within the granular fill deposit.

Laboratory analysis of three initial samples of the cinder-rich granular fill material from Sub-Area I yielded one sample, B124, with substantially elevated levels of SVBNs. In order to verify the elevated SVBNs, a confirmatory sample, B124R, was collected and submitted to a different laboratory. The supplemental results generally confirmed the initial elevated SVBN concentrations. Based upon the analytical data compiled as part of the initial soil boring program, a link between the elevated SVBN levels and heavy petroleum products was theorized. Based on that working hypothesis, additional laboratory analyses for TPH, SVBNs, VOCs and PCBs were conducted in conjunction with the supplemental investigation involving 17 soil borings. TPH results revealed the presence of lube oil and mineral spirits in one granular fill sample and lube oil in a second sample. Thus, a link between elevated SVBN levels and petroleum hydrocarbons appears to have been confirmed.

A sample of the 0.3 foot thick tar layer identified at the boring B159 location yielded elevated levels of both petroleum-related VOCs and SVBNs. In addition, a substantial concentration of kerosene was reported to be present in the tar sample.

Neither the granular fill samples nor the tar sample collected and analyzed as part of the supplemental soil boring program contained detectable levels of PCBs.

In addition to the petroleum related VOC and SVBN findings, elevated arsenic and mercury concentrations were identified in the granular fill deposits. As a result, a supplemental sample of the fill material was subsequently collected to evaluate if these metals were hazardous. TCLP analyses indicated that the mercury and arsenic levels in the suspected railroad-related fill materials are not a characteristic hazardous waste for metals.

 Given the inability to account for the removal of all the USTs at 973-985 Genesee Street, and the historical auto repair and gasoline service station activities at 973-985 Genesee Street, it was recommended that a subsurface investigation be performed on the 973-985 Genesee Street property. Alternatively, if access to this parcel can not be obtained, the recommended investigation should be performed along the right-of-way on Brooks Avenue

and Genesee Street to evaluate potential impacts from historic on-site operations.

Access to this privately-owned parcel was not obtained. A limited subsurface investigation of the adjacent 973-985 Genesee Street parcel involved the installation of two soil borings that were completed with groundwater monitoring wells in the ROW along the west side of Genesee Street. Two soil and two groundwater samples were analyzed for volatile organic compounds. The results of the soil and groundwater sampling confirm the presence of petroleum-impacted soil and groundwater beneath the right-of-way along the western side of Genesee Street. Based upon available water level data, it appears that these petroleum impacts are attributable to a potential source on the 973-985 Genesee Street parcel. The impact of this potential off-Site source of petroleum upon the Site has not been completely defined.

1.3 Completed Remedial Actions

Corrective Action Plan-972, 998, 1004 & 1008 Genesee St. & 15 Brooks Ave.

Sear-Brown was retained by Rochester Economic Development Corporation (REDCO) to prepare a Corrective Action Plan (CAP) for the remediation of five parcels, 972, 998, 1004, and 1008 Genesee Street, and 15 Brooks Avenue comprising the northwest portion of Sub-Area I.

The objective of the CAP was to describe the planned remedial activities that will be performed at the Site including:

- Excavation and off-Site disposal of chlorinated volatile organic compound (VOC) impacted carbon fill;
- Application of Hydrogen Release Compound (HRCTM) to the VOC impacted groundwater through trench excavations; and
- Removal of the floating residual petroleum product and former fuel supply line piping.

The CAP was submitted to NYSDEC in February 2003 and subsequently accepted on May 30, 2003.

The CAP involved implementation of the following activities during May, June and July of 2003:

- 1. Site Preparation Activities including:
 - Contractor Health and Safety Plan preparation;
 - Pre-remediation test pits;
 - Tree clearing and removal;
 - Equipment decontamination area construction;

- Impacted soil staging area construction;
- Temporary perimeter, excavation, and staged soil pile fencing installation;
- Storm water management (silt fence installation); and
 - Removal of existing chain link fencing.
- 2. Removal of former fuel supply line piping including:
 - Excavation, segregation and staging of clean soils overlying or adjacent to former fuel supply line piping;
 - Excavation, segregation, staging, transportation, and disposal of VOC impacted soils, and fuel supply line piping;
 - Visual and quantitative field screening of soil with a PID for the presence of volatile organic constituents during excavation; and
 - Backfilling of the excavation area with staged and imported soils.
- 3. Removal of the floating residual petroleum product and groundwater including:
 - Installation of 3 extraction wells;
 - Extraction of floating product and dissolved phase VOCs in groundwater with vacuum truck (3 events, one per month, currently 2 events have been completed);
 - Quarterly groundwater sampling/analysis/reporting for one year; and
 - Decommissioning of 4 extraction wells after quarterly groundwater sampling for one year is complete.
- 4. Excavation and Off-Site Disposal of Chlorinated VOC Impacted Carbon Fill including:
 - Decommissioning of select monitoring wells located in proposed excavation areas;
 - Relocation of electrical, cable and telephone supply to the NET building;
 - Excavation, segregation and staging of 1,000 cy of clean soils overlying or adjacent to VOC impacted carbon fill;
 - Excavation, segregation and staging of 850 cy of VOC impacted carbon fill (i.e. source removal);
 - Visual and quantitative field screening of soil with a photoionization detector (PID) for the presence of VOCs during excavation;
 - Collection of confirmatory soil samples for laboratory analysis;
 - Transportation and disposal of 1,040 tons of VOC impacted carbon fill.
- 5. Application of HRCTM to the VOC Impacted Groundwater Through Trench Excavations including:

- Excavation of two trenches from the bottom of the VOC impacted carbon fill to two feet below the groundwater table;
- Visual and quantitative field screening of soil with a PID for the presence of volatile organic constituents during excavation;
- HRCTM application;
- Backfilling of the trench excavations and VOC impacted carbon fill excavation area with 1,850 cy of staged and/or imported soils;
- Installation of 3 groundwater monitoring wells;
- Quarterly groundwater sampling/analysis/reporting for one year; and
- Decommissioning of 3 groundwater monitoring wells after quarterly groundwater sampling for one year is complete.

The generation of a Remedial Construction Report with a request for a No Further Action letter and spill file inactivation from the NYSDEC will be completed after the completion of the removal of the floating residual petroleum product and groundwater (anticipated early fall 2003).

2.0 Development and Pre-Excavation Planning

2.1 Existing Information

Site development and excavation planning will need to incorporate information from the previous investigations, documented subsurface contamination, and the intended location of proposed construction/development. Site development and excavation planning activities will require environmental review prior to issuance of any City permit. Once the Soil and Groundwater Management Plan has been approved by the NYSDEC, the Site will be flagged for review by the City's Division of Environmental Quality in the City of Rochester Building Information System (BIS) in order to protect potential developers and establish proper management of construction activities prior to their commencement. This flagging provides an institutional control mechanism. Further information regarding the BIS flagging system is provided in Section 7.0 of this report.

Copies of select figures, summary tables of field screening, soil and groundwater analytical results, etc. from the Phase II Investigation conducted on the Site are attached to this SMP. Copies of the select test pit and soil boring logs for the Site are presented in Appendix A.

Copies of "Advanced" drawings from Costich Engineering concerning the proposed development of the Site including a Site Plan; Utility Plan; Grading and Erosion Control Plan; and a Site Plan (with modifications made by Sear-Brown on 7/31/03 to reflect environmental issues) are also attached.

In addition, copies of "Preliminary" drawings from the Rochester, Gas and Electric Corporation concerning the proposed realignment of the natural gas and electric conduits on the Site are also included herein.

General Subsurface Conditions

Test borings on the subject property revealed the presence of two predominant types of fill material overlying native soils. The two predominant fill types are referred to in this report as a granular, cinder-rich fill and black carbon fill. The granular fill is a surficial unit that overlies either black carbon deposits or native soils. Both fill materials are suspected to be related to historical railroad operations.

Granular Fill

The surficial granular fill horizon consists primarily of orange-brown sand mixed with cinder and brick. The sandy, granular fill ranges in thickness from less than 1 foot to approximately 12 feet. The ash, cinder and brick content appears to be concentrated within a thinner zone in the granular fill profile. Based upon visual characteristics and PID readings, this zone appeared to represent a potential

environmental concern with respect to metals, semi-volatile organic compounds and localized volatile organic compounds. An isopach map of the cinder-rich zone within the thicker granular fill profile is provided.

Black Carbon Fill

The second predominant fill material is situated beneath surficial granular fill deposits under the southern portion of the 1315 South Plymouth Avenue/150 Elmwood Avenue parcels. This second type of fill consists of a distinctive, black carbon. The material is visually similar to the carbon deposit identified farther north on the 1008 Genesee Street and 15 Brooks Avenue properties. An isopach map of the southerly carbon deposit and its relationship to the previously identified deposit (subsequently remediated) and proposed site buildings and features is provided.

In addition to the two predominant fill types, a black tar was found embedded within the granular fill material in boring B159 at a depth of 4.2 to 4.5 feet below ground surface. This tar yielded an elevated headspace reading and a petroleum odor.

Native Soil

Native soils consist of a stratified sequence of orange-brown to brown sand, silt and clay. The deposits appear to have been deposited in a lacustrine (lake) environment near the western fringe of the Cobbs Hill/Mount Hope Cemetary morainal complex.

Groundwater

Groundwater conditions beneath the subject properties are documented only beneath the northern portions of Sub-Area I. Water level measurements collected on March 18, 2003 from the wells (PZ-100 through PZ-103, PZ-152), located at 150 Elmwood Avenue in the vicinity of the proposed restaurant and hotel, indicate that the depth to the water table is on the order of two to three feet below ground surface during late winter conditions.

Water level measurements also indicate that hydraulic gradients flatten considerably from west to east across the northern half of Sub-Area I. Hydraulic gradients on the 972 Genesee Street and 15 Brooks Avenue parcels are on the order of 0.10 to 0.15 foot/foot for groundwater flow directed eastward. The average hydraulic conductivity of the native soils beneath these sites was calculated to be 7.5 x 10^{-4} cm/s. Assuming a 20 percent porosity for these sediments, the average linear velocity of groundwater flow was estimated to be in the range of 300 to 600 feet per year.

It was noted in the December 11, 2002 Phase II Investigation Report for the Five Parcels inclusive of the 972 Genesee Street and Brooks Avenue parcels that local

sewers could be influencing local groundwater flow directions and velocities. Sear-Brown hypothesized that east of the ring of sewers around the aforementioned properties, hydraulic gradients could flatten considerably and that groundwater flow velocities would decrease commensurately. Water level data collected from the northern end of the 1315 South Plymouth Avenue and 150 Elmwood Avenue parcels appear to verify the hypothesis. Water table elevations calculated from measurements made in five wells on these properties fall within the narrow range between 515.04 and 515.21. Hydraulic gradients flatten to approximately 0.006. The lower hydraulic gradient translates to flow velocities on the order of 18 to 24 feet per year in an eastward direction toward the Genesee River.

Field Screening of Soils

Extensive, documented PID headspace readings are available for this Site. This information is summarized in the attached Sear-Brown tables:

Table Title

Table 1	Summary of PID Headspace Readings (ppm)
Table 1A	Summary of Peak PID Headspace Readings (ppm)
Table 1A	Summary of PID Headspace Readings (ppm): Sub-Area I

PID headspace readings are also presented on the Drawings and the test pit and boring logs presented in Appendix A. **Soil Analytical Data**

The soil analytical results are summarized in the following Sear-Brown tables:

<u>Table Title</u>

Table 2	Soil Sample Summary
Table 8	Summary of TCL/STARS Volatile Organic Compounds in Soil
	(ug/kg)
Table 9	Summary of STARS Semi-Volatile Base Neutral Compounds in Soil
	(ug/kg)
Table 10	Summary of PCBs, Herbicides, and Total Petroleum Hydrocarbons
	in Soil (mg/kg)
Table 11	Summary of 8 RCRA Metals in Soil (mg/kg)
Table 14	Summary of TCLP VOC Results (ug/L)
Table 2A	Soil Sample Summary: Sub-Area I
Table 7A	Summary of TCL/STARS Volatile Organic Compounds in Soil
	(µg/kg): Sub-Area I

- Table 8ASummary of Semi-Volatile Base-Neutral Compounds in Soil
(µg/kg): Sub-Area I
- Table 9A Summary of RCRA Metals in Soil (mg/kg): Sub-Area I
- Table 10A Summary of TCLP Arsenic and Mercury Results (mg/l): Sub-Area I
- Table 11A Summary of PCBs and Herbicides in Soil (mg/kg): Sub-Area I
- Table 12ASummary of TPH in Granular Fill (mg/kg)

Laboratory analysis of confirmatory soil samples collected as part of the CAP (described in Section 1.3) indicated that a majority of the chlorinated VOC impacted black carbon fill had been removed. Only one confirmatory floor sample, CF-18R-Floor, exhibited a trichloroethene concentration above the NYSDEC TAGM 4046 soil cleanup objective of 700 ug/kg with a value of 1,350 ug/kg. This sample was obtained at a depth of 9.5 feet below grade and was within the backfill materials above the sanitary sewer. The final report concerning the CAP is currently being generated.

Three soil samples collected from the surficial granular fill deposit at the PZ-101, PZ-102 and PZ-103 locations on the 1315 South Plymouth Avenue/150 Elmwood Avenue parcels yielded low levels of chlorinated VOCs. In addition, petroleum-related aromatic hydrocarbons were reported in three samples of the surficial granular fill. In all cases except one, boring B165, reported concentrations of chlorinated VOCs and petroleum-related VOCs were below the NYSDEC Recommended Cleanup Objectives. In the case of the sample from boring B165, one petroleum-related VOC (naphthalene) was present at a concentration higher than its respective soil cleanup objective.

Laboratory analysis of three initial samples of the cinder-rich granular fill material from Sub-Area I yielded one sample, B124, with substantially elevated levels of SVBNs. In order to verify the elevated SVBNs, a confirmatory sample, B124R, was collected and submitted to a different laboratory. The supplemental results generally confirmed the initial elevated SVBN concentrations. Based upon the analytical data compiled as part of the initial soil boring program, a link between the elevated SVBN levels and heavy petroleum products was theorized. Based on that working hypothesis, additional laboratory analyses for TPH, SVBNs, VOCs and PCBs were conducted in conjunction with the supplemental investigation involving 17 soil borings. TPH results revealed the presence of lube oil and mineral spirits in one granular fill sample and lube oil in a second sample. Thus, a like between elevated SVBN levels and petroleum hydrocarbons appears to have been confirmed.

A sample of the 0.3 foot thick tar layer identified at the boring B159 location yielded elevated levels of both petroleum-related VOCs and SVBNs. In addition, a substantial concentration of kerosene was reported to be present in the tar sample.

Neither the granular fill samples nor the tar sample collected and analyzed as part of the supplemental soil boring program contained detectable levels of PCBs.

In addition to the petroleum related VOC and SVBN findings, elevated arsenic and mercury concentrations were identified in the granular fill deposits. As a result, a supplemental sample of the fill material was subsequently collected to evaluate if these metals were hazardous. TCLP analyses indicated that the mercury and arsenic levels in the suspected railroad-related fill materials are not a characteristic hazardous waste for metals.

Groundwater Analytical Data

The groundwater analytical results are summarized in the following Sear-Brown tables:

Table Title

- Table 3Well Completion Summary
- Table 4Well Development Summary
- Table 5Water Level Summary
- Table 6Groundwater Sample Summary
- Table 7Hydraulic Conductivity Summary
- Table 12 Summary of TCL/STARS Volatile Organic Compounds in Groundwater (ug/L)
- Table 13Summary of STARS Semi-Volatile Base Neutral Compounds and
Total Petroleum Hydrocarbons in Groundwater (ug/L)
- Table 3A Well Completion Summary: Sub-Area I
- Table 4A Well Development Summary: Sub-Area I
- Table 5A Water Level Summary: Sub-Area I
- Table 6A Groundwater Sample Summary: Sub-Area I
- Table 13A Summary of TCL/STARS Volatile Organic Compounds in Groundwater (ug/L): Sub-Area I

Given the documented petroleum and chlorinated solvent impacts upgradient of the subject property, five groundwater samples from the combined 1315 South Plymouth Avenue/150 Elmwood Avenue parcels were collected and analyzed for TCL/STARS VOCs by EPA Method 8260. Groundwater samples were collected from wells PZ-100, PZ-101, PZ-102, PZ-103 and PZ-152.

Chlorinated VOC Plume

Chlorinated VOCs were detected in four of the five groundwater samples analyzed. Only PZ-100 was reported to be free of chlorinated VOCs. The reported TCE concentrations from these five wells were integrated with previous data from wells on the 972 Genesee Street, 998 Genesee Street, and 1008 Genesee Street parcels to generate a contour plot of TCE concentrations in groundwater. The TCE contour plot depicts a single plume that extends from the northerly, TCE containing black carbon fill deposit for approximately 150 to 180 feet easterly across both the 1315 South Plymouth Avenue and 150 Elwood Avenue parcels. The width of the TCE plume appears to be fully delineated based upon the absence of VOCs in PZ-100 and the low concentration of TCE (3.01 ug/L) reported from PZ-152. On the basis of these data, the TCE plume appears to be on the order of 150 feet wide.

Aromatic VOCs and MTBE Plumes

The gasoline additive MTBE, was also detected in all five groundwater samples analyzed from the 150 Elmwood parcel. The reported concentrations of petroleum-related VOCs from the 972 Genesee Street and 15 Brooks Avenue sites were used in conjunction with the data from the five wells on the 150 Elmwood Avenue site to generate a contour plot of petroleum-related aromatic hydrocarbons concentrations in groundwater in Sub-Area I (EN6). The contours reflect the total detectable concentrations of all petroleum-related VOCs except for MTBE. A plot of MTBE concentrations in groundwater is provided separately in Drawing EN7. Both plots depict an extension of the plume that emanates from the source area on the Genesee Street parcels (former gasoline station) and extends across the subject parcels. Log-scale interpolation of data between wells PZ-18 and PZ-101 suggests potential encroachment of aromatic hydrocarbons onto the 150 Elmwood Avenue property to a distance of approximately 60 feet southeast of PZ-18. Nonetheless, the total concentrations of the aromatic hydrocarbons in wells installed within the proposed footprints of the restaurant and hotel buildings on the 1315 South Plymouth Avenue and 150 Elmwood parcels were all below the detection limits. Petroleum-impacts in groundwater within the two building footprints appear to be limited to MTBE.

The MTBE impacts on the 150 Elmwood Avenue property extend to the eastern boundary of the investigation area. Thus, the MTBE plume appears to extend a distance of approximately 120 feet from the suspected residual source area near PZ-18.

The width of the MTBE plume is constrained by the low level concentrations reported from wells PZ-100 to the north and PZ-152 to the south. Based upon these data, the width of the MTBE plume is approximately 150 feet with the most elevated concentrations (i.e. greater than 100 ug/L) limited to a 40 foot wide zone on the 150 Elmwood Avenue parcel.

2.2 Construction/Design Considerations

The May 2003 Phase II Environmental Investigation has shown that the fill materials present at the Site consist of non-hazardous solid waste. More specifically, the subject property contains fill impacted by VOCs, SVOCs, TPH, arsenic, selenium and mercury. The subject property also contains groundwater impacted by VOCs. The possibility that hazardous materials exist on Site cannot be ruled out. Any waste material that is excavated during construction or Site development must therefore be properly characterized and managed. The development process can be simplified by pre-planning how the fill will be handled during necessary excavation and construction.

If hazardous waste is encountered as part of the excavation program, it cannot be replaced on the Site and must be properly characterized, managed and disposed of off-site at a permitted facility. Management of impacted materials is discussed in Section 6.0 of this SMP.

As the project progresses, developers and design engineers for the planned development will need to consider that the following construction elements may be affected by soil/fill management and waste characterization:

- Schedules: Scheduling of construction will need to allow for management of waste fill material that is excavated during the course of construction. Should unanticipated materials or conditions be observed during excavation work, sampling may be required. Sampling will entail laboratory analysis, which typically takes from several days to several weeks to be completed. Therefore, construction schedules and design plans should allow for adequate flexibility for sampling, segregation, and temporary stockpiling of unanticipated materials on-site.
- Fill and Subsurface Variability: Construction schedules should also provide both contingency time and measures to address variability in fill conditions and the presence of groundwater. For example if hazardous conditions are encountered, additional safety measures and use of personal protection gear may be required. Excavation dewatering and work stoppage could also affect construction schedules and costs.

Measures designed to address these situations are described in further detail in Sections 3.0, 4.0 and 5.0 of this SMP.

3.0 Soil-Fill Characterization

3.1 Pre-Construction Sampling

Sufficient data are available at this time such that it does not appear necessary to perform additional soil/fill sampling prior to construction activities. In general, soil borings completed on the Site appear to provide sufficient coverage in anticipation of development. However, if there are areas of excavation that are not near the previous investigation locations pre-construction sampling is recommended. In such cases, pre-construction sampling frequency and analyses would vary based upon the location of proposed work in relation to characterized areas, quantities of material to be encountered, and anticipated use/disposal of removed materials.

3.2 Construction Sampling

Sampling of excavated fill or subsurface materials during construction efforts should be considered if either of the following conditions are encountered:

- If conditions during construction are significantly different than those observed during pre-construction exploration, including unusual odors or visual observations such as stained soils, drums, containers, etc.; or
- If concerns such as sheens or free-product are identified within soil or groundwater.

In these situations, sampling frequency and analyses would vary based on the types and quantities of material encountered and anticipated use/disposal of removed materials. Analysis must adequately characterize materials in light of current NYSDEC TAGM 4046 guidance value and/or permitted disposal facility requirements, depending on intended destination of materials.

Typical waste disposal analyses are:

- Full Toxicity Characteristic Leaching Procedure (TCLP) VOCs,
- Full TCLP SVOCs,
- Full TCLP Metals,
- PCBs, Pesticides and Herbicides,
- Ignitability,
- Reactivity,
- Modified Paint Filter Test, and
- pH.

4.0 Groundwater Characterization

4.1 Pre-Construction Sampling

Sufficient data are available at this time such that it does not appear necessary to perform additional groundwater sampling prior to construction activities. Monitoring wells have been installed on the northern half of the subject property and appear to provide sufficient coverage for the portion of the Site affected by the petroleum and chlorinated solvent plumes. If excavation activities are proposed on the southern half of the subject propert and are expected to extend to the depth of the water table, pre-construction sampling is recommended. In such cases, pre-construction sampling frequency and analyses would vary based on the location of proposed work in relation to the characterized areas and on the anticipated quantity and handling of groundwater (see also Appendix B, Sewer Use Permit Information).

4.2 Construction Sampling

Sampling of groundwater during construction efforts should be considered if either of the following conditions are encountered:

- If conditions during construction are significantly different than those observed during pre-construction exploration, including unusual odors or visual observations such as stained soils, drums, containers, etc.; or
- If concerns such as sheens or free-product are identified within soil or groundwater.

In these situations, sampling frequency and analyses would vary based on the condition and quantity of groundwater encountered and handling options. In order to obtain approval to discharge potentially impacted groundwater to the Monroe County sewer system, the typical analyses that may be required are identified in Appendix B (Sewer Use Permit Information).

5.0 Monitoring During Excavation

Monitoring of materials encountered during construction is generally needed for three purposes:

- To protect the health and safety of Site workers during construction;
- To determine that soil/fill materials and groundwater are consistent with preconstruction characterization; or
- If no pre-construction characterization was performed.

5.1 Health and Safety Monitoring

Past investigations have shown that fill materials will be encountered during construction activities. Based on the historical uses of the Site, hazardous materials may potentially be encountered. These include materials that could be associated with the fill as well as materials that may be present in groundwater.

General groups of chemicals that are associated with the fill and are considered as potentially hazardous materials subject to health and safety planning include:

- Volatile organic compounds (VOCs) gasoline and chlorinated solvent related;
- Semi-volatile organic compounds (SVOCs)- these include polycyclic aromatic hydrocarbons (PAHs) which commonly result from the incomplete combustion of organic matter including fossil fuels, such as coal or fuel oil, and are often found in ash, cinders and soot, and coal tar pitch; and
- Metals Review of the RCRA metals analysis revealed that arsenic, selenium and mercury were found in some samples at concentrations higher than NYSDEC recommended soil cleanup objectives and the Eastern USA Background Range.

VOCs are also associated with the groundwater and are considered potentially hazardous materials subject to health and safety planning.

Health and safety planning should also give consideration to other constructionrelated issues, such as use of heavy equipment, weather conditions, confined space entry, excavation safety and other construction-related OSHA regulations.

Health and safety planning should be performed prior to construction activities. This should include the preparation of a written Health and Safety Plan (HASP) for construction activities. The HASP would be based on the results of the previous chemical analyses, information specific to the proposed development, specific construction tasks to be completed and the potential for exposure of Site workers to the Site contaminants. The use of OSHA-trained hazardous waste site workers during earthwork activities should be considered. Previous investigations show that overall, the potential for worker exposure exists, but is relatively low. However, all contractors and developers involved in earth moving and excavation activities should consider the need for health and safety planning relative to their specific tasks and planned activities.

5.2 Soil/Fill/Groundwater Monitoring

Monitoring of soil and fill materials that are excavated and groundwater that is pumped during construction should be performed for two reasons:

- To determine that the material encountered during construction is consistent with the material encountered during previous investigations; and
- To allow characterization of the non-hazardous or hazardous nature of material encountered in the event that no previous investigation results are available for a specific area.

Monitoring should generally consist of documentation of visible characteristics of the soil, fill and groundwater encountered, including obvious staining, sheens, odors, or other indicators of contamination such as oils, tars or containers. It is recommended that construction monitoring by a trained individual such as an environmental engineer, scientist, or geologist be performed during all earth moving, excavation and groundwater work.

Several portable monitoring instruments are available to assist in field monitoring of materials. Such instruments are primarily used for detection of volatile organic compounds or dust and particulates. Since volatile organics and metals have been detected in the past at the Site, this type of instrumentation is appropriate for construction excavation monitoring. Types of instruments available for this purpose include:

- Photoionization detector instruments (PID) these instruments operate by pumping a sample of ambient air into a chamber where the air is ionized using a light source of specific energy (either 10.2, 10.6, or 11.7 eV). Such instruments are manufactured by HNu and Microtip.
- Flame ionization detector instruments (FID) these instruments operate on a similar principle as the PIDs; however, ionization is caused by a flame produced by combusting hydrogen. The OVA manufactured by Foxboro is such an instrument.
- Colorimetric tubes these are small glass tubes which contain chemical salts formulated to react with specific volatile and some non-volatile compounds. A sample of air is drawn through a tube with the use of a hand pump. The

presence of the target chemical causes a reaction and a color change to the chemical salts in the tube. The Draeger Tube system is such an instrument.

- Combustible gas meters/gas monitors these instruments are capable of measuring combustible gases such as methane and hydrogen sulfide and would be used during construction activities if large amounts of organic materials such as railroad timbers or peat are encountered.
- Dust/Particulate Meters these instruments are capable of measuring dust and particulates in ambient air. An example of an aerosol monitor is the MIE PDE-1000.

These types of instruments are readily available in the Rochester area and can be rented or purchased from several sources. However, these instruments should be operated by individuals trained and experienced in their use, limitations and capability for data generation. Readings generated from monitoring instruments should be recorded in the field along with visual observations. As long as excavation monitoring shows soil, fill, and groundwater material to be consistent with previous investigations, then the material should be manageable as determined prior to construction. If conditions are different from those anticipated, then sampling and additional characterization may be necessary.

6.0 Management of Impacted Material

At this time, there is no preferred method for the management of soil/fill excavated during construction activities. In general, it is recommended that non-hazardous soil/fill excavated during grading foundation work, utility trenching work and other earth moving activities, if permitted and in accordance with regulations, be reused on-site covered with either clean soil or an impervious surface, or be hauled off-Site to a properly licensed and permitted facility. However, if hazardous wastes are encountered, they cannot be reused on-site and will need to be disposed properly at an approved, off-Site facility.

If groundwater is pumped at the Site, a temporary sewer use permit is required for sewer disposal from the Monroe County Department of Environmental Services (MCDES) – Division of Pure Waters (DPW). The required information to be supplied to the MCDES-DPW is included in Appendix B.

6.1 On-Site Re-Use of Excavated Materials

Impacted materials that will be re-used on-Site will need to be segregated based upon field screening, previous investigation findings, and/or additional preconstruction and/or construction sampling and analyses. The analysis results will be compared to NYSDEC TAGM 4046 recommended soil cleanup objectives. If concentrations are below TAGM 4046 recommended soil cleanup objectives, the soil can be reused on-Site without restriction. If the concentrations are elevated above TAGM 4046 soil cleanup objectives, the results shall be shared with the NYSDEC and approval obtained prior to their specified reuse on-Site. It should be noted the NYSDEC may require the highly impacted materials to be transported off-Site and disposed of at a permitted landfill facility. Impacted materials that are determined acceptable for re-use on-Site to backfill excavations should be covered with clean soil or an impervious surface. Staging and stockpiling management of materials should be conducted as described in the sections below.

6.2 Off-Site Disposal of Excavated Materials

Management of materials that will be disposed off-site will need to include characterization (sampling and laboratory analysis as required by the chosen landfill), management, and off-site transportation and disposal at an approved landfill. Appropriate measures for management of excavated materials will need to include temporarily stockpiling excavated soils and solids, as well as measures to prevent them from contaminating other materials or migrating off-site. Measures that should be incorporated into such plans include:

- Stockpile locations away from storm sewers, downwind property boundaries, and drainage courses;
- Dust suppression techniques, as necessary;

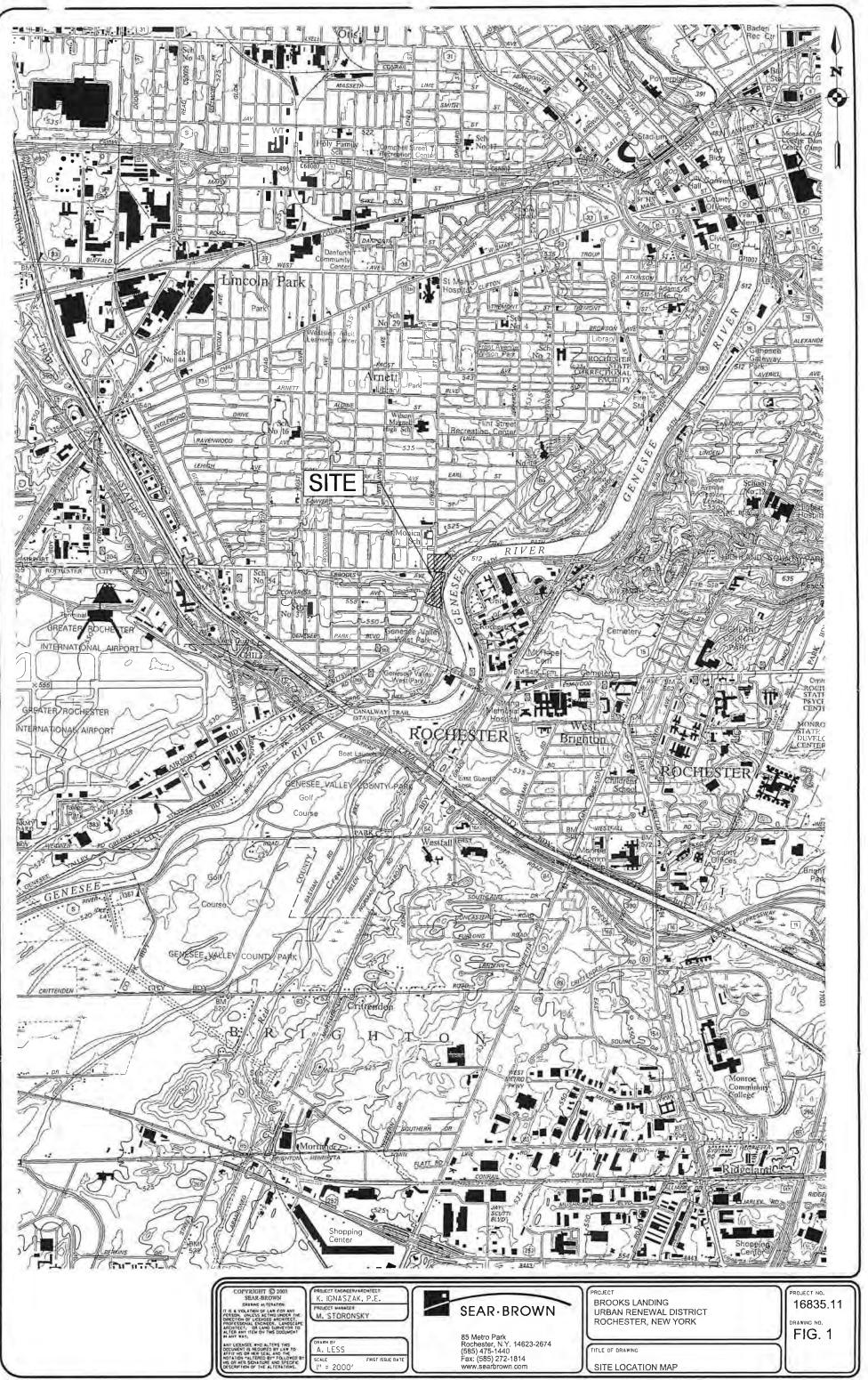
- Placement of stockpiles of contaminated soils, fill or hazardous materials (e.g. drums, containers, odiferous fill) on 6-mil polyethylene (poly) with perimeter berms; and
- Covering stockpiles of contaminated soils, fill, or hazardous materials (e.g. drums, containers, odiferous fill) with weighted down poly at the end of each day of placement to prevent migration by wind-blown dust or stormwater runoff until final placement and final cover is established.

6.3 Off-Site Disposal of Impacted Water

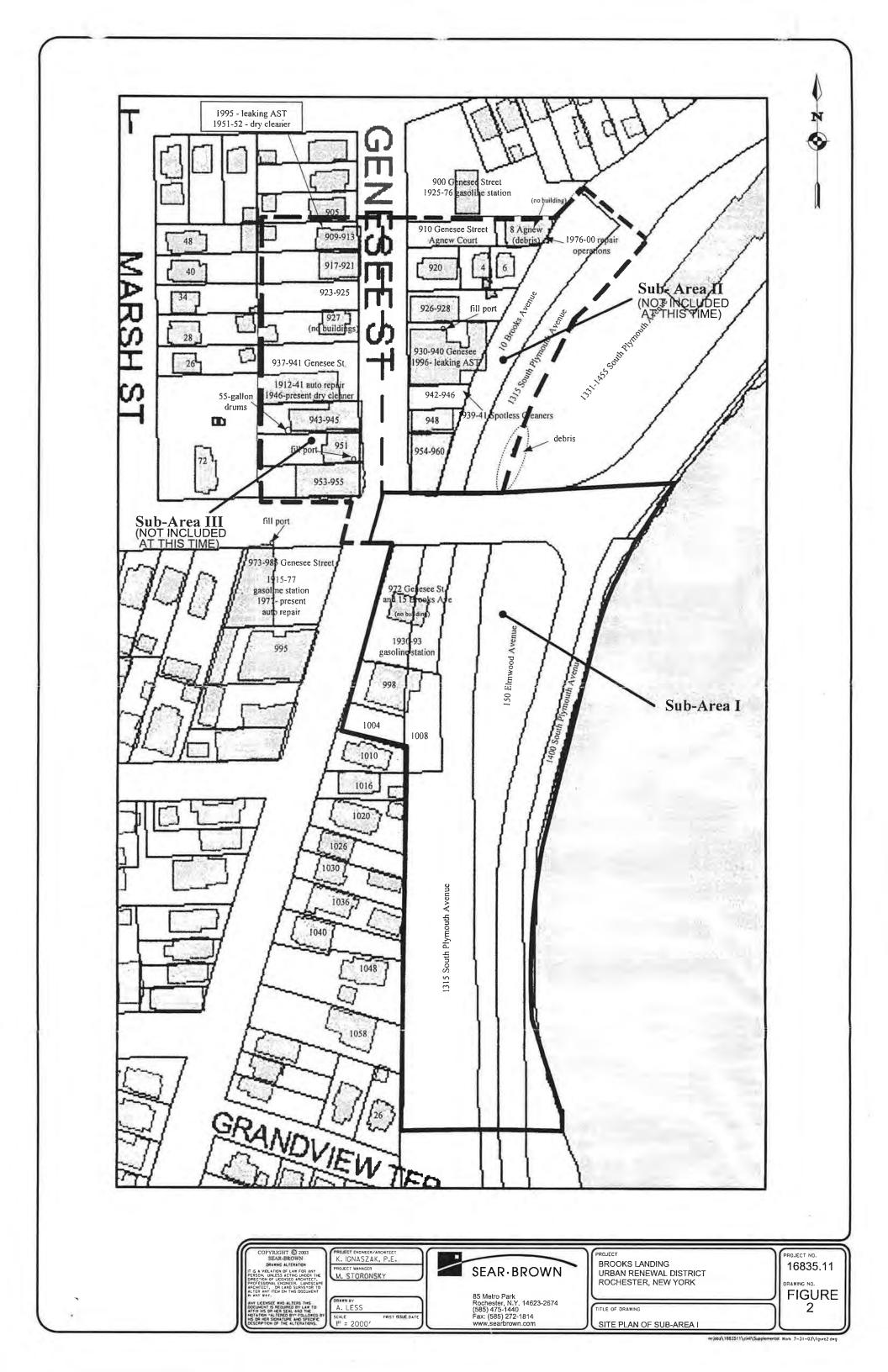
Management of water will include characterization (sampling and laboratory analysis as required by the MCDES-DPW), management, and pumping to the Monroe County sewer system. Appropriate measures for management of water will need to include temporary containerization and measures to prevent water from contaminating other materials or migrating off-site. Measures that should be incorporated into such plans include:

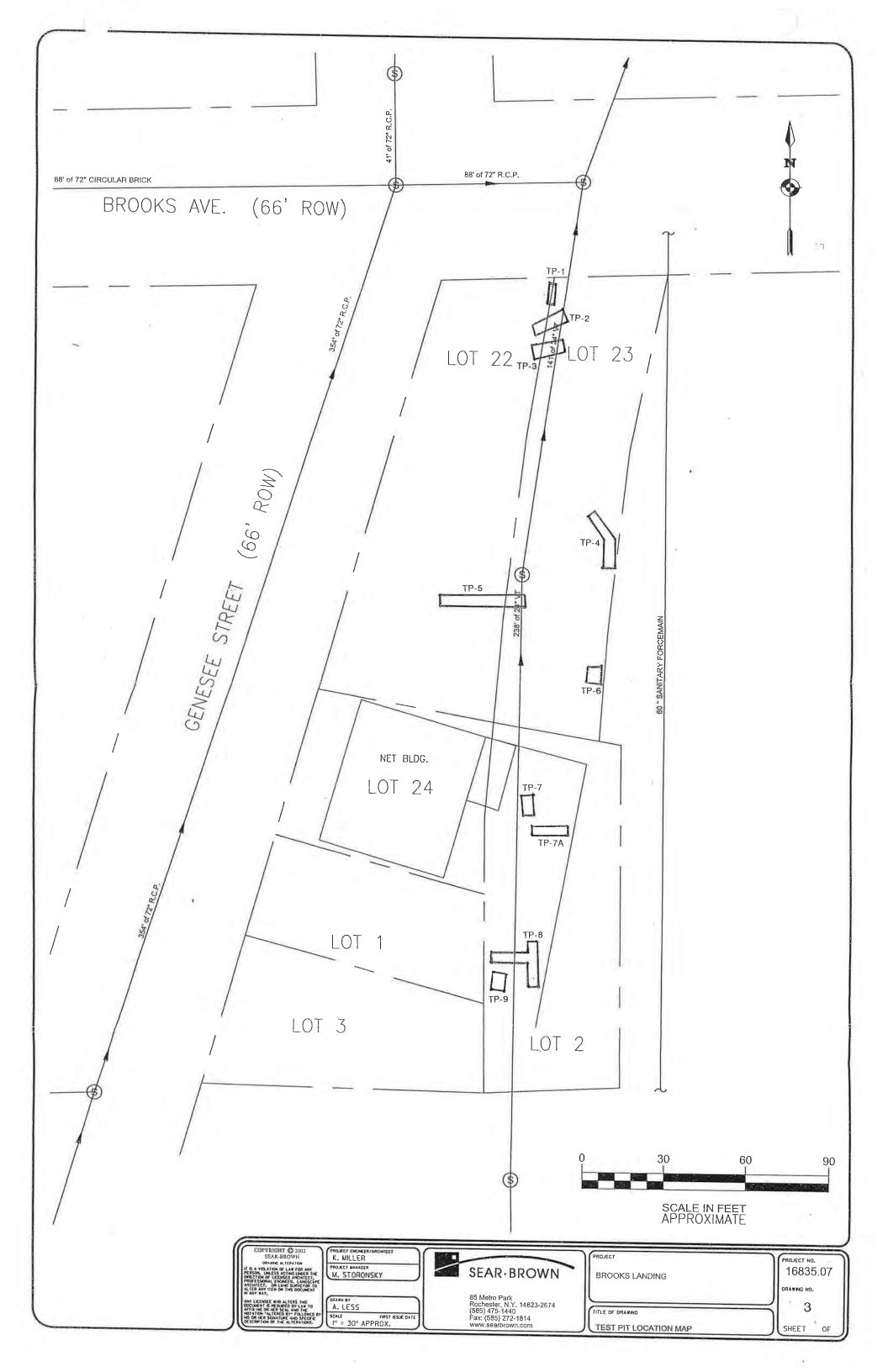
- Containerize water prior to pumping off-site;
- Stage containers away from downwind property boundaries and drainage sources;
- Pump water directly into containers;
- Perform necessary sampling prior to disposal; and
- Coordinate with MCDES-DPW to receive permission for disposal.

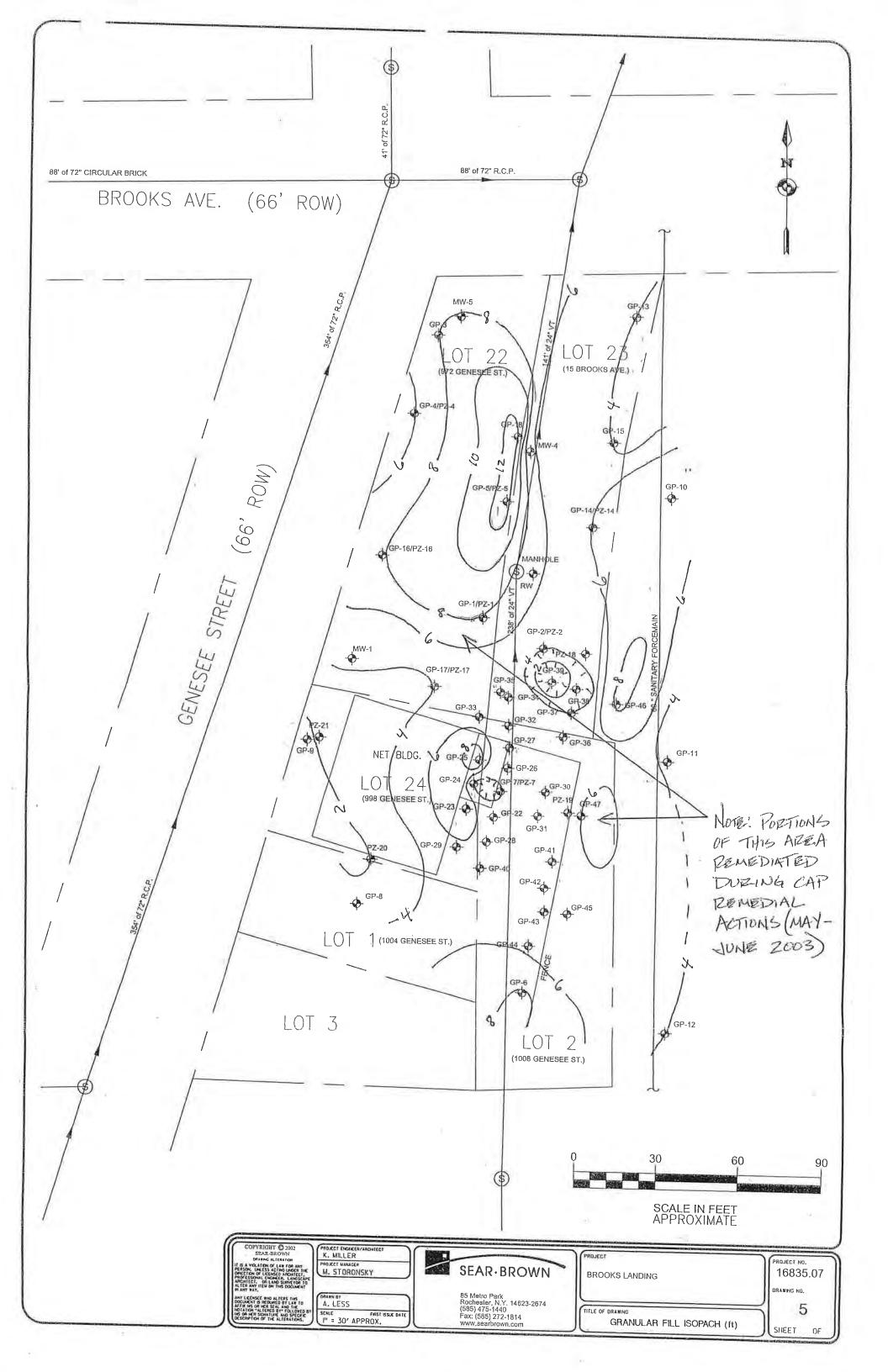
The sewer use permit information is included in Appendix B.

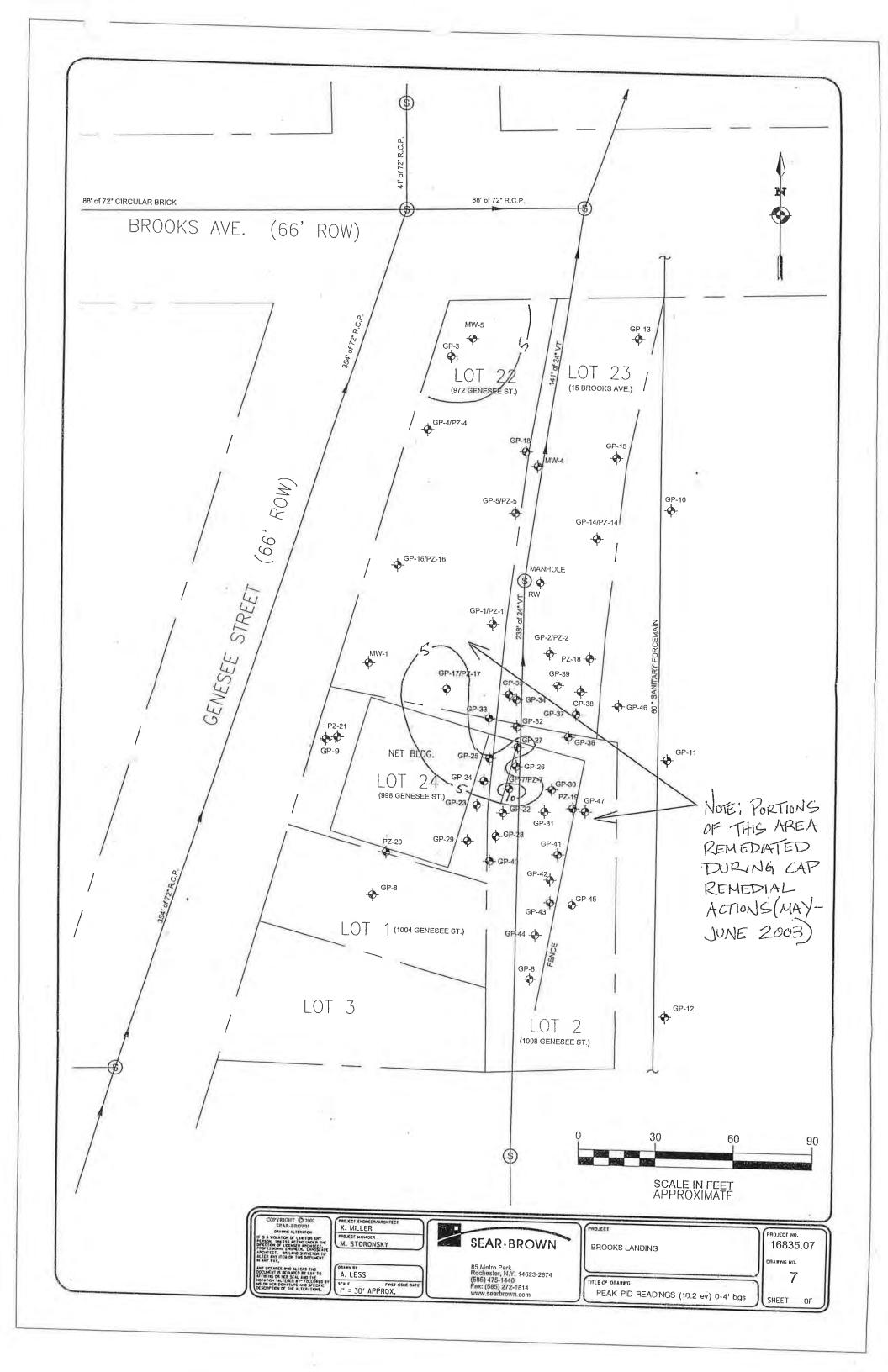

7.0 Flagging System

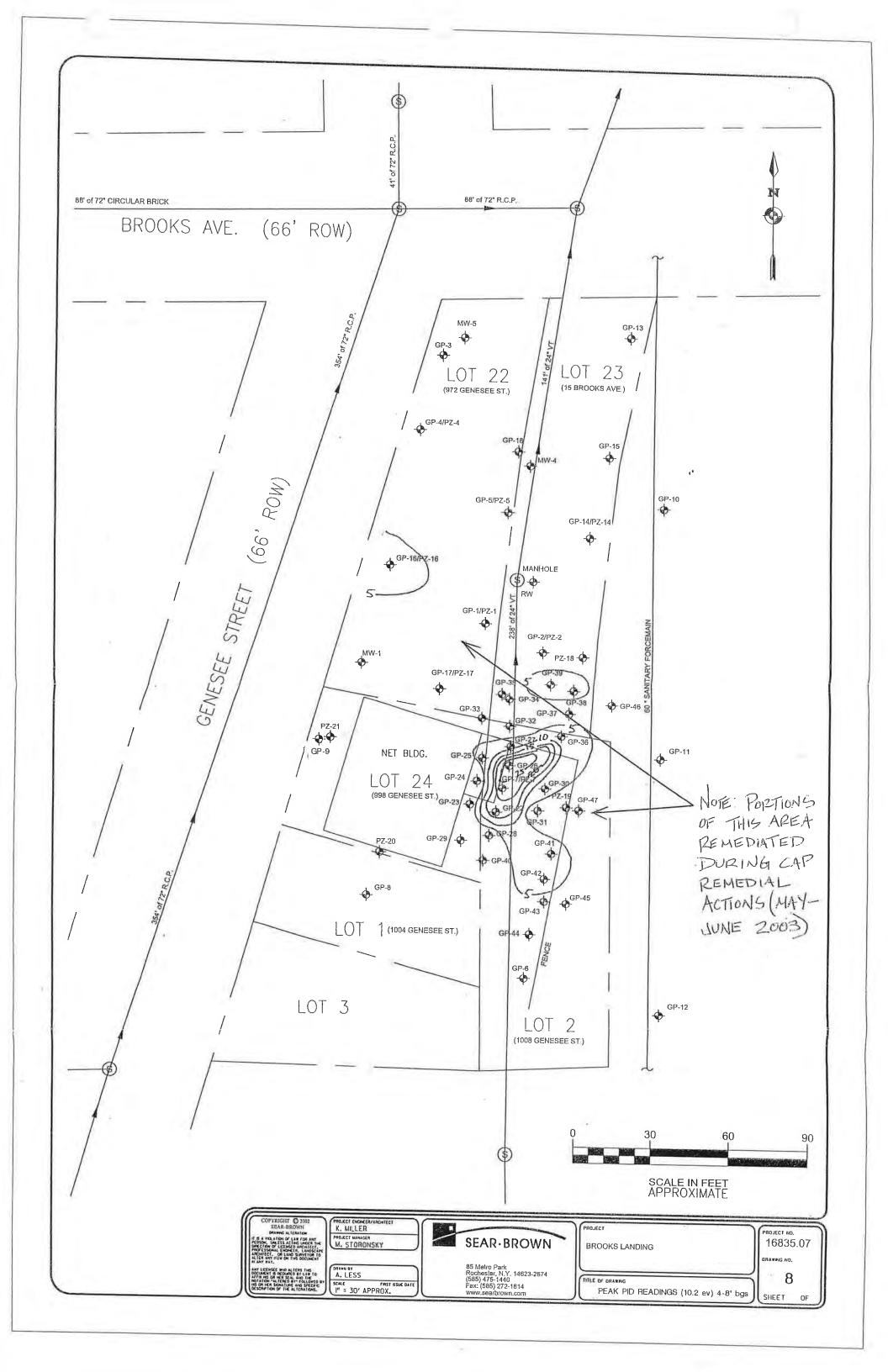
The City of Rochester has established a procedure for "flagging" the tax account numbers of properties that require special environmental reviews as a result of hazardous waste or hazardous substance contamination. The reviews are conducted as referrals to the City's Division of Environmental Quality (DEQ) for any permit applications for properties where soil management plans or environmental contingency plans need to be established and followed during construction activities.

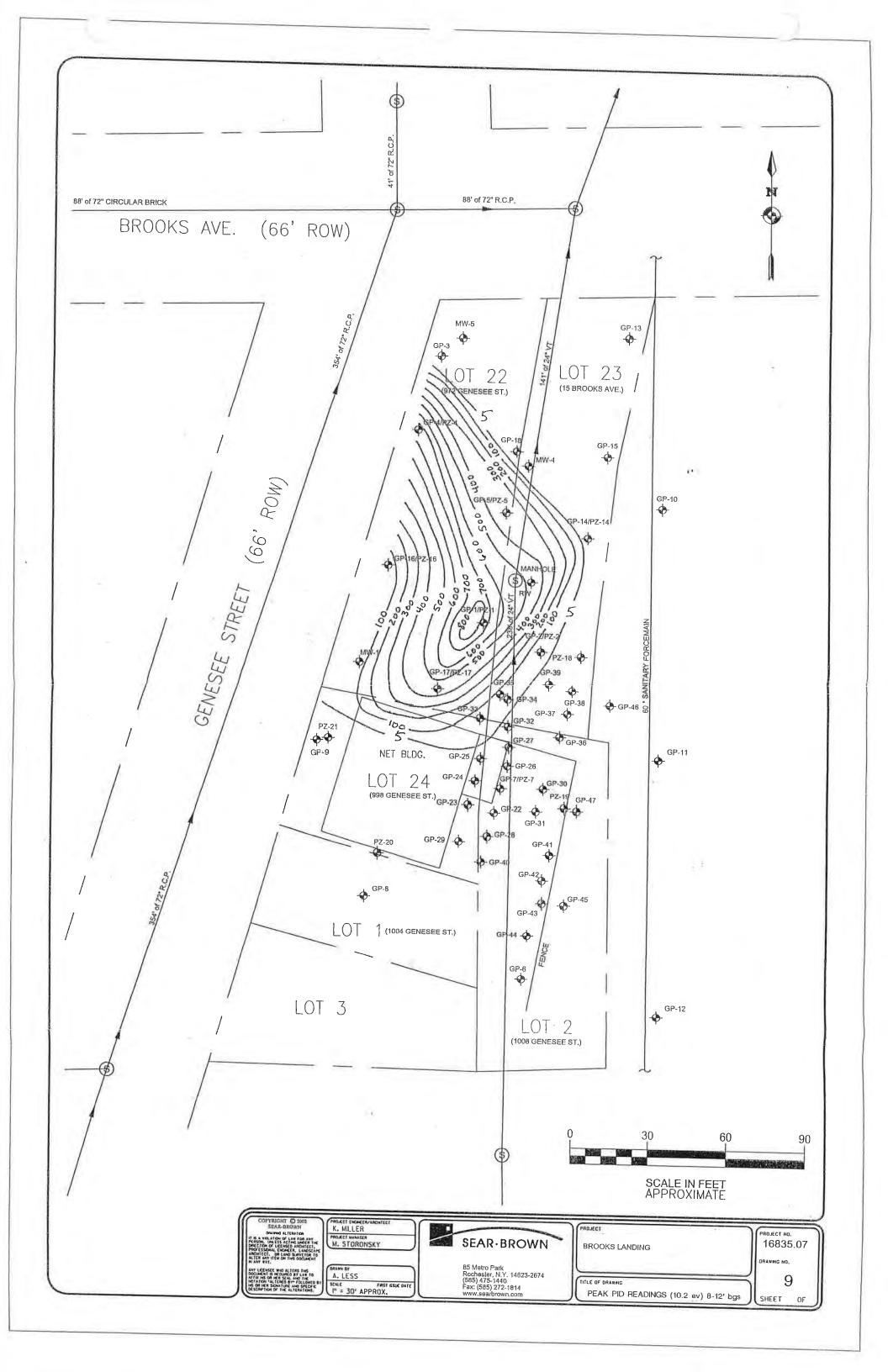

Once the Soil and Groundwater Management Plan is approved by the NYSDEC, the City will "flag" the parcels that comprise the Site and they will be subject to a special environmental review prior to issuance of a permit. A special notation will be added to the City's mainframe computer database of property information for the following tax account numbers:

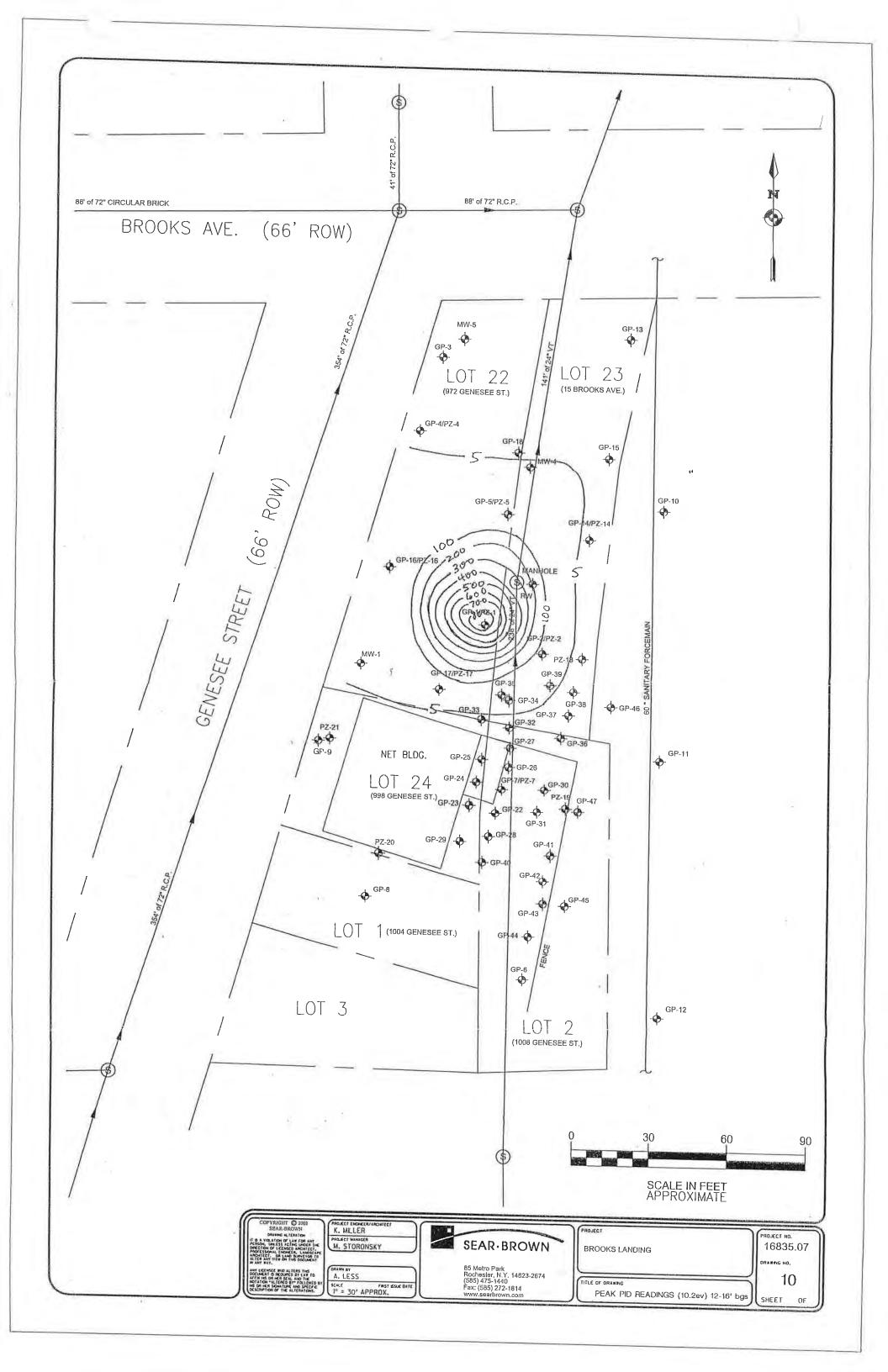

Tax ID #	Address	Size (sq.ft.)	Zoning	Use
135.34-3-22	972 Genesee Street	8,535	Commercial	vacant, unimproved
135.34-3-23	15 Brooks Avenue	6,849	Residential	vacant, unimproved
135.34-3-24	998 Genesee Street	4,386	Commercial	NET office
135.42-2-1	1004 Genesee Street	3,376	Commercial	parking lot
135.42-2-2	1008 Genesee Street	6,620	Residential	vacant, unimproved
135.35-1-88 (part of only)	1315 South Plymouth Avenue	92,106 (part only)		Open Space
135.51-1-1 (part of only)	150 Elmwood Avenue	592,415 (part of only)		Open Space
135.35-1-16	1400 South Plymouth Avenue	Not Available		Open Space

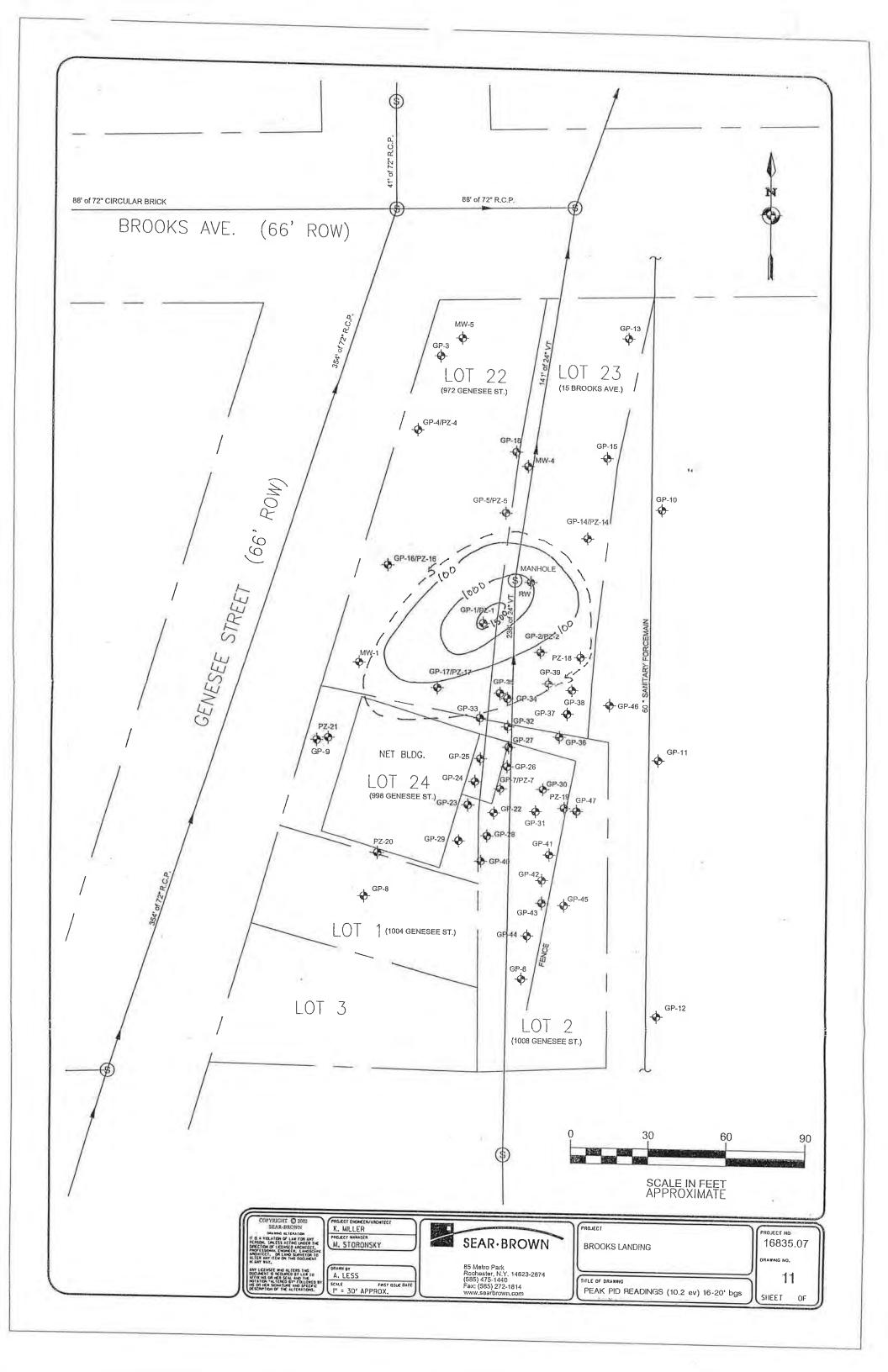

The notation will appear as a "flag" to City staff that receive various building and site preparation permit applications. The flag will require a referral to the City's DEQ before the application can be processed for approval. DEQ staff will review the permit application for consistency with the Soil Management Plan, limited-use areas and land-use restrictions. A notification to the NYSDEC can be included at the time the permit is reviewed if warranted given the scope of the proposed work and other Site-specific factors.

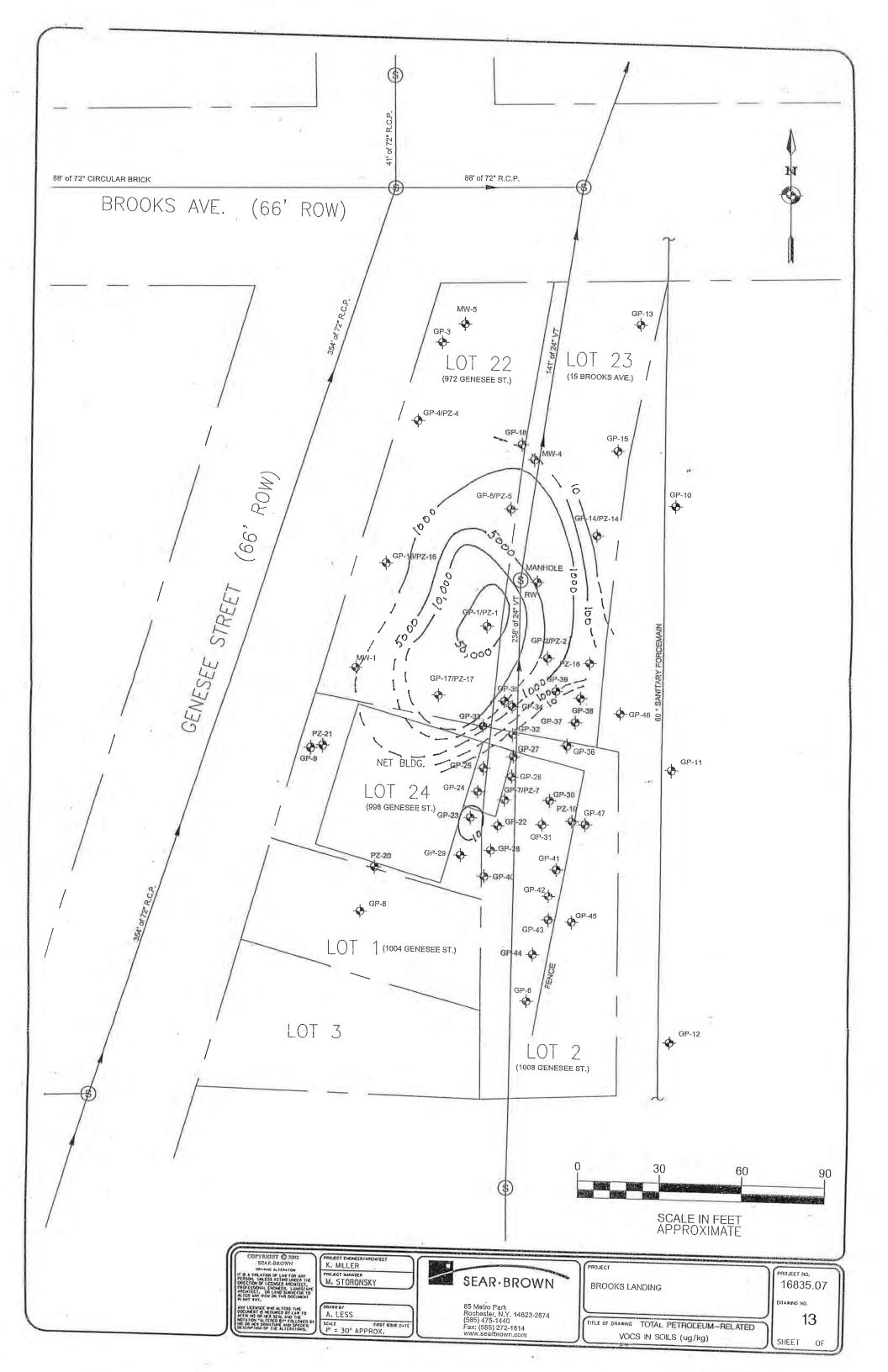


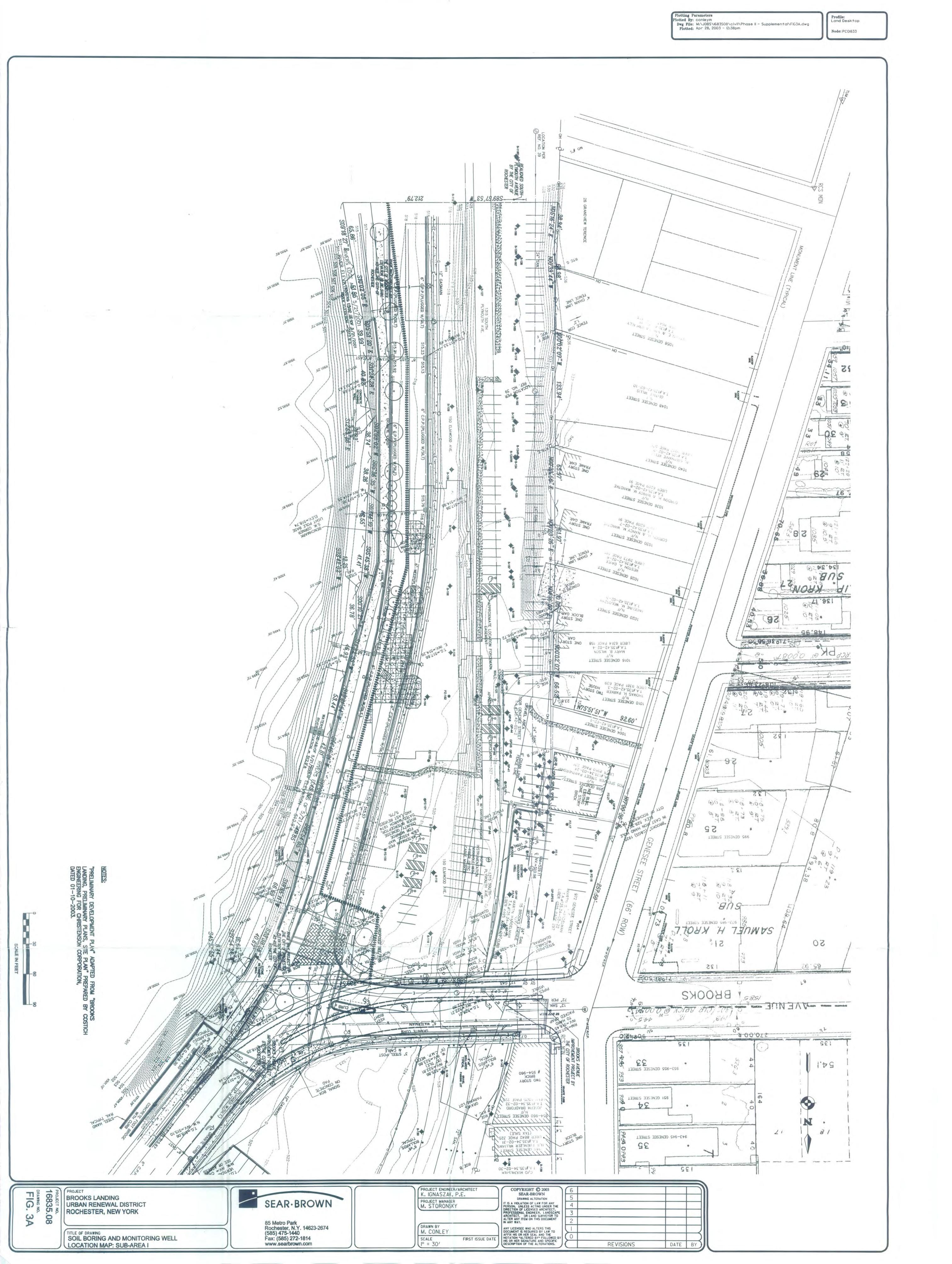

m:jobs/1683511/civil/Supplemental Work 7-31-03/ligure1 dwg

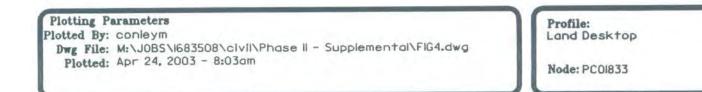


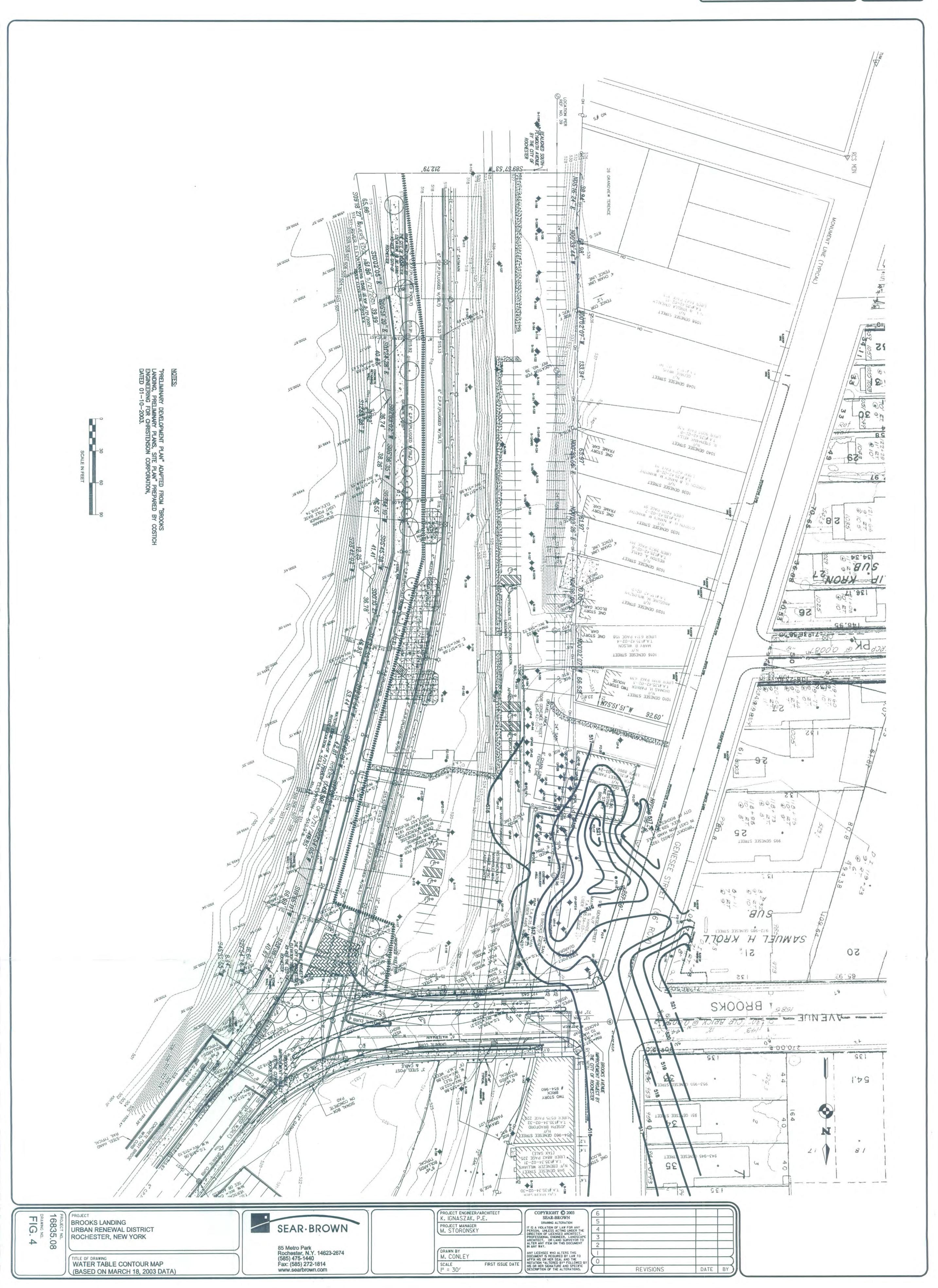


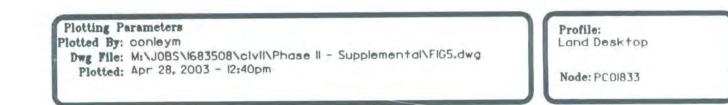


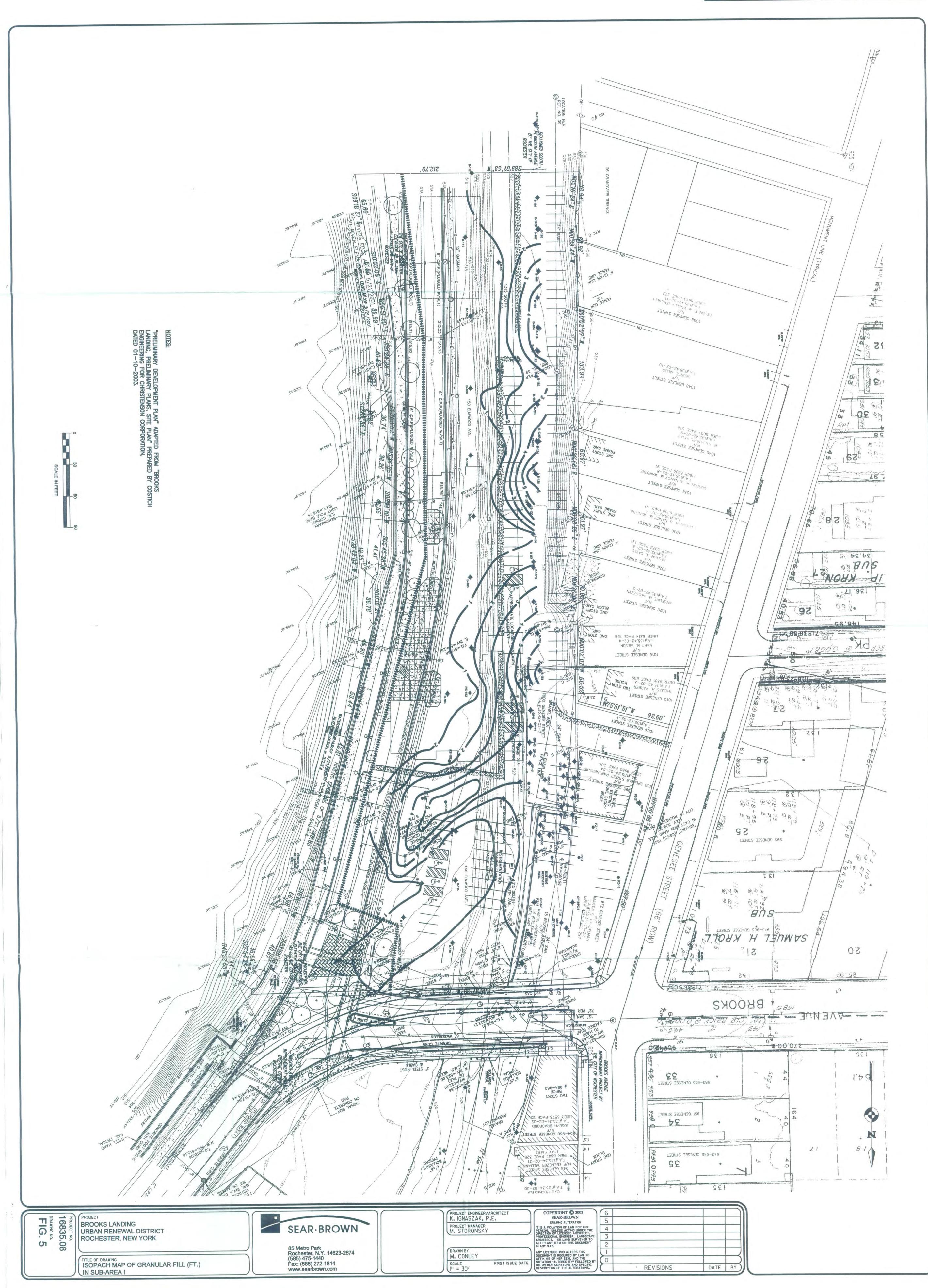


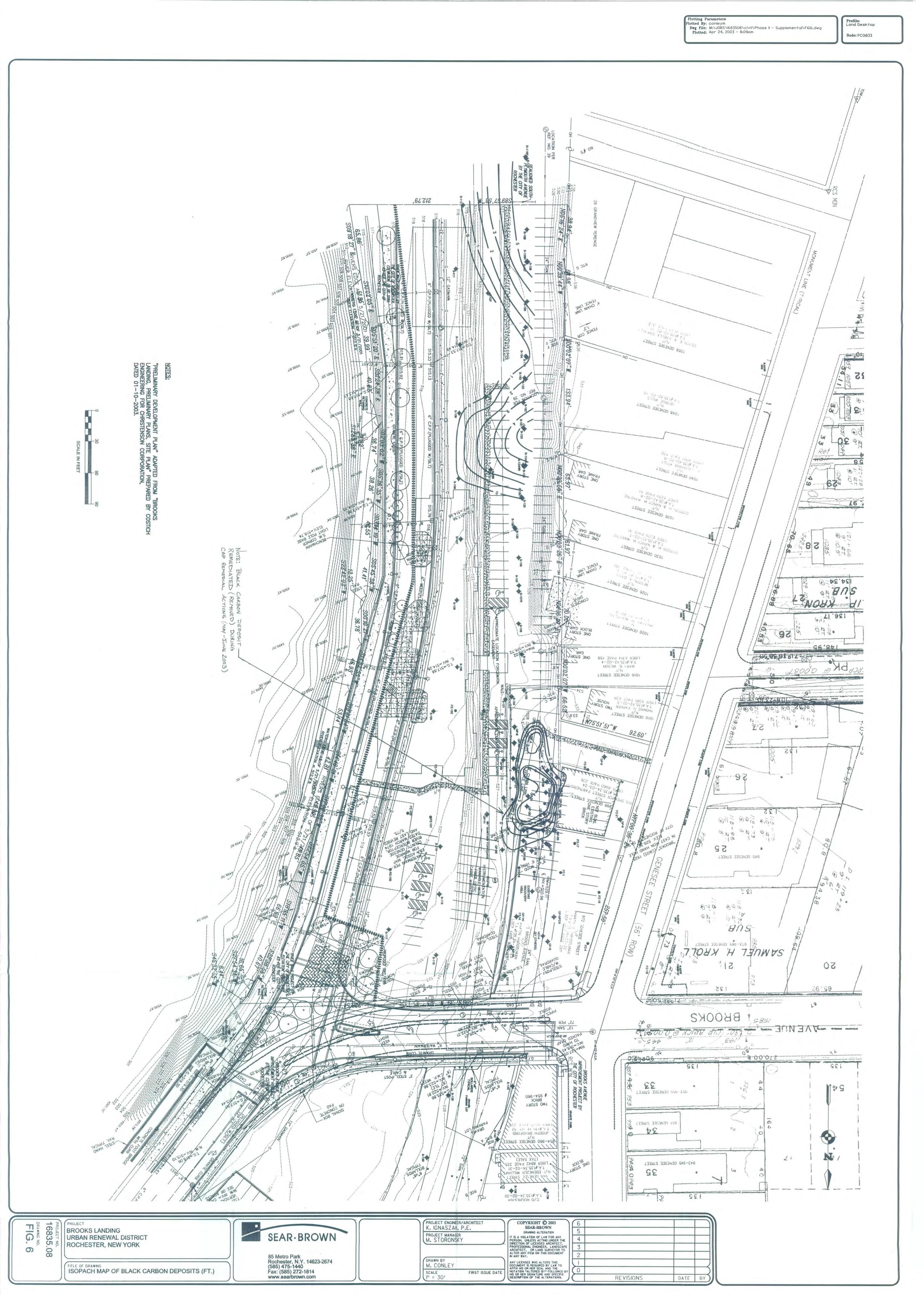


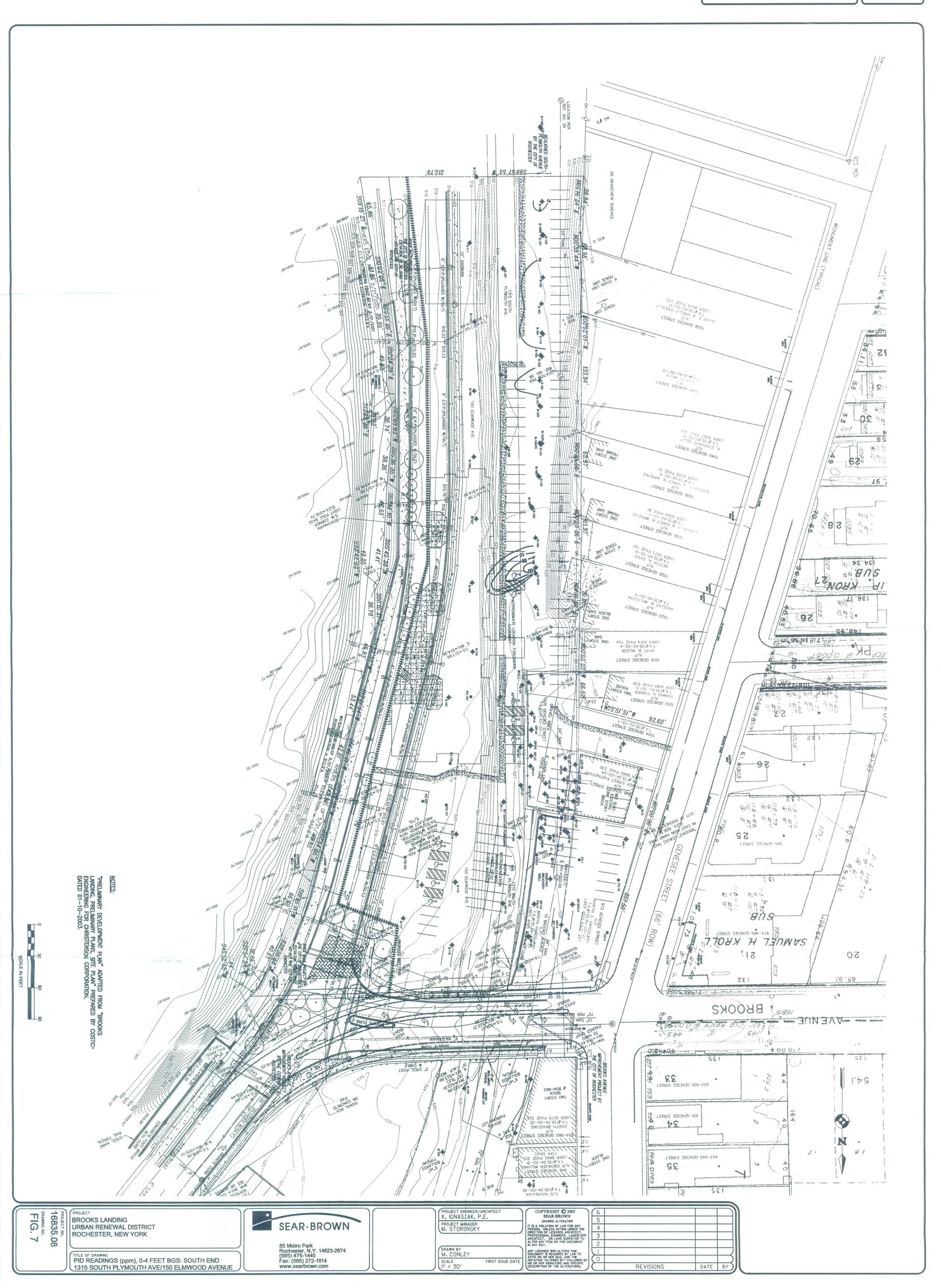




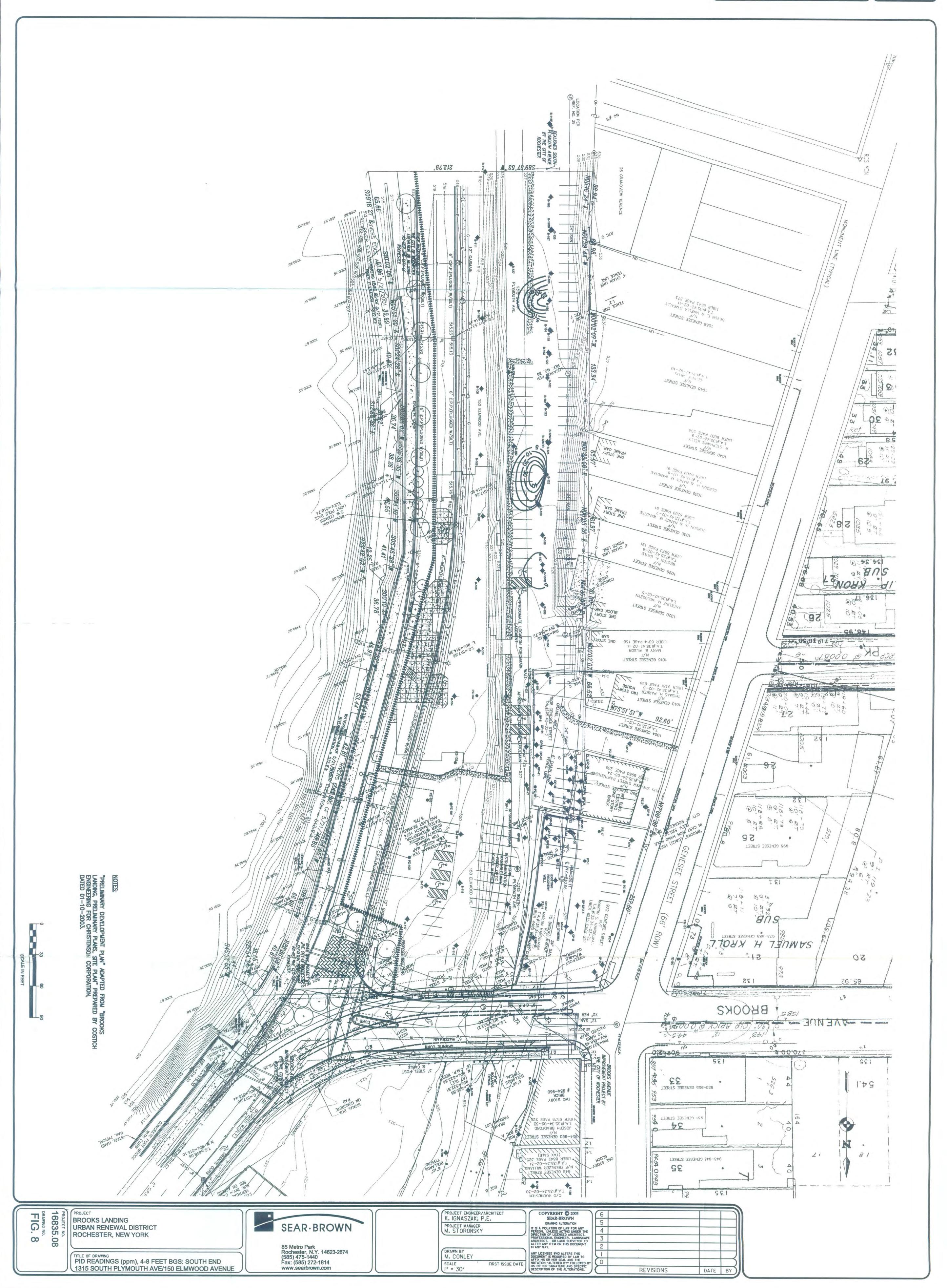


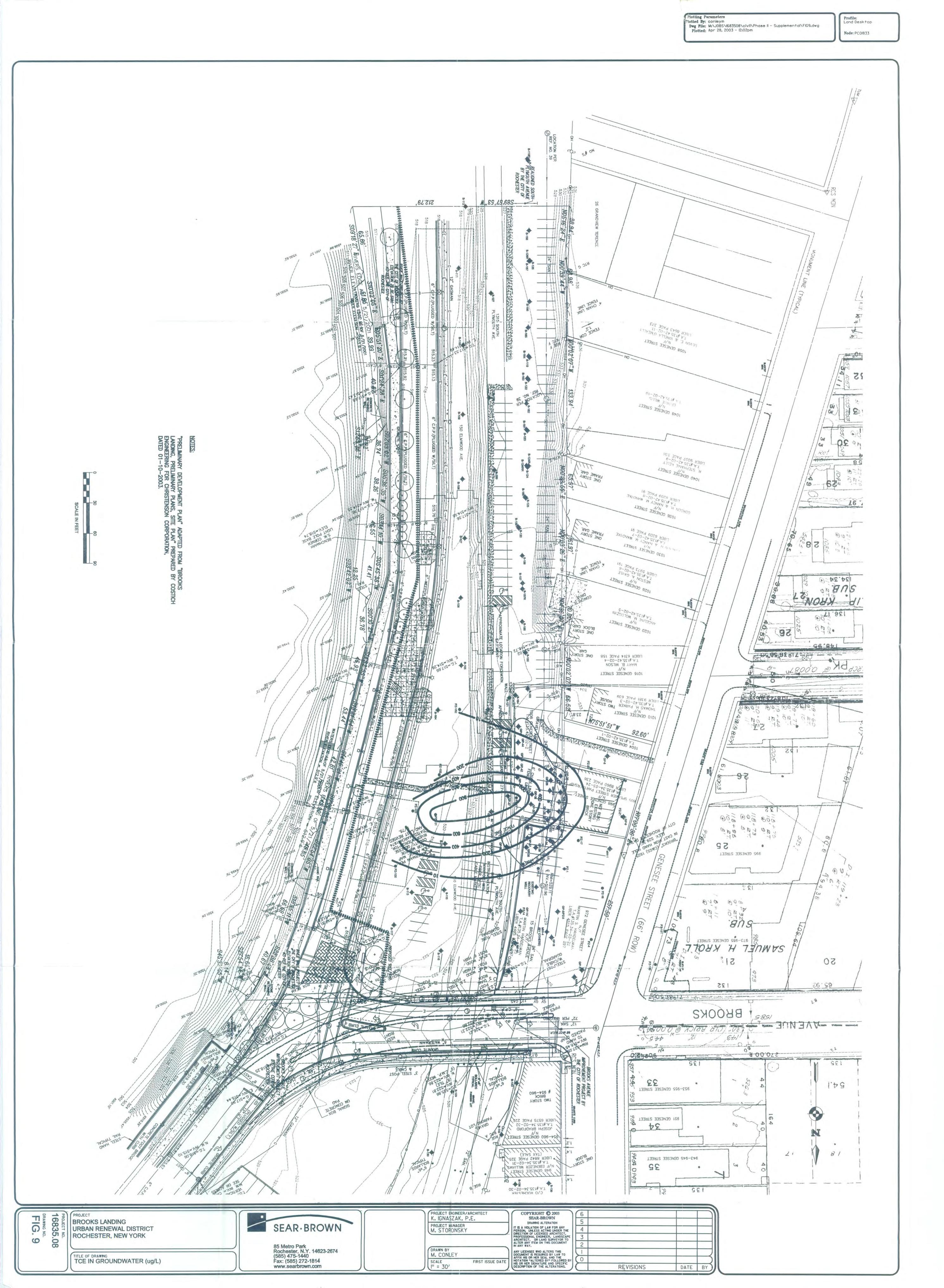




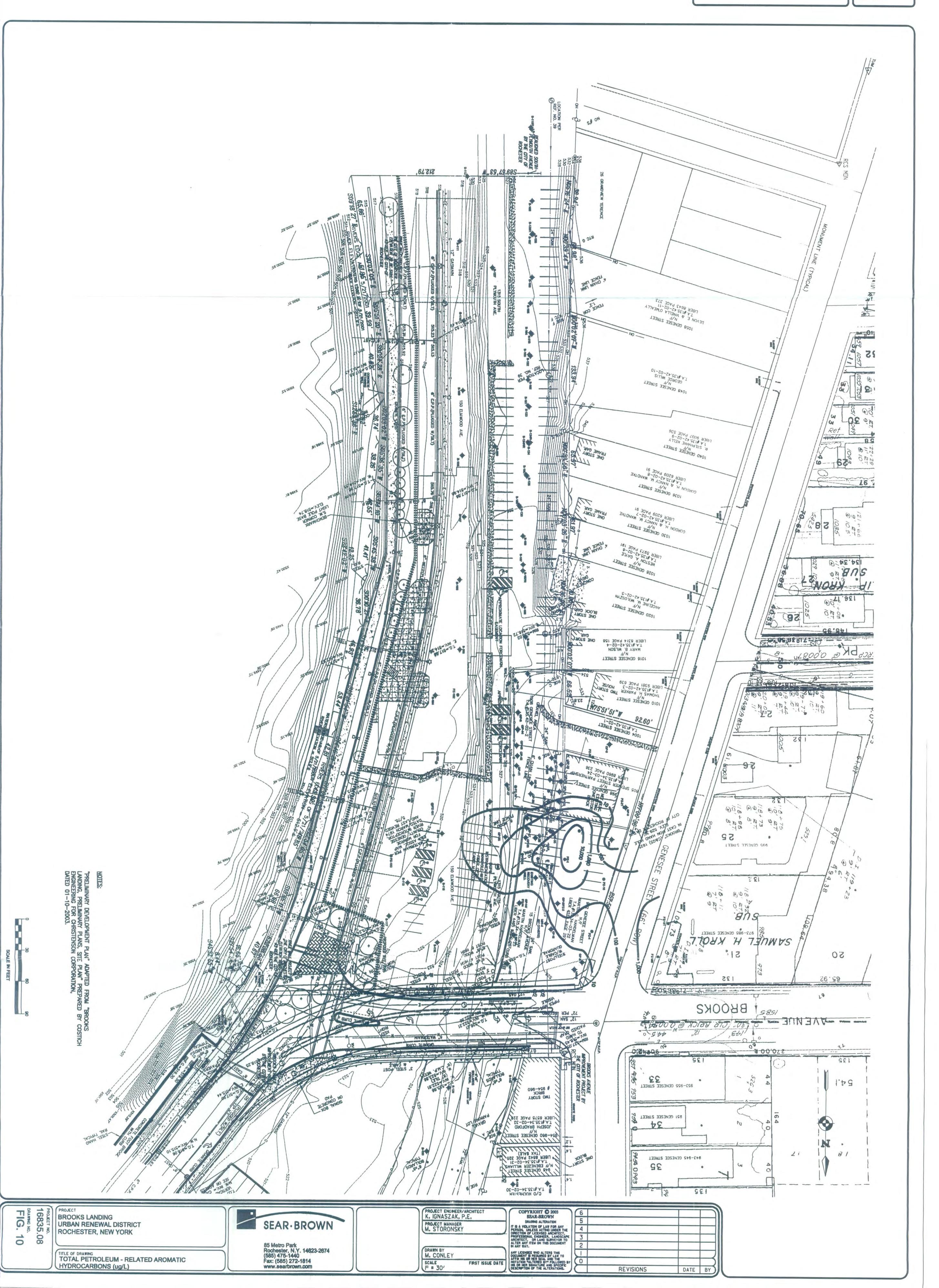


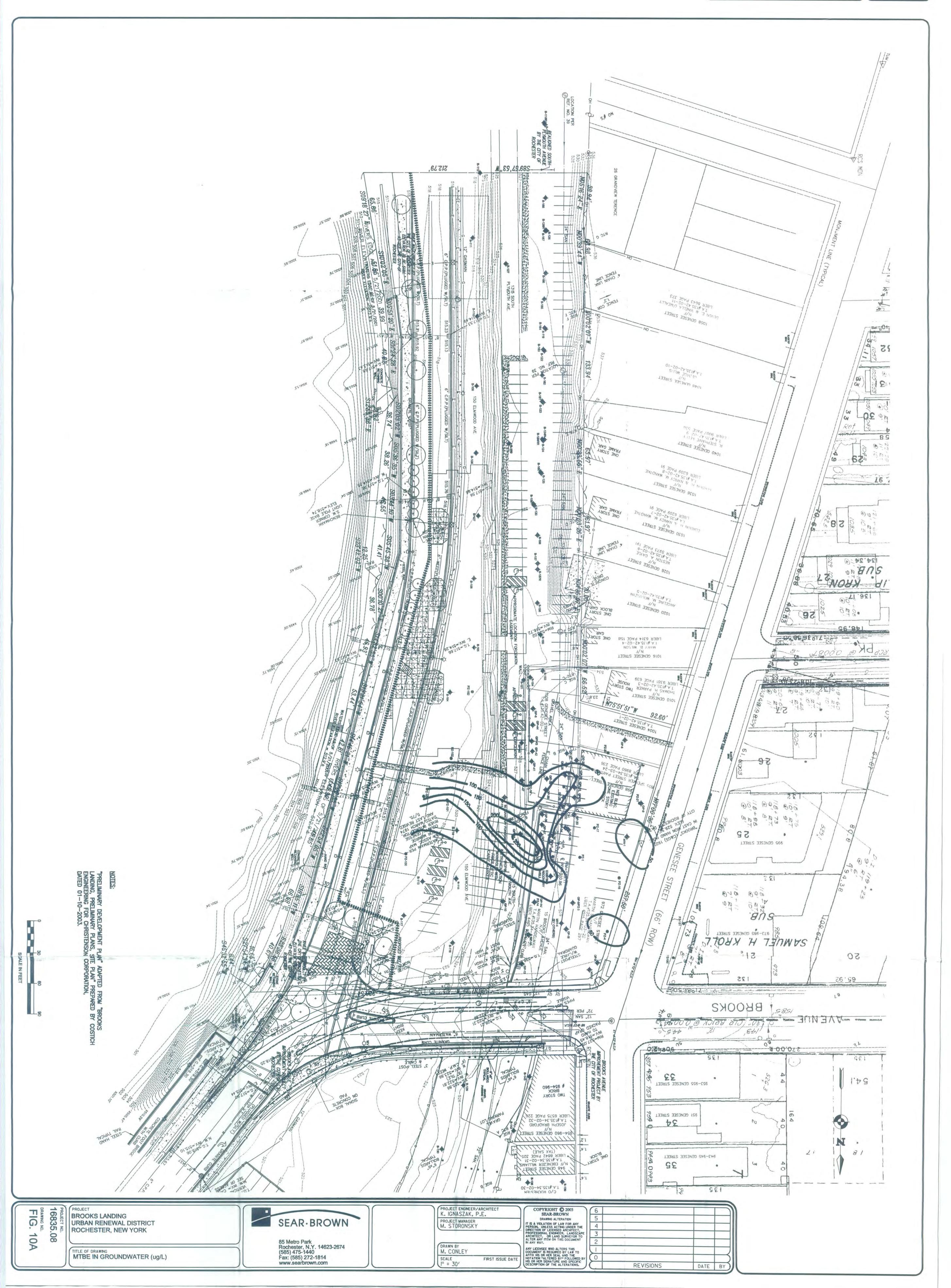


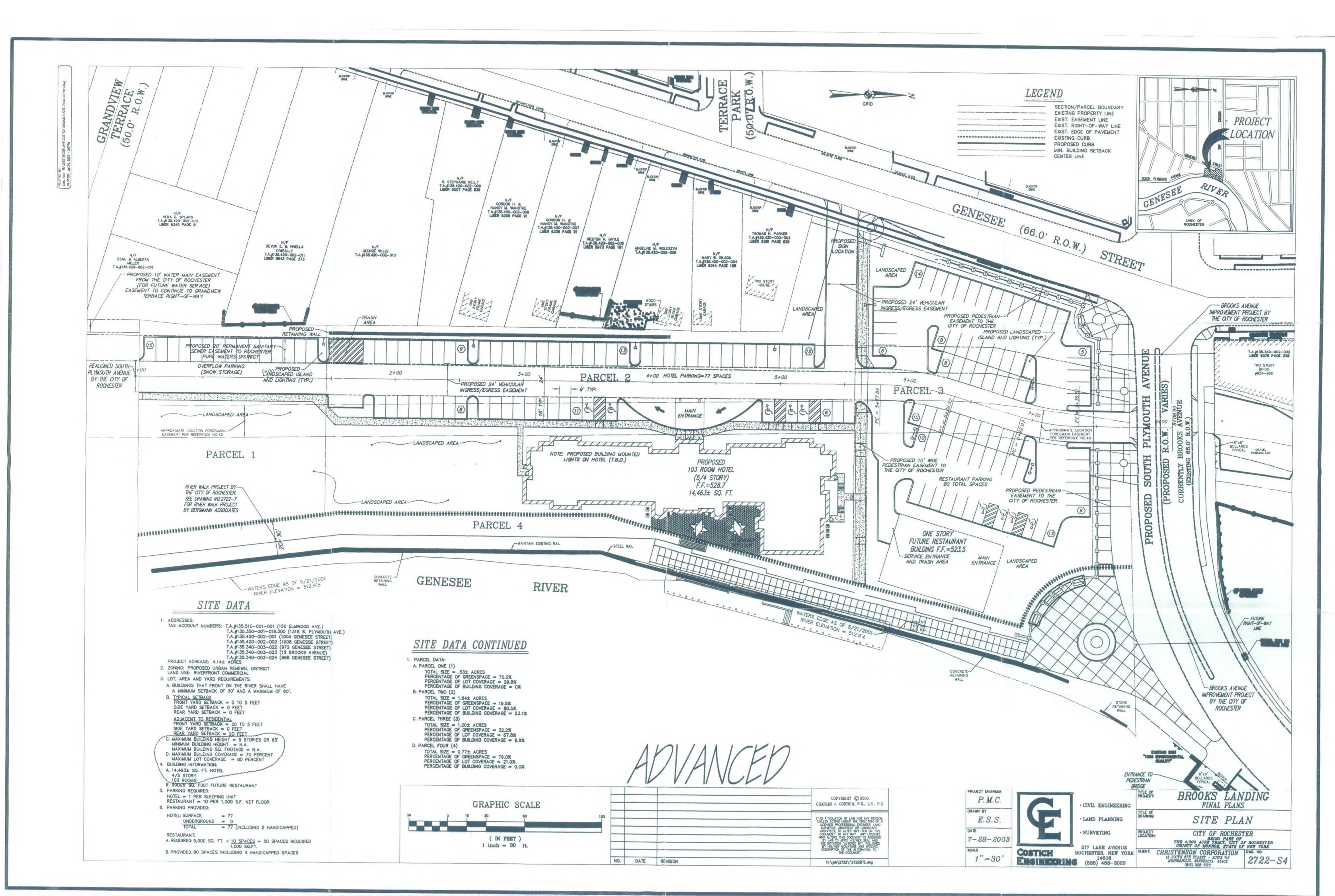


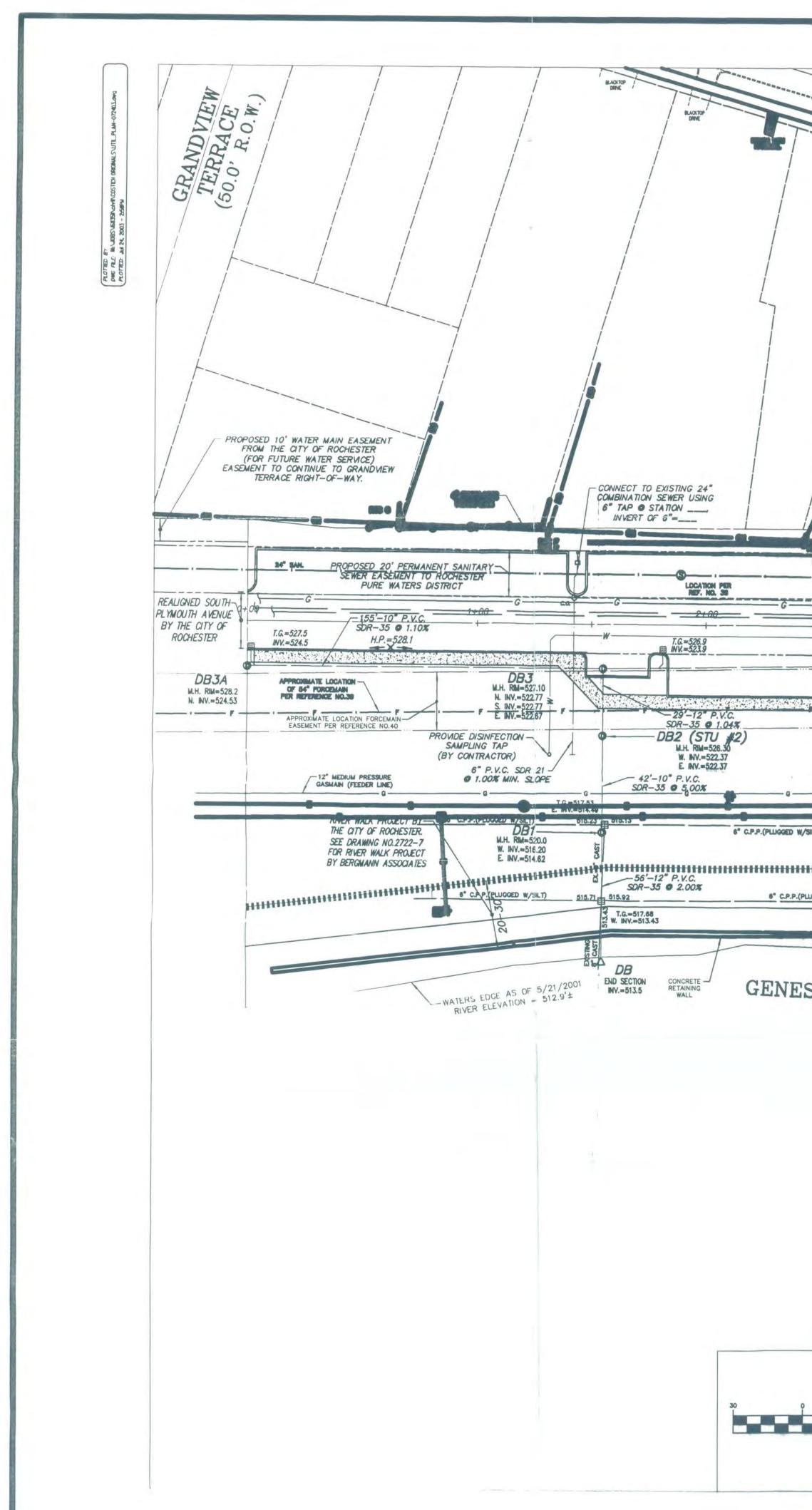


Plotting Parameters Plotted By: conleym Dwg File: M:\JOBS\1683508\civII\Phase II - Supplemental\FIG 7.dwg Plotted: Apr 28, 2003 - II:57am Node: PC01833





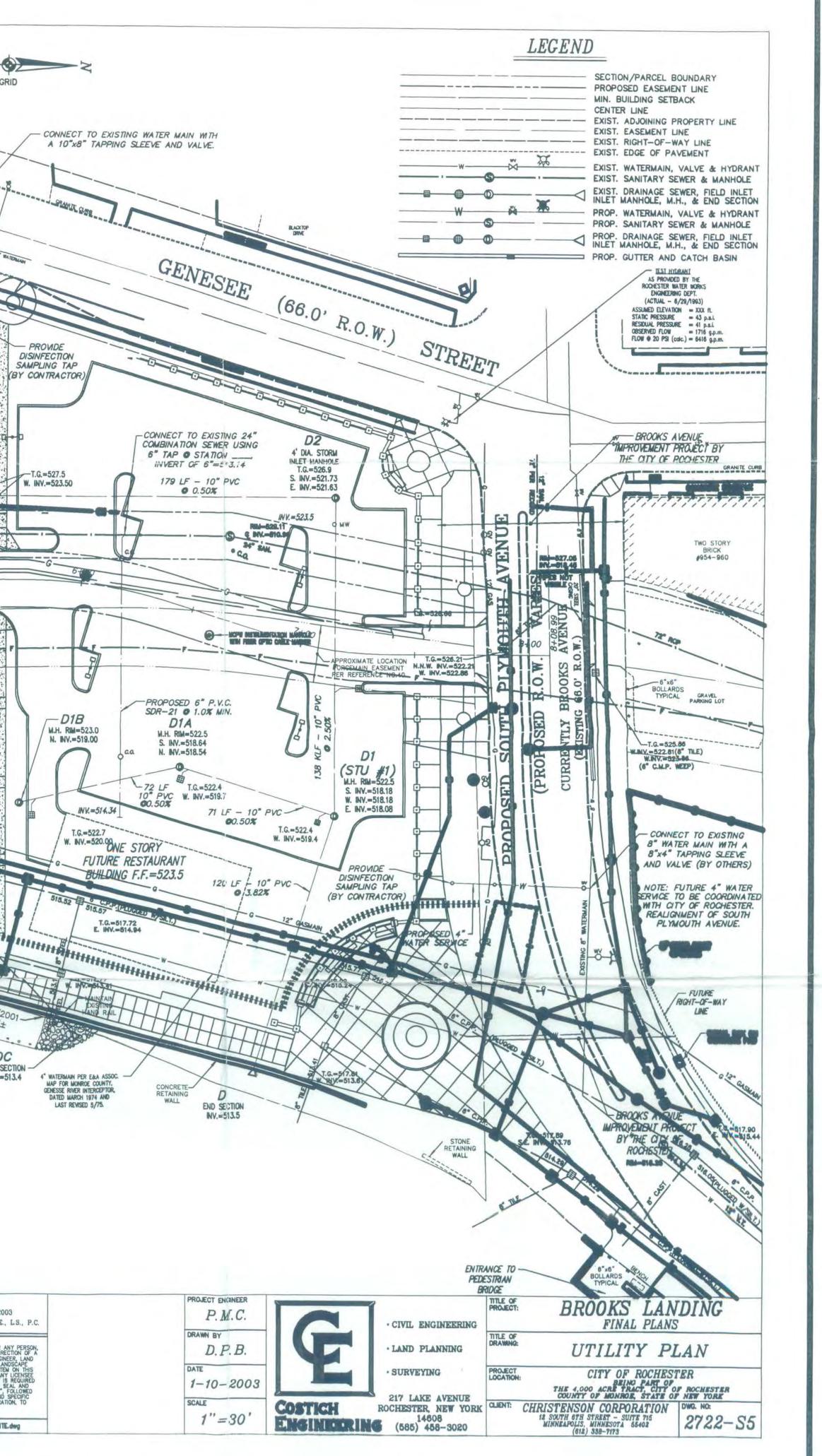

Plotting Parameters Plotted By: conleym Dwg File: M:\J08S\1683508\clvll\Phase II - Supplemental\FIGI0.dwg Plotted: May 05, 2003 - 10:13am Node: PC01833

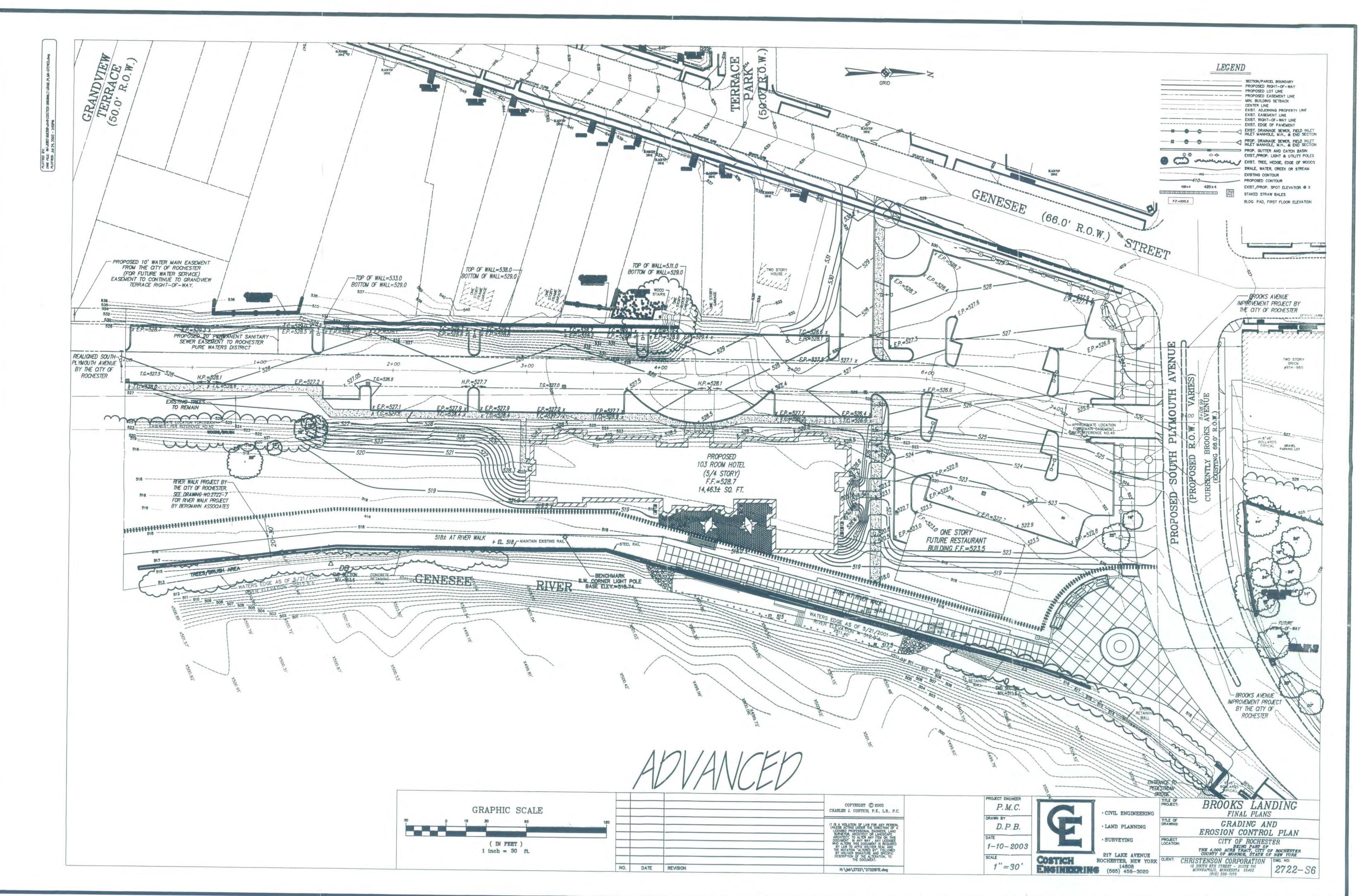


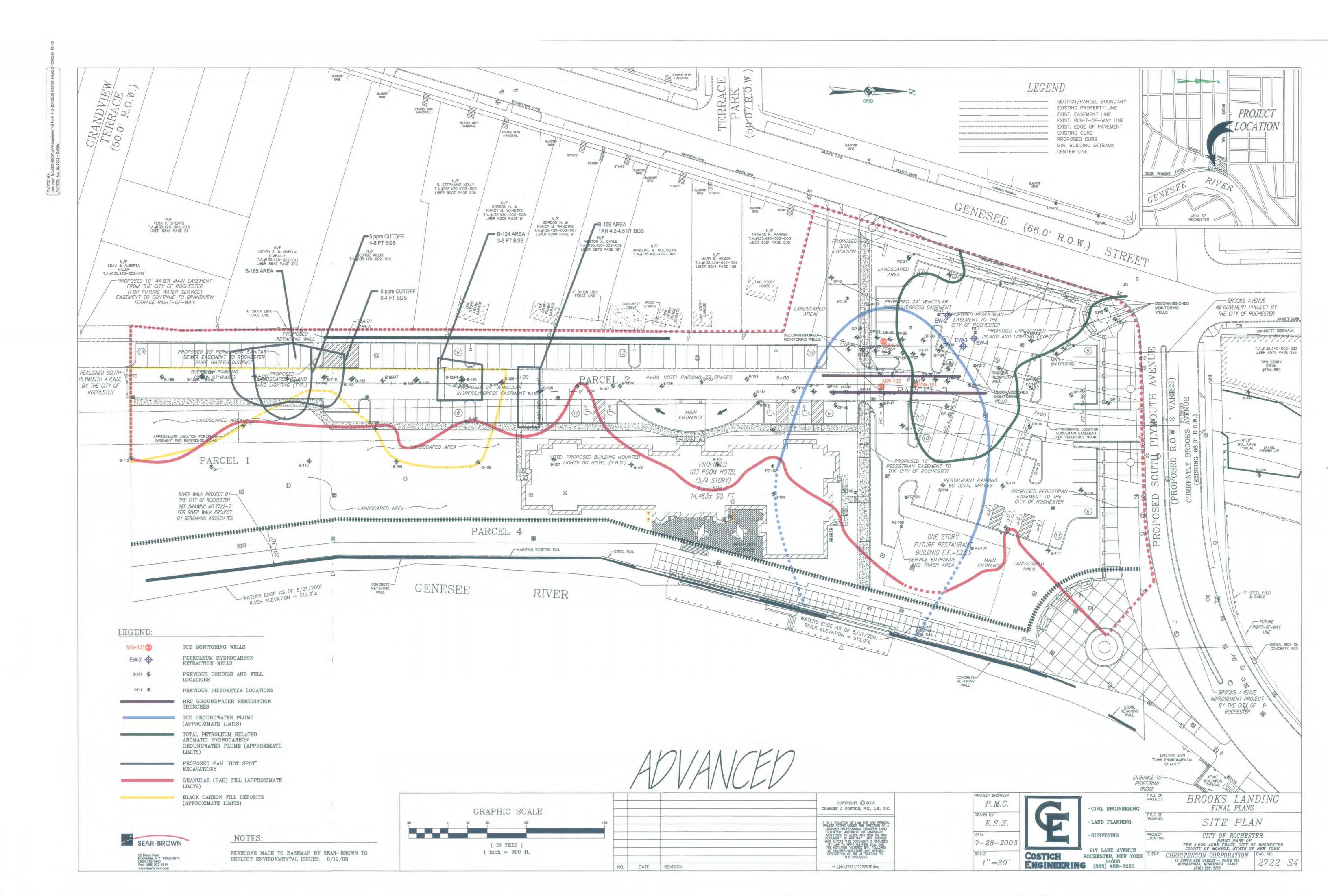
.

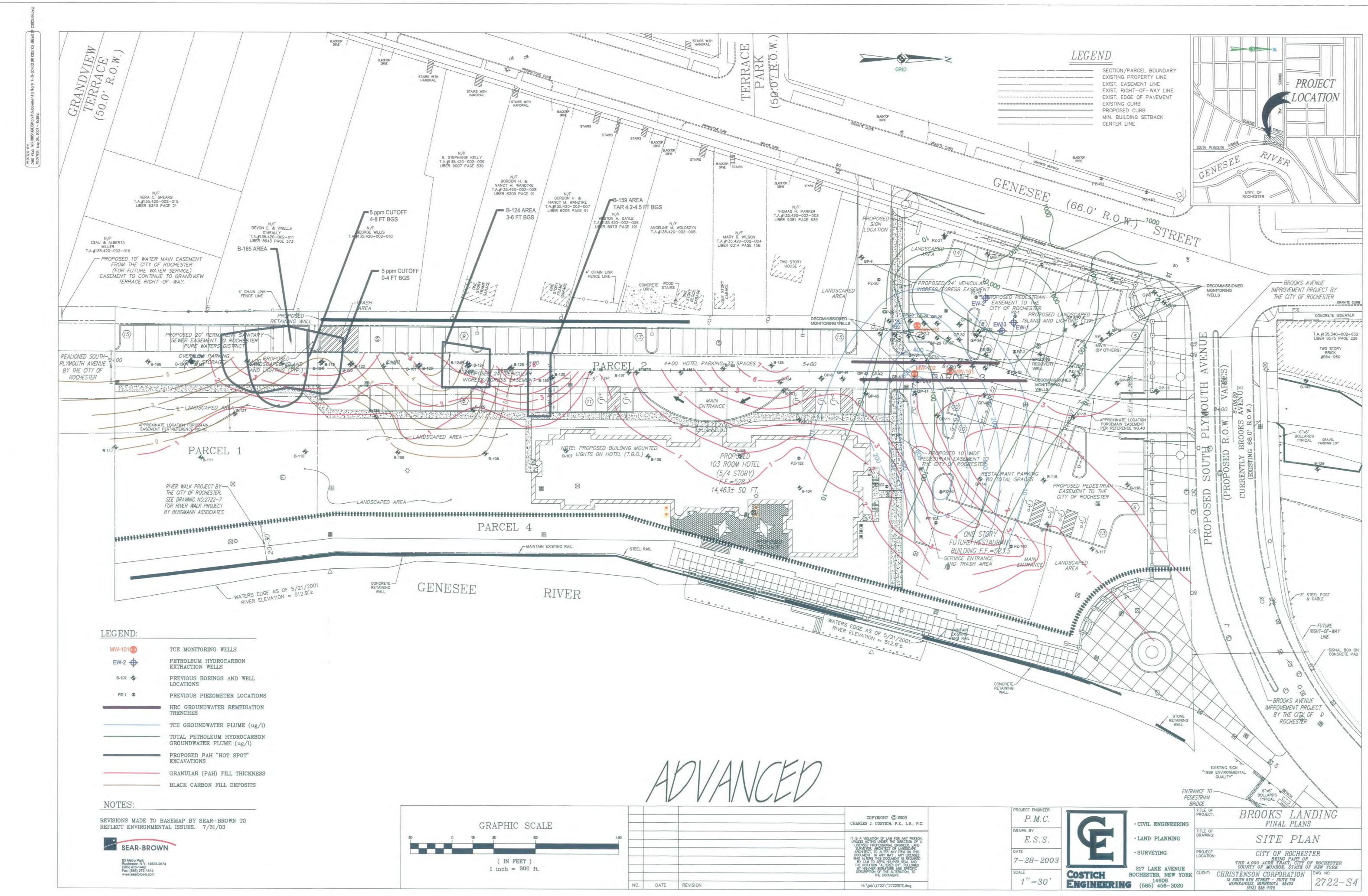
M C AR. 西日 0 (50: F BLACKTOP aranite cing ----PROVIDE A CURB STOP AND BOX ON DOMESTIC SERVICE AND AN B" VALVE ON FIRE SERVICE AT PROPERTY LINE DRIVE STATE Same BLACKTOP/ BLACKTOP DRIVE EDDSTENG TO" WATEREMAN BLACK TOP / PROVIDE 6'x6' VAULT TO-HOUSE 4"" METER ON DOMESTIC SERVICE, SINGLE DETECTOR CHECK VALVE ON FIRE SERVICE PROPOSED 4" ----PROVIDE RPZ/HOT BOX DISINFECTION SAMPLING TAP (BY CONTRACTOR) TWO STORY HOUSE STORY CONNECT THE EXISTING 24" D3 M.H. RIM=528.2 N. INV.=522.63 6" TAP OFTATION ____ T.G.=527.5 W. INV.=523.50 INVERT (F 6"=516.21 -----0 the set of the set G 10 MIN. SEPARATION 5+00 -4+00 H.P.=527. T.G.=526.2 W. INV.=523.70 S. INV.=524.03 6.0. INV.=524.1 0.5 0.5 0.5 ps as as as PROP. DOWNSPOUT -211 TITI PROVIDE DISINFECTION, PROPOSED SAMPLING TAP BY CONTRACTOR D1B 103 ROOM HOTEL M.H. RIM=523.0 N. INV.=519.00 (5/4 STORY) F.F.=528.7 -14,463± SQ. FT.
 S16,74
 S16,17
 C WEEP (PLUGGED W/SUT)

 T.G.-S17,36
 S16,17
 C C C

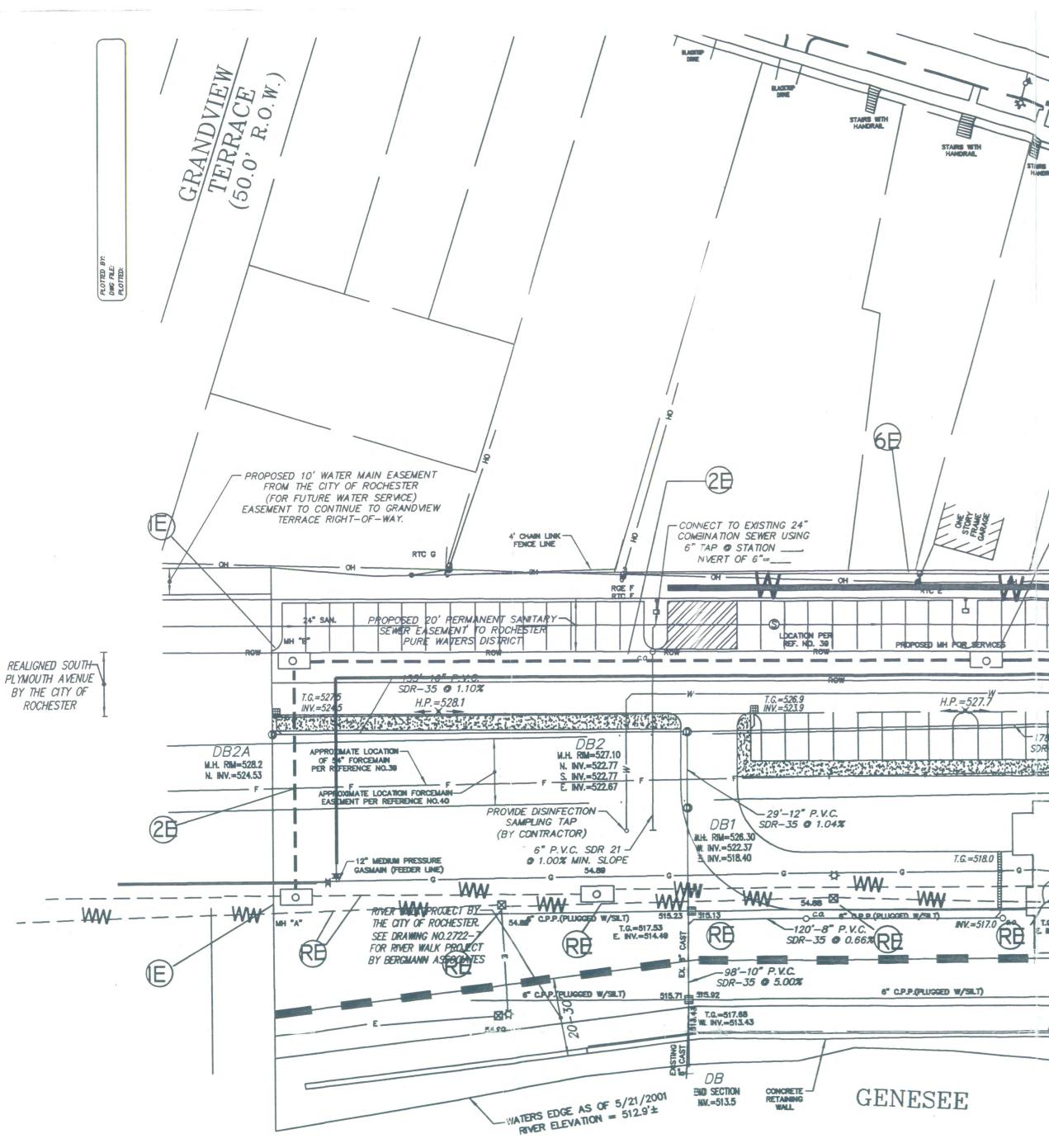

 E. INV.-SUT.36
 0.5
 C C C


 JAS<</td>
 C A S
 C C C


 JAS<</td>
 C A S
 C C C


 GAS
 C C C
 C C C
 6" C.P.P.(PLUGGED W/SILT) T.Q.=517.78 W. INV.=514.35 6" C.P.P. (PLUGGED W/SILT) C.P.P. (PLUGGED W/SULT) STEEL RAIL (PLUSGED W/SHLT) MAINTAIN SXISTING RAIL PROP. DOWNSPOUT AT GRAP (PLWGGED W/SLT.) T.G.-017:03 GENESEE Altmi RIVER 2.9'± DC END SECTION -INV.=513.4 4" WATERMAIN PER EAA ASSOC. MAP FOR MONROE COUNTY, GENESSE RIVER INTERCEPTOR, DATED MARCH 1974 AND LAST REVISED 5/75. COPYRIGHT (C) 2003 GRAPHIC SCALE CHARLES J. COSTICH, P.E., L.S., P.C. 1 IT IS A VOLATION OF LAW FOR ANY PERSON, UNLESS ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, LAND SURVEYOR, ARCHITECT OR LANDSCAPE ARCHITECT, TO ALTER ANY ITEM ON THIS DOCUMENT IN ANY WAY. ANY LICENSEE WHO ALTERS THIS DOCUMENT IS REGUIRED BY LAW TO AFTLA HIS/HER EAL AND THE NOTATION "ALTERED BY", FOLLOWED BY HIS/HER SIGNATURE AND SPECIFIC DESCRIPTION OF THE ALTERATION, TO THE DOCUMENT. (IN FEET) 1 inch = 30 ft. NO. DATE REVISION Hi \bb \2722 \^2722SITE.dwg

a dir al denation a discussion in a set dama and faire a staff and a second set discussion of the dense being a

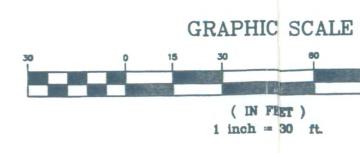


DUIC SCALE				COPYRIGHT © 2003 CHARLES J. COSTICH, P.E., L.S., P.C.	P
PHIC SCALE	120			IT IS A VIOLATION OF LAW FOR ANY PERSON,	
(IN FEET $)inch = 800 ft.$				UNLESS ACTING UNDER THE DIRECTION OF A LUCENSED PROFESSIONAL ENGINEER, LAND SURVEYOR, ARCHITECT OR LANDSCAPE ARCHITECT, TO ALITER ANY TIED ON THIS DOCUMENT IN ANY WAY. ANY LICENSEE WHO ALTERS THIS DOCUMENT IS REQUIRED BY LAW TO AFTIX HIS/HER SEAL AND THE NOTATION "ALTERED BY", FOLLOWED BY HIS/HER SIGNATURE AND SPECIFIC DESCRIPTION OF THE ALTERATION, TO THE DOCUMENT.	S
	NO.	DATE	REVISION	H: \job\2722\^2722SITE.dwg	

UNDERGROUND NOTES

IE- INSTALL 6'XI2'X6' PRECAST MANHOLES AND GROUND AS PER RG&E STANDARDS, IN CUSTOMER PROVIDE TRENCH AS PER RG&E STANDARD

2E- INSTALL 9-5" PVC-EB CONDUITS WITH 36" MINIMUM COVER, ENCASED, TEMPORARY RESTORATION, IN CUSTOMER PROVIDE TRENCH AS PER RG&E STANDARD


3E- PROPOSED MANHOLES FOR SERVICE TO HOTEL. EXCAVATE AND INSTALL 6'XI2'X6' MANHOLE AND GROUNDING AS PER RG&E STANDARD, IN CUSTOMER PROVIDE TRENCH AS PER RG&E STANDARD

4E- BUILD 4'X6'X6' MANHOLES OVER EXISTING DUCT SYSTEM. GROUND AS PER RG&E STANDARD, IN CUSTOMER PROVIDE TRENCH AS PER RG&E STANDARD

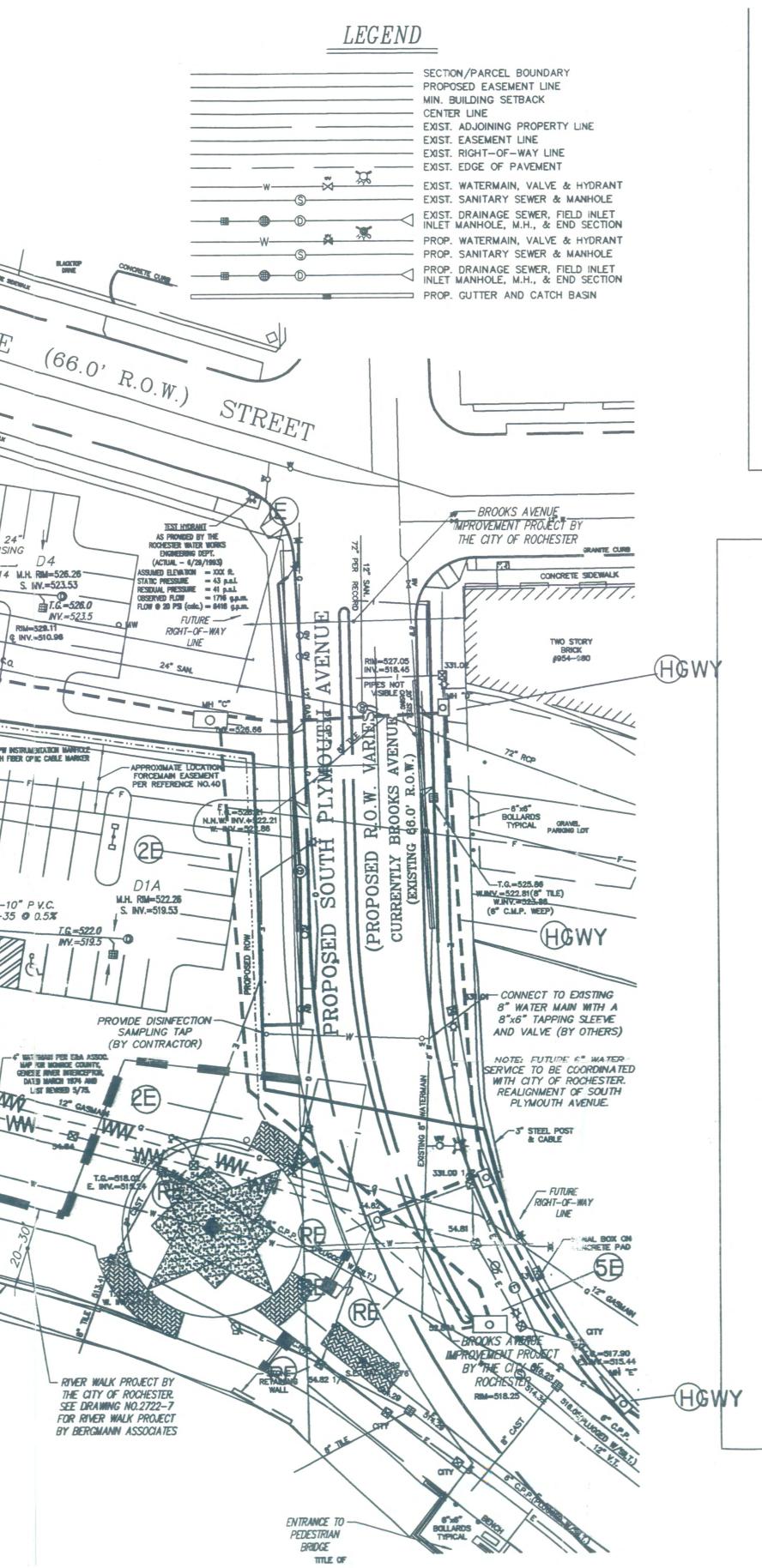
5E- ADJUST ROOF AND F&C TO NEW PAVING PROFILE

RE- REMOVAL OF CABLES, MANHOLE AND HANDHOLES

CABLE PULL NEW TRANSMISSION CIRCUITS (2) CIRCUITS PULL PILOT COMMUNICATION CABLES SHUTDOWN CIRCUITS SPLICING CABLES REMOVING CABLES AND ABANDON DUCT SYSTEM

STARS WITH STARS WITH	
J J J Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	GRID
	- CONNECT TO EXISTING WATER MAIN WITH
	A 10"x8" TAPPING SLEEVE AND VALVE.
STARE PROVIDE A CURB STOP AN	ND BOX
STARS STARS BLACKED STARS STARS STARS BLACKED TO THE SERVICE AI	ND AN
STARS BLACKEP DIBLE STARS	
BLACKEP STARS	GENESEE
PROVIDE 5'x6' VAULT TO HOUSE 4"" METER ON	MOMETONE CARE STATESEE
DOMESTIC SERVICE, SINGLE DETECTOR CHECK VALVE ON FIRE SERVICE	
PROPOSED 4"	PROVIDE DISINFECTION
A DOMESTIC - A" DOMESTIC - A" DOMESTIC - A" DOMESTIC - A" DOMESTIC - A MATER SERVICE	SAMPLING TAP (BY CONTRACTOR)
4' CHAIN LINK	
FENCE LINE	
CONNECT TO EXISTING 24" COMBINATION SEWER USING 6" TAP @ STATION	SDR-35 COMBINATION SEWER USING
INVERT OF 6"=\$16.21	TIG.=576.9 SERVICE I INVERT OF 6"=513.14 M.H. R S. IN
_ 24" SAN	EDISTING 24" SAM
	PROPOSED MH FOR SERVICES / / / / / / / / / / / / / / / / / / /
W 6" P.V.C. SDR 21 W	<i>T.G.=527.0</i> <i>INV.=524.0</i>
T.G.=527.0 ALTERNATE WATER SERVICE © 13% MIN. SLOPE WV.=524.0 FOR FUTURE DEVELOPMENT WV.=524.0 OP 3	PROPOSED NOR
1-12" P.V.C. -35 @ 0.71% DB3 K. RU=527.05 K. RU=524.03	E M.H. RIM=525.90 W. NV.=522.10 E NV.=522.00 E
PROVIDE DISINFECTION SAMPLING TAP PROPOSED EY CONTRACTOR	INV=520.50
54.87 103 ROOM HOTEL (5/4 STORY)	SDR-35 @ 8.13% M.H. RM=523.80 PROPOSED 6" P.V.C. N. NV.=518.83 SDR-21 @ 1.0% MIN.
F.F.=528.7 16,500± SQ. FT.	39'-10" P.V.C. SDR-35 • 8.13% NLH. RM=523.80 N. NV.=518.83 W. NV.=518.83 E. NV.=518.73 ° 0. Ca. -140'-10" P.V.C. SDR-21 • 1.0% MIN. Ca. -140'-10" P.V.C. SDR-35 • 0. -140'-10" P.V.C. -140'-10" P.V.C
SIS.70 SIG.11 / HALL I'' AAAL	2 2 2 2 2
	125'-10" P.V.C.
	SDR-35 @ 4.00%
	ONE STORY
MAINITAIN SISTING RAIL	RE BITTOING FIFE521.0
	STIS.52 STIS STATUS
	T.G.=517.72 E INV.=514.94
RIVER	RE
	WATERS EDGE AS F 5/21/2001 D D D D D D D D D D D D D D D D D D D
	AVER ELEVATION = 5/21/2001
	END SECTION INV.=513.5
OVERHEAD NOTES	
6E- REMOVE AND RELOCATE EXISTING	CONCRETE- RETAINING WALL
UTILITY POLES TO ACCOMMODATE	
RETAINING WALL. SHIFT TO THE WEST	STREET LIGHTING SYSTEM
SHILL WEST	STREET LIGHTING SYSTEM WILL
7E- INSTALL PRIMARY DEADENDS AND	BE REMOVED AND A SERVICE
INSTALL ANCHOR AND GUY	POINT WILL BE AVAILABLE TO
	THE CITY OF ROCHESTER UPON
8E- REMOVE 2 UTILITY	REQUEST.
POLES.ASSOCIATED EQUIPMENT AND	CITY OF ROCHESTER STREET

WIRES

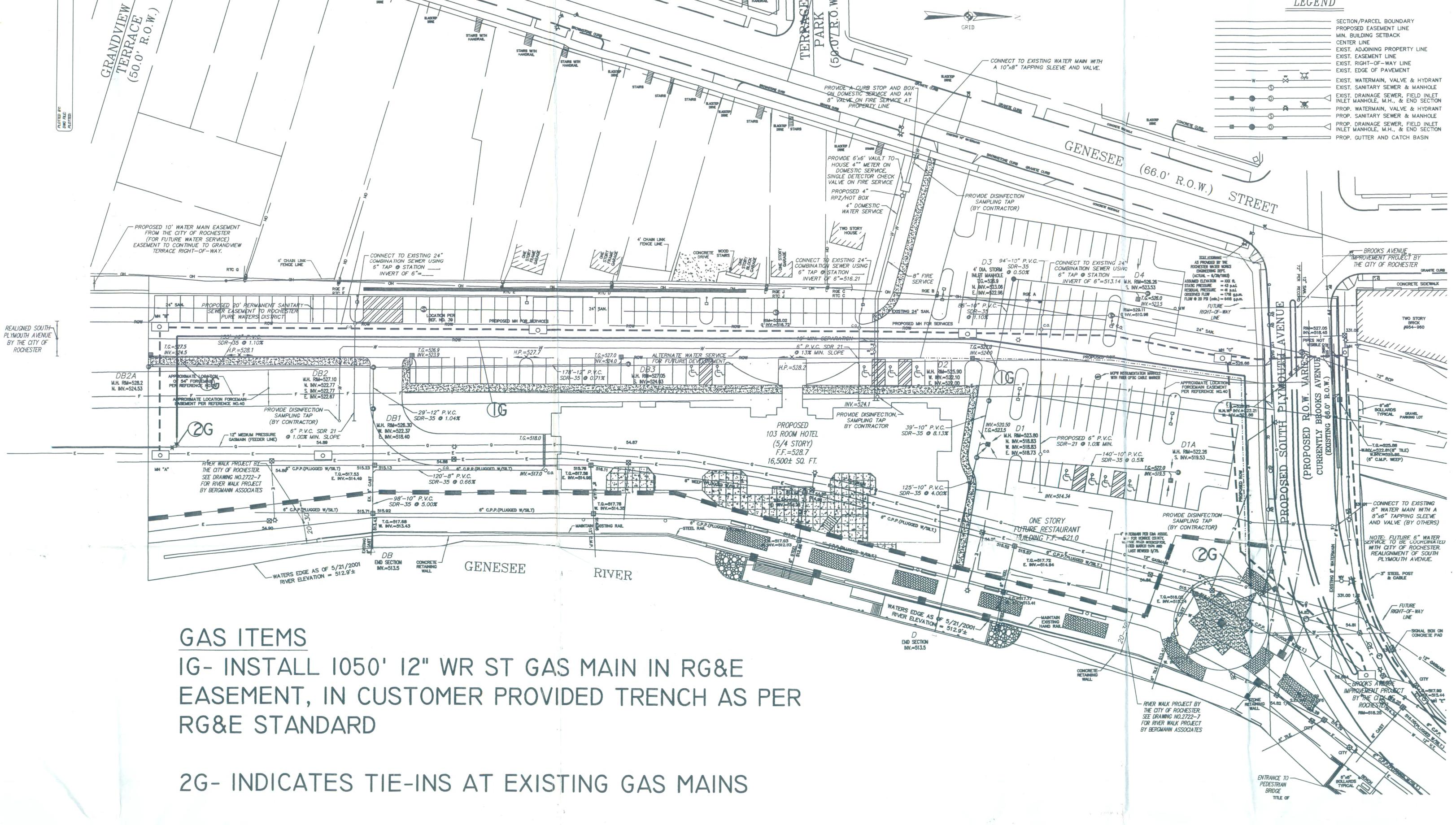

9E- REMOVE EXISTING OVERHEAD CONDUCTORS AND RUN NEW

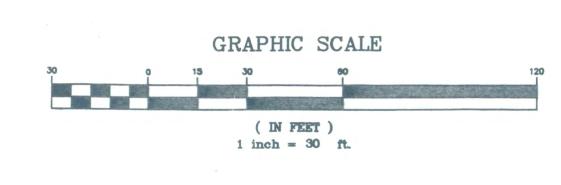
LIGHTING DEPARTMENT SHALL FOLLOW STANDARD PROCEDURES TO ACCOMMODATE THE NEW LIGHTING SYSTEM OWNED BY THE CITY

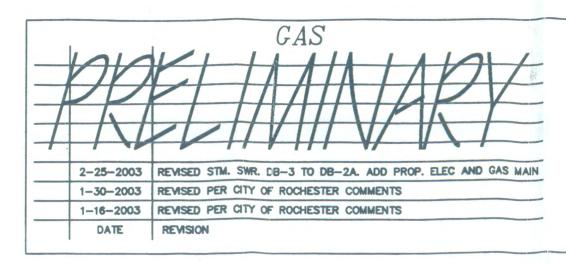
(HOWY- WILL BE BUILT UNDER HIGHWAY PROJECT AND BILLED TO HOTEL PROJECT FOR SERVICE

1-16-2003 REVISED PER CITY OF ROCHESTER COMMENTS DATE REVISION

ROCHESTER GAS & ELECTRIC CORPORATION MARCH 6, 2003




ELECTRIC SYMBOLS HANDHOLE O MANHOLE - - - - - - - 9-5" CONDUITS WITH CABLES GAS SYMBOLS EXISTING GAS LINE 12" WR SI ↓ COUPLING AND EXTENSIONS REGULATOR SITE REQUIREMENTS O EXCAVATE THE TRENCH FOR RG&E FACILITIES. DEVELOPER SHALL BE RESPONSIBLE FOR THE REMOVAL OF ALL CONTAIMINATED SOIL FROM SITE. SHALL REPLACE WITH CLEAN FILL TO RG&E STANDARDS O PROVIDE A 20' EASEMENT RIGHT TO ACCOMODATE G & E FACILITIES. CONTACT KEN KEMMET RG&E ROW AGENT 771-4515 O REFERING TO DRAWING NOTE, REALIGNMENT OF SOUTH PLYMOUTH AVE BY THE CITY OF ROCHESTER. ANY RELOCATION OF RG&E FACILITIES WILL BE TOTALLY CHARGEABLE. A FINAL DESIGN SHALL BE SUBMITTED TO RG&E TO DESIGN AND PROVIDE AN ESTIMATE FOR SUCH WORK O PROVIDE TO RG&E IT'S COSTS AND EXPENSES FOR THE RELOCATION OF IT'S FACILITIES TO ACCOMODATE THE PROJECT. RG&E IS REQUESTING THAT THE CUSTOMER PAY A LUMP SUM PAYMENT. UPON RECIEVING THE PAYMENT IN FULL RG&E WILL BEGIN THE DESIGN AND BID PROCESS CUSTOMER SHALL SIGN AN RG&E GENERAL SERVICE AGREEMENT REFLECTING A COMMITMENT TO A LUMP SUM PAYMENT BASED ON THE ENGINEERING ESTIMATE PROVIDED WITH THIS PRELIMINARY DESIGN. CONTACT TIM HECKMAN RG&E MARKETING 771-2290 TO PROVIDE THIS APPLICATION. PAYMENT SHALL BE UPFRONT BEFORE RG&E BEGINS ANY WORK. THE DESIGN AND PROJECT WORK FOR THE FACILITIES ON GENESEE ST , SCOTTSVILLE RD AND ELMWOOD AVE WILL NOT BE DESIGNED UNTIL COMMITMENT TO PAYMENT IS MADE BY CUSTOMER. O PROVIDE A FINAL DRAWING SHOWING THE REQUESTED RIGHT AWAY EASEMENT AND THE RG&E PROPOSED SYSTEM


PROJECT:	BROOKS LANDING
	PRELIMINARY PLANS
TITLE OF	
DRAWING	REVISED UTILITY PLAN
PROJECT	CITY OF ROCHESTER
LOCATION:	BRING PART OF
	THE 4.000 ACRE TRACT, CITY OF ROCHESTER COUNTY OF MONROE, STATE OF NEW YORK
CLIENT:	CHRISTENSON CORPORATION
	12 SOUTH 6TH STREET - SUITE 715 MINNELPOLIS, MINNESOTA 55402 2722-5

O PROVIDE STAKING OF RG&E EASEMENT PROPERTY LINE, RETAINING WALL, AND WEST WALL OF PROPOSED BUILDING STRUCTURES O SITE SHALL BE WITHIN 6" OF FINAL GRADE (PROPOSED UTILITY EASEMENT) AND FREE OF OBSTRUCTIONS. ALL LATERALS SHALL BE EXTENDED BEYOND UTILITY EASEMENT. O SCHEDULE A PRE CONSTRUCTION MEETING WITH ALL UTILITIES AND HAVE SITE READY FOR WALK THOROUGH WITH RG&E CONTRACTOR AND INSPECTOR

ELECTRIC SYMBOLS
HANDHOLE UNDERGROUND CABLE REMOVAL MANHOLE MANHOLE MANHOLE MANHOLE MANHOLE
GAS SYMBOLS EXISTING GAS LINE 12" WR ST COUPLING AND EXTENSIONS
SITE REQUIREMENTS • EXCAVATE THE TRENCH FOR RG&E DEVELOPER SHALL BE RESPONSIBLE ALL CONTAIMINATED SOIL FROM SIT CLEAN FILL TO RG&E STANDARDS • PROVIDE A 20' EASEMENT RIGHT T FACILITIES. CONTACT KEN KEMMET 771-4515 • PROVIDE A 20' EASEMENT RIGHT T FACILITIES SOUTH OF THE NORTH BE PROPERTY. • REFERING TO DRAWING NOTE, REA PLYMOUTH AVE BY THE CITY OF ROO RELOCATION OF RG&E FACILITIES W CHARGEABLE. A FINAL DESIGN SHAL RG&E TO DESIGN AND PROVIDE AN E WORK.
O PROVIDE TO RG&E IT'S COSTS AND RELOCATION OF IT'S FACILITIES TO PROJECT. RG&E IS REQUESTING THA A LUMP SUM PAYMENT. UPON RECIEV FULL RG&E WILL BEGIN THE DESIGN CUSTOMER SHALL SIGN AN RG&E GE AGREEMENT REFLECTING A COMMITM PAYMENT BASED ON THE ENGINEERIN WITH THIS PRELIMINARY DESIGN. CO

ROCHESTER GAS & ELECTRIC **CORPORATION** MARCH 6, 2003

BROOKS LANDING PRELIMINARY PLANS EVISED UTILITY PLAN

ABLES

FACILITIES.

FOR THE REMOVAL OF TE. SHALL REPLACE WITH

TO ACCOMODATE G & E RG&E ROW AGENT

TO ACCOMODATE G & E BOUNDRY LINE OF HOTEL

ALIGNMENT OF SOUTH CHESTER. ANY NILL BE TOTALLY LL BE SUBMITTED TO ESTIMATE FOR SUCH

EXPENSES FOR THE ACCOMODATE THE AT THE CUSTOMER PAY VING THE PAYMENT IN AND BID PROCESS. ENERAL SERVICE MENT TO A LUMP SUM ING ESTIMATE PROVIDED ONTACT TIM HECKMAN MARKETING 771-2290 TO PROVIDE THIS APPLICATION. PAYMENT SHALL BE UPFRONT BEFORE RG&E BEGINS ANY WORK. THE DESIGN AND PROJECT WORK FOR THE FACILITIES ON GENESEE ST, SCOTTSVILLE RD AND ELMWOOD AVE WILL NOT BE DESIGNED UNTIL COMMITMENT TO PAYMENT IS MADE BY CUSTOMER. O PROVIDE A FINAL DRAWING SHOWING THE REQUESTED RIGHT AWAY EASEMENT AND THE RG&E PROPOSED SYSTEM

O PROVIDE STAKING OF RG&E EASEMENT, PROPERTY LINE, RETAINING WALL, AND WEST WALL OF PROPOSED BUILDING STRUCTURES O SITE SHALL BE WITHIN 6" OF FINAL GRADE (PROPOSED UTILITY EASEMENT) AND FREE OF OBSTRUCTIONS. ALL LATERALS SHALL BE EXTENDED BEYOND UTILITY EASEMENT **o** SCHEDULE A PRE CONSTRUCTION MEETING WITH ALL UTILITIES AND HAVE SITE READY FOR WALK THOROUGH WITH RG&E CONTRACTOR AND INSPECTOR

Brooks Landing Urban Renewal District Rochester, NY

			PID Readings	
Borehole	Depth	Peak	Sustained	Background
	(ft. bgs)	(ppm)	(ppm)	(ppm)
GP 1	0-2	1.2	0.7	0.2
	2-4	1.1	1.0	0.1
	4-6	1.4	1.2	0.2
	6-8	2.1	1.6	0.4
	8-10	342	160	0.2
	10-12	828	550	1.0
	12-14	848	500	1.5
	14-16	499	200	8.0
	16-18	271	230	2.4
	18-20	1526	950	2.4
	20-22	412	200	4.2
	22-24	35	24	4.5
	24-25	305	200	4.4
	0.0	2.0	1.6	0.0
GP 2	0-2	2.0	1.6	0.2
	2-4	2.7	1.7	0.2
	4-6	4.6	4.4	0.4
	6-8	4.1	2.5	0.5
	8-10	2.2	1.6	0.4
	10-12	7.5	5.4	0.5
	12-14	4.5	3.5	1.6
	14-16	91.0	70	1.9
	16-18	11.0	6.9	0.4
	18-19.5	28.5	24.3	0.7
GP 3	0-2	8.5	8.3	0.2
	2-4	3.4	3.4	0.2
	4-6	1.2	1.2	0.4
	6-8	1.6	1.6	0.4
	8-10	2.2	2.2	0.4
	10-12	2.4	2.4	0.4
	12-14	2.6	2.6	0.4
	14-16	2.2	2.2	0.5

Notes:

1. ft. bgs = feet below ground surface.

2. ppm = parts per million.

Brooks Landing Urban Renewal District Rochester, NY

		PID Readings			
Borehole	Depth	Peak	Sustained	Background	
	(ft. bgs)	(ppm)	(ppm)	(ppm)	
GP 4	0-2	2.8	2.7	0.2	
	2-4	2.6	2.5	0.2	
	4-6	1.1	1.1	1.0	
	6-8	1.2	1.1	0.6	
	8-10	44	43.5	0.6	
	10-12	742	450	0.8	
	12-14	2.4	1.9	1.0	
	14-16	2.8	1.6	0.6	
	16-18	1.7	1.5	0.2	
	18-20	1.0	0.9	0.7	
	20-22	1.0	0.9	0.7	
	22-24	2.1	2.0	0.8	
	24-25.5	3.0	2.8	0.9	
GP 5	0-2	0.3	0.2	0.2	
	2-4	0.5	0.3	0.2	
	4-6	0.5	0.5	0.2	
	6-8	0.7	0.5	0.2	
	8-10	370	300.0	0.2	
	10-12	4.9	4.5	4.4	
	12-14	5.5	5.4	2.5	
	14-16	29.8	19.1	2.8	
	16-18	2.8	2.4	2.4	
	18-20	2.1	1.9	1.3	
GP 6	0-4	0.5	0.3	0.0	
	4-6	0.8	0.6	0.0	
	6-8	0.1	0.0	0.0	
	8-10	1.0	0.2	0.1	
	10-12	0.3	0.0	0.0	
	12-14	0.0	0.0	0.0	
	14-16	0.3	0.0	0.0	
	16-18	0.5	0.0	0.0	
	18-20	0.1	0.0	0.0	
	20-22	0.2	0.0	0.0	
	22-24	0.0	0.0	0.0	
	24-26	0.1	0.0	0.0	

Notes:

1. ft. bgs = feet below ground surface.

2. ppm = parts per million.

Brooks Landing Urban Renewal District Rochester, NY

			PID Readings	
Borehole	Depth	Peak	Sustained	Background
	(ft. bgs)	(ppm)	(ppm)	(ppm)
GP 7	0-4	10.2	8.6	0.0
	4-8	21.3	17.2	0.2
	8-10	1.6	1.1	0.0
	10-12	1.1	0	0.0
	12-14	0.6	0.3	0.0
	14-16	0.7	0.4	0.0
	16-18	1.0	1.0	0.1
	18-20	0.3	0.1	0.1
	0.4	0.0	0.0	0.0
GP 8	0-4	0.0	0.0	0.0
	4-6	0.1	0.0	0.0
	6-8	0.0	0.0	0.0
	8-10	0.0	0.0	0.0
	10-12	0.2	0.1	0.0
	12-14	0.2	0.0	0.0
	14-16	0.0	0.0	0.0
GP 9	0-2	0.0	0.0	0.0
	2-4	0.1	0.0	0.0
	4-6	0.0	0.0	0.0
	6-8	0.1	0.0	0.0
	8-10	0.0	0.0	0.0
	10-12	0.0	0.0	0.0
	12-14	0.1	0.1	0.0
	14-16	0.0	0.0	0.0

Notes:

1. ft. bgs = feet below ground surface.

2. ppm = parts per million.

Brooks Landing Urban Renewal District Rochester, NY

			PID Readings	
Borehole	Depth	Peak	Sustained	Background
	(ft. bgs)	(ppm)	(ppm)	(ppm)
GP 10	0-4	0.0	0.0	0.0
	4-8	0.0	0.0	0.0
	8-12	0.0	0.0	0.0
	12-16	0.0	0.0	0.0
	16	0.0	0.0	0.0
CD 11	0.4	0.1	0.0	0.0
GP 11	0-4	0.1	0.0	0.0
	4-8	0.0	0.0	0.0
	8-12	0.5	0.1	0.0
GP 12	0-4	0.0	0.0	0.0
	4-8	0.1	0.0	0.0
		011	0.0	0.0
GP 13	0-2	0.1	0.0	0.0
	2-4	0.3	0.1	0.0
	4-6	0.1	0.1	0.0
	6-8	0.1	0.1	0.0
	8-10	0.1	0.1	0.0
	10-12	0.2	0.1	0.0
	12-14	0.1	0.1	0.1
				0.0
GP 14	0-2	0.8	0.4	0.0
	2-4	1.0	0.6	0.0
	4-6	0.4	0.3	0.0
	6-8	1.0	0.7	0.1
	8-10	0.6	0.5	0.0
	10-12	0.7	0.6	0.0
	12-14	0.4	0.3	0.1
	14-16	2.1	1.7	0.1
	16-20	1.3	1.1	0.1
	20-22.5	0.3	0.1	0.1

Notes:

1. ft. bgs = feet below ground surface.

2. ppm = parts per million.

Brooks Landing Urban Renewal District Rochester, NY

			PID Readings	
Borehole	Depth	Peak	Sustained	Background
	(ft. bgs)	(ppm)	(ppm)	(ppm)
GP 15	0-2	0.8	0.2	0.0
UF 15	2-4	0.8	0.2	0.0
	2-4 4-6	0.4	0.2	0.0
	4-0 6-8	0.0	0.3	0.0
	8-10	0.9	0.5	0.0
	10-12	0.8	0.6	0.0
	12-16	0.8	0.3	0.0
GP 16	0-4	1.9	1.6	0.0
01 10	4-8	5.5	4.4	0.0
	8-10	3.3	3.2	0.0
	10-12	59	58	0.6
	12-14	17.9	16.1	0.6
	14-16	10.1	9.0	0.8
	1110	10.1	5.0	0.0
GP 17	0-4	8.6	8.4	0.0
	4-6	0.3	0.2	0.0
	6-8	1.1	0.5	0.0
	8-10	464±	220±	0.0
	10-12	20	14	0.0
	12-14	58	52	0.6
	14-16	10.4	4.2	0.4
GP 18	0-4	0.5	0.3	0.0
	4-8	0.5	0.3	0.0
	8-12	1.2	0.6	0.0

Notes:

1. ft. bgs = feet below ground surface.

2. ppm = parts per million.

Brooks Landing Urban Renewal District Rochester, NY

			PID Readings	
Borehole	Depth	Peak	Peak	Background
	(ft. bgs)	11.8 eV	10.2 eV	10.2 eV
PZ-18	0-4'	0.0	0.4	0.4
	4-8'	0.0	0.4	0.4
	8-12'	0.0	0.4	0.4
	12-16'	0	2	0.4
	16-20'	15	2 5 2	0.4
	20-22'	0	2	0.4
PZ-19	0-4'	0.5	0.4	0.4
	4-8'	3.8	1.1	0.4
	8-12'	2.8	1.3	0.4
	12-16'	0.0	0.8	0.4
	16-20'	0.0	0.6	0.4
	20-23'	2.8	1.1	0.4
	23-25.2'	1.7	0.8	0.4
PZ-20	0-2'	NM	0.7	0.6
	2-4'	meter	0.7	0.6
	4-6'	malfunction	0.8	0.6
	6-8'		0.8	0.6
	8-12'		0.7	0.6
	12-14'		0.7	0.6
	14-16'		0.5	0.6
	16-18'		0.7	0.6
	18-19'		0.9	0.6
	19-22'		0.6	0.6
	22-24'		0.5	0.6
	24-25'		0.9	0.6
	25-27'		0.9	0.6
	27-29.5'		1.0	0.6
PZ-21	0-4'	0.0	0.3	0.3
	4-8'	0.0	0.3	0.3
	8-12'	0.0	0.3	0.3
	12-16'	0.0	0.4	0.3
	16-19'	0.0	0.4	0.3
	19-22'	0.0	0	0.3
	22-25'	0.0	0.4	0.3
	25-28'	0.0	0.4	0.3

Notes:

1. ft. bgs = feet below ground surface.

2. ppm = parts per million.

3. PID data collected with Hnu DL-101 equipped with 10.2 eV lamp, and Thermo Environmental Instruments 580B OVM w/11.8 eV lamp.

m:\jobs\16835.07\data\Phase II field data.xls\Table 1A

Brooks Landing Urban Renewal District Rochester, NY

Borehole	Depth	Peak	Peak	Background
	(ft. bgs)	11.8 eV	10.2 eV	10.2 eV
GD 00	o. 41		2.5	o r
GP-22	0-4'	NM	2.7	0.5
	4-8'	meter	16.5 carbon	0.5
		malfunction	3.4 white material	0.5
	8-12'		3.5	0.5
	12-16'		0.9	0.5
GP-23	0-4'	NM	0.8	0.5
	4-8'	meter	3.5	0.5
	8-12'	malfunction	3.0	0.5
	12-16'		2.5	0.5
GP-24	0-4'	10.8	8.7	0.5
	4-8'	2.4	2.9	0.5
	8-12'	1.6	3.7	0.5
	12-16'	1.6	1.4	0.5
	12 10	1.0	1.1	0.5
GP-25	0-4'	4.6	5.0	0.5
	4-8'	11.8	6.1	0.5
	8-12'	3.9	1.7	0.5
	12-16'	0.5	0.9	0.5
GP-26	0-4'	8.4	2.7	0.5
OF-20	0-4 4-8'	63.1	29.7	0.5
	4-8 8-12'	8.4	3.7	0.5
	12-16'	8.4 1.6	0.9	0.5
	12-10	1.0	0.9	0.5
GP-27	0-4'	8.4	5.1	0.5
	4-8'	26.1	6.3	0.5
	8-11'	1.6	0.9	0.5
GP-28	0-4'	2.8	1.8	0.5
0. 20	4-8'	8.4	2.7	0.5
	8-12'	2.8	1.3	0.5
	12-16'	1.6	0.6	0.5
	12 10	1.0	0.0	0.0

Notes:

- 1. ft. bgs = feet below ground surface.
- 2. ppm = parts per million.
- 3. PID data collected with Hnu DL-101 equipped with 10.2 eV lamp,

Brooks Landing Urban Renewal District Rochester, NY

		PID Readings					
Borehole	Depth	Peak	Peak	Background			
	(ft. bgs)	11.8 eV	10.2 eV	10.2 eV			
GP-28	0-4'	2.8	1.8	0.5			
	4-8'	8.4	2.7	0.5			
	8-12'	2.8	1.3	0.5			
	12-16'	1.6	0.6	0.5			
GP-29	0-4'	1.6	0.5	0.5			
	4-8'	5.2	0.5	0.5			
	8-12'	0.0	0.5	0.5			
	12-16'	0.0	0.5	0.5			
GP-30	0-4'	7.2	4.0	0.5			
	4-8'	16.3	6.3	0.5			
	8-12'	2.8	2.1	0.5			
	12-16'	7.2	1.5	0.5			
GP-31	0-4	6.1	1.6	0.5			
	4-8	22.1	3.8	0.5			
	8-12	5.2	1.5	0.5			
	12-16	1.6	1.6	0.5			
GP-32	0-4	0.0	0.6	0.5			
	4-8	0.0	2.3	0.5			
	8-12	0.0	0.9	0.5			
GP-33	0-4'	NM	0.6	0.5			
OF 55	4-8'	meter	1.0	0.5			
	8-12'	malfunction	29.1	0.5			
	12-16'	manunction	3.9	0.5			
	12 10		5.7	0.5			
GP-34	0-4		1.6	0.5			
	4-8		2.4	0.5			

Notes:

1. ft. bgs = feet below ground surface.

2. ppm = parts per million.

3. PID data collected with Hnu DL-101 equipped with 10.2 eV lamp,

Brooks Landing Urban Renewal District Rochester, NY

		PID Readings					
Borehole	Depth	Peak	Peak	Background			
	(ft. bgs)	11.8 eV	10.2 eV	10.2 eV			
CD 25	0-4'		15	0.5			
GP-35	0-4 4-8'	NM	1.5	0.5 0.5			
	4-8	meter	1.2	0.5			
		malfunction					
GP-36	0-4'	NM	1.3	0.5			
	4-8'	meter	6.3	0.5			
	8-12'	malfunction	2.2	0.5			
	0.41		1.4				
GP-37	0-4'	NM	1.4	0.9			
	4-8'	meter	3.4	0.9			
	8-12'	malfunction	1.4	0.9			
GP-38	0-4'	NM	2.8	0.9			
	4-8'	meter	6.0	0.9			
	8-12'	malfunction	2.4	0.9			
GP-39	0-4'	NM	3.4	0.9			
GP-39	0-4 4-8'	meter	5.4 7.3	0.9			
	4-8 8-12'	malfunction	3.3	0.9			
	8-12	mailunction	5.5	0.9			
GP-40	0-4'	NM	3.1	0.9			
	4-8'	meter	2.2	0.9			
	8-12'	malfunction	2.1	0.9			
GP-41	0-4'	NM	3.2	0.9			
01 +1	4-8'	meter	8.9	0.9			
	8-12'	malfunction	6.4	0.9			
	0-12	manufiction	0.4	0.9			
GP-42	0-4'	NM	3.0	0.9			
	4-8'	meter	9.5	0.9			
	8-12'	malfunction	3.8	0.9			

Notes:

1. ft. bgs = feet below ground surface.

2. ppm = parts per million.

3. PID data collected with Hnu DL-101 equipped with 10.2 eV lamp,

Brooks Landing Urban Renewal District Rochester, NY

		PID Readings					
Borehole	Depth	Peak	Peak	Background			
	(ft. bgs)	11.8 eV	10.2 eV	10.2 eV			
GP-43	0-4'	NM	2.3	0.9			
01-45	4-8'	meter	1.8	0.9			
	10	malfunction	1.0	0.9			
		manunetion					
GP-44	0-4'	NM	2.3	0.9			
	4-8'	meter	3.3	0.9			
	8-12'	malfunction	1.4	0.9			
GP-45	0-4'	NM	1.6	0.9			
	4-8'	meter	3.3	0.9			
		malfunction					
GP-46	0-4'	NM	1.8	0.9			
	4-8'	meter	3.1	0.9			
		malfunction					
GP-47	0-4'	NM	1.3	0.9			
	4-8'	meter	2.4	0.9			
		malfunction					

Notes:

1. ft. bgs = feet below ground surface.

2. ppm = parts per million.

3. PID data collected with Hnu DL-101 equipped with 10.2 eV lamp,

TABLE 2SOIL SAMPLE SUMMARY

Five Parcels in the Brooks Landing Urban Renewal District Rochester, NY

Sample ID/Description	Location	Date	Depth (ft. bgs)	Parameters
NATIVE DEPOSITS				
GP 1 (14') Black Lens in Brown Silty Clay	GP 1	10/25/2002	14	TCL/STARS VOCs by EPA 8260 STARS SVBNs by EPA 8270
GP 1 (24' - 25') Red-to-Gray and Black Sand	GP 1	10/25/2002	24 to 25	TCL/STARS VOCs by EPA 8260
GP 2 (14') Black Lens in Red-Brown Silty Clay	GP 2	10/25/2002	14	TCL/STARS VOCs by EPA 8260 STARS SVBNs by EPA 8270
GP 4 (10' - 12') Red-Brown Silty Clay	GP 4	10/25/2002	10 to 12	TCL/STARS VOCs by EPA 8260 STARS SVBNs by EPA 8270
GP 14 (15') Black Sand	GP 14	10/29/2002	15	TCL/STARS VOCs by EPA 8260
GP 16 (10' - 12') Gray-Brown Silty Clay	GP 16	10/29/2002	10 to 12	TCL/STARS VOCs by EPA 8260 STARS SVBNs by EPA 8270
GP 17 (8' - 10') Red-Gray Silty Clay	GP 17	10/29/2002	8 to 10	TCL/STARS VOCs by EPA 8260
PZ-18 (16'-20') Light Brown Sand w/Black Striations	PZ-18	11/21/2002	16 to 20	TCL/STARS VOCs by EPA 8260 STARS SVBNs by EPA 8270
PZ-20 (16'-18') Brown Silty Sand	PZ-20	11/20/2002	16 to 18	TCL/STARS VOCs by EPA 8260
PZ-21 (16'-19') Red-Brown Silty Sand	PZ-21	11/1/2102	16 to 19	TCL/STARS VOCs by EPA 8260
GP-23 (4'-8') Light Brown Sand	GP-23	11/20/2002	4 to 8	TCL/STARS VOCs by EPA 8260
GP-29 (4'-8') Light Brown Sily Sand	GP-29	11/20/2002	4 to 8	TCL/STARS VOCs by EPA 8260

TABLE 2SOIL SAMPLE SUMMARY

Five Parcels in the Brooks Landing Urban Renewal District Rochester, NY

Sample ID/Description	Location	Date	Depth (ft. bgs)	Parameters
SHALLOW GRANULAR FILL				
GP 5 (8' - 10') Black Gravel, Red Fine Sand, Gray Clayey Silt	GP 5	10/25/2002	8 to 10	TCL/STARS VOCs by EPA 8260
GP 10 (0' - 4') Brown, Gray Sand and Silt	GP 10	10/28/2002	0 to 4	8 RCRA Metals PCBs by EPA 8082 TCL Herbicides by EPA 8151
GP 11 (0' - 4') Brown Gray Sand and Gravel	GP 11	10/28/2002	0 to 4	8 RCRA Metals PCBs by EPA 8082 TCL Herbicides by EPA 8151
GP 12 (0' - 4') Brown-Gray Sand and Gravel	GP 12	10/28/2002	0 to 4	8 RCRA Metals PCBs by EPA 8082 TCL Herbicides by EPA 8151
GP-24 (0'-4') Red-Brown Silty Sand, Blue-Green Powder Lens	GP-24	11/20/2002	0 to 4	TCL/STARS VOCs by EPA 8260 8 RCRA Metals PCBs by EPA 8082 TPH by NYSDOH 310-13
GP-25 (4'-8') Red-Brown Silty Sand, Cinder and White Fill Material	GP-25	11/20/2002	4 to 8	TCL/STARS VOCs by EPA 8260
GP-32 (0'-4') Orange-Brown Silty Sand with Brick, Glass and Cinders	GP-32	11/21/2002	0 to 4	8 RCRA Metals PCBs by EPA 8082
GP 39 (0' - 4') Black Cinder and Ash	GP 39	11/25/2002	0 to 4	TCL SVOCs by EPA 8270

TABLE 2SOIL SAMPLE SUMMARY

Five Parcels in the Brooks Landing Urban Renewal District Rochester, NY

Sample ID/Description	Location	Date	Depth (ft. bgs)	Parameters
BLACK CARBON FILL				
GP 7 (4' - 8') Black Granular Carbon	GP 7	10/28/2002	4 to 8	TCL/STARS VOCs by EPA 8260 TLC SVOCs by EPA 8270 TOC
PZ 19 (4'-8') Black Granular Carbon	PZ 19	11/21/2002	4 to 8	TCL/STARS VOCs by EPA 8260 8 RCRA Metals PCBs by EPA 8082 TPH by NYSDOH 310-13
GP 22 (4' - 8') Black Granular Carbon	GP 22	11/20/2002	4 to 8	TCL/STARS VOCs by EPA 8260 TOC
GP 26 (4' - 8') Black Granular Carbon	GP 26	11/20/2002	4 to 8	TCLP VOCs TCL/STARS VOCs by EPA 8260 TOC
GP 27 (4' - 8') Black Granular Carbon	GP 27	11/20/2002	4 to 8	TCLP VOCs TCL/STARS VOCs by EPA 8260
GP 28 (4' - 8') Black Granular Carbon	GP 28	11/20/2002	4 to 8	TCL/STARS VOCs by EPA 8260 8 RCRA Metals PCBs by EPA 8082 TPH by NYSDOH 310-13
GP 30 (4' - 8') Black Granular Carbon	GP 30	11/21/2002	4 to 8	TCLP VOCs TCL/STARS VOCs by EPA 8260
GP 31 (4' - 8') Black Granular Carbon	GP 31	11/21/2002	4 to 8	TCL/STARS VOCs by EPA 8260 TOC
GP 36 (4' - 8') Black Granular Carbon	GP 36	11/25/2002	4 to 8	TCLP VOCs TCL/STARS VOCs by EPA 8260
GP 41 (4' - 8') Black Granular Carbon	GP 41	11/25/2002	4 to 8	TCLP VOCs TCL/STARS VOCs by EPA 8260
GP 43 (4' - 8') Black Granular Carbon	GP 43	11/25/2002	4 to 8	TCLP VOCs

Notes:

1. ft. bgs = feet below ground surface.

TABLE 3WELL COMPLETION SUMMARY

Brooks Landing Urban Renewal District Rochester, NY

Well	Reference Elevation	Well Diameter (in.)	Bentonite Seal (ft. bgs)	Sandpack Interval (ft. bgs)	Screened Interval (ft. bgs)	Total Depth (ft. bgs)
<u>Newly Installed Wei</u>	ls					
PZ-1	529.11	1	0.5 - 2	2-25	10-25	25
PZ-2	528.39	1	0.5 - 2	2-19.5	9.5-19.5	19.5
PZ-4	528.64	1	0.5 - 2	2-25.5	10.5-25.5	25.5
PZ-5	529.18	1	0.5 - 2	2-19	9-19	19
PZ-7	529.79	1	0.5 - 2	2-20	10-20	20
PZ-14	528.01	1	0.5 - 2	2-20	10-20	20
PZ-16	529.07	1	0.5 - 2	2-16	11-16	16
PZ-17	529.22	1	0.5 - 2	2-16	11-16	16
PZ-18	528.28	1	5-10	10-22.5	12.5-22.5	22.5
PZ-19	529.33	1	5-10	10-23	13-23	25.2
PZ-20	530.53	1	5-10	10-29	14-29	29.5
PZ-21	529.90	1	5-10	10-28	13-28	28.0
<u>Existing Wells</u>						
MW-1	529.02	4	unknown	unknown	unknown	23.5
MW-4	530.97	2	unknown	unknown	unknown	22.3
MW-5	528.07	4	unknown	unknown	unknown	20.3
RW	528.60	2	unknown	unknown	unknown	17.5

TABLE 4WELL DEVELOPMENT SUMMARY

Brooks Landing Urban Renewal District Rochester, NY

Well	Date	Volume Purged	pН	Conductivity	Temperature	Dissolved Oxygen	Turbidity
		(gal)	(SU)	(umhos/cm)	(°C)	(mg/l)	(NTU)
PZ-1	10/30/02	1	NM-P	NM-P	NM-P	NM-P	NM-P
	11/07/02	sample	NM-P	NM-P	NM-P	NM-P	NM-P
PZ-2	10/30/02	0.2	6.28	1348	13.8	4.14	>200
12-2	10/30/02	dry after 1 well volume	0.20	1540	15.0	4.14	>200
		sample	6.95	1315	13.6	3.04	>200
		sample	0.95	1313	15.0	5.04	>200
PZ-4	10/30/02	0.28	6.91	1594	14.8	5.07	>200
		0.56	7.00	1857	13.6	3.85	>200
		0.84	6.97	2399	14.1	4.34	>200
		sample	6.99	2772	13.7	3.59	>200
D7 5	10/20/02	0.14	7.01	704.2	14.00		. 200
PZ-5	10/30/02	0.14	7.01	794.2	14.80	NM-I	>200
		dry after 1 well volume	7.26	000.00	14.10		
		sample	7.36	800.02	14.10	NM-I	NM-I
PZ-7	10/30/02	0.10	6.63	1408	14.5	NM-I	>200
		dry after 1 well volume					
		sample	7.21	1460	11.9	3.75	>200
							• • • •
	11/22/02	0.14	6.82	918.4	14.6	13.30	>200
		dry after 1 well volume					
		sample					
PZ-14	10/31/02	0.24	5.90	2206	12.9	2.48	>200
		0.48	6.16	1658	14.1	1.89	>200
		0.72	6.29	1626	14.2	2.00	121
		sample	6.40	1633	13.9	2.75	43.5
		*					
PZ-16	10/30/02	0.13	7.15	2116	15.6	3.23	>200
		dry after 1 well volume					
		sample	NM-I	NM-I	NM-I	NM-I	NM-I

Notes:

1. NM-P = Not Measured due to observed petroleum impacts

2. NM-I = Not Measured due to insufficient volume

- 3. gal = gallons
- 4. SU = standard units.
- 5. umhos/cm = micromhos per centimeter.
- 6. $(^{\circ}C) =$ degrees Celcius.
- 7. mg/l = milligrams per liter
- 8. NTU = Nephelometric Turbidity Units.

TABLE 4WELL DEVELOPMENT SUMMARY

Brooks Landing Urban Renewal District

Rochester, NY

Well	Date	Volume Purged	pН	Conductivity	Temperature	Dissolved Oxygen	Turbidity
		(gal)	(SU)	(umhos/cm)	(°C)	(mg/l)	(NTU)
PZ-17	10/30/02	0.2	7.25	1071	14.2	3.23	>200
		dry after 1 well volume					
		sample	6.93	971.6	13.5	3.23	>200
PZ-18	11/22/02	0.3	6.99	836	14.1	5.63	>200
12 10	11/22/02	0.5	0.77	050	11.1	5.05	200
PZ-19	11/01/02	0.25	6.59	2249	14.8	5.59	200+
		0.5	6.71	2233	14.4	4.70	200+
		0.75	6.44	2241	14.5	4.24	200+
PZ-20	11/01/02	0.5	6.96	1069	14.6	9.40	>200
12-20	11/01/02	1	6.90 6.97	1203	14.0	8.50	>200
		1.5	6.68	961	14.7	6.80	>200
		1.J	0.08	901	14.2	0.80	>200
PZ-21	11/01/02	0.5	7.06	1220	13.8	6.00	>200
		1	7.06	878	13.9	3.38	>200
		1.5	7.07	754	13.7	2.83	>200
MW-1	10/31/02	5.9	7.07	1685	13.2	4.90	84.3
101 00 - 1	10/31/02	12	7.47	2226	13.2	3.39	65
		12	7.01	2531	13.2	3.50	54.0
		sample	7.13	2551	12.4	3.72	70
		sumple	7.15	2311	12.1	5.12	70
MW-4	10/31/02	0.2	7.22	624.3	12.2	3.45	>200
		dry after 1 well volume					
		sample	7.04	661.2	13.6	3.24	>200
MW-5	10/31/02	4.1	7.16	2510	14.0	3.95	>200
101 00 -5	10/31/02	8.2	7.40	2766	14.0	3.52	>200
		dry after 2 well volumes	7.40	2700	14.0	5.52	>200
		sample	7.57	3192	12.4	3.68	>200
		Sumpre	,,	51/2	12.1	2.00	200
RW	11/07/02	2	6.52	2050	12.5	1.65	>200
		4	6.63	2156	13.5	1.80	>200
		6	7.09	2085	13.9	2.72	>200
		sample	7.20	2084	13.9	2.52	>200

Notes:

- 1. NM-P = Not Measured due to observed petroleum impacts
- 2. NM-I = Not Measured due to insufficient volume
- 3. gal = gallons
- 4. SU = standard units.
- 5. umhos/cm = micromhos per centimeter.
- 6. $(^{\circ}C) =$ degrees Celcius.
- 7. mg/l = milligrams per liter
- 8. NTU = Nephelometric Turbidity Units.

TABLE 5WATER LEVEL SUMMARYBrooks Landing Urban Renewal District

Rochester, NY

		Novembe	er 6, 2002	Novembe	r 11, 2002	Novembe	r 27, 2002
Well	Reference Elevation	Water Level (ft. btoc)	Water Level (elevation)	Water Level (ft. btoc)	Water Level (elevation)	Water Level (ft. btoc)	Water Level (elevation)
PZ-1	529.11	13.36	515.75	13.51	515.60	13.52	515.59
PZ-2	528.39	13.97	514.42	13.99	514.40	13.63	514.76
PZ-4	528.64	13.46	515.18	13.41	515.23	12.76	515.88
PZ-5	529.18	13.98	515.20	12.45	516.73	10.94	518.24
PZ-7	529.79	14.40	515.39	14.68	515.11	14.35	515.44
PZ-14	528.01	14.27	513.74	14.27	513.74	13.94	514.07
PZ-16	529.07	11.82	517.25	10.63	518.44	9.50	519.57
PZ-17	529.22	10.07	519.15	10.15	519.07	9.06	520.16
PZ-18	528.28	-	-	-	-	13.96	514.32
PZ-19	529.33	-	-	-	-	15.01	514.32
PZ-20	530.53	-	-	-	-	14.90	515.63
PZ-21	529.90	-	-	-	-	14.47	515.43
MW-1	529.02	14.28	514.74	14.15	514.87	13.88	515.14
MW-4	530.97	14.27	516.70	13.56	517.41	12.06	518.91
MW-5	528.07	13.90	514.17	13.85	514.22	13.50	514.57
RW	528.60	14.32	514.28	14.45	514.15	14.18	514.42

Notes:

1. Reference elevations measured at top of PVC well riser are based upon "Brooks" USC & GS benchmark = 529.30 ft amsl; approx. 150 ft. south of intersection of Brooks Ave. and Genesee St., east side of Genesee St. The benchmark elevation is tied to Rocheser City Datum for comparison to sewer inverts.

2. ft. btoc = feet below top of casing.

TABLE 6GROUNDWATER SAMPLE SUMMARY

Five Parcels in the Brooks Landing Urban Renewal District Rochester, NY

G L ID	.	D. (D. (
Sample ID	Location	Date	Method	Parameters
PZ-1	PZ-1	10/30/2002	Peristaltic Pump	TPH by NYSDOH 310-13
PZ-1	PZ-1	11/7/2002	Peristaltic Pump	TCL/STARS VOCs by EPA 8260 STARS SVBNs by EPA 8270
PZ-2	PZ-2	10/30/2002	Peristaltic Pump	TCL/STARS VOCs by EPA 8260
PZ-4	PZ-4	10/30/2002	Peristaltic Pump	TCL/STARS VOCs by EPA 8260 STARS SVBNs by EPA 8270
PZ-5	PZ-5	10/30/2002	Peristaltic Pump	TCL/STARS VOCs by EPA 8260
PZ-7	PZ-7	10/30/2002	Peristaltic Pump	TCL/STARS VOCs by EPA 8260
PZ7-11/02	PZ-7	11/22/2002	Peristaltic Pump	TCL/STARS VOCs by EPA 8260 Nitrate Sulfate
PZ-14	PZ-14	10/30/2002	Peristaltic Pump	TCL/STARS VOCs by EPA 8260 STARS SVBNs by EPA 8270
PZ-16	PZ-16	10/30/2002	Peristaltic Pump	TCL/STARS VOCs by EPA 8260
PZ-17	PZ-17	10/30/2002	Peristaltic Pump	TCL/STARS VOCs by EPA 8260
MW-1	MW-1	10/31/2002	PVC Bailer	TCL/STARS VOCs by EPA 8260
MW-4	MW-4	10/31/2002	Peristaltic Pump	TCL/STARS VOCs by EPA 8260 STARS SVBNs by EPA 8270
MW-5	MW-5	10/31/2002	PVC Bailer	TCL/STARS VOCs by EPA 8260
RW	RW	11/7/2002	PVC Bailer	TCL/STARS VOCs by EPA 8260
PZ18-11/02	PZ-18	11/22/2002	Peristaltic Pump	TCL/STARS VOCs by EPA 8260
PZ19-11/02	PZ-19	11/22/2002	Peristaltic Pump	TCL/STARS VOCs by EPA 8260 Nitrate Sulfate
PZ20-11/02	PZ-20	11/22/2002	Peristaltic Pump	TCL/STARS VOCs by EPA 8260
PZ21-11/02	PZ-21	11/22/2002	Peristaltic Pump	TCL/STARS VOCs by EPA 8260

TABLE 7 HYDRAULIC CONDUCTIVITY SUMMARY

Five Parcels in the Brooks Landing Urban Renewal District Rochester. New York

Well	K- va (cm/s	
ID	Rising Head Test	Falling Head Test
PZ-4	4.62E-03	2.38E-03
PZ-14	1.26E-03	8.66E-04
PZ-18	8.05E-04	8.36E-04
PZ-19	5.10E-04	9.48E-04
PZ-20	4.04E-04	2.27E-04
PZ-21	1.51E-04	5.85E-04

Geometric Mean for the Site=

0.00075 cm/sec

Five Parcels in the Brooks Landing Urban Renewal District

		_	-	_	Soil	Samples	_			
TCL STARS VOCs	GP-1 14'	GP-1 24'-25'	GP-2 14'	GP-4 10'-12'	GP-5 8'-10'	GP - 7 4' - 8'	GP 14 15'	GP-16 10' - 12'	GP 17 8' - 10'	Recommended Soil Cleanup Objective ⁽¹⁾
TCL STARS VOCS	14	24 -23	14	10-12	8-10	4-0	15	10 - 12	0 - 10	o sjecu i e
Volatile Halocarbons										
Bromodichloromethane	ND< 98.1	ND< 14.0	ND< 11.8	ND< 25.7	ND< 8.71	ND< 275	ND< 7.52	ND< 11.3	ND< 482	10,000 *
Bromomethane	ND< 98.1	ND< 14.0	ND< 11.8	ND< 25.7	ND< 8.71	ND< 275	ND< 7.52	ND< 11.3	ND< 482	10,000 *
Bromoform	ND< 98.1	ND< 14.0	ND< 11.8	ND< 25.7	ND< 8.71	ND< 275	ND< 7.52	ND< 11.3	ND< 482	10,000 *
Carbon tetrachloride	ND< 98.1	ND< 14.0	ND< 11.8	ND< 25.7	ND< 8.71	ND< 275	ND< 7.52	ND< 11.3	ND< 482	600
Chloroethane	ND< 98.1	ND< 14.0	ND< 11.8	ND< 25.7	ND< 8.71	ND< 275	ND< 7.52	ND< 11.3	ND< 482	1,900
Chloromethane	ND< 98.1	ND< 14.0	ND< 11.8	ND< 25.7	ND< 8.71	ND< 275	ND< 7.52	ND< 11.3	ND< 482	10,000 *
2-Chloroethyl vinyl ether	ND< 98.1	ND< 14.0	ND< 11.8	ND< 25.7	ND< 8.71	ND< 275	ND< 7.52	ND< 11.3	ND< 482	10,000 *
Chloroform	ND< 98.1	ND< 14.0	ND< 11.8	ND< 25.7	ND< 8.71	ND< 275	ND< 7.52	ND< 11.3	ND< 482	300
Dibromochloromethane	ND< 98.1	ND< 14.0	ND< 11.8	ND< 25.7	ND< 8.71	ND< 275	ND< 7.52	ND< 11.3	ND< 482	10,000 *
1,1-Dichloroethane	ND< 98.1	ND< 14.0	ND< 11.8	ND< 25.7	ND< 8.71	ND< 275	ND< 7.52	ND< 11.3	ND< 482	200
1,2-Dichloroethane	ND< 98.1	ND< 14.0	ND< 11.8	ND< 25.7	ND< 8.71	ND< 275	ND< 7.52	ND< 11.3	ND< 482	100
1,1-Dichloroethene	ND< 98.1	ND< 14.0	ND< 11.8	ND< 25.7	ND< 8.71	ND< 275	ND< 7.52	ND< 11.3	ND< 482	400
cis-1,2-Dichloroethene	ND< 98.1	ND< 14.0	ND< 11.8	ND< 25.7	ND< 8.71	695	ND< 7.52	ND< 11.3	ND< 482	10,000 *
trans-1,2-Dichloroethene	ND< 98.1	ND< 14.0	ND< 11.8	ND< 25.7	ND< 8.71	ND< 275	ND< 7.52	ND< 11.3	ND< 482	300
1,2-Dichloropropane	ND< 98.1	ND< 14.0	ND< 11.8	ND< 25.7	ND< 8.71	ND< 275	ND< 7.52	ND< 11.3	ND< 482	10,000 *
cis-1,3-Dichloropropene	ND< 98.1	ND< 14.0	ND< 11.8	ND< 25.7	ND< 8.71	ND< 275	ND< 7.52	ND< 11.3	ND< 482	10,000 *
trans-1,3-Dichloropropene	ND< 98.1	ND< 14.0	ND< 11.8	ND< 25.7	ND< 8.71	ND< 275	ND< 7.52	ND< 11.3	ND< 482	10,000 *
Methylene chloride	ND< 245	ND< 35.1	ND< 29.4	ND< 64.4	ND< 21.8	ND< 275	ND< 18.8	ND< 28.3	ND< 1,200	100
1,1,2,2-Tetrachloroethane	ND< 98.1	ND< 14.0	ND< 11.8	ND< 25.7	ND< 8.71	ND< 275	ND< 7.52	ND< 11.3	ND< 482	600
Tetrachloroethene	ND< 98.1	ND< 14.0	ND< 11.8	ND< 25.7	ND< 8.71	ND< 275	ND< 7.52	ND< 11.3	ND< 482	1,400
1.1.1-Trichloroethane	ND< 98.1	ND< 14.0	ND< 11.8	ND< 25.7	ND< 8.71	ND< 275	ND< 7.52	ND< 11.3	ND< 482	800
1,1,2-Trichloroethane	ND< 98.1	ND< 14.0	ND< 11.8	ND< 25.7	ND< 8.71	ND< 275	ND< 7.52	ND< 11.3	ND< 482	10,000 *
Trichloroethene	ND< 98.1	ND< 14.0	ND< 11.8	ND< 25.7	ND< 8.71	10,700	ND< 7.52	ND< 11.3	ND< 482	700
Trichlorofluoromethane	ND< 98.1	ND< 14.0	ND< 11.8	ND< 25.7	ND< 8.71	ND< 275	ND< 7.52	ND< 11.3	ND< 482	10,000 *
Vinyl Chloride	ND< 98.1	ND< 14.0	ND< 11.8	ND< 25.7	ND< 8.71	ND< 275	ND< 7.52	ND< 11.3	ND< 482	200
Volatile Aromatics										
Benzene	ND< 98.1	<u>64.4</u>	ND< 11.8	ND< 25.7	ND< 8.71	ND< 275	ND< 7.52	ND< 11.3	ND< 482	60 or MDL
Chlorobenzene	ND< 98.1	ND< 14.0	ND< 11.8	ND< 25.7	ND< 8.71	ND< 275	ND< 7.52	ND< 11.3	ND< 482	1,700
Ethylbenzene	4,690	335	522	ND< 25.7	35.9	ND< 275	ND< 7.52	13.5	2,080	5,500
Toluene	ND< 98.1	20.9	19.9	ND< 25.7	ND< 8.71	ND< 275	ND< 7.52	ND< 11.3	ND< 482	1,500
m,p - Xylene	20,000	1,440	249	ND< 25.7	424	ND< 275	ND< 7.52	139	8,590	1,200
o - Xylene	431	38.0	ND< 11.8	ND< 25.7	128	ND< 275	ND< 7.52	15.7	2,960	600
Styrene	ND< 98.1	ND< 14.0	ND< 11.8	ND< 25.7	ND< 8.71	ND< 275	ND< 7.52	ND< 11.3	ND< 482	10,000 *
1.2-Dichlorobenzene	ND< 98.1	ND< 14.0	ND< 11.8	ND< 25.7	ND< 8.71	ND< 275	ND< 7.52	ND< 11.3	ND< 482	7,900
1,3-Dichlorobenzene	ND< 98.1	ND< 14.0	ND< 11.8	ND< 25.7	ND< 8.71	ND< 275	ND< 7.52	ND< 11.3	ND< 482	1,600
1,4-Dichlorobenzene	ND< 98.1	ND< 14.0	ND< 11.8	ND< 25.7	ND< 8.71	ND< 275	ND< 7.52	ND< 11.3	ND< 482	8,500

Five Parcels in the Brooks Landing Urban Renewal District

Rochester, NY

					Soil	Samples				
TCL STARS VOCs	GP-1 14'	GP-1 24'-25'	GP-2 14'	GP-4 10'-12'	GP-5 8'-10'	GP - 7 4' - 8'	GP 14 15'	GP-16 10' - 12'	GP 17 8' - 10'	Recommended Soil Cleanup Objective ⁽¹⁾
Ketones & Misc.										
Acetone	ND< 491	ND< 70.1	ND< 58.9	<u>359</u>	171	ND< 1,370	45.1	ND< 56.6	ND< 2,410	200
2-Butanone	ND< 245	ND< 35.1	ND< 29.4	ND< 64.4	ND< 21.8	ND< 687	ND< 18.8	ND< 28.3	ND< 1,200	300
2-Hexanone	ND< 245	ND< 35.1	ND< 29.4	ND< 64.4	ND< 21.8	ND< 687	ND< 18.8	ND< 28.3	ND< 1,200	10,000 *
4-Methyl-2-pentanone	ND< 245	ND< 35.1	ND< 29.4	ND< 64.4	ND< 21.8	ND< 687	ND< 18.8	ND< 28.3	ND< 1,200	1,000
Carbon disulfide	ND< 245	ND< 35.1	ND< 29.4	ND< 64.4	ND< 21.8	ND< 687	ND< 18.8	ND< 28.3	ND< 1,200	2,700
Vinyl acetate	ND< 245	ND< 35.1	ND< 29.4	ND< 64.4	ND< 21.8	ND< 687	ND< 18.8	ND< 28.3	ND< 1,200	10,000 *
Additional STARS Compounds										
n-Butylbenzene	ND< 98.1	ND< 14.0	ND< 11.8	ND< 25.7	ND< 8.71	ND<	ND< 7.52	ND< 11.3	ND< 482	10,000 *
sec-Butylbenzene	372	37.7	334	ND< 25.7	17.5	ND<	ND< 7.52	ND< 11.3	ND< 482	10,000 *
tert-Butylbenzene	1,840	129	ND< 11.8	ND< 25.7	94.8	ND<	ND< 7.52	ND< 11.3	ND< 482	10,000 *
n-Propylbenzene	2,850	200	806	ND< 25.7	62.5	ND<	ND< 7.52	65.9	1,280	3,700
Isopropylbenzene	890	81.5	422	ND< 25.7	21.8	ND<	ND< 7.52	26.5	ND< 482	2,300
p-Isopropyltoluene	ND< 98.1	ND< 14.0	ND< 11.8	ND< 25.7	ND< 8.71	ND<	ND< 7.52	ND< 11.3	ND< 482	10,000 *
Naphthalene	2,090	439	ND< 29.4	71.4	174	ND<	ND< 18.8	54.8	1,950	13,000
1,2,4-Trimethylbenzene	E 16,600	1,150	E 1,830	79.6	875	ND<	ND< 7.52	207	8,800	10,000 *
1,3,5-Trimethylbenzene	<u>5,330</u>	390	ND< 11.8	ND< 25.7	211	ND<	ND< 7.52	81.3	2,240	3,300
Miscellaneous										
Methyl tert-butyl Ether	ND< 98.1	ND< 14.0	ND< 11.8	ND< 25.7	ND< 8.71	ND<	ND< 7.52	ND< 11.3	ND< 482	120

Notes:

1. NYSDEC. January 24, 1994. Determination of Soil Cleanup Objectives and Cleanup Levels, Division of Hazardous Waste Remediation, Technical and Administrative Guidance

Memorandum, TAGM 4046.

2. ug/kg = all values expressed in micrograms per kilogram (equivalent to parts per billion).

3. Bolded values are parameters that have been detected.

4. Bolded, <u>Underlined</u>, and *Italicized* values are reported concentrations above the NYSDEC recommended soil cleanup objective.

5. * = As per TAGM 4046, individual and sum of VOCs not listed may not exceed 10,000 ppb.

6. MDL = Method Detection Limit.

Five Parcels in the Brooks Landing Urban Renewal District

					Soil	Samples				
TCL STARS VOCs	PZ-20 16-18'	GP-22 4-8'	GP-23 4-8'	GP-24 0-4'	GP-25 4-8'	GP-26 4-8'	GP-27 4-8'	GP-28 4-8'	GP-29 4-8'	Recommended Soil Cleanup Objective ⁽¹⁾
ICL STARS VOCS	10-10	4-0	4-0	0-4	4-0	4-0	4-0	4-0	4-0	o sjeeu re
Volatile Halocarbons										
Bromodichloromethane	ND< 7.80	ND< 119	ND< 9.49	ND< 7.20	ND< 7.53	ND< 1,020	ND< 1,330	ND< 147	ND< 6.53	10.000 *
Bromomethane	ND< 7.80	ND< 119	ND< 9.49	ND< 7.20	ND< 7.53	ND< 1,020	ND< 1,330	ND< 147	ND< 6.53	10.000 *
Bromoform	ND< 7.80	ND< 119	ND< 9.49	ND< 7.20	ND< 7.53	ND< 1,020	ND< 1,330	ND< 147	ND< 6.53	10,000 *
Carbon tetrachloride	ND< 7.80	ND< 119	ND< 9.49	ND< 7.20	ND< 7.53	ND< 1,020	ND< 1,330	ND< 147	ND< 6.53	600
Chloroethane	ND< 7.80	ND< 119	ND< 9.49	ND< 7.20	ND< 7.53	ND< 1,020	ND< 1,330	ND< 147	ND< 6.53	1,900
Chloromethane	ND< 7.80	ND< 119	ND< 9.49	ND< 7.20	ND< 7.53	ND< 1,020	ND< 1,330	ND< 147	ND< 6.53	10,000 *
2-Chloroethyl vinyl ether	ND< 7.80	ND< 119	ND< 9.49	ND< 7.20	ND< 7.53	ND< 1,020	ND< 1,330	ND< 147	ND< 6.53	10,000 *
Chloroform	ND< 7.80	ND< 119	ND< 9.49	ND< 7.20	ND< 7.53	ND< 1,020	ND< 1,330	ND< 147	ND< 6.53	300
Dibromochloromethane	ND< 7.80	ND< 119	ND< 9.49	ND< 7.20	ND< 7.53	ND< 1,020	ND< 1,330	ND< 147	ND< 6.53	10,000 *
1.1-Dichloroethane	ND< 7.80	ND< 119	ND< 9.49	ND< 7.20	ND< 7.53	ND< 1,020	ND< 1,330	ND< 147	ND< 6.53	200
1,2-Dichloroethane	ND< 7.80	ND< 119	ND< 9.49	ND< 7.20	ND< 7.53	ND< 1,020	ND< 1,330	ND< 147	ND< 6.53	100
1,1-Dichloroethene	ND< 7.80	ND< 119	ND< 9.49	ND< 7.20	ND< 7.53	ND< 1,020	ND< 1,330	ND< 147	ND< 6.53	400
cis-1,2-Dichloroethene	ND< 7.80	894	ND< 9.49	ND< 7.20	ND< 7.53	1,480	1,490	334	ND< 6.53	10,000 *
trans-1,2-Dichloroethene	ND< 7.80	ND< 119	ND < 9.49	ND< 7.20	ND< 7.53	ND< 1,020	ND< 1,330	ND< 147	ND< 6.53	300
1,2-Dichloropropane	ND< 7.80	ND< 119	ND< 9.49	ND< 7.20	ND< 7.53	ND< 1,020	ND< 1,330	ND< 147	ND< 6.53	10.000 *
cis-1,3-Dichloropropene	ND< 7.80	ND< 119	ND < 9.49	ND< 7.20	ND< 7.53	ND< 1,020	ND< 1,330	ND< 147	ND< 6.53	10,000 *
trans-1,3-Dichloropropene	ND< 7.80	ND< 119	ND< 9.49	ND< 7.20	ND< 7.53	ND< 1,020	ND< 1,330	ND< 147	ND< 6.53	10,000 *
Methylene chloride	ND< 19.5	ND< 297	ND< 23.7	ND< 18.0	ND< 18.8	ND< 2,550	ND< 3,330	ND < 368	ND< 16.3	10,000
1,1,2,2-Tetrachloroethane	ND< 7.80	ND< 119	ND< 9.49	ND< 7.20	ND< 7.53	ND< 1,020	ND< 1,330	ND< 147	ND< 6.53	600
Tetrachloroethene	ND< 7.80	ND< 119	ND < 9.49	ND< 7.20	ND< 7.53	ND< 1,020	ND< 1,330	ND< 147	ND< 6.53	1,400
1,1,1-Trichloroethane	ND< 7.80	ND< 119	ND< 9.49	ND< 7.20	ND< 7.53	ND< 1,020	ND< 1,330	ND< 147 ND< 147	ND< 6.53	800
1,1,2-Trichloroethane	ND< 7.80	ND< 119	ND< 9.49	ND< 7.20	ND< 7.53	ND< 1,020	ND< 1,330	ND< 147	ND< 0.53	10,000 *
Trichloroethene	ND< 7.80	11,100	10.4	133	42.3	25,900	26,200	5,550	ND< 0.53	700
Trichlorofluoromethane	ND< 7.80	$ND < \frac{11,100}{119}$	ND< 9.49	ND< 7.20	ND< 7.53	$ND < \frac{23,300}{1,020}$	ND< 1,330	ND< 147	ND< 6.53	10.000 *
Vinyl Chloride	ND< 7.80	ND< 119	ND< 9.49	ND< 7.20	ND< 7.53	ND< 1,020	ND< 1,330 ND< 1,330	ND< 147 ND< 147	ND< 0.53	200
v niyi Chionde	ND< 7.00	ND< 119	ND< 9.49	ND< 7.20	ND< 7.55	ND< 1,020	ND< 1,550	ND< 147	ND< 0.55	200
Volatile Aromatics										
Benzene	ND< 7.80	ND< 119	ND< 9.49	ND< 7.20	ND< 7.53	ND< 1,020	ND< 1,330	ND< 147	ND< 6.53	60 or MDL
Chlorobenzene	ND< 7.80	ND< 119	ND< 9.49	ND< 7.20	ND< 7.53	ND< 1,020	ND< 1,330	ND< 147	ND< 6.53	1,700
Ethylbenzene	ND< 7.80	ND< 119	ND< 9.49	ND< 7.20	ND< 7.53	ND< 1,020	ND< 1,330	ND< 147	ND< 6.53	5,500
Toluene	ND< 7.80	ND< 119	ND< 9.49	ND< 7.20	ND< 7.53	ND< 1,020	ND< 1,330	ND< 147	ND< 6.53	1,500
m,p - Xylene	ND< 7.80	ND< 119	9.89	ND< 7.20	ND< 7.53	ND< 1,020	ND< 1,330	ND< 147	ND< 6.53	1,200
o - Xylene	ND< 7.80	ND< 119	ND< 9.49	ND< 7.20	ND< 7.53	ND< 1,020	ND< 1,330	ND< 147 ND< 147	ND< 6.53	600
Styrene	ND< 7.80	ND< 119 ND< 119	ND< 9.49 ND< 9.49	ND< 7.20 ND< 7.20	ND< 7.53	ND< 1,020 ND< 1,020	ND< 1,330 ND< 1,330	ND< 147 ND< 147	ND< 0.53 ND< 6.53	10.000 *
1,2-Dichlorobenzene	ND< 7.80 ND< 7.80	ND< 119 ND< 119	ND< 9.49 ND< 9.49	ND< 7.20 ND< 7.20	ND< 7.53 ND< 7.53	ND< 1,020 ND< 1,020	ND< 1,330 ND< 1,330	ND< 147 ND< 147	ND< 6.53 ND< 6.53	7,900
· ·						ND< 1,020 ND< 1,020				
1,3-Dichlorobenzene 1,4-Dichlorobenzene	ND< 7.80	ND< 119 ND< 119	ND< 9.49	ND< 7.20 ND< 7.20	ND< 7.53	· · · · · ·	ND< 1,330	ND< 147	ND< 6.53	1,600
1,4-Dichlorobenzene	ND< 7.80	ND< 119	ND< 9.49	ND< 7.20	ND< 7.53	ND< 1,020	ND< 1,330	ND< 147	ND< 6.53	8,500

Five Parcels in the Brooks Landing Urban Renewal District

Rochester, NY

					Soil	Samples				
TCL STARS VOCs	PZ-20 16-18'	GP-22 4-8'	GP-23 4-8'	GP-24 0-4'	GP-25 4-8'	GP-26 4-8'	GP-27 4-8'	GP-28 4-8'	GP-29 4-8'	Recommended Soil Cleanup Objective ⁽¹⁾
Ketones & Misc.										
Acetone	ND< 39.0	ND< 594	ND< 47.4	ND< 36.0	ND< 37.6	ND< 5,100	ND< 6,670	ND< 737	ND< 32.7	200
2-Butanone	ND< 19.5	ND< 297	ND< 23.7	ND< 18.0	ND< 18.8	ND< 2,550	ND< 3,330	ND< 368	ND< 16.3	300
2-Hexanone	ND< 19.5	ND< 297	ND< 23.7	ND< 18.0	ND< 18.8	ND< 2,550	ND< 3,330	ND< 368	ND< 16.3	10,000 *
4-Methyl-2-pentanone	ND< 19.5	ND< 297	ND< 23.7	ND< 18.0	ND< 18.8	ND< 2,550	ND< 3,330	ND< 368	ND< 16.3	1,000
Carbon disulfide	ND< 19.5	ND< 297	ND< 23.7	ND< 18.0	ND< 18.8	ND< 2,550	ND< 3,330	ND< 368	ND< 16.3	2,700
Vinyl acetate	ND< 19.5	ND< 297	ND< 23.7	ND< 18.0	ND< 18.8	ND< 2,550	ND< 3,330	ND< 368	ND< 16.3	10,000 *
Additional STARS Compounds										
n-Butylbenzene	ND< 7.80	ND< 119	ND< 9.49	ND< 7.20	ND< 7.54	ND< 1,010	ND< 1,330	ND< 148	ND< 6.52	10,000 *
sec-Butylbenzene	ND< 7.80	ND< 119	ND< 9.49	ND< 7.20	ND< 7.54	ND< 1,010	ND< 1,330	ND< 148	ND< 6.52	10,000 *
tert-Butylbenzene	ND< 7.80	ND< 119	ND< 9.49	ND< 7.20	ND< 7.54	ND< 1,010	ND< 1,330	ND< 148	ND< 6.52	10,000 *
n-Propylbenzene	ND< 7.80	ND< 119	ND< 9.49	ND< 7.20	ND< 7.54	ND< 1,010	ND< 1,330	ND< 148	ND< 6.52	3,700
Isopropylbenzene	ND< 7.80	ND< 119	ND< 9.49	ND< 7.20	ND< 7.54	ND< 1,010	ND< 1,330	ND< 148	ND< 6.52	2,300
p-Isopropyltoluene	ND< 7.80	ND< 119	ND< 9.49	ND< 7.20	ND< 7.54	ND< 1,010	ND< 1,330	ND< 148	ND< 6.52	10,000 *
Naphthalene	ND< 19.5	ND< 297	ND< 23.7	ND< 18.0	ND< 18.9	ND< 2,520	ND< 3,280	ND< 370	ND< 16.3	13,000
1,2,4-Trimethylbenzene	ND< 7.80	ND< 119	ND< 9.49	ND< 7.20	ND< 7.54	ND< 1,010	ND< 1,330	ND< 148	ND< 6.52	10,000 *
1,3,5-Trimethylbenzene	ND< 7.80	ND< 119	ND< 9.49	ND< 7.20	ND< 7.54	ND< 1,010	ND< 1,330	ND< 148	ND< 6.52	3,300
Miscellaneous							ND< 1,330			
Methyl tert-butyl Ether	ND< 7.80	ND< 119	ND< 9.49	ND< 7.20	ND< 7.54	ND< 1,010	ND< 1,330	ND< 148	ND< 6.52	120

Notes:

1. NYSDEC. January 24, 1994. Determination of Soil Cleanup Objectives and Cleanup Levels,

Division of Hazardous Waste Remediation, Technical and Administrative Guidance Memorandum, TAGM 4046.

2. ug/kg = all values expressed in micrograms per kilogram (equivalent to parts per billion).

3. Bolded values are parameters that have been detected.

4. Bolded, <u>Underlined</u>, and *Italicized* values are reported concentrations above the NYSDEC recommended soil cleanup objective.

5. * = As per TAGM 4046, individual and sum of VOCs not listed may not exceed 10,000 ppb.

6. MDL = Method Detection Limit.

Five Parcels in the Brooks Landing Urban Renewal District Rochester, NY

			Soil S	Samples		
TCL STARS VOCs	GP-30 4-8'	GP-31 4-8'	PZ-19 4-8'	PZ-21 16-19'	PZ-18 16-20'	Recommended Soil Cleanup Objective ⁽¹⁾
	10	10		1012	10 20	0
Volatile Halocarbons						
Bromodichloromethane	ND< 1,180	ND< 127	ND< 50.8	ND< 11.1	ND< 51.0	10,000 *
Bromomethane	ND< 1,180	ND< 127	ND< 50.8	ND< 11.1	ND< 51.0	10,000 *
Bromoform	ND< 1,180	ND< 127	ND< 50.8	ND< 11.1	ND< 51.0	10,000 *
Carbon tetrachloride	ND< 1,180	ND< 127	ND< 50.8	ND< 11.1	ND< 51.0	600
Chloroethane	ND< 1,180	ND< 127	ND< 50.8	ND< 11.1	ND< 51.0	1,900
Chloromethane	ND< 1,180	ND< 127	ND< 50.8	ND< 11.1	ND< 51.0	10,000 *
2-Chloroethyl vinyl ether	ND< 1,180	ND< 127	ND< 50.8	ND< 11.1	ND< 51.0	10,000 *
Chloroform	ND< 1,180	ND< 127	ND< 50.8	ND< 11.1	ND< 51.0	300
Dibromochloromethane	ND< 1,180	ND< 127	ND< 50.8	ND< 11.1	ND< 51.0	10.000 *
1.1-Dichloroethane	ND< 1,180	ND< 127	ND< 50.8	ND< 11.1	ND< 51.0	200
1.2-Dichloroethane	ND< 1,180	ND< 127	ND< 50.8	ND< 11.1	ND< 51.0	100
1,1-Dichloroethene	ND< 1,180	ND< 127	ND< 50.8	ND< 11.1	ND< 51.0	400
cis-1,2-Dichloroethene	ND< 1,180	2,050	ND< 50.8	ND< 11.1	ND< 51.0	10,000 *
trans-1,2-Dichloroethene	ND< 1.180	ND< 127	ND< 50.8	ND< 11.1	ND< 51.0	300
1,2-Dichloropropane	ND< 1,180	ND< 127	ND< 50.8	ND< 11.1	ND< 51.0	10,000 *
cis-1,3-Dichloropropene	ND< 1,180	ND< 127	ND< 50.8	ND< 11.1	ND< 51.0	10,000 *
trans-1,3-Dichloropropene	ND< 1.180	ND< 127	ND< 50.8	ND< 11.1	ND< 51.0	10.000 *
Methylene chloride	ND< 2,940	ND< 318	ND< 127	ND< 27.6	ND< 127	100
1,1,2,2-Tetrachloroethane	ND< 1,180	ND< 127	ND < 50.8	ND< 11.1	ND < 51.0	600
Tetrachloroethene	ND< 1,180	ND < 127	ND< 50.8	ND< 11.1	ND< 51.0	1,400
1,1,1-Trichloroethane	ND< 1,180	ND< 127	ND< 50.8	ND< 11.1	ND< 51.0	800
1,1,2-Trichloroethane	ND< 1,180	ND< 127	ND< 50.8	ND< 11.1	ND< 51.0	10.000 *
Trichloroethene	21,700	13,600	3,890	ND< 11.1	ND< 51.0	700
Trichlorofluoromethane	ND< 1,180	ND< 127	ND < 50.8	ND< 11.1	ND< 51.0	10,000 *
Vinyl Chloride	ND< 1,180	ND< 127	ND< 50.8	ND< 11.1	ND< 51.0	200
viniyi cinonde	112 (1,100	110 (12)	112 \ 50.0	112 \ 11.1	110 \ 51.0	200
Volatile Aromatics						
Benzene	ND< 1,180	ND< 127	ND< 50.8	ND< 11.1	313	60 or MDL
Chlorobenzene	ND< 1,180	ND< 127	ND< 50.8	ND< 11.1	ND< 51.0	1,700
Ethylbenzene	ND< 1,180	ND< 127	ND< 50.8	ND< 11.1	ND< 51.0	5,500
Toluene	ND< 1,180	ND< 127	ND< 50.8	ND< 11.1	ND< 51.0	1,500
m,p - Xylene	ND< 1,180	ND< 127	65.3	ND< 11.1	ND< 51.0	1,200
o - Xylene	ND< 1,180	ND< 127	ND< 50.8	ND< 11.1	ND< 51.0	600
Styrene	ND< 1,180	ND< 127	ND< 50.8	ND< 11.1	ND< 51.0	10,000 *
1,2-Dichlorobenzene	ND < 1,180 ND < 1,180	ND< 127	ND< 50.8	ND< 11.1	ND< 51.0	7,900
1.3-Dichlorobenzene	ND< 1,180	ND< 127	ND< 50.8	ND< 11.1	ND< 51.0	1.600
1,4-Dichlorobenzene	ND< 1,180	ND< 127 ND< 127	ND< 50.8	ND< 11.1	ND< 51.0	8,500
	1,100	112 12/	10 0.0	11.1	110 31.0	0,500

Five Parcels in the Brooks Landing Urban Renewal District Rochester, NY

			Soil S	Samples		
TCL STARS VOCs	GP-30 4-8'	GP-31 4-8'	PZ-19 4-8'	PZ-21 16-19'	PZ-18 16-20'	Recommended Soil Cleanup Objective ⁽¹⁾
Ketones & Misc.						
Acetone	ND< 5,890	ND< 636	ND< 254	ND< 55.3	ND< 255	200
2-Butanone	ND< 2,940	ND< 318	ND< 127	ND< 27.6	ND< 127	300
2-Hexanone	ND< 2,940	ND< 318	ND< 127	ND< 27.6	ND< 127	10,000 *
4-Methyl-2-pentanone	ND< 2,940	ND< 318	ND< 127	ND< 27.6	ND< 127	1,000
Carbon disulfide	ND< 2,940	ND< 318	ND< 127	ND< 27.6	ND< 127	2,700
Vinyl acetate	ND< 2,940	ND< 318	ND< 127	ND< 27.6	ND< 127	10,000 *
Additional STARS Compounds						
n-Butylbenzene	ND< 1,170	ND< 127	ND< 50.6	ND< 11.0	ND< 50.6	10,000 *
sec-Butylbenzene	ND< 1,170	ND< 127	ND< 50.6	ND< 11.0	ND< 50.6	10,000 *
tert-Butylbenzene	ND< 1,170	ND< 127	ND< 50.6	ND< 11.0	ND< 50.6	10,000 *
n-Propylbenzene	ND< 1,170	ND< 127	ND< 50.6	ND< 11.0	ND< 50.6	3,700
Isopropylbenzene	ND< 1,170	ND< 127	ND< 50.6	ND< 11.0	ND< 50.6	2,300
p-Isopropyltoluene	ND< 1.170	ND< 127	ND< 50.6	ND< 11.0	ND< 50.6	10.000 *
Naphthalene	ND< 2,940	ND< 318	ND< 127	ND< 27.5	ND< 127	13,000
1,2,4-Trimethylbenzene	ND< 1,170	ND< 127	ND< 50.6	ND< 11.0	ND< 50.6	10,000 *
1,3,5-Trimethylbenzene	ND< 1,170	ND< 127	ND< 50.6	ND< 11.0	ND< 50.6	3,300
<u>Miscellaneous</u> Methyl tert-butyl Ether	ND< 1,170 ND< 1,170	ND< 127	ND< 50.6	ND< 11.0	<u>289</u>	120

Notes:

1. NYSDEC. January 24, 1994. Determination of Soil Cleanup Objectives and Cleanup Levels,

Division of Hazardous Waste Remediation, Technical and Administrative Guidance Memorandum, HWR 94-4046 (Revised December 2000).

2. ug/kg = all values expressed in micrograms per kilogram (equivalent to parts per billion).

3. Bolded values are parameters that have been detected.

4. Bolded, <u>Underlined</u>, and *Italicized* values are reported concentrations above the NYSDEC recommended soil cleanup objective.

5. * = As per TAGM 4046, individual and sum of VOCs not listed may not exceed 10,000 ppb.

6. MDL = Method Detection Limit.

Five Parcels in the Brooks Landing Urban Renewal District

						Native I	Deposits						Recommended
	GP-1	GP-1	GP-2	GP-4	GP 14	GP-16	GP 17	PZ-18	PZ-20	PZ-21	GP-23	GP-29	Soil Cleanup
TCL/STARS VOCs 8260	14'	24'-25'	14'	10'-12'	15'	10' - 12'	8' - 10'	16-20'	16-18'	16-19'	4-8'	4-8'	Objective (1)
Volatile Halocarbons													
Bromodichloromethane	ND< 98.1	ND< 14.0	ND< 11.8	ND< 25.7	ND< 7.52	ND< 11.3	ND< 482	ND< 51.0	ND< 7.80	ND< 11.1	ND< 9.49	ND< 6.53	10,000 *
Bromomethane	ND< 98.1	ND< 14.0	ND< 11.8	ND< 25.7	ND< 7.52	ND< 11.3	ND< 482	ND< 51.0	ND< 7.80	ND< 11.1	ND< 9.49	ND< 6.53	10,000 *
Bromoform	ND< 98.1	ND< 14.0	ND< 11.8	ND< 25.7	ND< 7.52	ND< 11.3	ND< 482	ND< 51.0	ND< 7.80	ND< 11.1	ND< 9.49	ND< 6.53	10,000 *
Carbon tetrachloride	ND< 98.1	ND< 14.0	ND< 11.8	ND< 25.7	ND< 7.52	ND< 11.3	ND< 482	ND< 51.0	ND< 7.80	ND< 11.1	ND< 9.49	ND< 6.53	600
Chloroethane	ND< 98.1	ND< 14.0	ND< 11.8	ND< 25.7	ND< 7.52	ND< 11.3	ND< 482	ND< 51.0	ND< 7.80	ND< 11.1	ND< 9.49	ND< 6.53	1,900
Chloromethane	ND< 98.1	ND< 14.0	ND< 11.8	ND< 25.7	ND< 7.52	ND< 11.3	ND< 482	ND< 51.0	ND< 7.80	ND< 11.1	ND< 9.49	ND< 6.53	10,000 *
2-Chloroethyl vinyl ether	ND< 98.1	ND< 14.0	ND< 11.8	ND< 25.7	ND< 7.52	ND< 11.3	ND< 482	ND< 51.0	ND< 7.80	ND< 11.1	ND< 9.49	ND< 6.53	10,000 *
Chloroform	ND< 98.1	ND< 14.0	ND< 11.8	ND< 25.7	ND< 7.52	ND< 11.3	ND< 482	ND< 51.0	ND< 7.80	ND< 11.1	ND< 9.49	ND< 6.53	300
Dibromochloromethane	ND< 98.1	ND< 14.0	ND< 11.8	ND< 25.7	ND< 7.52	ND< 11.3	ND< 482	ND< 51.0	ND< 7.80	ND< 11.1	ND< 9.49	ND< 6.53	10,000 *
1,1-Dichloroethane	ND< 98.1	ND< 14.0	ND< 11.8	ND< 25.7	ND< 7.52	ND< 11.3	ND< 482	ND< 51.0	ND< 7.80	ND< 11.1	ND< 9.49	ND< 6.53	200
1,2-Dichloroethane	ND< 98.1	ND< 14.0	ND< 11.8	ND< 25.7	ND< 7.52	ND< 11.3	ND< 482	ND< 51.0	ND< 7.80	ND< 11.1	ND< 9.49	ND< 6.53	100
1,1-Dichloroethene	ND< 98.1	ND< 14.0	ND< 11.8	ND< 25.7	ND< 7.52	ND< 11.3	ND< 482	ND< 51.0	ND< 7.80	ND< 11.1	ND< 9.49	ND< 6.53	400
cis-1,2-Dichloroethene	ND< 98.1	ND< 14.0	ND< 11.8	ND< 25.7	ND< 7.52	ND< 11.3	ND< 482	ND< 51.0	ND< 7.80	ND< 11.1	ND< 9.49	ND< 6.53	10,000 *
trans-1,2-Dichloroethene	ND< 98.1	ND< 14.0	ND< 11.8	ND< 25.7	ND< 7.52	ND< 11.3	ND< 482	ND< 51.0	ND< 7.80	ND< 11.1	ND< 9.49	ND< 6.53	300
1,2-Dichloropropane	ND< 98.1	ND< 14.0	ND< 11.8	ND< 25.7	ND< 7.52	ND< 11.3	ND< 482	ND< 51.0	ND< 7.80	ND< 11.1	ND< 9.49	ND< 6.53	10,000 *
cis-1,3-Dichloropropene	ND< 98.1	ND< 14.0	ND< 11.8	ND< 25.7	ND< 7.52	ND< 11.3	ND< 482	ND< 51.0	ND< 7.80	ND< 11.1	ND< 9.49	ND< 6.53	10,000 *
trans-1,3-Dichloropropene	ND< 98.1	ND< 14.0	ND< 11.8	ND< 25.7	ND< 7.52	ND< 11.3	ND< 482	ND< 51.0	ND< 7.80	ND< 11.1	ND< 9.49	ND< 6.53	10,000 *
Methylene chloride	ND< 245	ND< 35.1	ND< 29.4	ND< 64.4	ND< 18.8	ND< 28.3	ND< 1,200	ND< 127	ND< 19.5	ND< 27.6	ND< 23.7	ND< 16.3	100
1,1,2,2-Tetrachloroethane	ND< 98.1	ND< 14.0	ND< 11.8	ND< 25.7	ND< 7.52	ND< 11.3	ND< 482	ND< 51.0	ND< 7.80	ND< 11.1	ND< 9.49	ND< 6.53	600
Tetrachloroethene	ND< 98.1	ND< 14.0	ND< 11.8	ND< 25.7	ND< 7.52	ND< 11.3	ND< 482	ND< 51.0	ND< 7.80	ND< 11.1	ND< 9.49	ND< 6.53	1,400
1,1,1-Trichloroethane	ND< 98.1	ND< 14.0	ND< 11.8	ND< 25.7	ND< 7.52	ND< 11.3	ND< 482	ND< 51.0	ND< 7.80	ND< 11.1	ND< 9.49	ND< 6.53	800
1,1,2-Trichloroethane	ND< 98.1	ND< 14.0	ND< 11.8	ND< 25.7	ND< 7.52	ND< 11.3	ND< 482	ND< 51.0	ND< 7.80	ND< 11.1	ND< 9.49	ND< 6.53	10,000 *
Trichloroethene	ND< 98.1	ND< 14.0	ND< 11.8	ND< 25.7	ND< 7.52	ND< 11.3	ND< 482	ND< 51.0	ND< 7.80	ND< 11.1	10.4	ND< 6.53	700
Trichlorofluoromethane	ND< 98.1	ND< 14.0	ND< 11.8	ND< 25.7	ND< 7.52	ND< 11.3	ND< 482	ND< 51.0	ND< 7.80	ND< 11.1	ND< 9.49	ND< 6.53	10,000 *
Vinyl Chloride	ND< 98.1	ND< 14.0	ND< 11.8	ND< 25.7	ND< 7.52	ND< 11.3	ND< 482	ND< 51.0	ND< 7.80	ND< 11.1	ND< 9.49	ND< 6.53	200
Volatile Aromatics													
Benzene	ND< 98.1	<u>64.4</u>	ND< 11.8	ND< 25.7	ND< 7.52	ND< 11.3	ND< 482	313	ND< 7.80	ND< 11.1	ND< 9.49	ND< 6.53	60 or MDL
Chlorobenzene	ND< 98.1	ND< 14.0	ND< 11.8	ND< 25.7	ND< 7.52	ND< 11.3	ND< 482	ND< 51.0	ND< 7.80	ND< 11.1	ND< 9.49	ND< 6.53	1,700
Ethylbenzene	4,690	335	522	ND< 25.7	ND< 7.52	13.5	2,080	ND< 51.0	ND< 7.80	ND< 11.1	ND< 9.49	ND< 6.53	5,500
Toluene	ND< 98.1	20.9	19.9	ND< 25.7	ND< 7.52	ND< 11.3	ND< 482	ND< 51.0	ND< 7.80	ND< 11.1	ND< 9.49	ND< 6.53	1,500
m,p - Xylene	20,000	<u>1,440</u>	249	ND< 25.7	ND< 7.52	139	8,590	ND< 51.0	ND< 7.80	ND< 11.1	9.89	ND< 6.53	1,200
o - Xylene	431	38.0	ND< 11.8	ND< 25.7	ND< 7.52	15.7	2,960	ND< 51.0	ND< 7.80	ND< 11.1	ND< 9.49	ND< 6.53	600
Styrene	ND< 98.1	ND< 14.0	ND< 11.8	ND< 25.7	ND< 7.52	ND< 11.3	ND< 482	ND< 51.0	ND< 7.80	ND< 11.1	ND< 9.49	ND< 6.53	10,000 *
1,2-Dichlorobenzene	ND< 98.1	ND< 14.0	ND< 11.8	ND< 25.7	ND< 7.52	ND< 11.3	ND< 482	ND< 51.0	ND< 7.80	ND< 11.1	ND< 9.49	ND< 6.53	7,900
1,3-Dichlorobenzene	ND< 98.1	ND< 14.0	ND< 11.8	ND< 25.7	ND< 7.52	ND< 11.3	ND< 482	ND< 51.0	ND< 7.80	ND< 11.1	ND< 9.49	ND< 6.53	1,600
1,4-Dichlorobenzene	ND< 98.1	ND< 14.0	ND< 11.8	ND< 25.7	ND< 7.52	ND< 11.3	ND< 482	ND< 51.0	ND< 7.80	ND< 11.1	ND< 9.49	ND< 6.53	8,500

TABLE 8 SUMMARY OF TCL/STARS VOLATILE ORGANIC COMPOUNDS IN SOIL (ug/kg)

Five Parcels in the Brooks Landing Urban Renewal District

Rochester, NY

						Native I)eposits						Recommended
	GP-1	GP-1	GP-2	GP-4	GP 14	GP-16	GP 17	PZ-18	PZ-20	PZ-21	GP-23	GP-29	Soil Cleanup
TCL/STARS VOCs 8260	14'	24'-25'	14'	10'-12'	15'	10' - 12'	8' - 10'	16-20'	16-18'	16-19'	4-8'	4-8'	Objective (1)
Ketones & Misc.													
Acetone	ND< 491	ND< 70.1	ND< 58.9	359	45.1	ND< 56.6	ND< 2,410	ND< 255	ND< 39.0	ND< 55.3	ND< 47.4	ND< 32.7	200
2-Butanone	ND< 245	ND< 35.1	ND< 29.4	ND< 64.4	ND< 18.8	ND< 28.3	ND< 1,200	ND< 127	ND< 19.5	ND< 27.6	ND< 23.7	ND< 16.3	300
2-Hexanone	ND< 245	ND< 35.1 ND< 35.1	ND< 29.4 ND< 29.4	ND< 64.4	ND< 18.8	ND< 28.3	ND< 1,200 ND< 1,200	ND< 127 ND< 127	ND< 19.5	ND< 27.6	ND< 23.7 ND< 23.7	ND< 16.3	10,000 *
	ND< 245	ND< 35.1 ND< 35.1	ND< 29.4 ND< 29.4	ND< 64.4	ND< 18.8	ND < 28.3 ND < 28.3		ND< 127 ND< 127	ND< 19.5 ND< 19.5	ND< 27.6	ND< 23.7 ND< 23.7	ND< 16.3	1,000
4-Methyl-2-pentanone	ND< 245 ND< 245		ND< 29.4 ND< 29.4	ND< 64.4 ND< 64.4		ND< 28.3 ND< 28.3	ND< 1,200		ND< 19.5 ND< 19.5	ND< 27.6 ND< 27.6		ND< 16.3	2,700
Carbon disulfide		ND< 35.1			ND< 18.8		ND< 1,200	ND< 127			ND< 23.7		,
Vinyl acetate	ND< 245	ND< 35.1	ND< 29.4	ND< 64.4	ND< 18.8	ND< 28.3	ND< 1,200	ND< 127	ND< 19.5	ND< 27.6	ND< 23.7	ND< 16.3	10,000 *
Additional STARS Compounds													
n-Butylbenzene	ND< 98.1	ND< 14.0	ND< 11.8	ND< 25.7	ND< 7.52	ND< 11.3	ND< 482	ND< 50.6	ND< 7.80	ND< 11.0	ND< 9.49	ND< 6.52	10,000 *
sec-Butylbenzene	372	37.7	334	ND< 25.7	ND< 7.52	ND< 11.3	ND< 482	ND< 50.6	ND< 7.80	ND< 11.0	ND< 9.49	ND< 6.52	10,000 *
tert-Butylbenzene	1,840	129	ND< 11.8	ND< 25.7	ND< 7.52	ND< 11.3	ND< 482	ND< 50.6	ND< 7.80	ND< 11.0	ND< 9.49	ND< 6.52	10,000 *
n-Propylbenzene	2,850	200	806	ND< 25.7	ND< 7.52	65.9	1,280	ND< 50.6	ND< 7.80	ND< 11.0	ND< 9.49	ND< 6.52	3,700
Isopropylbenzene	890	81.5	422	ND< 25.7	ND< 7.52	26.5	ND< 482	ND< 50.6	ND< 7.80	ND< 11.0	ND< 9.49	ND< 6.52	2,300
p-Isopropyltoluene	ND< 98.1	ND< 14.0	ND< 11.8	ND< 25.7	ND< 7.52	ND< 11.3	ND< 482	ND< 50.6	ND< 7.80	ND< 11.0	ND< 9.49	ND< 6.52	10,000 *
Naphthalene	2,090	439	ND< 29.4	71.4	ND< 18.8	54.8	1,950	ND< 127	ND< 19.5	ND< 27.5	ND< 23.7	ND< 16.3	13,000
1,2,4-Trimethylbenzene	E 16,600	1,150	E 1,830	79.6	ND< 7.52	207	8,800	ND< 50.6	ND< 7.80	ND< 11.0	ND< 9.49	ND< 6.52	10,000 *
1,3,5-Trimethylbenzene	5,330	390	ND< 11.8	ND< 25.7	ND< 7.52	81.3	2,240	ND< 50.6	ND< 7.80	ND< 11.0	ND< 9.49	ND< 6.52	3,300
Miscellaneous													
Methyl tert-butyl Ether	ND< 98.1	ND< 14.0	ND< 11.8	ND< 25.7	ND< 7.52	ND< 11.3	ND< 482	<u>289</u>	ND< 7.80	ND< 11.0	ND< 9.49	ND< 6.52	120

Notes:

1. NYSDEC. January 24, 1994. Determination of Soil Cleanup Objectives and Cleanup Levels, Division of Hazardous Waste Remediation, Technical and Administrative Guidance

Memorandum, HWR 94-4046 (Revised December 2000).

2. ug/kg = all values expressed in micrograms per kilogram (equivalent to parts per billion).

3. **Bolded** values are parameters that have been detected.

4. Bolded, Underlined, and Italicized values are reported concentrations above the NYSDEC recommended soil cleanup objective.

5. * = As per TAGM 4046, individual and sum of VOCs not listed may not exceed 10,000 ppb.

6. MDL = Method Detection Limit.

Five Parcels in the Brooks Landing Urban Renewal District Rochester, NY

	Sha	allow Granular	Fill	Recommended		
	GP-5	GP-24	GP-25	Soil Cleanup		
TCL/STARS VOCs 8260	8'-10'	0-4'	4-8'	Objective ⁽¹⁾		
Volatile Halocarbons						
Bromodichloromethane	ND< 8.71	ND< 7.20	ND< 7.53	10,000 *		
Bromomethane	ND< 8.71	ND< 7.20	ND< 7.53	10,000 *		
Bromoform	ND< 8.71	ND< 7.20	ND< 7.53	10,000 *		
Carbon tetrachloride	ND< 8.71	ND< 7.20	ND< 7.53	600		
Chloroethane	ND< 8.71	ND< 7.20	ND< 7.53	1,900		
Chloromethane	ND< 8.71	ND< 7.20	ND< 7.53	10,000 *		
2-Chloroethyl vinyl ether	ND< 8.71	ND< 7.20	ND< 7.53	10,000 *		
Chloroform	ND< 8.71	ND< 7.20	ND< 7.53	300		
Dibromochloromethane	ND< 8.71	ND< 7.20	ND< 7.53	10,000 *		
1,1-Dichloroethane	ND< 8.71	ND< 7.20	ND< 7.53	200		
1,2-Dichloroethane	ND< 8.71	ND< 7.20	ND< 7.53	100		
1,1-Dichloroethene	ND< 8.71	ND< 7.20	ND< 7.53	400		
cis-1,2-Dichloroethene	ND< 8.71	ND< 7.20	ND< 7.53	10,000 *		
trans-1,2-Dichloroethene	ND< 8.71	ND< 7.20	ND< 7.53	300		
1,2-Dichloropropane	ND< 8.71	ND< 7.20	ND< 7.53	10,000 *		
cis-1,3-Dichloropropene	ND< 8.71	ND< 7.20	ND< 7.53	10,000 *		
trans-1,3-Dichloropropene	ND< 8.71	ND< 7.20	ND< 7.53	10,000 *		
Methylene chloride	ND< 21.8	ND< 18.0	ND< 18.8	100		
1,1,2,2-Tetrachloroethane	ND< 8.71	ND< 7.20	ND< 7.53	600		
Tetrachloroethene	ND< 8.71	ND< 7.20	ND< 7.53	1,400		
1,1,1-Trichloroethane	ND< 8.71	ND< 7.20	ND< 7.53	800		
1,1,2-Trichloroethane	ND< 8.71	ND< 7.20	ND< 7.53	10,000 *		
Trichloroethene	ND< 8.71	133	42.3	700		
Trichlorofluoromethane	ND< 8.71	ND< 7.20	ND< 7.53	10,000 *		
Vinyl Chloride	ND< 8.71	ND< 7.20	ND< 7.53	200		
Volatile Aromatics						
Benzene	ND< 8.71	ND< 7.20	ND< 7.53	60 or MDL		
Chlorobenzene	ND< 8.71	ND< 7.20	ND< 7.53	1,700		
Ethylbenzene	ND< 8.71 35.9	ND< 7.20	ND< 7.53	5,500		
Toluene	ND< 8.71	ND< 7.20	ND< 7.53	1,500		
m,p - Xylene	424	ND< 7.20	ND< 7.53	1,200		
o - Xylene	128	ND< 7.20	ND< 7.53	600		
Styrene	ND< 8.71	ND< 7.20 ND< 7.20	ND< 7.53 ND< 7.53	10,000 *		
1,2-Dichlorobenzene	ND< 8.71 ND< 8.71	ND< 7.20 ND< 7.20	ND< 7.53	7,900		
,	ND< 8.71 ND< 8.71	ND< 7.20 ND< 7.20	ND< 7.53 ND< 7.53	,		
1,3-Dichlorobenzene 1.4-Dichlorobenzene	ND< 8.71 ND< 8.71	ND< 7.20 ND< 7.20	ND< 7.53 ND< 7.53	1,600		
1,4-Dichlorobenzene	ND< 8./1	ND< 7.20	ND< 7.55	8,500		
		1	1	1		

TABLE 8 SUMMARY OF TCL/STARS VOLATILE ORGANIC COMPOUNDS IN SOIL (ug/kg)

Five Parcels in the Brooks Landing Urban Renewal District Rochester, NY

	Sha	allow Granular	· Fill	Recommended
	GP-5	GP-24	GP-25	Soil Cleanup
TCL/STARS VOCs 8260	8'-10'	0-4'	4-8'	Objective (1)
Ketones & Misc.				
Acetone	171	ND< 36.0	ND< 37.6	200
	ND< 21.8			300
2-Butanone		ND< 18.0	ND< 18.8	
2-Hexanone	ND< 21.8	ND< 18.0	ND< 18.8	10,000 *
4-Methyl-2-pentanone	ND< 21.8	ND< 18.0	ND< 18.8	1,000
Carbon disulfide	ND< 21.8	ND< 18.0	ND< 18.8	2,700
Vinyl acetate	ND< 21.8	ND< 18.0	ND< 18.8	10,000 *
Additional STARS Compounds				
n-Butylbenzene	ND< 8.71	ND< 7.20	ND< 7.54	10,000 *
sec-Butylbenzene	17.5	ND< 7.20	ND< 7.54	10,000 *
tert-Butylbenzene	94.8	ND< 7.20	ND< 7.54	10,000 *
n-Propylbenzene	62.5	ND< 7.20	ND< 7.54	3,700
Isopropylbenzene	21.8	ND< 7.20	ND< 7.54	2,300
p-Isopropyltoluene	ND< 8.71	ND< 7.20	ND< 7.54	10,000 *
Naphthalene	174	ND< 18.0	ND< 18.9	13,000
1,2,4-Trimethylbenzene	875	ND< 7.20	ND< 7.54	10.000 *
1,3,5-Trimethylbenzene	211	ND< 7.20	ND< 7.54	3,300
Miscellaneous				
Methyl tert-butyl Ether	ND< 8.71	ND< 7.20	ND< 7.54	120

Notes:

 NYSDEC. January 24, 1994. Determination of Soil Cleanup Objectives and Cleanup Levels, Division of Hazardous Waste Remediation, Technical and Administrative Guidance Memorandum, HWR 94-4046 (Revised December 2000).

2. ug/kg = all values expressed in micrograms per kilogram (equivalent to parts per billion).

3. **Bolded** values are parameters that have been detected.

4. Bolded, <u>Underlined</u>, and *Italicized* values are reported concentrations above the NYSDEC recommended sc

5. * = As per TAGM 4046, individual and sum of VOCs not listed may not exceed 10,000 ppb.

6. MDL = Method Detection Limit.

Five Parcels in the Brooks Landing Urban Renewal District

		Black Carbon Fill												
	GP - 7	PZ-19	GP-22	GP-26	GP-27	GP-28	GP-30	GP-31	GP-36	GP-41	Soil Cleanup			
TCL/STARS VOCs 8260	4' - 8'	4-8'	4-8'	4-8'	4-8'	4-8'	4-8'	4-8'	4-8'	4-8'	Objective (1)			
Volatile Halocarbons														
Bromodichloromethane	ND< 275	ND< 50.8	ND< 119	ND< 1,020	ND< 1,330	ND< 147	ND< 1,180	ND< 127	ND< 1,030	ND< 1,300	10.000 *			
Bromomethane	ND< 275	ND< 50.8	ND< 119	ND< 1,020	ND< 1.330	ND< 147	ND< 1,180	ND< 127	ND< 1,030	ND< 1,300	10.000 *			
Bromoform	ND< 275	ND< 50.8	ND< 119	ND< 1,020	ND< 1,330	ND< 147	ND< 1,180	ND< 127	ND< 1,030	ND< 1,300	10,000 *			
Carbon tetrachloride	ND< 275	ND< 50.8	ND< 119	ND< 1,020	ND< 1,330	ND< 147	ND< 1,180	ND< 127	ND< 1,030	ND< 1,300	600			
Chloroethane	ND< 275	ND< 50.8	ND< 119	ND< 1,020	ND< 1,330	ND< 147	ND< 1,180	ND< 127	ND< 1,030	ND< 1,300	1.900			
Chloromethane	ND< 275	ND< 50.8	ND< 119	ND< 1,020	ND< 1,330	ND< 147	ND< 1,180	ND< 127	ND< 1,030	ND< 1,300	10,000 *			
2-Chloroethyl vinyl ether	ND< 275	ND< 50.8	ND< 119	ND< 1,020	ND< 1,330	ND< 147	ND< 1,180	ND< 127	ND< 1,030	ND< 1,300	10,000 *			
Chloroform	ND< 275	ND< 50.8	ND< 119	ND< 1,020	ND< 1,330	ND< 147	ND< 1,180	ND< 127	ND< 1,030	ND< 1,300	300			
Dibromochloromethane	ND< 275	ND< 50.8	ND< 119	ND< 1,020	ND< 1,330	ND< 147	ND< 1,180	ND< 127	ND< 1,030	ND< 1,300	10,000 *			
1.1-Dichloroethane	ND< 275	ND< 50.8	ND< 119	ND< 1,020	ND< 1,330	ND< 147	ND< 1,180	ND< 127	ND< 1,030	ND< 1,300	200			
1.2-Dichloroethane	ND< 275	ND< 50.8	ND< 119	ND< 1,020	ND< 1,330	ND< 147	ND< 1,180	ND< 127	ND< 1,030	ND< 1,300	100			
1.1-Dichloroethene	ND< 275	ND< 50.8	ND< 119	ND< 1,020	ND< 1,330	ND< 147	ND< 1,180	ND< 127	ND< 1,030	ND< 1,300	400			
cis-1,2-Dichloroethene	695	ND< 50.8	894	1,480	1,490	334	ND< 1,180	2,050	ND< 1,030	ND< 1,300	10,000 *			
trans-1,2-Dichloroethene	ND< 275	ND< 50.8	ND< 119	ND< 1,020	ND< 1,330	ND< 147	ND< 1,180	ND< 127	ND< 1,030	ND< 1,300	300			
1,2-Dichloropropane	ND< 275	ND< 50.8	ND< 119	ND< 1,020	ND< 1,330	ND< 147	ND< 1,180	ND< 127	ND< 1,030	ND< 1,300	10,000 *			
cis-1,3-Dichloropropene	ND< 275	ND< 50.8	ND< 119	ND< 1,020	ND< 1,330	ND< 147	ND< 1,180	ND< 127	ND< 1,030	ND< 1,300	10,000 *			
trans-1,3-Dichloropropene	ND< 275	ND< 50.8	ND< 119	ND< 1.020	ND< 1.330	ND< 147	ND< 1.180	ND< 127	ND< 1.030	ND< 1.300	10.000 *			
Methylene chloride	ND< 275	ND< 127	ND< 297	ND< 2,550	ND< 3,330	ND< 368	ND< 2,940	ND< 318	ND< 2,570	ND< 3,240	100			
1,1,2,2-Tetrachloroethane	ND< 275	ND< 50.8	ND< 119	ND< 1,020	ND< 1,330	ND< 147	ND< 1,180	ND< 127	ND< 1,030	ND< 1,300	600			
Tetrachloroethene	ND< 275	ND< 50.8	ND< 119	ND< 1,020	ND< 1,330	ND< 147	ND< 1,180	ND< 127	ND< 1,030	ND< 1,300	1,400			
1,1,1-Trichloroethane	ND< 275	ND< 50.8	ND< 119	ND< 1,020	ND< 1,330	ND< 147	ND< 1,180	ND< 127	ND< 1,030	ND< 1,300	800			
1,1,2-Trichloroethane	ND< 275	ND< 50.8	ND< 119	ND< 1,020	ND< 1,330	ND< 147	ND< 1,180	ND< 127	ND< 1,030	ND< 1,300	10.000 *			
Trichloroethene	10,700		11,100	25,900	26,200	5,550	21,700	13,600	45,300	41,400	700			
Trichlorofluoromethane	ND< 275	ND< 50.8	ND< 119	ND< 1,020	ND< 1,330	ND< 147	ND< 1,180	ND< 127	ND< 1,030	ND< 1,300	10,000 *			
Vinyl Chloride	ND< 275	ND< 50.8	ND< 119	ND< 1,020	ND< 1,330	ND< 147	ND< 1,180	ND< 127	ND< 1,030	ND< 1,300	200			
Volatile Aromatics														
Benzene	ND< 275	ND< 50.8	ND< 119	ND< 1,020	ND< 1,330	ND< 147	ND< 1,180	ND< 127	ND< 1,030	ND< 1,300	60 or MDL			
Chlorobenzene	ND< 275	ND< 50.8	ND< 119	ND< 1,020	ND< 1,330	ND< 147	ND< 1,180	ND< 127	ND< 1,030	ND< 1,300	1,700			
Ethylbenzene	ND< 275	ND< 50.8	ND< 119	ND< 1,020	ND< 1,330	ND< 147	ND< 1,180	ND< 127	ND< 1,030	ND< 1,300	5,500			
Toluene	ND< 275	ND< 50.8	ND< 119	ND< 1,020	ND< 1,330	ND< 147	ND< 1,180	ND< 127	ND< 1,030	ND< 1,300	1,500			
m,p - Xylene	ND< 275	65.3	ND< 119	ND< 1,020	ND< 1,330	ND< 147	ND< 1,180	ND< 127	ND< 1,030	ND< 1,300	1,200			
o - Xylene	ND< 275	ND< 50.8	ND< 119	ND< 1,020	ND< 1,330	ND< 147	ND< 1,180	ND< 127	ND< 1,030	ND< 1,300	600			
Styrene	ND< 275	ND< 50.8	ND< 119	ND< 1,020	ND< 1,330	ND< 147	ND< 1,180	ND< 127	ND< 1,030	ND< 1,300	10,000 *			
1,2-Dichlorobenzene	ND< 275	ND< 50.8	ND< 119	ND< 1,020	ND< 1,330	ND< 147	ND< 1,180	ND< 127	ND< 1,030	ND< 1,300	7,900			
1,3-Dichlorobenzene	ND< 275	ND< 50.8	ND< 119	ND< 1,020	ND< 1,330	ND< 147	ND< 1,180	ND< 127	ND< 1,030	ND< 1,300	1,600			
1,4-Dichlorobenzene	ND< 275	ND< 50.8	ND< 119	ND< 1,020	ND< 1,330	ND< 147	ND< 1,180	ND< 127	ND< 1,030	ND< 1,300	8,500			
-, · _ · · · · · · · · · · · · · · · · ·		1.2 . 00.0		1,020	1,000				1,000	1,000	0,000			

TABLE 8 SUMMARY OF TCL/STARS VOLATILE ORGANIC COMPOUNDS IN SOIL (ug/kg)

Five Parcels in the Brooks Landing Urban Renewal District

Rochester, NY

					Black C	arbon Fill					Recommended
	GP - 7	PZ-19	GP-22	GP-26	GP-27	GP-28	GP-30	GP-31	GP-36	GP-41	Soil Cleanup
TCL/STARS VOCs 8260	4' - 8'	4-8'	4-8'	4-8'	4-8'	4-8'	4-8'	4-8'	4-8'	4-8'	Objective ⁽¹⁾
Ketones & Misc.											
Acetone	ND< 1,370	ND< 254	ND< 594	ND< 5,100	ND< 6,670	ND< 737	ND< 5,890	ND< 636	ND< 5,130	ND< 6,480	200
2-Butanone	ND< 687	ND< 127	ND< 297	ND< 2,550	ND< 3,330	ND< 368	ND< 2,940	ND< 318	ND< 2,570	ND< 3,240	300
2-Hexanone	ND< 687	ND< 127	ND< 297	ND< 2,550	ND< 3,330	ND< 368	ND< 2,940	ND< 318	ND< 2,570	ND< 3,240	10,000 *
4-Methyl-2-pentanone	ND< 687	ND< 127	ND< 297	ND< 2,550	ND< 3,330	ND< 368	ND< 2,940	ND< 318	ND< 2,570	ND< 3,240	1,000
Carbon disulfide	ND< 687	ND< 127	ND< 297	ND< 2,550	ND< 3,330	ND< 368	ND< 2,940	ND< 318	ND< 2,570	ND< 3,240	2,700
Vinyl acetate	ND< 687	ND< 127	ND< 297	ND< 2,550	ND< 3,330	ND< 368	ND< 2,940	ND< 318	ND< 2,570	ND< 3,240	10,000 *
Additional STARS Compounds											
n-Butylbenzene	ND< 275	ND< 50.6	ND< 119	ND< 1,010	ND< 1,330	ND< 148	ND< 1,170	ND< 127	ND< 1,030	ND< 1,300	10,000 *
sec-Butylbenzene	ND< 275	ND< 50.6	ND< 119	ND< 1,010	ND< 1,330	ND< 148	ND< 1,170	ND< 127	ND< 1,030	ND< 1,300	10,000 *
tert-Butylbenzene	ND< 275	ND< 50.6	ND< 119	ND< 1,010	ND< 1,330	ND< 148	ND< 1,170	ND< 127	ND< 1,030	ND< 1,300	10,000 *
n-Propylbenzene	ND< 275	ND< 50.6	ND< 119	ND< 1,010	ND< 1,330	ND< 148	ND< 1,170	ND< 127	ND< 1,030	ND< 1,300	3,700
Isopropylbenzene	ND< 275	ND< 50.6	ND< 119	ND< 1,010	ND< 1,330	ND< 148	ND< 1,170	ND< 127	ND< 1,030	ND< 1,300	2,300
p-Isopropyltoluene	ND< 275	ND< 50.6	ND< 119	ND< 1,010	ND< 1,330	ND< 148	ND< 1,170	ND< 127	ND< 1,030	ND< 1,300	10,000 *
Naphthalene	ND< 687	ND< 127	ND< 297	ND< 2,520	ND< 3,280	ND< 370	ND< 2,940	ND< 318	ND< 2,570	ND< 3,240	13,000
1,2,4-Trimethylbenzene	ND< 275	ND< 50.6	ND< 119	ND< 1,010	ND< 1,330	ND< 148	ND< 1,170	ND< 127	ND< 1,030	ND< 1,300	10,000 *
1,3,5-Trimethylbenzene	ND< 275	ND< 50.6	ND< 119	ND< 1,010	ND< 1,330	ND< 148	ND< 1,170	ND< 127	ND< 1,030	ND< 1,300	3,300
Miscellaneous											
Methyl tert-butyl Ether	ND< 275	ND< 50.6	ND< 119	ND< 1,010	ND< 1,330	ND< 148	ND< 1,170	ND< 127	ND< 1,030	ND< 1,300	120

Notes:

1. NYSDEC. January 24, 1994. Determination of Soil Cleanup Objectives and Cleanup Levels,

Division of Hazardous Waste Remediation, Technical and Administrative Guidance Memorandum, HWR 94-4046 (Revised December 2000).

2. ug/kg = all values expressed in micrograms per kilogram (equivalent to parts per billion).

3. Bolded values are parameters that have been detected.

4. Bolded, <u>Underlined</u>, and *Italicized* values are reported concentrations above the NYSDEC recommended soil cleanup objective.

5. * = As per TAGM 4046, individual and sum of VOCs not listed may not exceed 10,000 ppb.

6. MDL = Method Detection Limit.

TABLE 9 SUMMARY OF STARS SEMI-VOLATILE BASE NEUTRAL COMPOUNDS IN SOIL (ug/kg)

Five Parcels in the Brooks Landing Urban Renewal District Rochester, NY

		Native Se	oils		Black Carbon Fill	Granular Fill	
8270 STARS SVBNs	GP-1 14'	GP-2 14'	GP - 4 10'-12'	GP 16 10'-12'	GP 7 4'-8'	GP 39 0'-4'	Recommended Soil Cleanup Objective ⁽¹⁾
8270 STARS SVBNs							
Acenaphthene	ND< 364	ND< 346	ND< 317	ND< 366	ND< 388	ND< 1,710	50,000 *
Anthracene	ND< 364	ND< 346	ND< 317	ND< 366	ND< 388	ND< 1,710	50,000 *
Benzo (a) anthracene	ND< 364	ND< 346	ND< 317	ND< 366	ND< 388	ND< 1,710	224 or MDL
Benzo (a) pyrene	ND< 364	ND< 346	ND< 317	ND< 366	ND< 388	ND< 1,710	61 or MDL
Benzo (b) fluoranthene	ND< 364	ND< 346	ND< 317	ND< 366	ND< 388	ND< 1,710	61 or MDL
Benzo (g,h,i) perylene	ND< 364	ND< 346	ND< 317	ND< 366	ND< 388	ND< 1,710	50,000 *
Benzo (k) fluoranthene	ND< 364	ND< 346	ND< 317	ND< 366	ND< 388	ND< 1,710	610 or MDL
Chrysene	ND< 364	ND< 346	ND< 317	ND< 366	ND< 388	ND< 1,710	400
Dibenz (a,h) anthracene	ND< 364	ND< 346	ND< 317	ND< 366	ND< 388	ND< 1,710	14.3 or MDL
Fluoranthene	ND< 364	ND< 346	ND< 317	ND< 366	ND< 388	ND< 1,710	50,000 *
Fluorene	ND< 364	ND< 346	ND< 317	ND< 366	ND< 388	ND< 1,710	50,000 *
Indeno (1,2,3-cd) pyrene	ND< 364	ND< 346	ND< 317	ND< 366	ND< 388	ND< 1,710	3,200
Naphthalene	2,850	ND< 346	ND< 317	ND< 366	ND< 388	ND< 1,710	13,000
Phenanthrene	ND< 364	ND< 346	ND< 317	ND< 366	ND< 388	ND< 1,710	50,000 *
Pyrene	ND< 364	ND< 346	ND< 317	ND< 366	ND< 388	1,820	50,000 *

Notes:

 NYSDEC. January 24, 1994. Determination of Soil Cleanup Objectives and Cleanup Levels, Division of Hazardous Waste Remediation, Technical and Administrative Guidance Memorandum, HWR 94-4046 (Revised December 2000).

2. ug/kg = all values expressed in micrograms per kilogram (equivalent to parts per billion).

3. **Bolded** values are parameters that have been detected.

4. Bolded, <u>Underlined</u>, and *Italicized* values are reported concentrations above the NYSDEC recommended soil cleanup objective.

5. * = As per TAGM 4046, individual SVOCs may not exceed

50,000 and total SVOCs may not exceed 500,000 ppb.

TABLE 10 SUMMARY OF PCBs, HERBICIDES and TOTAL PETROLEUM HYDROCARBONS IN SOIL (mg/kg)

Five Parcels in the Brooks Landing Urban Renewal District

Rochester, NY

		Shallow Gi	anular Fill		Bl	ack Carbon F	ʻill	
PCBs and Herbicides	GP- 10 0 - 4 '	GP-11 0-4'	GP-12 0-4'	GP- 24 0 - 4 '	GP-28 4-8'	PZ-19 4-8'	GP-32 0-4'	Recommended Soil Cleanup Objective ⁽¹⁾
PCBs								
	ND . 0.204	ND . 0.402	ND . 0.425	ND . 0.416	ND . 0.524	ND . 0.422	ND . 0.200	
Aroclor 1016	ND< 0.394	ND< 0.403	ND< 0.435	ND< 0.416	ND< 0.534	ND< 0.433	ND< 0.399	1 surface/ 10 subsurface
Aroclor 1221	ND< 0.394	ND< 0.403	ND< 0.435	ND< 0.416	ND< 0.534	ND< 0.433	ND< 0.399	1 surface/ 10 subsurface
Aroclor 1232	ND< 0.394	ND< 0.403	ND< 0.435	ND< 0.416	ND< 0.534	ND< 0.433	ND< 0.399	1 surface/ 10 subsurface
Aroclor 1242	ND< 0.394	ND< 0.403	ND< 0.435	ND< 0.416	ND< 0.534	ND< 0.433	ND< 0.399	1 surface/ 10 subsurface
Aroclor 1248	ND< 0.394	ND< 0.403	ND< 0.435	ND< 0.416	ND< 0.534	ND< 0.433	ND< 0.399	1 surface/ 10 subsurface
Aroclor 1254	ND< 0.394	ND< 0.403	ND< 0.435	ND< 0.416	ND< 0.534	ND< 0.433	ND< 0.399	1 surface/ 10 subsurface
Aroclor 1260	ND< 0.394	ND< 0.403	ND< 0.435	ND< 0.416	ND< 0.534	ND< 0.433	ND< 0.399	1 surface/ 10 subsurface
Herbicides								
2,4-D	ND <0.2	ND <0.2	ND <0.2					500
Dicamba	ND <0.2	ND <0.2	ND <0.2					NA
Dinoseb	ND <0.2	ND <0.2	ND <0.2					NA
2, 4, 5-T	ND <0.2	ND <0.2	ND <0.2					1,900
2,4,5-TP (Silvex)	ND <0.2	ND <0.2	ND <0.2					700
<i>Total Petroleum Hydrocarbons</i> Heavy Weight PHC as: Lube Oil				38.7	291	287		NA

Notes:

1. NYSDEC. January 24, 1994. Determination of Soil Cleanup Objectives and Cleanup Levels,

Division of Hazardous Waste Remediation, Technical and Administrative Guidance

Memorandum, HWR 94-4046 (Revised December 2000).

2. mg/kg = all values expressed in milligrams per kilogram (equivalent to parts per million).

3. **Bolded** values are parameters that have been detected.

4. Bolded, <u>Underlined</u>, and *Italicized* values are reported concentrations above the NYSDEC recommended soil cleanup objective.

5. NA = Not Available.

6. Blank = samples were not analyzed for these parameters.

TABLE 11 SUMMARY OF 8 RCRA METALS IN SOIL (mg/kg)

Five Parcels in the Brooks Landing Urban Renewal District Rochester, NY

	Sh	allow Granular	Fill		
8 RCRA Metals	GP- 10 0 - 4 '	GP- 11 0 - 4 '	GP- 12 0 - 4 '	Eastern USA Background Range	Recommended Soil Cleanup Objective ⁽¹⁾
Arsenic	8.25	7.73	6.58	3 - 12	7.5 or SB
Barium	50.3	47.5	47.0	15 - 600	300 or SB
Cadmium	< 0.518	< 0.499	< 0.429	0.1 - 1	1 / 10* or SB
Chromium	10.6	10.3	9.49	1.5 - 40	10 / 50* or SB
Lead	26.4	32.7	33.5	200 - 500 urban	SB
Mercury	0.102	0.104	0.149	0.001 - 0.2	0.1
Selenium	< 0.518	< 0.499	< 0.429	0.1 - 3.9	2 or SB
Silver	<1.04	<1.00	< 0.858	NA	SB

Notes:

 NYSDEC. January 24, 1994. Determination of Soil Cleanup Objectives and Cleanup Levels, Division of Hazardous Waste Remediation, Technical and Administrative Guidance Memorandum, HWR 94-4046 (Revised December 2000).

- 2. mg/kg = all values expressed in milligrams per kilogram (equivalent to parts per million).
- 3. Bolded values are parameters that have been detected.
- 4. **Bolded**, <u>Underlined</u>, and *Italicized* values are reported concentrations above the NYSDEC recommended soil cleanup objective and the Eastern USA Background Range.
- 5. NA = Not Available.
- 6. SB = site background
- 7. * = existing and proposed soil cleanup objectives.

TABLE 12 SUMMARY OF TCL/STARS VOLATILE ORGANIC COMPOUNDS IN GROUNDWATER (ug/L) Five Parcels in the Brooks Landing Urban Renewal District

									Groundwater	Samples (ug/l)								
	PZ-1	PZ-2	PZ-4	PZ-5	PZ-7	PZ-7	PZ-14	PZ-16	PZ-17	PZ-18	PZ-19	PZ-20	PZ-21	MW-1	MW-4	MW-5	RW	NYSDEC Groundwater Standards and Guidance
TCL/STARS VOCs					10/30/02	11/22/02												Values ⁽¹⁾
<u>Volatile Halocarbons</u> Bromodichloromethane	ND < 200	ND< 20.0	ND < 2.00	ND < 2.00	ND < 2.00	ND< 4.00	ND < 2.00	ND< 20.0	ND< 50.0	ND< 2.00	ND< 10.0	ND < 2.00	ND < 20.0	50 (C)				
Bromomethane	ND< 200 ND< 200	ND< 20.0 ND< 20.0	ND< 2.00 ND< 2.00	ND< 2.00 ND< 2.00	ND< 2.00 ND< 2.00	ND< 4.00 ND< 4.00	ND< 2.00 ND< 2.00	ND< 20.0 ND< 20.0	ND< 50.0	ND< 2.00 ND< 2.00	ND< 10.0 ND< 10.0	ND< 2.00 ND< 2.00	ND< 20.0 ND< 20.0	50 (G) 5				
Bromoform	ND< 200 ND< 200	ND< 20.0 ND< 20.0	ND< 2.00 ND< 2.00	ND< 2.00 ND< 2.00	ND< 2.00 ND< 2.00	ND< 4.00 ND< 4.00	ND< 2.00 ND< 2.00	ND< 20.0 ND< 20.0	ND< 50.0	ND< 2.00	ND< 10.0 ND< 10.0	ND< 2.00 ND< 2.00	ND< 20.0 ND< 20.0	50 (G)				
Carbon tetrachloride	ND< 200	ND< 20.0	ND< 2.00	ND< 2.00 ND< 2.00	ND< 2.00	ND< 4.00 ND< 4.00	ND< 2.00	ND< 20.0 ND< 20.0	ND< 50.0	ND< 2.00	ND< 10.0	ND< 2.00 ND< 2.00	ND< 2.00	ND< 2.00 ND< 2.00	ND< 2.00 ND< 2.00	ND< 2.00 ND< 2.00	ND< 20.0	50 (0)
Chloroethane	ND< 200 ND< 200	ND< 20.0 ND< 20.0	ND< 2.00 ND< 2.00	ND< 2.00 ND< 2.00	ND< 2.00 ND< 2.00	ND< 4.00 ND< 4.00	ND< 2.00 ND< 2.00	ND< 20.0 ND< 20.0	ND< 50.0	ND< 2.00	ND< 10.0 ND< 10.0	ND< 2.00 ND< 2.00	ND< 20.0 ND< 20.0	5				
Chloromethane	ND< 200	ND< 20.0	ND< 2.00	ND< 2.00 ND< 2.00	ND< 2.00	ND< 4.00 ND< 4.00	ND< 2.00	ND< 20.0 ND< 20.0	ND< 50.0	ND< 2.00	ND< 10.0	ND< 2.00 ND< 2.00	ND< 2.00	ND< 2.00 ND< 2.00	ND< 2.00 ND< 2.00	ND< 2.00 ND< 2.00	ND< 20.0	NS
2-Chloroethyl vinyl ether	ND< 200 ND< 200	ND< 20.0 ND< 20.0	ND< 2.00 ND< 2.00	ND< 2.00 ND< 2.00	ND< 2.00 ND< 2.00	ND< 4.00 ND< 4.00	ND< 2.00 ND< 2.00	ND< 20.0 ND< 20.0	ND< 50.0	ND< 2.00	ND< 10.0 ND< 10.0	ND< 2.00 ND< 2.00	ND< 20.0 ND< 20.0	NS				
Chloroform	ND< 200	ND< 20.0	ND< 2.00	ND< 2.00 ND< 2.00	ND< 2.00	ND< 4.00 ND< 4.00	ND< 2.00	ND< 20.0 ND< 20.0	ND< 50.0	ND< 2.00	ND< 10.0	ND< 2.00 ND< 2.00	ND< 2.00	ND< 2.00 ND< 2.00	ND< 2.00 ND< 2.00	ND< 2.00 ND< 2.00	ND< 20.0	7
Dibromochloromethane	ND< 200	ND< 20.0 ND< 20.0	ND< 2.00	ND< 2.00	ND< 2.00	ND< 4.00 ND< 4.00	ND< 2.00	ND< 20.0 ND< 20.0	ND< 50.0	ND< 2.00	ND< 10.0 ND< 10.0	ND< 2.00 ND< 2.00	ND< 2.00	ND< 2.00	ND< 2.00 ND< 2.00	ND< 2.00 ND< 2.00	ND< 20.0	50 (G)
1,1-Dichloroethane	ND< 200	ND< 20.0	ND< 2.00	ND< 2.00	ND< 2.00	ND< 4.00 ND< 4.00	ND< 2.00	ND< 20.0 ND< 20.0	ND< 50.0	ND< 2.00	ND< 10.0 ND< 10.0	ND< 2.00 ND< 2.00	ND< 2.00	ND< 2.00 ND< 2.00	ND< 2.00 ND< 2.00	ND< 2.00 ND< 2.00	ND< 20.0	5
1,2-Dichloroethane	ND< 200	ND< 20.0	ND< 2.00	ND< 2.00 ND< 2.00	ND< 2.00	ND< 4.00 ND< 4.00	ND< 2.00	ND< 20.0 ND< 20.0	ND< 50.0	ND< 2.00	ND< 10.0	ND< 2.00 ND< 2.00	ND< 2.00	ND< 2.00 ND< 2.00	ND< 2.00 ND< 2.00	ND< 2.00 ND< 2.00	ND< 20.0	1
1.1-Dichloroethene	ND< 200	ND< 20.0	ND< 2.00	ND< 2.00	ND< 2.00	ND< 4.00 ND< 4.00	ND< 2.00	ND< 20.0 ND< 20.0	ND< 50.0	ND< 2.00	ND< 10.0 ND< 10.0	ND< 2.00 ND< 2.00	ND< 2.00	ND< 2.00 ND< 2.00	ND< 2.00 ND< 2.00	ND< 2.00 ND< 2.00	ND< 20.0	5
cis-1.2-Dichloroethene	ND< 200	ND< 20.0	ND< 2.00	ND< 2.00	<u>10.3</u>	<u>19.0</u>	ND< 2.00	ND< 20.0	ND< 50.0	4.17	<u>16.1</u>	ND< 2.00	ND< 20.0	5				
trans-1,2-Dichloroethene	ND< 200	ND< 20.0	ND< 2.00	ND< 2.00	ND < 2.00	ND< 4.00	ND< 2.00	ND< 20.0	ND< 50.0	ND< 2.00	ND< 10.0	ND< 2.00	ND< 20.0	5				
1,2-Dichloropropane	ND< 200	ND< 20.0	ND< 2.00	ND< 2.00	ND< 2.00	ND< 4.00 ND< 4.00	ND< 2.00	ND< 20.0 ND< 20.0	ND< 50.0	ND< 2.00	ND< 10.0 ND< 10.0	ND< 2.00	ND< 2.00	ND< 2.00 ND< 2.00	ND< 2.00 ND< 2.00	ND< 2.00 ND< 2.00	ND< 20.0	1
cis-1,3-Dichloropropene	ND< 200	ND< 20.0	ND< 2.00	ND< 2.00	ND< 2.00	ND< 4.00	ND< 2.00	ND< 20.0 ND< 20.0	ND< 50.0	ND< 2.00	ND< 10.0	ND< 2.00	ND< 2.00	ND< 2.00 ND< 2.00	ND< 2.00 ND< 2.00	ND< 2.00 ND< 2.00	ND< 20.0	0.4 (-cis and -trans)
trans-1,3-Dichloropropene	ND< 200	ND< 20.0	ND< 2.00	ND< 2.00	ND< 2.00	ND< 4.00	ND< 2.00	ND< 20.0	ND< 50.0	ND< 2.00	ND< 10.0	ND< 2.00	ND< 2.00	ND< 2.00 ND< 2.00	ND< 2.00	ND< 2.00	ND< 20.0	0.4 (-cis and -trans)
Methylene chloride	ND< 200	ND< 50.0	ND< 5.00	ND< 2.00 ND< 5.00	ND< 5.00	ND< 4.00 ND< 10.0	ND< 5.00	ND< 20.0 ND< 50.0	ND< 125	ND< 5.00	ND< 10.0 ND< 25.0	ND< 5.00	ND< 5.00	ND< 5.00	ND< 2.00 ND< 5.00	ND< 2.00 ND< 5.00	ND< 50.0	5
1.1.2.2-Tetrachloroethane	ND< 200	ND< 20.0	ND< 3.00 ND< 2.00	ND< 2.00	ND< 2.00	ND< 10.0 ND< 4.00	ND< 3.00	ND< 30.0 ND< 20.0	ND< 50.0	ND< 3.00 ND< 2.00	ND< 23.0 ND< 10.0	ND< 3.00 ND< 2.00	ND< 3.00 ND< 2.00	ND< 2.00	ND< 3.00 ND< 2.00	ND< 3.00 ND< 2.00	ND< 30.0 ND< 20.0	5
Tetrachloroethene	ND< 200	ND< 20.0	ND< 2.00	ND< 2.00	ND< 2.00	ND< 4.00	ND< 2.00	ND< 20.0 ND< 20.0	ND< 50.0	ND< 2.00	ND< 10.0	ND< 2.00	ND< 2.00	ND< 2.00	ND< 2.00	ND< 2.00 ND< 2.00	ND< 20.0	5
1,1,1-Trichloroethane	ND< 200	ND< 20.0	ND< 2.00	ND< 2.00	ND< 2.00	ND< 4.00	ND< 2.00	ND< 20.0	ND< 50.0	ND< 2.00	ND< 10.0	ND< 2.00	ND< 20.0	5				
1,1,2-Trichloroethane	ND< 200	ND< 20.0	ND< 2.00	ND< 2.00	ND< 2.00	ND< 4.00	ND< 2.00	ND< 20.0	ND< 50.0	ND< 2.00	ND< 10.0	ND< 2.00	ND< 20.0	1				
Trichloroethene	ND< 200	ND< 20.0	ND< 2.00	ND< 2.00	<u>10< 2.00</u>	<u>298</u>	ND< 2.00	ND< 20.0	ND< 50.0	<u>35.8</u>	<u>825</u>	ND< 2.00	2.45	ND< 2.00	ND< 2.00	ND< 2.00	ND< 20.0	5
Trichlorofluoromethane	ND< 200	ND< 20.0	ND< 2.00	ND< 2.00	ND< 2.00	ND< 4.00	ND< 2.00	ND< 20.0	ND< 50.0	ND< 2.00	ND< 10.0	ND< 2.00	ND< 20.0	5				
Vinyl Chloride	ND< 200	ND< 20.0 ND< 20.0	ND< 2.00	ND< 2.00	ND< 2.00	ND< 4.00 ND< 4.00	ND < 2.00 ND < 2.00	ND< 20.0 ND< 20.0	ND< 50.0	ND< 2.00	ND< 10.0 ND< 10.0	ND< 2.00	ND< 2.00	ND< 2.00	ND< 2.00 ND< 2.00	ND< 2.00 ND< 2.00	ND< 20.0	2
v myr emonde	ND< 200	ND< 20.0	ND< 2.00	ND< 2.00	ND< 2.00	ND< 4.00	ND< 2.00	ND< 20.0	ND< 50.0	ND< 2.00	ND< 10.0	ND< 2.00	ND< 20.0	2				
Volatile Aromatics																		
Benzene	<u>3,140</u>	<u>787</u>	<u>1.94</u>	ND< 0.700	ND< 0.700	ND< 1.40	ND< 0.700	<u>33.3</u>	<u>805</u>	171.0	ND< 3.50	ND< 0.700	<u>71.8</u>	1				
Chlorobenzene	ND< 200	ND< 20.0	ND< 2.00	ND< 2.00	ND< 2.00	ND< 4.00	ND< 2.00	ND< 20.0	ND< 50.0	ND< 50.0	ND< 10.0	ND< 2.00	ND< 20.0	5				
Ethylbenzene	<u>1,500</u>	<u>208</u>	<u>11.7</u>	<u>20.0</u>	ND< 2.00	ND< 4.00	ND< 2.00	<u>111</u>	<u>3,010</u>	3.48	ND< 10.0	ND< 2.00	ND< 20.0	5				
Toluene	270	28.4	ND< 2.00	ND< 2.00	ND< 2.00	ND< 4.00	ND< 2.00	ND< 20.0	98.3	2.03	ND< 10.0	ND< 2.00	ND< 20.0	5				
m,p - Xylene	5,830	335	3.95	<u>59.1</u>	ND< 2.00	ND< 4.00	ND< 2.00	<u>105</u>	<u>8,020</u>	2.81	ND< 10.0	ND< 2.00	ND< 20.0	5				
o - Xylene	ND< 200	ND< 20.0	ND< 2.00	ND< 2.00	ND< 2.00	ND< 4.00	ND< 2.00	ND< 20.0	546	ND< 2.00	ND< 10.0	ND< 2.00	ND< 20.0	5				
Styrene	ND< 200	ND< 20.0	ND< 2.00	ND< 2.00	ND< 2.00	ND< 4.00	ND< 2.00	ND< 20.0	ND< 50.0	ND< 2.00	ND< 10.0	ND< 2.00	ND< 20.0	5				
1,2-Dichlorobenzene	ND< 200	ND< 20.0	ND< 2.00	ND< 2.00	ND< 2.00	ND< 4.00	ND< 2.00	ND< 20.0	ND< 50.0	ND< 2.00	ND< 10.0	ND< 2.00	ND< 20.0	3				
1,3-Dichlorobenzene	ND< 200	ND< 20.0	ND< 2.00	ND< 2.00	ND< 2.00	ND< 4.00	ND< 2.00	ND< 20.0	ND< 50.0	ND< 2.00	ND< 10.0	ND< 2.00	ND< 20.0	3				
1,4-Dichlorobenzene	ND< 200	ND< 20.0	ND< 2.00	ND< 2.00	ND< 2.00	ND< 4.00	ND< 2.00	ND< 20.0	ND< 50.0	ND< 2.00	ND< 10.0	ND< 2.00	ND< 20.0	3				
Ketones & Misc.		100																50.00
Acetone	ND< 1,000	ND< 100	ND< 10.0	ND< 10.0	ND< 10.0	ND< 20.0	ND< 10.0	ND< 100	ND< 250	ND< 10.0	ND< 50.0	ND< 10.0	ND< 100	50 (G)				
2-Butanone	ND< 500	ND< 50.0	ND< 5.00	ND< 5.00	ND< 5.00	ND< 10.0	ND< 5.00	ND< 50.0	ND< 125	ND< 5.00	ND< 125	ND< 5.00	ND< 50.0	NS 50 (G)				
2-Hexanone	ND< 500	ND< 50.0	ND< 5.00	ND< 5.00	ND< 5.00	ND< 10.0	ND< 5.00	ND< 50.0	ND< 125	ND< 5.00	ND< 125	ND< 5.00	ND< 50.0	50 (G)				
4-Methyl-2-pentanone	ND< 500	ND< 50.0	ND< 5.00	ND< 5.00	ND< 5.00	ND< 10.0	ND< 5.00	ND< 50.0	ND< 125	ND< 5.00	ND< 125	ND< 5.00	ND< 50.0	NS				
Carbon disulfide	ND< 500	ND< 50.0	ND< 5.00	ND< 5.00	ND< 5.00	ND< 10.0	ND< 5.00	ND< 50.0	ND< 125	ND< 5.00	ND< 125	ND< 5.00	ND< 50.0	60 (G)				
Vinyl acetate	ND< 500	ND< 50.0	ND< 5.00	ND< 5.00	ND< 5.00	ND< 10.0	ND< 5.00	ND< 50.0	ND< 125	ND< 5.00	ND< 125	ND< 5.00	ND< 50.0	NS				

TABLE 12 SUMMARY OF TCL/STARS VOLATILE ORGANIC COMPOUNDS IN GROUNDWATER (ug/L) Five Parcels in the Brooks Landing Urban Renewal District

Rochester, NY

									Groundwater	Samples (ug/l)								
TCL/STARS VOCs	PZ-1	PZ-2	PZ-4	PZ-5	PZ-7 10/30/02	PZ-7 11/22/02	PZ-14	PZ-16	PZ-17	PZ-18	PZ-19	PZ-20	PZ-21	MW-1	MW-4	MW-5	RW	NYSDEC Groundwater Standards and Guidance Values ⁽¹⁾
Additional STARS Compounds																		
n-Butylbenzene	ND< 200	ND< 20.0	ND< 2.00	ND< 2.00	ND< 2.00	ND< 4.00	ND< 2.00	ND< 20.0	ND< 50.0	ND< 2.00	ND< 10.0	ND< 2.00	ND< 2.00	ND< 2.00	ND< 2.00	ND< 2.00	ND< 20.0	5
sec-Butylbenzene	ND< 200	ND< 20.0	ND< 2.00	4.72	ND< 2.00	ND< 4.00	ND< 2.00	ND< 20.0	ND< 50.0	ND< 2.00	ND< 10.0	ND< 2.00	ND< 2.00	ND< 2.00	ND< 2.00	ND< 2.00	ND< 20.0	5
tert-Butylbenzene	<u>209</u>	ND< 20.0	ND< 2.00	ND< 2.00	ND< 2.00	ND< 4.00	ND< 2.00	ND< 20.0	ND< 50.0	ND< 2.00	ND< 10.0	ND< 2.00	ND< 2.00	ND< 2.00	ND< 2.00	ND< 2.00	ND< 20.0	5
n-Propylbenzene	<u>229</u>	<u>26.7</u>	2.01	<u>20.6</u>	ND< 2.00	ND< 4.00	ND< 2.00	<u>99.0</u>	<u>281</u>	ND< 2.00	ND< 10.0	ND< 2.00	ND< 2.00	ND< 2.00	ND< 2.00	ND< 2.00	ND< 20.0	5
Isopropylbenzene	ND< 200	<u>21.9</u>	ND< 2.00	<u>11.3</u>	ND< 2.00	ND< 4.00	ND< 2.00	<u>39.5</u>	<u>111</u>	ND< 2.00	ND< 10.0	ND< 2.00	ND< 2.00	ND< 2.00	ND< 2.00	ND< 2.00	ND< 20.0	5
p-Isopropyltoluene	ND< 200	ND< 20.0	ND< 2.00	<u>6.41</u>	ND< 2.00	ND< 4.00	ND< 2.00	ND< 20.0	ND< 50.0	ND< 2.00	ND< 10.0	ND< 2.00	ND< 2.00	ND< 2.00	ND< 2.00	ND< 2.00	ND< 20.0	5
Naphthalene	<u>616</u>	<u>50.0</u>	ND< 5.00	40.5	ND< 5.00	ND< 10.0	ND< 5.00	<u>98.8</u>	<u>510</u>	ND< 5.00	ND< 25.0	ND< 5.00	ND< 5.00	ND< 5.00	ND< 5.00	ND< 5.00	ND< 50.0	5
1,2,4-Trimethylbenzene	1920	142	<u>5.65</u>	122	ND< 2.00	ND< 4.00	ND< 2.00	122	1,760	ND< 2.00	ND< 10.0	ND< 2.00	ND< 2.00	ND< 2.00	ND< 2.00	ND< 2.00	ND< 20.0	5
1,3,5-Trimethylbenzene	<u>581</u>	ND< 20.0	ND< 2.00	<u>28.3</u>	ND< 2.00	ND< 4.00	ND< 2.00	<u>33.2</u>	<u>495</u>	ND< 2.00	ND< 10.0	ND< 2.00	ND< 2.00	ND< 2.00	ND< 2.00	ND< 2.00	ND< 20.0	5
Miscellaneous																		
Methyl tert-butyl Ether	ND< 200	ND< 20.0	<u>61.0</u>	ND< 2.00	<u>104</u>	<u>111</u>	<u>23.7</u>	ND< 20.0	ND< 50.0	<u>290</u>	<u>48.1</u>	ND< 2.00	<u>15.8</u>	<u>85.5</u>	ND< 2.00	2.26	<u>120</u>	10 (G)
Total Detected VOCs	<u>14,295</u>	<u>1,599</u>	<u>86.25</u>	<u>312.93</u>	<u>347.3</u>	<u>428</u>	<u>23.7</u>	<u>641.8</u>	<u>15,538</u>	<u>509.29</u>	<u>889.2</u>	0	<u>18.25</u>	<u>85.5</u>	0	2.26	<u>191.8</u>	

<u>Notes:</u>
1. NYSDEC. October 22, 1993. Ambient Water Quality Standards and Guidance Values, Division of Water, Technical and Operational Guidance Series (TOGS 1.1.1); Reissued June 1998. April 2000 Addendum.

2. All results are expressed in micrograms per liter (ug/L), which is equivalent to parts per billion.

3. **Bolded** values are compounds that have been detected.

4. Bolded, <u>Underlined</u>, and *Italicized* values are compounds that have been detected and exceed the Class GA groundwater standards or guidance values.

5. (G) = guidance value.

6. "ND<" indicates that the analyte was analyzed but not detected.

7. "NS" = No Standard.

TABLE 13 SUMMARY OF STARS SEMI-VOLATILE BASE NEUTRAL COMPOUNDS and TOTAL PETROLEUM HYDROCARBONS IN GROUNDWATER

Five Parcels in the Brooks Landing Urban Renewal District

Rochester, NY

Parameters	PZ-1	PZ-4	MW-4	PZ-14	NYSDEC Groundwater Standards and Guidance Values ⁽¹⁾
8270 STARS SVBNs					
Acenaphthene	ND< 100	ND< 10.0	ND< 10.0	ND< 10.0	20 (G)
Anthracene	ND< 100	ND < 10.0	ND< 10.0	ND< 10.0	50 (G)
Benzo (a) anthracene	ND< 100	ND< 10.0	ND< 10.0	ND< 10.0	0.002
Benzo (a) pyrene	ND< 100	ND< 10.0	ND< 10.0	ND< 10.0	0.002
Benzo (b) fluoranthene	ND< 100	ND< 10.0	ND< 10.0	ND< 10.0	0.002
Benzo (g,h,i) perylene	ND< 100	ND< 10.0	ND< 10.0	ND< 10.0	NS
Benzo (k) fluoranthene	ND< 100	ND< 10.0	ND< 10.0	ND< 10.0	0.002
Chrysene	ND< 100	ND< 10.0	ND< 10.0	ND< 10.0	0.002
Dibenz (a,h) anthracene	ND< 100	ND< 10.0	ND< 10.0	ND< 10.0	NS
Fluoranthene	ND< 100	ND< 10.0	ND< 10.0	ND< 10.0	50 (G)
Fluorene	ND< 100	ND< 10.0	ND< 10.0	ND< 10.0	50 (G)
Indeno (1,2,3-cd) pyrene	ND< 100	ND< 10.0	ND< 10.0	ND< 10.0	0.002
Naphthalene	2,650	ND< 10.0	ND< 10.0	ND< 10.0	10
Phenanthrene	ND< 100	ND< 10.0	ND< 10.0	ND< 10.0	50 (G)
Pyrene	ND< 100	ND< 10.0	ND< 10.0	ND< 10.0	50 (G)
<u>TPH</u>					
Light Weight PHC as: Gasoline	Pure Product	NA	NA	NA	NS

Notes:

1. NYSDEC. October 22, 1993. Ambient Water Quality Standards and Guidance Values, Division of Water, Technical and Operational Guidance Series (TOGS 1.1.1); Reissued June 1998. April 2000 Addendum.

2. All results are expressed in micrograms per liter (ug/L), which is equivalent to parts per billion.

3. **Bolded** values are samples that have been detected.

4. **Bolded**, <u>Underlined</u>, and *Italicized* values are samples that have been detected and exceed the Class GA groundwater standards and guidance values.

5. (G) = guidance value.

6. "ND<" indicates that the analyte was analyzed but not detected.

7. "NS" = No Standard.

8. "NA" = Not Analyzed.

TABLE 14 SUMMARY OF TCLP VOC RESULTS (ug/L) Five Parcels in the Brooks Landing Urban Renewal District

Rochester, NY

	BLACK CARBON FILL SAMPLES										
TCLP VOC Analytes	GP26-(4-8)	GP27-(4-8)	GP30-(4-8)	GP36-(4-8)	GP41-(4-8)	GP43-(4-8)	Regulatory Limits ⁽¹⁾				
Benzene	ND< 20.0	ND< 20.0	ND< 20.0	ND< 20.0	ND< 20.0	ND< 20.0	500				
2-Butanone (MEK)	ND< 50.0	ND< 50.0	ND< 50.0	ND< 50.0	ND< 50.0	ND< 50.0	200,000				
Carbon tetrachloride	ND< 20.0	ND< 20.0	ND< 20.0	ND< 20.0	ND< 20.0	ND< 20.0	500				
Chlorobenzene	ND< 20.0	ND< 20.0	ND< 20.0	ND< 20.0	ND< 20.0	ND< 20.0	100,000				
Chloroform	ND< 20.0	ND< 20.0	ND< 20.0	ND< 20.0	ND< 20.0	ND< 20.0	6,000				
1,2-Dichloroethane	ND< 20.0	ND< 20.0	ND< 20.0	ND< 20.0	ND< 20.0	ND< 20.0	500				
1,1-Dichloroethene	ND< 20.0	ND< 20.0	ND< 20.0	ND< 20.0	ND< 20.0	ND< 20.0	700				
Tetrachloroethene	ND< 20.0	ND< 20.0	ND< 20.0	ND< 20.0	ND< 20.0	ND< 20.0	700				
Trichloroethene	<u>826</u>	<u>552</u>	<u>507</u>	427	286	186	500				
Vinyl Chloride	ND< 20.0	ND< 20.0	ND< 20.0	ND< 20.0	ND< 20.0	ND< 20.0	200				

Notes:

1. Maximum concentration of contaminants for toxicity characteristics. Title 40, Code of Federal Regulation, Chapter 1- Environmental Protection Agency, Part 261, Identification and Listing of Hazardous Waste, Revised April 1990 (40CFR261).

2. ug/L = all values expressed in micrograms per liter (equivalent to parts per billion).

3. **Bolded** values are parameters that have been detected.

4. Bolded, <u>Underlined</u>, and *Italicized* values are reported concentrations above the NYSDEC/USEPA hazardous waste threshold.

Sub-Area I

Brooks Landing Urban Renewal District

		PID I	Readings
Borehole	Depth	Peak	Background
	(ft. bgs)	(ppm)	(ppm)
1315 South Plymouth/			
150 Elmwood Avenue			
PZ100	0-4	0.8	0.8
	4-8	0.6	0.8
	8-12	1.1	0.8
	12-13	0.8	0.8
PZ101	0-4	0.5	0.5
12101	4-8	5.2	0.5
	8-12	2.6	0.5
	12-14	0.5	0.5
	12 14	0.5	0.5
PZ102	0-4	0.6	0.6
	4-8	1.0	0.3
	8-12	0.5	0.0
	12-13	0.0	0.0
PZ103	0-4	0.8	0.8
	4-8	4.7	0.5
	8-12	1.7	0.5
	12-12.2	0.0	0.0
B104	0-4	0.6	0.5
	4-8	0.7	0.5
	8-11.9	0.7	0.5
D 105	0-4	0.7	0.7
B105	0-4 4-8	0.7 0.5	0.7
	8-12	0.4	0.4
B106	0-4	0.7	0.7
	4-8	0.7	0.7
	8-12	0.7	0.7
B107	0-4	0.9	0.9
D107	0-4 4-8	0.9	0.9
	4-8 8-12	0.9	0.9
	0-12	0.9	0.9

Sub-Area I

Brooks Landing Urban Renewal District

		PID Readings			
Borehole	Depth	Peak	Background		
	(ft. bgs)	(ppm)	(ppm)		
1315 South Plymouth/					
150 Elmwood Avenue (cont.)					
B-108	0-4	1.0	0.9		
	4-8	1.0	0.9		
	4-11.9	0.9	0.9		
B-109	0-4	0.8	0.8		
	4-8	0.8	0.8		
	8-12	0.8	0.8		
B110	0-4	0.8	0.8		
	4-8	0.8	0.8		
	8-12	0.8	0.8		
B111	0-4	1.0	0.9		
	4-8	1.0	0.9		
	8-12	0.9	0.9		
B112	0-4	1.1	1.0		
	4-8	1.1	1.0		
	8-12	1.0	1.0		
B113	0-4	0.7	0.7		
	4-8	0.7	0.7		
	8-12	0.8	0.7		
B114	0-4	0.9	0.9		
	4-8	1.4	0.9		
	8-12	1.4	0.9		
B115	0-4	0.9	0.9		
	4-8	0.9	0.9		
	8-11.9	0.9	0.9		
B116	0-4	0.6	0.6		
	4-8	0.6	0.6		
	8-12	0.6	0.6		
B117	0-4	1.0	0.9		
	4-8	0.9	0.9		
	8-12	0.9	0.9		

Sub-Area I

Brooks Landing Urban Renewal District

		PID Readings			
Borehole	Depth	Peak	Background		
	(ft. bgs)	(ppm)	(ppm)		
1315 S. Plymouth/					
150 Elmwood Avenue (cont.)					
B118	0-4	0.5	0.0		
	4-8	0.8	0.0		
	8-12	0.0	0.0		
	12-16	0.0	0.0		
B118R	0-4	0.9	0.2		
	4-8	0.4	0.2		
D 110					
B119	0-4	0.0	0.0		
	4-8	0.8	0.0		
	8-12	0.0	0.0		
B120	0-4	0.3	0.0		
	4-8	2.2	0.0		
	8-12	0.0	0.0		
B121	0-4	0.3	0.0		
D121	4-8	0.3	0.0		
	8-12	0.0	0.0		
	0.12	0.0	0.0		
B122	0-4	0.3	0.0		
	4-8	0.9	0.0		
	8-12	0.0	0.0		
B123	0-4	0.2	0.0		
	4-8	0.1	0.0		
	8-12	0.0	0.0		
	0.12	3.0	5.0		
B124	0-4	1.1	0.0		
	4-8	0.2	0.0		
	8-12	0.4	0.0		
B124R	0-4	0.8	0.3		
DIZIK	4-8	1.4	0.3		
	-				

Sub-Area I

Brooks Landing Urban Renewal District

Rochester, NY

		PID Readi					
Borehole	Depth	Peak	Background				
	(ft. bgs)	(ppm)	(ppm)				
<u>1315 S. Plymouth/</u>							
150 Elmwood Avenue (cont.)							
B125	0-4	0.3	0.0				
	4-8	0.5	0.0				
B126	0-4	0.8	0.7				
	4-8	1.1	0.7				
	8-12	0.7	0.7				
B126R	0-4	0.6	0.3				
DIZOR	4-8	0.5	0.3				
	4.0	0.5	0.5				
B127	0-4	0.7	0.5				
	4-8	0.8	0.5				
	8-12	0.5	0.5				
B128	0-4	1.3	0.8				
	4-8	0.9	0.8				
	8-12	0.8	0.8				
PZ152	0-4	1.2	1.0				
	4-8	1.2	1.0				
	8-12	1.4	1.0				
	12-13	1.5	1.0				
D152	0.4	1.4	1.2				
B153	0-4	1.4	1.2				
	4-8 8-12	1.5 1.2	1.2 1.2				
	0-12	1.2	1.2				
B154	0-4	1.4	1.2				
D134	4-8	1.6	1.2				
	8-12	1.4	1.2				
	0 12						
B155	0-4	0.0	0.0				
	4-8	0.0	0.0				
B156	0-4	0.0	0.0				
	4-8	0.0	0.0				
_							
B157	0-4	106	0.0				
D167D	0.4	0.1	0.0				
B157R	0-4	0.1	0.0				
	4-8 8-12	8.4 4.8	0.0 0.0				
	8-12 11-12	4.8	0.0				
	11-12	1./	0.0				
B158	0-4	0.0	0.0				
D 150	4-8	0.0	0.0				
	10	0.0	0.0				

Sub-Area I Brooks Landing Urban Renewal District

Rochester, NY

		PID Readings			
Borehole	Depth	Peak	Background		
	(ft. bgs)	(ppm)	(ppm)		
B159	0-4	0.0	0.0		
	4.2-4.5	535	0.0		
	4.5-8.0	13.6	0.0		
B160	0-4	2.8	0.0		
В100	4-8	2.8 48.1	0.0		
	8-12	7.2	0.0		
	0.12	1.2	0.0		
B161	0-4	3.1	0.0		
B162	0-4	7.8	0.0		
B163	0-4	4.0	0.0		
D164	0-4	9.6	0.0		
B164	0-4	8.6	0.0		
B165	0-4	5.7	0.0		
D 105	4-8	29.9	0.0		
		_,,,	0.0		
B166	0-4	8.7	0.0		
	4-8	1.9	0.0		
B167	0-4	3.2	0.0		
D1 (0)		5.0	0.0		
B168	0-4	5.2	0.0		
B169	0-4	1.1	0.0		
B109	0-4	1.1	0.0		
973-975 Genesee Street					
PZ150	0-4	0.3	0.2		
	4-8	59.1	0.2		
	8-12	8.0	0.2		
	12-16	126	0.3		
	16-16.5	38.2	0.3		
PZ151	0-4	4.6	0.5		
	4-8	0.9	0.3		
	8-12	11.1	0.3		
	12-16	26.2	0.2		
	16-20	1.6	0.2		
Notos					

Notes:

1. ft. bgs = feet below ground surface.

2. ppm = parts per million.

3. PID data collected with Mini Rae 2000 equipped with 10.6 eV lamp.

TABLE 2ASOIL SAMPLE SUMMARY

Sub-Area I Brooks Landing Urban Renewal District Rochester, NY

Sample ID/Description	Location	Date	Depth (ft. bgs)	Parameters
<u>150 Elmwood Ave./</u> <u>1315 S. Plymouth</u>				
<u>Granular Fill</u> PZ101 (4-8)	PZ101	1/14/03	4-8	TCL/STARS VOCs by EPA Method 8260
PZ102 (4-8)	PZ102	1/14/03	4-8	TCL/STARS VOCs by EPA Method 8260
PZ103 (4-8)	PZ103	1/14/03	4-8	TCL/STARS VOCs by EPA Method 8260
B106 (0-4)	B106	1/15/03	0-4	TCL SVBNs by EPA Method 8270; 8 RCRA Metals by various methods; PCBs by EPA Method 8082; Chlorinated Herbicides by EPA Method 8151
B115 (0-4)	B115	1/15/03	0-4	TCL SVBNs by EPA Method 8270; 8 RCRA Metals by various methods; PCBs by EPA Method 8082; Chlorinated Herbicides by EPA Method 8151
B124 (0-4)	B124	1/16/03	0-4	TCL SVBNs by EPA Method 8270; 8 RCRA Metals by various methods; PCBs by EPA Method 8082; Chlorinated Herbicides by EPA Method 8151
B124R-R (0-4)	B124R	3/7/03	0-4	TCLP Mercury and Arsenic; TCL SVBNs by EPA Method 8270
B154 (4-8)	B154	3/7/03	0-4	TCL VOCs by EPA Method 8260; TCL SVBNs by EPA Method 8270 8 RCRA Metals by various methods
B157 (0-4)	B157	4/1/03	0-4	TCL/STARS VOCs by EPA Method 8260 TPH by NYSDOH Method 3.10-13 PCBs by EPA Method 8082
B159 (4.2-4.5) ⁽²⁾	B159	4/1/03	4.2-4.5	TCL/STARS VOCs by EPA Method 8260 TCL SVOCs by EPA Method 8270; TPH by NYSDOH Method 3.10-13
B160 (4-8)	B160	4/1/03	4-8	TCL/STARS VOCs by EPA Method 8260 STARS SVBNs by EPA Method 8270; TPH by NYSDOH Method 3.10-13 PCBs by EPA Method 8082
B161 (0-4)	B161	4/1/03	0-4	STARS SVBNs by EPA Method 8270
B165 (4-4.8)	B165	4/1/03	4-4.8	TCL/STARS VOCs by EPA Method 8260 STARS SVBNs by EPA Method 8270; PCBs by EPA Method 8082
B169 (0-1.5)	B169	4/1/03	0-1.5	STARS SVBNs by EPA Method 8270

TABLE 2ASOIL SAMPLE SUMMARY

Sub-Area I Brooks Landing Urban Renewal District Rochester, NY

Sample ID/Description	Location	Date	Depth (ft. bgs)	Parameters
Black Carbon Fill				
B118 (4-8)	B118	1/16/03	4-8	TCL VOCs by EPA Method 8260
B118 R(4-8)	B118	1/29/03	4-8	TCL VOCs by EPA Method 8260
B124 (4-8)	B124	1/16/03	4-8	TCL VOCs by EPA Method 8260
B124R (4-8)	B124	1/29/03	4-8	TCL VOCs by EPA Method 8260
B-126R (4-8)	B126	1/16/03	4-8	TCL VOCs by EPA Method 8260
B-126R (4-8)	B126	1/29/03	4-8	TCL VOCs by EPA Method 8260
Native Deposits				
PZ100 (8-12)	PZ100	1/13/03	8-12	TCL/STARS VOCs by 8260
B110 (4-8)	B110	1/15/03	4-8	TCL SVBNs by EPA Method 8270; 8 RCRA Metals by various methods PCBs by EPA Method 8082; Chlorinated Herbicides by EPA Method 8151
B118 (8-12)	B118	1/16/03	8-12	TCL VOCs by EPA Method 8260
B124 (8-12)	B124	1/16/03	8-12	TCL VOCs by EPA Method 8260
B126 (8-12)	B126	1/16/03	8-12	TCL VOCs by EPA Method 8260
<u>973-985 Genesee St.</u>				
PZ-150 (8-12)	PZ150	1/28/03	8-12	TCL/STARS VOCs by EPA Method 8260
PZ-151 (12-16)	PZ151	1/29/03	12-16	TCL/STARS VOCs by EPA Method 8260

Notes:

1. ft. bgs = feet below ground surface.

2. Tar sample.

TABLE 3A WELL COMPLETION SUMMARY

Sub-Area I Brooks Landing Urban Renewal District Rochester, NY

Well	Reference Elevation	Well Diameter (in.)	Bentonite Seal (ft. bgs)	Sandpack Interval (ft. bgs)	Screened Interval (ft. bgs)	Total Depth (ft. bgs)
150 Elmwood Avenue						
PZ-100	518.07	1"	0.5-2.0	2.0-13	3-13	13.0
PZ-101	518.09	1"	1-2.75	2.75-14	4-14	14.0
PZ-102	518.07	1"	0.5-2.0	2-13	3-13	13.0
PZ-103	517.62	1"	0-1.2	1.2-2.2	2.2-12.2	12.2
PZ-152	518.78	1"	0.5-2.0	2.0-13	3-13	13.0
<u>973-985 Genesee St.</u>						
PZ-150	528.4	1"	3.5-1.0	3.5-16.75	6.75-16.75	16.75
PZ-151	528.6	1"	3.5-1.0	3.5-20	10-20	20.0

Notes:

2. ft. bgs = feet below ground surface.

^{1.} Reference elevations measured at top of PVC well riser are based upon "Brooks" USC & GS benchmark = 529.30 ft amsl; approx. 150 ft. south of intersection of Brooks Ave. and Genesee St., east side of Genesee St.

TABLE 4AWELL DEVELOPMENT SUMMARY

Sub-Area I

Brooks Landing Urban Renewal District Rochester, NY

								Oxidation
								Reduction
Well	Date	Time	Volume Purged	pН	Conductivity	Temperature	Turbidity	Potential
			(gal)	(SU)	(us/cm)	(°C)	(NTU)	(mV)
<u>150 Elmwood Ave</u>								
PZ-100	01/16/03	10:05	0.27	7.19	1595	7.7	200+	24
		10:10	0.54	6.76	1536	7.6	200+	80
		10:15	0.81	6.80	1530	6.0	200+	109
				Dry after 3	3 Well volumes			
		12:45	0	7.01	1563	6.0	200+	121
		12:55	0.31	7.55	1541	6.5	200+	132
			0.62	7.62	1544	6.6	200+	107
			0.93	7.76	1560	6.0	200+	96
D7 101	01/16/02	10.20	0.24	6.61	1.670	5.0	200	154
PZ-101	01/16/03	10:30	0.34	6.61	1679	5.9	200+	154
		10:35	0.68	6.43	1655	7.0	200+	151
		10:40	1.02	6.54	1679	7.0	200+ 200+	142 145
		10:45	1.36	6.51	1673	7.4 7.2	200+ 200+	145 145
		10:50 10:55	1.70 2.04	6.45 6.54	1682 1659	6.5	200+ 200+	145 126
		10:33	2.38	6.65	1639	0.3 7.3	200+ 200+	120
		11:00	2.38	6.63 6.79	1727	7.5 6.5	200+ 200+	110
		11:05	3.06	6.79 6.79	1740	6.5	200+ 200+	111
		11:05	3.40	6.81	1741	6.5	200+ 200+	112
		11.07	5.40	0.81	1740	0.5	200+	110
		13:30	0.00	8.19	1717	6.0	200+	144
		13:35	0.33	10.25	1727	6.2	200+	133
		13:37	0.66	8.63	1720	6.5	200+	138
		13:40	0.99	6.84	1722	7.0	200+	132
PZ-102	01/16/03	11:35	0.3	11.95	2910	6.20	200+	43
12-102	01/10/03	11:40	0.6	8.03	3039	6.50	200+	101
		11:45	0.9	13.59	3145	6.70	200+	93
		11:50	1.2	12.38	3150	6.80	200+	89
		11.00			4 Well volumes		2001	0,
		14:30	0.0	7.29	2862	4.5	200+	135
		14:33	0.33	6.56	3078	6.4	200+	107
		14:35	0.66	5.83	3195	6.7	200+	111
		14:37	0.99	5.63	3259	6.7	200+	139
PZ-103	01/16/03	11:12	0.29	7.43	1839	6.1	200+	116
		11:15	0.58	8.92	1851	6.1	200+	111
		11:17	0.87	9.38	1891	6.3	200+	87
		13:55	0.0	7.98	1894	7.1	200+	130
		14:00	0.31	6.99	1903	6.9	200+ 200+	123
		14:00	0.62	6.77	1903	6.7	200+ 200+	125
		14:10	0.93	6.51	1903	6.3	200+	129

TABLE 4A WELL DEVELOPMENT SUMMARY

Sub-Area I Brooks Landing Urban Renewal District Rochester, NY

Well	Date	Time	Volume Purged (gal)	рН (SU)	Conductivity (us/cm)	Temperature (°C)	Turbidity (NTU)	Oxidation Reduction Potential (mV)
150 Elmwood Ave (cont)								
PZ-152	03/12/03	9:14 9:22 9:27	0.2 0.4 0.6	6.70 7.26 7.28	3138 3048 2885	6.2 6.3 6.7	200+ 200+ 200+	86 29 75
<u>973-985 Genesee St.</u>								
PZ-150	01/31/03	9:06 9:09 9:12	0.25 0.5 0.75	6.51 6.52 6.71	2068 2019 1485	8.8 8.6 7.7	200+ 200+ 200+	-35 -75 -73
PZ-151	01/31/03	9:30 9:34 9:37 9:41 9:44	0.25 0.5 0.75 1 1.25	6.70 6.63 6.65 6.71 6.73	1814 1435 1141 988.8 8873	9.7 10.9 11.1 11.6 11.4	200+ 200+ 200+ 200+ 200+	26 4 530 -18 0

<u>Notes:</u> 1. gal = gallons

2. SU = standard units.

3. us/cm = microsiemens per centimeter.

4. $(^{\circ}C) =$ degrees Celsius.

5. NTU = Nephelometric Turbidity Units.

6. mV = millivolts

TABLE 5AWATER LEVEL SUMMARY

Sub-Area I

Brooks Landing Urban Renewal District

Rochester, NY

		November 6, 2002		November 11, 2002		November 27, 2002		February 4, 2003		March 18, 2003	
Well	Reference	Water Level	Water Level	Water Level	Water Level	Water Level	Water Level	Water Level	Water Level	Water Level	Water Level
	Elevation	(ft. btoc)	(elevation)	(ft. btoc)	(elevation)	(ft. btoc)	(elevation)	(ft. btoc)	(elevation)	(ft. btoc)	(elevation)
PZ-1	529.11	13.36	515.75	13.51	515.60	13.52	515.59		516.44*/511.06	16.35	512.76
PZ-2	528.39	13.97	514.42	13.99	514.40	13.63	514.76	12.68	515.71	12.34	516.05
PZ-4	528.64	13.46	515.18	13.41	515.23	12.76	515.88	11.68	516.96	10.83	517.81
PZ-5	529.18	13.98	515.20	12.45	516.73	10.94	518.24	10.14	519.04	9.41	519.77
PZ-7	529.79	14.40	515.39	14.68	515.11	14.35	515.44	13.94	515.85	13.38	516.41
PZ-14	528.01	14.27	513.74	14.27	513.74	13.94	514.07	13.50	514.51	11.84	516.17
PZ-16	529.07	11.82	517.25	10.63	518.44	9.50	519.57	9.66	519.41	8.78	520.29
PZ-17	529.22	10.07	519.15	10.15	519.07	9.06	520.16	9.08	520.14	7.44	521.78
PZ-18	528.28	-	-	-	-	13.96	514.32	13.53	514.75	11.71	516.57
PZ-19	529.33	-	-	-	-	15.01	514.32	14.64	514.69	12.52	516.81
PZ-20	530.53	-	-	-	-	14.90	515.63	14.28	516.25	13.29	517.24
PZ-21	529.90	-	-	-	-	14.47	515.43	14.10	515.80	12.90	517.00
MW-1	529.02	14.28	514.74	14.15	514.87	13.88	515.14	13.40	515.62	12.64	516.38
MW-4	530.97	14.27	516.70	13.56	517.41	12.06	518.91	11.70	519.27	11.52	519.45
MW-5	528.07	13.90	514.17	13.85	514.22	13.50	514.57	12.98	515.09	11.80	516.27
RW	528.60	14.32	514.28	14.45	514.15	14.18	514.42	13.66	514.94	12.52	516.08
PZ-100	518.07	-	-	-	-	-	-	4.14	513.93	2.94	515.13
PZ-101	518.09	-	-	-	-	-	-	4.28	513.81	2.92	515.17
PZ-102	518.07	-	-	-	-	-	-	4.27	513.80	2.86	515.21
PZ-103	517.62	-	-	-	-	-	-	3.83	513.79	2.58	515.04
PZ-137	526.74	-	-	-	-	-	-	12.20	514.54	11.49	515.25
PZ-138	526.17	-	-	-	-	-	-	11.29	514.88	10.52	515.65
PZ-141	524.59	-	-	-	-	-	-	8.34	516.25	9.12	515.47
PZ-145	525.85	-	-	-	-	-	-	9.18	516.67	8.32	517.53
PZ-150	528.40	-	-	-	-	-	-	8.04	520.36	6.42	521.98
PZ-151	528.60	-	-	-	-	-	-	12.10	516.50	10.56	518.04
PZ-152	518.78	-	-	-	-	-	-	-	-	2.98	515.80

Notes:

1. Reference elevations measured at top of PVC well riser are based upon "Brooks" USC & GS benchmark = 529.30 ft amsl; approx. 150 ft. south of intersection of Brooks Ave. and Genesee St., east side of Genesee St.

2. ft. btoc = feet below top of casing.

3. * denotes product/oil elevation

TABLE 6AGROUNDWATER SAMPLE SUMMARY

Sub-Area I Brooks Landing Urban Renewal District Rochester, NY

Sample ID	Location	Date	Method	Parameters
<u>150 Elmwood Ave.</u>				
PZ-100	PZ-100	1/16/2003	Stainless Steel Bailer	TCL/STARS VOCs by EPA Method 8260
PZ-101	PZ-101	1/16/2003	Stainless Steel Bailer	TCL/STARS VOCs by EPA Method 8260
PZ-102	PZ-102	1/16/2003	Stainless Steel Bailer	TCL/STARS VOCs by EPA Method 8260
PZ-103	PZ-103	1/16/2003	Stainless Steel Bailer	TCL/STARS VOCs by EPA Method 8260
PZ 152-3/03	PZ-152	3/5/2003	Disposable Poly Bailer	TCL/STARS VOCs by EPA Method 8260
<u>973-985 Genesee St.</u>				
PZ 150-1/03	PZ-150	1/31/2003	Stainless Steel Bailer	TCL/STARS VOCs by EPA Method 8260
PZ 151-1/03	PZ-151	1/31/2003	Stainless Steel Bailer	TCL/STARS VOCs by EPA Method 8260

TABLE 7A SUMMARY OF TCL/STARS VOLATILE ORGANIC COMPOUNDS IN SOIL (ug/kg) Sub-Area I Brooks Landing Urban Renewal District Rochester, NY

PT. 57.45 VOC PL				13	15 South Plym	outh Ave./150	Elmwood Ave.				1315 Sou	uth Plymouth	Ave./150 Elmw	ood Ave.						973-985 (Senesee Street	
TLATAGY VOC Prod					Granular	Fill			TAR			Black Ca	arbon Fill				Native	Deposits		Nativ	e Deposits	Recommended
Value Huber/Home NDc 7.42 NDc 9.47 NDc 7.42 NDc 7.42 NDc 7.42 NDc 7.42 NDc 7.43 NDc 1.13 NDc 1.14 NDc 1.15 NDc 1.15 NDc 7.44 NDc 7.30 NDc 7.31 NDc 7.30	Γ	PZ101 (4-8)	PZ102 (4-8)	PZ103(4-8)	B154 (4-8)	B157 (0-4)	B160 (4-8)	B165 (4-4.8)	B159 (4.2-4.5)	B118 (4-8')	B118R (4-8')	B124 (4-8')	B124R (4-8')	B126 (4-8')	B126R (4-8')	PZ-100 (8-12)	B118 (8-12')	B124 (8-12')	B126 (8-12')	PZ150 (8-12')	PZ-151 (12-16')	Soil Cleanup
Immediatementance NDC / L4 NDC / L4 <th></th> <th>Objective⁽¹⁾</th>																						Objective ⁽¹⁾
Intermediate NDC 42 NDC 47 N	<u>s</u>																					
Immedment ND: 42 ND: 642 ND: 647 ND: 648 ND: 188 ND: 108 ND: 108 ND: 115 ND: 115 ND: 115 ND: 115 ND: 125 ND: 543 ND: 543 ND: 743 <	ne	ND< 7.42	ND< 9.47	ND< 7.97	ND< 1.0	ND< 1.2	ND< 1.2	ND< 130	ND< 188	ND< 10.6	ND< 11.8	ND< 10.8	ND< 12.2	ND< 11.5	ND< 11.5	ND< 9.28	ND< 9.31	ND< 7.80	ND< 7.45	ND< 10.00	ND< 5.64	10,000 *
Carbon embanded ND-742 ND-742 ND-747 ND-787 ND-787 <t< td=""><td></td><td>ND< 7.42</td><td>ND< 9.47</td><td>ND< 7.97</td><td>ND< 1.3</td><td>ND< 2.5</td><td>ND< 1.5</td><td>ND< 68</td><td>ND< 188</td><td>ND< 10.6</td><td>ND< 11.8</td><td>ND< 10.8</td><td>ND< 12.2</td><td>ND< 11.5</td><td>ND< 11.5</td><td>ND< 9.28</td><td>ND< 9.31</td><td>ND< 7.80</td><td>ND< 7.45</td><td>ND< 10.00</td><td>ND< 5.64</td><td>10,000 *</td></t<>		ND< 7.42	ND< 9.47	ND< 7.97	ND< 1.3	ND< 2.5	ND< 1.5	ND< 68	ND< 188	ND< 10.6	ND< 11.8	ND< 10.8	ND< 12.2	ND< 11.5	ND< 11.5	ND< 9.28	ND< 9.31	ND< 7.80	ND< 7.45	ND< 10.00	ND< 5.64	10,000 *
Chlorendume NDC 742 NDC 197 NDC 117 NDC 197 NDC 117 NDC 197 NDC 117 NDC 107 NDC 197 NDC 117 NDC 107		ND< 7.42	ND< 9.47	ND< 7.97		ND< 1.6	ND< 1.7	ND< 88	ND< 188	ND< 10.6	ND< 11.8	ND< 10.8	ND< 12.2	ND< 11.5	ND< 11.5	ND< 9.28	ND< 9.31	ND< 7.80	ND< 7.45	ND< 10.00	ND< 5.64	10,000 *
Chaomedmain ND - 742 ND - 97 ND - 79 ND - 23 ND - 25 ND - 16		ND< 7.42	ND< 9.47					ND< 84			ND< 11.8	ND< 10.8		ND< 11.5						ND< 10.00	ND< 5.64	600
Calimantly injuinter NDS 742 NDS 747 NDS 747 <td></td> <td>ND< 7.42</td> <td>ND< 9.47</td> <td></td> <td></td> <td></td> <td>ND< 2.0</td> <td>ND< 430</td> <td></td> <td>ND< 10.6</td> <td>ND< 11.8</td> <td>ND< 10.8</td> <td></td> <td>ND< 11.5</td> <td></td> <td></td> <td>ND< 9.31</td> <td></td> <td>ND< 7.45</td> <td>ND< 10.00</td> <td>ND< 5.64</td> <td>1,900</td>		ND< 7.42	ND< 9.47				ND< 2.0	ND< 430		ND< 10.6	ND< 11.8	ND< 10.8		ND< 11.5			ND< 9.31		ND< 7.45	ND< 10.00	ND< 5.64	1,900
Chloroffin ND<7.42 ND<7.47 ND<7.97 ND<1.3 ND<1.4 ND<1.05 ND 1.05 <		ND< 7.42	ND< 9.47	ND< 7.97	ND< 2.2	ND< 2.5	ND< 2.6	ND< 91	ND< 188	ND< 10.6	ND< 11.8	ND< 10.8	ND< 12.2	ND< 11.5	ND< 11.5	ND< 9.28	ND< 9.31	ND< 7.80	ND< 7.45	ND< 10.00	ND< 5.64	10,000 *
Cycloscane No	ther	ND< 7.42	ND< 9.47	ND< 7.97		ND< 25.0			ND< 188	ND< 10.6	ND< 11.8	ND< 10.8	ND< 12.2	ND< 11.5	ND< 11.5	ND< 9.28	ND< 9.31	ND< 7.80	ND< 7.45	ND< 10.00	ND< 5.64	10,000 *
Dimonschlaren NDC 742 NDC 947 NDC 797 NDC 14 NDC 13 NDC 106 NDC 118 NDC 106		ND< 7.42	ND< 9.47	ND< 7.97	ND< 1.3	ND< 1.4	ND< 1.5	ND< 110	ND< 188	ND< 10.6	ND< 11.8	ND< 10.8	ND< 12.2	ND< 11.5	ND< 11.5	ND< 9.28	ND< 9.31	ND< 7.80	ND< 7.45	ND< 10.00	ND< 5.64	300
L1-Decklorementane NDC 42 NDC 947 NDC 1797 NDC 14 NDC 13 NDC 12 NDC 118 NDC 108 NDC 118 NDC 108 NDC 115 NDC 115 NDC 128 NDC 308 NDC 120 NDC 115 NDC 11							ND< 2.0		ND< 188													10,000*
12-Delinorentame NDC 742 NDC 797 NDC 14 NDC 16 NDC 17 NDC 106 NDC 12 NDC 105 NDC 115 NDC 928 NDC 931 NDC 740 NDC 740 NDC 745 NDC 745 </td <td>ne</td> <td>ND< 7.42</td> <td>ND< 9.47</td> <td>ND< 7.97</td> <td></td> <td></td> <td>ND< 1.4</td> <td>ND< 120</td> <td></td> <td>ND< 10.6</td> <td>ND< 11.8</td> <td>ND< 10.8</td> <td>ND< 12.2</td> <td>ND< 11.5</td> <td>ND< 11.5</td> <td>ND< 9.28</td> <td>ND< 9.31</td> <td>ND< 7.80</td> <td>ND< 7.45</td> <td>ND< 10.00</td> <td>ND< 5.64</td> <td>10,000 *</td>	ne	ND< 7.42	ND< 9.47	ND< 7.97			ND< 1.4	ND< 120		ND< 10.6	ND< 11.8	ND< 10.8	ND< 12.2	ND< 11.5	ND< 11.5	ND< 9.28	ND< 9.31	ND< 7.80	ND< 7.45	ND< 10.00	ND< 5.64	10,000 *
11.Dicklorenchene NDC 747 NDC 747 NDC 744 NDC 14 NDC 14 NDC 14 NDC 18 NDC 18 NDC 18 NDC 115 NDC 145 NDC 730 NDC 740 NDC 745		ND< 7.42	ND< 9.47	ND< 7.97	ND< 1.4	ND< 1.3	ND< 1.7	ND< 120	ND< 188	ND< 10.6	ND< 11.8	ND< 10.8	ND< 12.2	ND< 11.5	ND< 11.5	ND< 9.28	ND< 9.31	ND< 7.80	ND< 7.45	ND< 10.00	ND< 5.64	200
cish2-Dicklorednehme 10.3 9.6.3 NDC 710 NDC 11 NDC 14 NDC 15 NDC 14 NDC 16 NDC 15 NDC 16		ND< 7.42	ND< 9.47	ND< 7.97	ND< 1.4	ND< 1.6	ND< 1.7	ND< 100	ND< 188	ND< 10.6	ND< 11.8	ND< 10.8	ND< 12.2	ND< 11.5	ND< 11.5	ND< 9.28	ND< 9.31	ND< 7.80	ND< 7.45	ND< 10.00	ND< 5.64	100
Immed-20bildoredhene ND-7.42 ND-9.47 ND-7.47 ND-1.6 ND-1.6 ND-1.18 ND-1.08 ND-1.12 ND-1.05 ND-7.38 ND-9.31 ND-7.38		ND< 7.42	ND< 9.47	ND< 7.97	ND< 1.4	ND< 1.6	ND< 1.4	ND< 120	ND< 188	ND< 10.6	ND< 11.8	ND< 10.8	ND< 12.2	ND< 11.5	ND< 11.5	ND< 9.28	ND< 9.31	ND< 7.80	ND< 7.45	ND< 10.00	ND< 5.64	400
1.2.Dickloropropane NDC 742 NDC 947 NDC 797 NDC 10 NDC 12 NDC 12 NDC 115 NDC 115 NDC 928 NDC 931 NDC 740 NDC 745 NDC	e	10.3	9.63	ND< 7.97	ND< 1.1	ND< 1.3	ND< 1.4	ND< 110	ND< 188	ND< 10.6	ND< 11.8	ND< 10.8	ND< 12.2	ND< 11.5	ND< 11.5	ND< 9.28	ND< 9.31	ND< 7.80	ND< 7.45	ND< 10.00	ND< 5.64	10,000 *
cis-13-Diction/proprese ND 7.42 ND 9.47 ND 7.72 ND 7.79 ND 7.11 ND 7.13 ND 7.14 ND 7.13 ND 7.14 ND 7.15 ND 7.15 ND 7.15 ND 7.98 ND 7.780 ND 7.745 ND 7.745 ND 7.780 ND 7.745	ene	ND< 7.42	ND< 9.47	ND< 7.97	ND< 1.4	ND< 1.6	ND< 1.7	ND< 140	ND< 188	ND< 10.6	ND< 11.8	ND< 10.8	ND< 12.2	ND< 11.5	ND< 11.5	ND< 9.28	ND< 9.31	ND< 7.80	ND< 7.45	ND< 10.00	ND< 5.64	300
Image: Labeled composed Methyle (cyclohexame (horde) ND< 7.42 ND< 9.47 ND< 7.97 ND< 1.3 ND< 1.4 ND< 1.5 ND< 120 ND< 186 ND< 1.6 ND< 1.8 ND< 1.8 ND< 1.0.8 ND< 1.2 ND< 1.5 ND< 1.5 ND< 9.31 ND< 7.30 ND< 1.3 ND< 1.5 ND 1.6 ND 1.6 ND 1.5 ND 1.5<		ND< 7.42	ND< 9.47	ND< 7.97	ND< 1.0	ND< 1.2	ND< 1.2	ND< 130	ND< 188	ND< 10.6	ND< 11.8	ND< 10.8	ND< 12.2	ND< 11.5	ND< 11.5	ND< 9.28	ND< 9.31	ND< 7.80	ND< 7.45	ND< 10.00	ND< 5.64	10,000 *
Methylychokevale Noc	ene	ND< 7.42	ND< 9.47	ND< 7.97	ND< 1.1	ND< 1.3	ND< 1.4	ND< 120	ND< 188	ND< 10.6	ND< 11.8	ND< 10.8	ND< 12.2	ND< 11.5	ND< 11.5	ND< 9.28	ND< 9.31	ND< 7.80	ND< 7.45	ND< 10.00	ND< 5.64	10,000 *
Methylene chloride ND<18.6 ND<23.7 ND<19.9 ND<1.6 ND<2.19 ND<2.10 ND<2.10 ND<470 C 433 ND<2.94 C 271 ND<30.6 C 293 ND<2.82 ND<2.32 C 985 ND<1.95 ND<1.60 ND<1.18 ND<10.6 ND<1.12 ND<10.6 ND<2.12 ND<10.5 ND<1.5 ND<1.6 ND<1.8 ND<1.6 ND<1.2 ND<1.5 ND<1.5 ND<1.6 ND<1.	pene	ND< 7.42	ND< 9.47	ND< 7.97	ND< 1.3	ND< 1.4	ND< 1.5	ND< 120	ND< 188	ND< 10.6	ND< 11.8	ND< 10.8	ND< 12.2	ND< 11.5	ND< 11.5	ND< 9.28	ND< 9.31	ND< 7.80	ND< 7.45	ND< 10.00	ND< 5.64	10,000 *
1,1,2,2-terrachloroethane ND<7,42 ND<9,47 ND<7,97 ND<1.3 ND<1.4 ND<1.5 ND<130 ND<1.8 ND<106 ND<1.8 ND<10.8 ND<1.2 ND<1.5 ND<9,28 ND<9,31 ND<7,80 ND<7,45 ND<1.9 Iterrachloroethane ND<7,42	_						ND< 1.5															10,000*
Terachloroethene ND< 7.42 ND< 9.47 QD 9.47 ND<1.5 ND<1.5 ND<1.9 ND<130 ND<188 ND<10.6 ND<1.18 ND<1.08 ND<1.2.2 ND<1.5 ND<1.5 ND<7.45 N		ND< 18.6	ND< 23.7	ND< 19.9	ND< 1.6	ND< 1.9	ND< 2.0	ND< 310	ND< 470	С <u>453</u>	ND< 29.4	C <u>271</u>	ND< 30.6	С 293	ND< 28.7	ND< 23.2	С 98.5	ND< 19.5	ND< 18.6	ND< 25.00	ND< 5.64	100
1,1,1-Trichloroethane ND<7.42 ND<9.47 ND<7.97 ND<1.3 ND<1.4 ND<1.5 ND<100 ND<1.88 ND<10.6 ND<1.18 ND<10.8 ND<10.8 ND<11.5 ND<1.5 ND<1.5 ND<9.28 ND<9.31 ND<7.80 ND<7.80 ND<7.45 ND<7.4	nane	ND< 7.42	ND< 9.47	ND< 7.97	ND< 1.3	ND< 1.4	ND< 1.5	ND< 130	ND< 188	ND< 10.6	ND< 11.8	ND< 10.8	ND< 12.2	ND< 11.5	ND< 11.5	ND< 9.28	ND< 9.31	ND< 7.80	ND< 7.45	ND< 10.00	ND< 5.64	600
1, 2.7 richloroethane ND< 7.42 ND< 9.47 ND< 7.97 ND<1.4 ND<1.6 ND<1.7 ND<110 ND<188 ND<10.6 ND<11.8 ND<10.6 ND<12.2 ND<11.5 ND<11.5 ND<9.28 ND<9.28 ND<7.80 ND<7.80 ND<7.45 ND<1 ND<1.4 ND<1.4 ND<1.5 ND<10 ND<11.5 ND<10.8 ND<11.5 ND<11.5 ND<9.28 ND<9.28 ND<9.28 ND<7.80 ND<7.80 ND<7.45 ND<1 ND<7.80		ND< 7.42	ND< 9.47	20.7	ND< 1.5	ND< 1.9		ND< 130	ND< 188	ND< 10.6	ND< 11.8	ND< 10.8	ND< 12.2	ND< 11.5	ND< 11.5	ND< 9.28	ND< 9.31	ND< 7.80	ND< 7.45	ND< 10.00	ND< 5.64	1,400
Trichloroethene 82.9 44.4 23.0 ND<1.3 ND<1.4 ND<1.5 ND<130 ND<1.6 ND<130 ND<1.6 ND<188 ND<10.6 ND<1.18 ND<10.8 ND<10.5 ND<1.5 ND<1.5 ND<9.31 ND<7.30 ND<7.40 ND		ND< 7.42	ND< 9.47	ND< 7.97	ND< 1.3	ND< 1.4	ND< 1.5	ND< 130	ND< 188	ND< 10.6	ND< 11.8	ND< 10.8	ND< 12.2	ND< 11.5	ND< 11.5	ND< 9.28	ND< 9.31	ND< 7.80	ND< 7.45	ND< 10.00	ND< 5.64	800
Trichlorofiluromethane ND< 7.42 ND< 9.47 ND< 9.47 ND< 7.97 ND<1.6 ND<1.9 ND<2.0 ND< ND<188 ND<10.6 ND<11.8 ND<10.8 ND<12.2 ND<11.5 ND<11.5 ND<9.28 ND<9.31 ND<7.80 ND<7.40 ND<7.45 ND<10.6 ND<1.5 ND<10.6 ND<11.5 ND<10.8 ND<11.5 ND<10.5 ND<9.31 ND<9.31 ND<7.80 ND<7.45 ND<7.45 ND<7.80 ND<7.45 ND<7.45 ND<7.80 ND<7.80 ND<7.45 ND<7.45 ND<7.80 ND<7.80 ND<7.45 ND<		ND< 7.42	ND< 9.47	ND< 7.97	ND< 1.4	ND< 1.6	ND< 1.7	ND< 110	ND< 188	ND< 10.6	ND< 11.8	ND< 10.8	ND< 12.2	ND< 11.5	ND< 11.5	ND< 9.28	ND< 9.31	ND< 7.80	ND< 7.45	ND< 10.00	ND< 5.64	10,000 *
Visit Chloride ND< 7.42 ND< 9.47 ND< 7.97 ND<1.3 ND<1.4 ND<1.5 ND<1.40 ND<1.5 ND<1.6 ND<1.5 ND<1.5 ND<1.5 ND<1.5 ND<9.31 ND<7.80 ND<7.45 ND<7.45 ND<7.80 ND<7.80 ND<7.45		82.9	44.4	23.0	ND< 1.3	ND< 1.4	ND< 1.5	ND< 130	ND< 188	ND< 10.6	ND< 11.8	ND< 10.8	ND< 12.2	ND< 11.5	ND< 11.5	ND< 9.28	ND< 9.31	ND< 7.80	ND< 7.45	ND< 10.00	ND< 5.64	700
V V <td>ne</td> <td>ND< 7.42</td> <td>ND< 9.47</td> <td>ND< 7.97</td> <td>ND< 1.6</td> <td>ND< 1.9</td> <td>ND< 2.0</td> <td>ND<</td> <td>ND< 188</td> <td>ND< 10.6</td> <td>ND< 11.8</td> <td>ND< 10.8</td> <td>ND< 12.2</td> <td>ND< 11.5</td> <td>ND< 11.5</td> <td>ND< 9.28</td> <td>ND< 9.31</td> <td>ND< 7.80</td> <td>ND< 7.45</td> <td>ND< 10.00</td> <td>ND< 5.64</td> <td>10,000 *</td>	ne	ND< 7.42	ND< 9.47	ND< 7.97	ND< 1.6	ND< 1.9	ND< 2.0	ND<	ND< 188	ND< 10.6	ND< 11.8	ND< 10.8	ND< 12.2	ND< 11.5	ND< 11.5	ND< 9.28	ND< 9.31	ND< 7.80	ND< 7.45	ND< 10.00	ND< 5.64	10,000 *
Benzene ND ND ND 9.47 ND 9.47 ND 1.3 ND<1.4 ND<1.5 ND<130 ND<188 ND<10.6 ND<11.8 ND<10.8 ND<10.8 ND<10.8 ND<11.5 ND<11.5 ND<9.28 ND<9.31 ND<7.80 ND<7.45 ND<10 Chlorobenzene ND<7.42 ND<9.47 ND<9.47 ND<7.97 ND<1.4 ND<1.6 ND<1.7 ND<140 ND<188 ND<10.6 ND<11.8 ND<10.8 ND<10.8 ND<11.5 ND<11.5 ND<9.28 ND<9.31 ND<7.80 ND<7.45		ND< 7.42	ND< 9.47	ND< 7.97		ND< 1.4	ND< 1.5	ND< 140	ND< 188	ND< 10.6	ND< 11.8	ND< 10.8	ND< 12.2	ND< 11.5	ND< 11.5	ND< 9.28	ND< 9.31	ND< 7.80	ND< 7.45	ND< 10.00	ND< 5.64	200
ChlorobenzeneND<7.42ND<9.47ND<9.47ND<7.97ND<1.4ND<1.6ND<1.7ND<140ND<188ND<10.6ND<11.8ND<10.6ND<1.2ND<1.5ND<1.5ND<1.5ND<9.28ND<9.21ND<7.80ND<7.80ND<7.80ND<7.45ND<7.55ND<7.80ND<7.80ND<7.80ND<7.80ND<7.80ND<7.80ND<7.80ND<7.80ND<7.80ND<7.80ND<7.80ND<7.80ND<7.80ND<7.80ND<7.80ND<7.80ND<7.80ND<7.80ND<7.80ND<7.80ND<7.80ND<7.80ND<7.80ND<7.80ND<7.80ND<7.80ND<7.80ND<7.80ND<7.80ND<7.80ND<7.80ND<7.80ND<7.80ND<7.80ND<7.80ND<7.80ND<7.80ND<7.80ND<7.80ND<7.80ND<7.80ND<7.80ND<7.80ND<7.80ND<7.80ND<7.80ND<7.80ND<7.80ND<7.80ND<7.80ND<7.80ND<7.80ND<7.80ND<7.80ND<7.80ND<7.80ND<7.80ND<7.80ND<7.80ND<7.80ND<7.80ND<7.80ND<7.80ND<7.80ND<7.80ND<7.80ND<7.80ND<7.80ND<7.80ND<7.80ND<7.80ND<7.80ND<7.80ND<7.80ND<7.80ND<7.80ND<7.80ND<7.80ND<7.80ND<7.80ND<7.80ND<7.80ND<7.80ND<7.80ND<7.80ND<7.80ND<7.80ND<7.80ND<7.80ND<7.80ND<7.80ND<7.80ND<7.80ND<7.80ND<7.80ND<7.80ND<7.80ND<7.80ND<7.80ND<7.80ND<7.80ND<7.80ND<7.80																						
Ethylbenzene ND		ND< 7.42	ND< 9.47	ND< 7.97	ND< 1.3	ND< 1.4	ND< 1.5	ND< 130	ND< 188	ND< 10.6	ND< 11.8	ND< 10.8	ND< 12.2	ND< 11.5	ND< 11.5	ND< 9.28	ND< 9.31	ND< 7.80	ND< 7.45	ND< 10.00	<u>463</u>	60 or MDL
ND ND<		ND< 7.42	ND< 9.47	ND< 7.97	ND< 1.4	ND< 1.6	ND< 1.7	ND< 140	ND< 188	ND< 10.6	ND< 11.8	ND< 10.8	ND< 12.2	ND< 11.5	ND< 11.5	ND< 9.28	ND< 9.31	ND< 7.80	ND< 7.45	ND< 10.00	ND< 5.64	1,700
ND ND<		ND< 7.42	ND< 9.47	ND< 7.97	ND< 1.3	ND< 1.4	ND< 1.5	ND< 130	1,360	ND< 10.6	ND< 11.8	ND< 10.8	ND< 12.2	ND< 11.5	ND< 11.5	ND< 9.28	ND< 9.31	ND< 7.80	ND< 7.45	433	268	5,500
		ND< 7.42	ND< 9.47	ND< 7.97	ND< 1.4	ND< 1.6	ND< 1.7	ND< 130	ND< 188	ND< 10.6	ND< 11.8	ND< 10.8	ND< 12.2	ND< 11.5	ND< 11.5	ND< 9.28	ND< 9.31	ND< 7.80	ND< 7.45	ND< 10.00	141	1,500
o-Xylene ND< 7.42 ND< 9.47 ND< 7.97 ND< 1.4 13.5 ND< 1.7 330 J $10,100$ ND< 10.6 ND< 11.8 ND< 10.8 ND< 12.2 ND< 11.5 ND< 11.5 ND< 9.28 ND< 9.31 ND< 7.80 ND< 7.45 4		ND< 7.42	ND< 9.47	9.08	ND< 3.5	ND< 4.1	ND< 4.3	750 J	9,120	ND< 10.6	ND< 11.8	ND< 10.8	ND< 12.2	ND< 11.5	ND< 11.5	ND< 9.28	ND< 9.31	ND< 7.80	ND< 7.45	943	618	1,200
		ND< 7.42		ND< 7.97		13.5	ND< 1.7	330 J				ND< 10.8				ND< 9.28	ND< 9.31	ND< 7.80	ND< 7.45	44.4	282	600
Styrene ND< 7.42 ND< 9.47 ND< 7.97 ND< 1.8 ND< 2.0 ND< 2.2 ND< 160 ND< 10.6 ND< 10.6 ND< 10.8 ND< 10.2 ND< 11.5 ND< 11.5 ND< 9.28 ND< 9.31 ND< 7.80 ND< 7.45 ND< 10.5 ND> 10.5		ND< 7.42	ND< 9.47	ND< 7.97	ND< 1.8	ND< 2.0	ND< 2.2	ND< 160	ND< 188	ND< 10.6	ND< 11.8	ND< 10.8	ND< 12.2	ND< 11.5	ND< 11.5	ND< 9.28	ND< 9.31	ND< 7.80	ND< 7.45	ND< 10.00	ND< 5.64	10,000 *
																				ND< 10.00	ND< 5.64	7,900
																				ND< 10.00	ND< 5.64	1,600
																				ND< 10.00	ND< 5.64	8,500
																						,

TABLE 7A SUMMARY OF TCL/STARS VOLATILE ORGANIC COMPOUNDS IN SOIL (ug/kg) Sub-Area I Brooks Landing Urban Renewal District Rochester, NY

			13	315 South Plym	outh Ave./150	Elmwood Ave.				1315 So	uth Plymouth	Ave./150 Elmw	ood Ave.						973-985 (Jenesee Street	
				Granular	Fill			TAR			Black C	arbon Fill				Native	Deposits		Nativ	e Deposits	Recommende
	PZ101 (4-8)	PZ102 (4-8)	PZ103(4-8)	B154 (4-8)	B157 (0-4)	B160 (4-8)	B165 (4-4.8)	B159 (4.2-4.5)	B118 (4-8')	B118R (4-8')	B124 (4-8')	B124R (4-8')	B126 (4-8')	B126R (4-8')	PZ-100 (8-12)	B118 (8-12')	B124 (8-12')	B126 (8-12')	PZ150 (8-12')	PZ-151 (12-16')	Soil Cleanup
TCL STARS VOCs																					Objective ⁽¹⁾
Ketones & Misc.																					
Acetone	ND< 37.10	ND< 47.4	ND< 39.9	ND< 4.4	85.4	ND< 5.4	ND< 630	ND< 941	ND< 53.1	ND< 58.9	ND< 54.2	ND< 61.2	ND< 57.6	ND< 57.3	ND< 46.40	ND< 46.6	ND< 39.0	ND< 37.2	ND< 50.1	ND< 28.2	200
2-Butanone	ND< 18.60	ND< 23.7	ND< 19.9	ND< 6.3	ND< 7.2	ND< 7.7	ND< 410	ND< 470	ND< 26.5	ND< 29.4	ND< 27.1	ND< 30.6	ND< 28.8	ND< 28.7	ND< 23.20	ND< 23.3	ND< 19.5	ND< 18.6	ND< 25.0	ND< 14.1	300
2-Hexanone	ND< 18.60	ND< 23.7	ND< 19.9	ND< 6.3	ND< 7.2	ND< 7.7	ND< 110	ND< 470	ND< 26.5	ND< 29.4	ND< 27.1	ND< 30.6	ND< 28.8	ND< 28.7	ND< 23.20	ND< 23.3	ND< 19.5	ND< 18.6	ND< 25.0	ND< 14.1	10,000 *
4-Methyl-2-pentanone	ND< 18.60	ND< 23.7	ND< 19.9	ND< 5.1	ND< 5.8	ND< 6.2	ND< 140	ND< 470	ND< 26.5	ND< 29.4	ND< 27.1	ND< 30.6	ND< 28.8	ND< 28.7	ND< 23.20	ND< 23.3	ND< 19.5	ND< 18.6	ND< 25.0	ND< 14.1	1,000
Carbon disulfide	ND< 18.60	ND< 23.7	ND< 19.9	ND< 1.6	ND< 1.9	ND< 2.0	ND< 130	ND< 470	ND< 26.5	ND< 29.4	ND< 27.1	ND< 30.6	ND< 28.8	ND< 28.7	ND< 23.20	ND< 23.3	ND< 19.5	ND< 18.6	ND< 25.0	ND< 14.1	2,700
Vinyl acetate	ND< 18.60	ND< 23.7	ND< 19.9						ND< 26.5	ND< 29.4	ND< 27.1	ND< 30.6	ND< 28.8	ND< 28.7	ND< 26.50	ND< 23.3	ND< 19.5	ND< 18.6	ND< 25.0	ND< 14.1	10,000 *
Additional STARS Compounds																					
n-Butylbenzene	ND< 8.26	ND< 6.43	ND< 7.97		ND< 3.5	ND< 3.7	ND< 220	ND< 188							ND< 9.28				ND< 10.00	ND< 5.64	10,000 *
sec-Butylbenzene	ND< 8.26	ND< 6.43	ND< 7.97		ND< 2.6	ND< 2.8	ND< 170	4,010							ND< 9.28				121.0	ND< 5.64	10,000 *
tert-Butylbenzene	ND< 8.26	ND< 6.43	ND< 7.97		ND< 2.5	ND< 2.6	ND< 170	ND< 188							ND< 9.28				ND< 10.0	ND< 5.6	10,000 *
n-Propylbenzene	ND< 8.26	ND< 6.43	ND< 7.97		ND< 1.9	ND< 2.0	ND< 140	3,040							ND< 9.28				619.0	8.18	3,700
Isopropylbenzene	ND< 8.26	ND< 6.43	ND< 7.97	ND< 1.4	ND< 1.6	ND< 1.7	ND< 130	2,850							ND< 9.28				231.0	6.78	2,300
p-Isopropyltoluene	ND< 8.26	ND< 6.43	ND< 7.97		12.6	ND< 2.8	ND< 190	7,480							ND< 9.28				322.0	ND< 5.64	10,000 *
Naphthalene	ND< 20.6	ND< 16.10	ND< 19.9		ND< 1.7	ND< 1.8	200,000 D	ND< 470							ND< 9.28				353.0	28.5	13,000
1,2,4-Trimethylbenzene	ND< 8.26	ND< 6.43	ND< 7.97		29.4	ND< 2.2	830 J	29,400							ND< 9.28				2880	53.7	10,000 *
1,3,5-Trimethylbenzene	ND< 8.26	ND< 6.43	ND< 7.97		193	ND< 2.0	430 J	22,400							ND< 9.28				937.0	16.6	3,300
Miscellaneous																					
Methyl tert-butyl Ether	24.7	ND< 6.43	ND< 7.97	ND< 1.10	ND< 1.3	ND< 1.4	ND< 190	ND< 188							ND< 9.28				ND< 10.00	ND< 5.64	120

Notes:

1. NYSDEC. January 24, 1994. Determination of Soil Cleanup Objectives and Cleanup Levels, Division of Hazardous Waste Remediation,

Technical and Administrative Guidance Memorandum, HWR 94-4046 (TAGM 4046) Revised July 2001.

ug/kg = All values expressed in micrograms per kilogram, which is equivalent to parts per billion (ppb).
 Bold-faced values are concentrations that have been reported above the detection limits.

4. Bold-faced, <u>Underlined</u>, and *Italicized* values are reported concentrations that exceed the NYSDEC recommended soil cleanup objective.

5. "ND <" indicates that the concentration is below the detection limit.

6. * = As per TAGM 4046, both individual VOCs and the sum of VOCs may not exceed 10,000 ppb.

7. MDL = Method Detection Limit.

8. C = Laboratory Contaminant.

9. Blank space = not analyzed.

10. J = estimated value.

11. D = identifies compounds at the secondary dilution factor.

TABLE 8A SUMMARY OF SEMI-VOLATILE BASE NEUTRAL COMPOUNDS IN SOIL (ug/kg)

Sub-Area I Brooks Landing Urban Renewal District Rochester NY

						Rochester, NY						
COMPOUNDS						h Plymouth Ave./150 Elr	nwood Ave.					Recommended
	D10 ((0, 4)	D115 (0.4)	D104 (0, 4)			GRANULAR FILL	D1(1(0,4)	D1(5(440)	D1(0 (0 1 5)	TAR	NATIVE D110 (4.9)	Soil Cleanup
	B106 (0-4)	B115 (0-4)	B124 (0-4)	B124R-R(0-4)	B154 (4-8)	B160 (4-8) (DL)	B161 (0-4)	B165 (4-4.8)	B169 (0-1.5)	B159 (4.2-4.5)	B110 (4-8)	Objective ⁽¹⁾
Acenaphthene	ND< 308	ND< 333	ND< 177,000	30,000	630	660	720J	<u>120,000 D</u>	50J	ND< 223,000	ND< 381	50,000 *
Anthracene	ND< 308	ND< 333	ND< 177,000	92,000	1,900	1,100	1800J	280,000 D	140J	ND< 223,000	ND< 381	50,000 *
Benzo (a) anthracene	ND< 308	<u>355</u>	208,000	130,000	3,500	2,000	<u>2200J</u>	400,000 D	<u>320J</u>	ND< 223,000	ND< 381	224 or MDL
Benzo (a) pyrene	ND< 308	<u>428</u>	196,000	<u>110,000</u>	<u>3,200</u>	<u>1,700</u>	<u>1700J</u>	<u>300,000 D</u>	<u>350J</u>	ND< 223,000	ND< 381	61 or MDL
Benzo (b) fluoranthene	ND< 308	<u>474</u>	210,000	<u>110,000</u>	<u>3,300</u>	<u>2,000</u>	<u>2100J</u>	<u>330,000 D</u>	<u>470J</u>	ND< 223,000	ND< 381	61 or MDL
Benzo (g,h,i) perylene	ND< 308	ND< 333	ND< 177,000	30,000	680	730	570J	<u>110,000</u>	130J	ND< 223,000	ND< 381	50,000 *
Benzo (k) fluoranthene	ND< 308	ND< 333	ND< 177,000	<u>72,000</u>	<u>2,100</u>	<u>1,400</u>	<u>1400J</u>	<u>150,000 D</u>	240J	ND< 223,000	ND< 381	610 or MDL
Chrysene	ND< 308	372	<u>210,000</u>	<u>120,000</u>	<u>3,500</u>	<u>1,800</u>	<u>2100J</u>	<u>420,000 D</u>	350J	ND< 223,000	ND< 381	400
Diethyl phthalate	ND< 308	ND< 333	ND< 177,000	ND< 210	ND< 41					ND< 223,000	ND< 381	7,100
Dimethyl phthalate	ND< 770	ND< 832	ND< 443,000	ND< 210	ND< 41					ND< 559,000	ND< 953	2,000
Butylbenzylphthalate	ND< 308	ND< 333	ND< 177,000	ND< 210	ND< 41					ND< 223,000	ND< 381	50,000 *
Di-n-butyl phthalate	ND< 308	ND< 333	ND< 177,000	ND< 250	ND< 49					ND< 223,000	ND< 381	8,100
Di-n-octylphthalate	ND< 308	ND< 333	ND< 177,000	ND< 310	ND< 62					ND< 223,000	ND< 381	50,000 *
Bis (2-ethylhexyl) phthalate	ND< 308	ND< 333	ND< 177,000	ND< 210	ND< 210					ND< 223,000	ND< 381	50,000 *
2-Chloronaphthalene	ND< 308	ND< 333	ND< 177,000	ND< 250	ND< 49					ND< 223,000	ND< 381	50,000 *
Hexachlorobenzene	ND< 308	ND< 333	ND< 177,000	ND< 230	ND< 45					ND< 223,000	ND< 381	410
Hexachloroethane	ND< 308	ND< 333	ND< 177,000	ND< 230	ND< 45					ND< 223,000	ND< 381	50,000 *
Hexachlorocyclopentadiene	ND< 308	ND< 333	ND< 177,000	ND< 790	160					ND< 223,000	ND< 381	50,000 *
Hexachlorobutadiene	ND< 308	ND< 333	ND< 177,000	ND< 310	ND< 62					ND< 223,000	ND< 381	50,000 *
N-Nitroso-di-n-propylamine	ND< 308	ND< 333	ND< 177,000	ND< 210	ND< 41					ND< 223,000	ND< 381	50,000 *
N-Nitrosodiphenylamine	ND< 308	ND< 333	ND< 177,000	ND< 410	ND< 82					ND< 223,000	ND< 381	50,000 *
N-Nitrosodimethylamine	ND< 308	ND< 333	ND< 177,000							ND< 223,000	ND< 381	50,000 *
Isophorone	ND< 308	ND< 333	ND< 177,000	ND< 210	ND< 41					ND< 223,000	ND< 381	4,400
Benzyl alcohol	ND< 770	ND< 832	ND< 443,000	• (ND< 559,000	ND< 953	50,000 *
Dibenzofuran	ND< 308	ND< 333	ND< 177,000	<u>24,000</u>	510					ND< 223,000	ND< 381	6,200
2-Methylnapthalene	ND< 308	ND< 333	ND< 177,000	18,000	230					ND< 223,000	ND< 381	36,400
Dibenz (a,h) anthracene	ND< 308	ND< 333	ND< 177,000	<u>1,900</u>	<u>78</u>	<u>190J</u>	ND< 330	ND< 18,000	ND< 56	ND< 223,000	ND< 381	14.3 or MDL
Fluoranthene	ND< 308	784	<u>471,000</u>	<u>360,000</u>	13,000	2,300	5,000	<u>660,000 D</u>	680 (21	<u>254,000</u>	ND< 381	50,000 *
Fluorene	ND< 308	ND< 333	ND< 177,000	49,000	1,400	650 260 I	810J	<u>250,000 D</u>	62J	ND< 223,000	ND< 381	50,000 *
Indeno (1,2,3-cd) pyrene	ND< 308	ND< 333	ND< 177,000	<u>15,000</u> 50,000	1,100	360J	ND< 350	<u>110,000 JD</u>	ND< 60	ND< 223,000	ND< 381	3,200
Naphthalene	ND< 308	ND< 333	ND< 177,000	<u>59,000</u>	420	540	930J	<u>470,000 D</u>	ND< 45	ND< 223,000	ND< 381	13,000
Phenanthrene	ND< 308	504	<u>643,000</u>	<u>500,000</u>	10,000	4,300D	7,600	<u>760,000 D</u>	750	<u>539,000</u>	ND< 381	50,000 *
Pyrene	ND< 308	728	<u>554,000</u>	<u>420,000</u>	7,400	3,500D	5,400	<u>630,000 D</u>	860	<u>281,000</u>	ND< 381	50,000 *
Acenapthylene	ND< 308	ND< 333	ND< 177,000	5,500	57	80J	ND< 260	<u>14,000 JD</u>	ND< 45	ND< 223,000	ND< 381	50,000 *
1,2-Dichlorobenzene	ND< 308	ND< 333	ND< 177,000	ND< 210	ND< 41					ND< 223,000	ND< 381	50,000 *
1,3-Dichlorobenzene	ND< 308	ND< 333	ND< 177,000	ND< 250	ND< 49					ND< 223,000	ND< 381	50,000 *
1,4-Dichlorobenzene	ND< 308	ND< 333	ND< 177,000	ND< 210	ND< 41					ND< 223,000	ND< 381	50,000 *
1,2,4-Trichlorobenzene	ND< 308	ND< 333	ND< 177,000	ND< 250	ND< 49					ND< 223,000	ND< 381	50,000 *
Nitrobenzene	ND< 308	ND< 333	ND< 177,000	ND< 210	ND< 41					ND< 223,000	ND< 381	200 or MDL
2,4-Dinitrotoluene	ND< 308	ND< 333	ND< 177,000	ND< 230	ND< 45					ND< 223,000	ND< 381	50,000 *
2,6-Dinitrotoluene	ND< 308	ND< 333	ND< 177,000	ND< 210	ND< 41					ND< 223,000	ND< 381	1,000
Bis (2-chloroethyl) ether	ND< 308	ND< 333	ND< 177,000	ND< 250	ND< 49					ND< 223,000	ND< 381	50,000 *
Bis (2-chloroisopropyl) ether	ND< 308	ND< 333	ND< 177,000	ND - 210	NID : 41					ND< 223,000	ND< 381	50,000 *
Bis (2-chloroethoxy) methane	ND< 308	ND< 333	ND< 177,000	ND< 210	ND< 41					ND< 223,000	ND< 381	50,000 *
4-Bromophenyl phenyl ether	ND< 308	ND< 333	ND< 177,000	ND< 270	ND< 54					ND< 223,000	ND< 381	50,000 *
4-Chlorophenyl phenyl ether	ND< 308	ND< 333	ND< 177,000	ND< 250	ND< 49					ND< 223,000	ND< 381	50,000 *
Benzidine	ND< 770	ND< 832	ND< 443,000	ND < 210	ND < 41					ND< 559,000	ND< 381	50,000 *
3,3'-Dichlorobenzidine	ND< 308	ND< 333	ND< 177,000	ND< 210	ND< 41					ND< 223,000	ND< 381	50,000 *
4-Chloroaniline	ND< 308	ND< 333	ND< 177,000	ND< 250	ND< 49					ND< 223,000	ND< 381	220 or MDL
2-Nitroaniline	ND< 770	ND< 832	ND< 443,000	ND< 210	ND< 41					ND< 559,000	ND< 953	430 or MDL
3-Nitroaniline	ND< 770	ND< 832	ND< 443,000	ND< 250	ND< 49					ND< 559,000	ND< 953	500 or MDL
4-Nirtoaniline	ND< 770	ND< 832	ND< 443,000	ND< 500 ND< 210	ND< 99					ND< 559,000	ND< 953	50,000 * 50,000 *
2,2-oxybis(1-Chloropropane) Carbazole				ND< 210 20,000	ND< 41							50,000 * 50,000 *
Caruazoie	1	1	1	20,000	1,200	1	1				I	50,000 **

 Notes:

 1. NYSDEC. January 24, 1994. Determination of Soil Cleanup Objectives and Cleanup Levels, Division of Hazardous Waste Remediation, Technical and Administrative Guidance Memorandum, HWR 94-4046 (TAGM 4046) Revised July 2001.

 2. ug/kg = All values expressed in micrograms per kilogram, which is equivalent to parts per billion (ppb).

 3. Bold-faced values are concentrations that have been reported above the detection limits.

 4. Bold-faced, <u>Underlined</u>, and *Italicized* values are reported concentrations that exceed the NYSDEC recommended soil cleanup objective.

 5. "ND <" indicates that the concentration is below the detection limit.</td>

 6. *. = Accmed TACCM 4046, individue SVOCe may not exceed 500 000 mb and total SVOCe may not exceed 500 000 mb

6. * = As per TAGM 4046, individual SVOCs may not exceed 50,000 ppb and total SVOCs may not exceed 500,000 ppb.
7. MDL = Method Detection Limit.

8. Blank space = not analyzed.

9. J = estimated value.
10. D = identifies compounds at the secondary dilution factor.

TABLE 9A SUMMARY OF RCRA METALS IN SOIL (mg/kg)

Sub-Area I Brooks Landing Urban Renewal District Rochester, NY

		1315 South Ply RANULAR FI	ve. NATIVE	Eastern USA Background	Recommended Soil Cleanup		
RCRA Metals	B106 (0-4)	B115 (0-4)	B124 (0-4)	B154 (4-8)	B110 (4-8)	Range	Objective ⁽¹⁾
Arsenic	5.86	6.58	<u>31.9</u>	<u>132</u>	5.53	3 - 12	7.5 or SB
Barium	38.9	83.1	266	144	45.5	15 - 600	300 or SB
Cadmium	ND<0.494	ND<0.547	0.70	ND<0.06	ND<0.500	0.1 - 1	1 / 10* or SB
Chromium	10.5	10.4	31.4	19.7	10.5	1.5 - 40	10 / 50* or SB
Lead	33.4	193	375	194	7.49	200 - 500 urban	SB
Mercury	ND<0.095	<u>0.289</u>	<u>1.96</u>	<u>1.9</u>	ND<0.086	0.001 - 0.2	0.1
Selenium	ND<0.494	ND<0.547	ND<0.614	<u>4.5</u>	ND<0.500	0.1 - 3.9	2 or SB
Silver	ND<0.989	ND<1.09	ND<1.23	ND<0.46	ND<1.00	NA	SB

Notes:

- NYSDEC. January 24, 1994. Determination of Soil Cleanup Objectives and Cleanup Levels, Division of Hazardous Waste Remediation, Technical and Administrative Guidance Memorandum, HWR 94-4046 (TAGM 4046), Revised July 2001.
- 2. mg/kg = all values expressed in milligrams per kilogram which is equivalent to parts per million (ppm).
- 3. **Bold-faced** values are concentrations that have been reported above the detection limits.
- 4. **Bold-faced**, <u>Underlined</u>, and *Italicized* values are reported concentrations that have been detected and exceed both the NYSDEC recommended soil cleanup objective and Eastern USA background range.
- 5. "ND <" indicates that the concentration is below the detection limit.
- 6. NA = Not Available.
- 7. SB = site background
- 8. * = existing and proposed soil cleanup objectives.

TABLE 10A SUMMARY OF TCLP ARSENIC AND MERCURY RESULTS (mg/L)

Sub-Area I Brooks Landing Urban Renewal District Rochester, NY

TCLP VOC Analytes	GRANULAR FILL 1315 South Plymouth Avenue B124R-R (0-4)	Regulatory Limits ⁽¹⁾
Arsenic Mercury	< 0.045 < 0.002	5.0
Welcury	< 0.002	0.2

Notes:

- 1. Maximum concentration of contaminants for toxicity characteristics. Title 40, Code of Federal Agency, Regulation, Chapter 1- Environmental Protection Part 261,
 - Identification and Listing of Hazardous Waste, Revised April 1990 (40CFR261).
- 2. mg/l = all values are expressed in milligrams per liter, which is equivalent to parts per million (ppm).
- 3. Bold-faced values are concentrations that have been reported above the detection limits.
- 4. **Bold-faced**, <u>Underlined</u>, and *Italicized* values are reported concentrations above the NYSDEC/USEPA hazardous waste threshold.

TABLE 11A SUMMARY OF PCBs and HERBICIDES in SOIL (mg/kg)

Sub-Area I

Brooks Landing Urban Renewal District

Rochester, NY

]	1315 South Ply	mouth Ave./15) Elmwood Av	e		Recommended
			GRANUI	AR FILL			NATIVE	Soil Cleanup
Analytes	B106 (0-4')	B115 (0-4')	B124 (0-4')	B157 (0-4')	B160 (4-9')	B165 (4-4.8')	B110 (4-8')	Objective ⁽¹⁾
PCBs								
Aroclor 1016	ND< 0.449	ND< 0.450	ND< 0.505	ND< 7.500	ND< 7.900	ND< 7.300	ND< 0.491	1 surface/ 10 subsurface
Aroclor 1221	ND< 0.449	ND< 0.450	ND< 0.505	ND< 1.900	ND< 2.000	ND< 1.800	ND< 0.491	1 surface/ 10 subsurface
Aroclor 1232	ND< 0.449	ND< 0.450	ND< 0.505	ND< 11.00	ND< 12.00	ND< 11.00	ND< 0.491	1 surface/ 10 subsurface
Aroclor 1242	ND< 0.449	ND< 0.450	ND< 0.505	ND< 3.200	ND< 3.300	ND< 3.100	ND< 0.491	1 surface/ 10 subsurface
Aroclor 1248	ND< 0.449	ND< 0.450	ND< 0.505	ND< 7.900	ND< 8.400	ND< 7.800	ND< 0.491	1 surface/ 10 subsurface
Aroclor 1254	ND< 0.449	ND< 0.450	ND< 0.505	ND< 15.00	ND< 16.00	ND< 15.00	ND< 0.491	1 surface/ 10 subsurface
Aroclor 1260	ND< 0.449	ND< 0.450	ND< 0.505	ND< 2.900	ND< 3.000	ND< 2.800	ND< 0.491	1 surface/ 10 subsurface
Herbicides								
2,4-D	ND< 50	ND< 50	ND< 50				ND< 50	500
Dicamba	ND< 50	ND< 50	ND< 50				ND< 50	NA
Dinoseb	ND< 50	ND< 50	ND< 50				ND< 50	NA
2, 4, 5-T	ND< 50	ND< 50	ND< 50				ND< 50	1,900
2,4,5-TP (Silvex)	ND< 50	ND< 50	ND< 50				ND< 50	700

Notes:

1. NYSDEC. January 24, 1994. Determination of Soil Cleanup Objectives and Cleanup Levels, Division of Hazardous Waste Remediation,

Technical and Administrative Guidance Memorandum, HWR 94-4046 (TAGM 4046) Revised July 2001.

2. mg/kg = values expressed in milligrams per kilogram, are equivalent to parts per million (ppm).

3. Bold-faced values are concentrations that have been reported above the detection limits.

4. Bold-faced, <u>Underlined</u>, and *Italicized* values are reported concentrations that exceed the NYSDEC recommended soil cleanup objective.

5. NA = Not Available.

6. "ND <" indicates that the concentration is below the detection limit.

7. Blank space = not analyzed

TABLE 12A SUMMARY OF TPH IN GRANULAR FILL (mg/kg)

Sub-Area I

Brooks Landing Urban Renewal District Rochester, NY

	FII 1215 South Diamo		TAR	Recommended
Analytes	1315 South Plymo B157 (0-4')	B160 (4-8')	1315 South Plymouth/ 150 Elmwood Ave. B159 (4.2-4.5)	Soil Cleanup Objective ⁽¹⁾
Total Petroleum Hydrocarbons				
Heavy Weight PHC as: Lube Oil	2,250	2,640		NA
Light Weight PHC as: Mineral Spirits *	102			NA
Medium Weight PHC as: Kerosene *			178,000	NA

Notes:

1. NYSDEC. January 24, 1994. Determination of Soil Cleanup Objectives and Cleanup Levels, Division of Hazardous Waste Remediation, Technical and Administrative Guidance Memorandum, HWR 94-4046 (TAGM 4046) Revised July 2001.

2. mg/kg = All values expressed in milligrams per kilogram, which is equivalent to parts per million (ppm).

3. Bold-faced values are concentrations that have been reported above the detection limits.

4. **Bold-faced**, <u>Underlined</u>, and *Italicized* values are reported concentrations that exceed the NYSDEC recommended soil cleanup objective.

5. NA = Not Available.

6. Blank space indicates that the concentration is below the detection limit.

7. * = Sample chromatorgram does not match reference chromatogram. Close match made.

TABLE 13A SUMMARY OF TCL/STARS VOLATILE ORGANIC COMPOUNDS IN GROUNDWATER (ug/L)

Sub-Area I

Brooks Landing Urban Renewal District

Rochester, NY

		Groundwater Samples (ug/l)									
			nouth Ave./15	1			enesee St.	NYSDEC Groundwater			
TCL/STARS VOCs	PZ-100	PZ-101	PZ-102	PZ-103	PZ-152	PZ-150	PZ-151	Standards and Guidance Values ⁽¹⁾			
Volatile Halocarbons											
Bromodichloromethane	ND< 2.00	ND< 10.0	ND< 2.00	ND< 5.00	ND< 2.00	ND< 20.00	ND< 2.00	50 (G)			
Bromomethane	ND< 2.00	ND< 10.0	ND< 2.00	ND< 5.00	ND< 2.00	ND< 20.00	ND< 2.00	5			
Bromoform	ND< 2.00	ND< 10.0	ND< 2.00	ND< 5.00	ND< 2.00	ND< 20.00	ND< 2.00	50 (G)			
Carbon tetrachloride	ND< 2.00	ND< 10.0	ND< 2.00	ND< 5.00	ND< 2.00	ND< 20.00	ND< 2.00	5			
Chloroethane	ND< 2.00	ND< 10.0	ND< 2.00	ND< 5.00	ND< 2.00	ND< 20.00	ND< 2.00	5			
Chloromethane	ND< 2.00	ND< 10.0	ND< 2.00	ND< 5.00	ND< 2.00	ND< 20.00	ND< 2.00	NS			
2-Chloroethyl vinyl ether	ND< 2.00	ND< 10.0	ND< 2.00	ND< 5.00	ND< 2.00	ND< 20.00	ND< 2.00	NS			
Chloroform	ND< 2.00	ND< 10.0	ND< 2.00	ND< 5.00	ND< 2.00	ND< 20.00	ND< 2.00	7			
Dibromochloromethane	ND< 2.00	ND< 10.0	ND< 2.00	ND< 5.00	ND< 2.00	ND< 20.00	ND< 2.00	50 (G)			
1,1-Dichloroethane	ND< 2.00	ND< 10.0	ND< 2.00	ND< 5.00	ND< 2.00	ND< 20.00	ND< 2.00	5			
1,2-Dichloroethane	ND< 2.00	ND< 10.0	ND< 2.00	ND< 5.00	ND< 2.00	ND< 20.00	ND< 2.00	1			
1,1-Dichloroethene	ND< 2.00	ND< 10.0	ND< 2.00	ND< 5.00	ND< 2.00	ND< 20.00	ND< 2.00	5			
cis-1,2-Dichloroethene	ND< 2.00	81.6	31.0	126	ND< 2.00	ND< 20.00	ND< 2.00	5			
trans-1,2-Dichloroethene	ND< 2.00	ND< 10.0	ND< 2.00	ND< 5.00	ND< 2.00	ND< 20.00	ND< 2.00	5			
1,2-Dichloropropane	ND< 2.00	ND< 10.0	ND< 2.00	ND< 5.00	ND< 2.00	ND< 20.00	ND< 2.00	1			
cis-1,3-Dichloropropene	ND< 2.00	ND< 10.0	ND< 2.00	ND< 5.00	ND< 2.00	ND< 20.00	ND< 2.00	0.4 (-cis and -trans)			
trans-1,3-Dichloropropene	ND< 2.00	ND< 10.0	ND< 2.00	ND< 5.00	ND< 2.00	ND< 20.00	ND< 2.00	0.4 (-cis and -trans)			
Methylene chloride	ND< 5.00	ND< 10.0	ND< 5.00	ND< 5.00	ND< 5.00	ND< 50.00	ND< 5.00	5			
1,1,2,2-Tetrachloroethane	ND< 2.00	ND< 10.0	ND< 2.00	ND< 5.00	ND< 2.00	ND< 20.00	ND< 2.00	5			
Tetrachloroethene	ND< 2.00	ND< 10.0	ND< 2.00	ND< 5.00	ND< 2.00	ND< 20.00	ND< 2.00	5			
1.1.1-Trichloroethane	ND< 2.00	ND< 10.0	ND< 2.00	ND< 5.00	ND< 2.00	ND< 20.00	ND< 2.00	5			
1,1,2-Trichloroethane	ND< 2.00	ND< 10.0	ND< 2.00	ND< 5.00	ND< 2.00	ND< 20.00	ND< 2.00	1			
Trichloroethene	ND< 2.00	812	172	495	3.01	ND< 20.00	ND< 2.00	5			
Trichlorofluoromethane	ND< 2.00	ND< 10.0	ND< 2.00	ND< 5.00	ND< 2.00	ND< 20.00	ND< 2.00	5			
Vinyl Chloride	ND< 2.00	ND< 10.0	ND< 2.00	ND< 5.00	ND< 2.00	ND< 20.00	ND< 2.00	2			
Volatile Aromatics											
Benzene	ND< 0.700	ND< 3.50	ND< 0.700	ND< 1.75	ND< 0.700	<u>207</u>	<u>794</u>	1			
Chlorobenzene	ND< 2.00	ND< 10.0	ND< 2.00	ND< 5.00	ND< 2.00	ND< 20.00	ND< 2.00	5			
Ethylbenzene	ND< 2.00	ND< 10.0	ND< 2.00	ND< 5.00	ND< 2.00	1010	115	5			
Toluene	ND< 2.00	ND< 10.0	ND< 2.00	ND< 5.00	ND< 2.00	101	79.3	5			
m,p - Xylene	ND< 2.00	ND< 10.0	ND< 2.00	ND< 5.00	ND< 2.00	1920	256	5			
o - Xylene	ND< 2.00	ND< 10.0	ND< 2.00	ND < 5.00	ND< 2.00	<u>113</u>	<u>107</u>	5			
Styrene	ND< 2.00	ND< 10.0	ND< 2.00	ND< 5.00	ND< 2.00	ND < 20.00	ND < 2.00	5			
1.2-Dichlorobenzene	ND< 2.00	ND< 10.0	ND< 2.00	ND < 5.00 ND < 5.00	ND< 2.00	ND< 20.00	ND< 2.00	3			
1,3-Dichlorobenzene	ND< 2.00	ND < 10.0 ND < 10.0	ND< 2.00	ND < 5.00 ND < 5.00	ND< 2.00	ND < 20.00 ND < 20.00	ND< 2.00	3			
1,4-Dichlorobenzene	ND< 2.00	ND< 10.0 ND< 10.0	ND< 2.00	ND< 5.00	ND< 2.00	ND< 20.00	ND< 2.00	3			

TABLE 13A SUMMARY OF TCL/STARS VOLATILE ORGANIC COMPOUNDS IN GROUNDWATER (ug/L)

Sub-Area I

Brooks Landing Urban Renewal District Rochester, NY

			Ground	dwater Samp	es (ug/l)			
	13	15 South Plyn	nouth Ave./15	50 Elmwood A	ve.	973-975 0	lenesee St.	NYSDEC Groundwater
	PZ-100	PZ-101	PZ-102	PZ-103	PZ-152	PZ-150	PZ-151	Standards and Guidance
TCL/STARS VOCs								Values ⁽¹⁾
Ketones & Misc.								
Acetone	ND< 10.0	ND< 50.0	ND< 10.0	ND< 25.0	ND< 10.00	ND< 100	ND< 10.00	50 (G)
2-Butanone	ND< 5.00	ND< 25.0	ND< 5.00	ND< 12.5	ND< 5.00	ND< 50.00	ND< 5.00	NS
2-Hexanone	ND< 5.00	ND< 25.0	ND< 5.00	ND< 12.5	ND< 5.00	ND< 50.00	ND< 5.00	50 (G)
4-Methyl-2-pentanone	ND< 5.00	ND< 25.0	ND< 5.00	ND< 12.5	ND< 5.00	ND< 50.00	ND< 5.00	NS
Carbon disulfide	ND< 5.00	ND< 25.0	ND< 5.00	ND< 12.5	ND< 5.00	ND< 50.00	ND< 5.00	60 (G)
Vinyl acetate	ND< 5.00	ND< 25.0	ND< 5.00	ND< 12.5	ND< 5.00	ND< 50.00	ND< 5.00	NS
Additional STARS Compound								
n-Butylbenzene	ND< 2.00	ND< 10.0	ND< 2.00	ND< 5.00	ND< 2.00	ND< 20.00	ND< 2.00	5
sec-Butylbenzene	ND< 2.00	ND< 10.0	ND< 2.00	ND< 5.00	ND< 2.00	<u>37.9</u>	ND< 2.00	5
tert-Butylbenzene	ND< 2.00	ND< 10.0	ND< 2.00	ND< 5.00	ND< 2.00	ND< 20.00	ND< 2.00	5
n-Propylbenzene	ND< 2.00	ND< 10.0	ND< 2.00	ND< 5.00	ND< 2.00	<u>264</u>	2.86	5
Isopropylbenzene	ND< 2.00	ND< 10.0	ND< 2.00	ND< 5.00	ND< 2.00	<u>137</u>	2.82	5
p-Isopropyltoluene	ND< 2.00	ND< 10.0	ND< 2.00	ND< 5.00	ND< 2.00	101	ND< 2.00	5
Naphthalene	ND< 5.00	ND< 25.0	ND< 2.00	ND< 12.5	ND< 5.00	253	7.13	5
1,2,4-Trimethylbenzene	ND< 2.00	ND< 10.0	ND< 2.00	ND< 5.00	ND< 2.00	1290	<u>18.3</u>	5
1,3,5-Trimethylbenzene	ND< 2.00	ND< 10.0	ND< 2.00	ND< 5.00	ND< 2.00	<u>431</u>	<u>5.64</u>	5
Miscellaneous								
Methyl tert-butyl Ether	6.66	<u>131</u>	<u>36.4</u>	<u>171</u>	5.59	ND< 20.00	ND< 2.00	10 (G)
								l

Notes:

1. NYSDEC. October 22, 1993. Ambient Water Quality Standards and Guidance Values, Division

of Water, Technical and Operational Guidance Series (TOGS 1.1.1); Reissued June 1998. April 2000 Addendum.

2. ug/l = all values are expressed in micrograms per liter, which is equivalent to parts per billion (ppb).

3. Bold-faced values are concentrations that have been reported above the method detection limits (MDLs).

4. **Bold-faced**, <u>Underlined</u>, and *Italicized* values are reported concentrations that exceed the Class GA groundwater standards or guidance values.

5. (G) = guidance value.

6. "ND<" indicates that the concentration is below the method detection limit (MDL).

7. "NS" = No Standard has been established by NYSDEC.

APPENDIX A

SUB-AREA I TEST PIT AND SOIL BORING LOGS

SEA	R.BR		ARCHITECTURE ENGINEERING PLANNING CONSTRUCTION	RENCI	E SE	Date:	et No.: <u>16835.07</u> <u>11/11/02</u> Page <u>of</u> ENT LOG
Test Hole 1	No:	182	Inspected By:	K. Mille	r	7	Weather/Temp: EVECLASTE
Location/S	tation:		- N:	E:			Elev.:
Equipment	Used:	Backhoe	Contractor:	Royal		(Operator: <u>Clikt</u>
Start Time:	:		Stop Time:			#	Agency Rep:
Comments	:						
	Rocl No (EFt. countered.		<u>IOCA</u>	TION	SKETCH: Biack's Ave
DEPTH				PID	READ	INGS	
(ft. BGS)		CLASSIFIC	ATION	Max	Sust	Bkgđ	NOTES/SAMPLES
0-1	A	iphalt a	grand	0.2	0.2	c.2	re-bar observed New grown,) surface
1-3	Place	the and	lark_	0.2	0.1	-0.2	- Dr- 5 Eplen
	bro	urn San	Dan				test pAI 11
		colles .	son prace cind	2.5			
3-5	Bri	and site	55les gravel	0,2	0.2	<i>c</i> ,2	
	50.	rne Sillt					and of test por
		-					

SEA	AR•BR	OWN	ARCHITECTURE ENGINEERING PLANNING CONSTRUCTION			Proje Proje Date:	ct: <u>Brooks Landing</u> ct No.: <u>16835.07</u> <u>11/11/02</u> Page <u>1</u> of <u>1</u>
		TEST P	PIT / TEST TI	RENCI	H SH	EGM	ENT LOG
Test Hole I	No:	TP2	Inspected By:	K. Mille	r		Weather/Temp: Faik 4 - 50 F
Location/S	tation:		N:	E:			Elev.:
Equipment	Used:	Backhoe	Contractor: I	Royal	14		Operator: Clikt
Start Time:	:		Stop Time:				Agency Rep:
	Rocl No (Grou	%	t Ft.		(Fe	.v-2 (12)	RETCH: Browles DETF1 TF2
DEPTH					READ	1	
(ft. BGS)	مر میں اور	CLASSIFIC	CATION	Max	Sust	Bkgd	NOTES/SAMPLES
OHM.		1	0				2
0-1.5	0	sphalt	gravel.	0.3	0.3	0.2	apparent elec.
	Sign	ne red s	sour)				conduct trenting
							N/3 along h
1.5-5	Ī	5 Course a	m) black	- 0.3	6.3	0.2	since of pest
	 	hale !!	brick,		-		P(approx. 1' BG

-

SEA	R·BR		ARCHITECTURE ENGINEERING PLANNING CONSTRUCTION			Date:	et No.: <u>16835.07</u> <u>11/11/02</u> Page of
		TEST P	IT / TEST T				
Test Hole 1	No:	TP3	Inspected By:	K. Mille	r		weather/lemp: $-55 \neq$
Location/S	tation:		N:	E:			Elev.:
Equipment	Used:	Backhoe	Contractor:	Royal		(Operator:
Start Time:			Stop Time:				Agency Rep:
<u>1007</u>	Rock No (Grou	%	:Ft.)	READI		SKETCH: Breek: (P_1) $\square = TP_2$ $\square = TP_3$ $\square = TP_3$
				Max	Sust	Bkgd	NOTES/SAMPLES
(ft. BGS)	(2)	CLASSIFIC	1				ITO I ES/SAMI LES
		sphart -	and stal	Ner CI	0.3	012	1" Dive Franche
-6	11	shor Sre		0.3	0.3	0,2	NIC don
	5		Jone			0,4	Wede 5
	<	ravel.	TAKe	-			test pA A31
	/	lishx bo	pinn Silt				(approx. 3' 3G)
	-			_			
					_		

28

SEA	R.BR	OWN	ARCHITECTURE ENGINEERING PLANNING CONSTRUCTION			Proj Proj Date	ect No.: <u>1683</u>	<u>ss Landing</u> 5.07 ge_l_of_l_		
		TEST P	IT / TEST T	RENC	H SI	EGN	ENT LOG	an court		
Test Hole N	No:	TP.4	Inspected By:	K. Mille	er 👘	Weather/Temp: OV25CASt				
Location/St	tation:			E:			Elev.:			
Equipment	Used:	Backhoe	Contractor:	Royal			Operator:	Clint		
Start Time:			Stop Time:				Agency Rep:			
Comments:	•									
	Roc No		t Ft. .countered.		LOCA	<u>ATIOI</u>	TP4	N Propince		
DEPTH				PID	READ	INGS		PZ 14		
(ft. BGS)		CLASSIFIC	CATION	Max	Sust	Bkgd	NOTE	S/SAMPLES		
		1	1					approx. Z'BG		
1-1	0	ic phalt as	n gravel	0.6	0.8	0.8		14		
	5	ome me	tal				(2) 2	p8740		
		-					piees	and		
1-2	le	mer n	black -	101	0.8	0,0	la la	enoth A		
	f	14	maje-12	RK			Sitat	Man (Kurk		
	1	chlers	5 randy	1)			vere	noted or		
		ptc.	17 . 1		-	-	The NI	en) n		
		~ `					TP4	P		
2-5	17	mun «	sandan)	10.6	0.6	Ort				
	5	rough	Serve	1			rebar	on l		
	/	5127	(/			SCEAD	netal		
	1.5		/		-		uner 2	form		
							0- 11	her Sent		
	_						1 0	F 4		
		This	aye dip	{			ð (h	le (Surface)		
		to Re Sligh	Said b Aly that	evoni far i	5	fL-	5 end	1 TP4		

SEA	R.BR	OWN	ARCHITECTURE ENGINEERING PLANNING CONSTRUCTION			Project: <u>Brooks Landing</u> Project No.: <u>16835.07</u> Date: <u>11/11/02</u> Page <u>of</u>				
		TEST I	PIT / TEST TR				overcast			
Test Hole N	√o:	142	Inspected By:		K. Miller Weather/Temp:					
Location/St	tation:		N:	E:		Elev.:				
Equipment	Used:	Backhoe	Contractor:	.oyal	_		Operator: <u>Clint</u>			
Start Time:			Stop Time:				Agency Rep:			
Comments:										
	Rock No C	/0	.t Ft.	Ī		ATION	$\frac{1 \text{ SKETCH:}}{1 \text{ SKETCH:}} \qquad 1 \text{ N}$			
DEPTH				PID	READ	INGS	PZ-I			
(ft. BGS)		CLASSIFI	CATION	Max	Sust	Bkgd	NOTES/SAMPLES			
			ē				one (I) = 1"			
975	(*	May a	n brown	1.4	1.2	0,8	51X (6) 2"			
	5	ravil	and				Sheet pipes			
)	Sam)				run E/W			
			0				found appipx			
	cla	ar plas	hisherth	e			2.5' BG			
-	obc	254220	dn2.5' BG	1	1					
	200	t atthe	Polles				Plees appear			
	12	" Pur	places				the Rnd in			
	r h	n heri					in size of			
		abore	The				trench land			
	ol.	astiz si	eeth				appearto			
	1						turn The Phi			
							NE and/ar			
	1.0						end Q'E			
							end a trand			
							γ.			
WaterEnviron\En	viron\FORM	1S\field forms\TESTPI	N V NAK T2.doc	Hi	Un Dea	PI	D reading from 2" pipe @ 80 ppm			

SEA	AR.BR	OWN	ARCHITECTURE ENGINEERING PLANNING CONSTRUCTION			Proje Proje Date:	ct: <u>Brooks</u> ct No.: <u>16835.0</u> _ <u>11/11/02</u> Page				
		TEST P	IT / TEST TR	ENCI	H SH	EGM	ENT LOG	onercast			
Test Hole I	No:	TPG	Inspected By:	K. Mille	ľ	Weather/Temp:					
Location/S	tation:		N:	E:			Elev.:	<u></u>			
Equipment	t Used:	Backhoe	_ Contractor: _ R	loyal		(Operator:	Clikat			
Start Time:	:		Stop Time:				Agency Rep:				
Comments	:										
	Roci No (EFt. countered.	1		TION JUNE	SKETCH: N PZ-2 Lz-¢	IF prop like TPG			
DEPTH				PID	READ	INGS					
(ft. BGS)		CLASSIFIC	ATION	Max	Sust	Bkgd	NOTES/S	SAMPLES			
0-1	R	sphalt	17raul	0.8	ô.§	0.8					
1-3	an	Jun San	Aty Clay 2 bricks 2 grand	0.B	0.6	0, 8					
3-5	b l	ick fl (No od	I materià her)	10.8	0.8	0.8		-			

.....

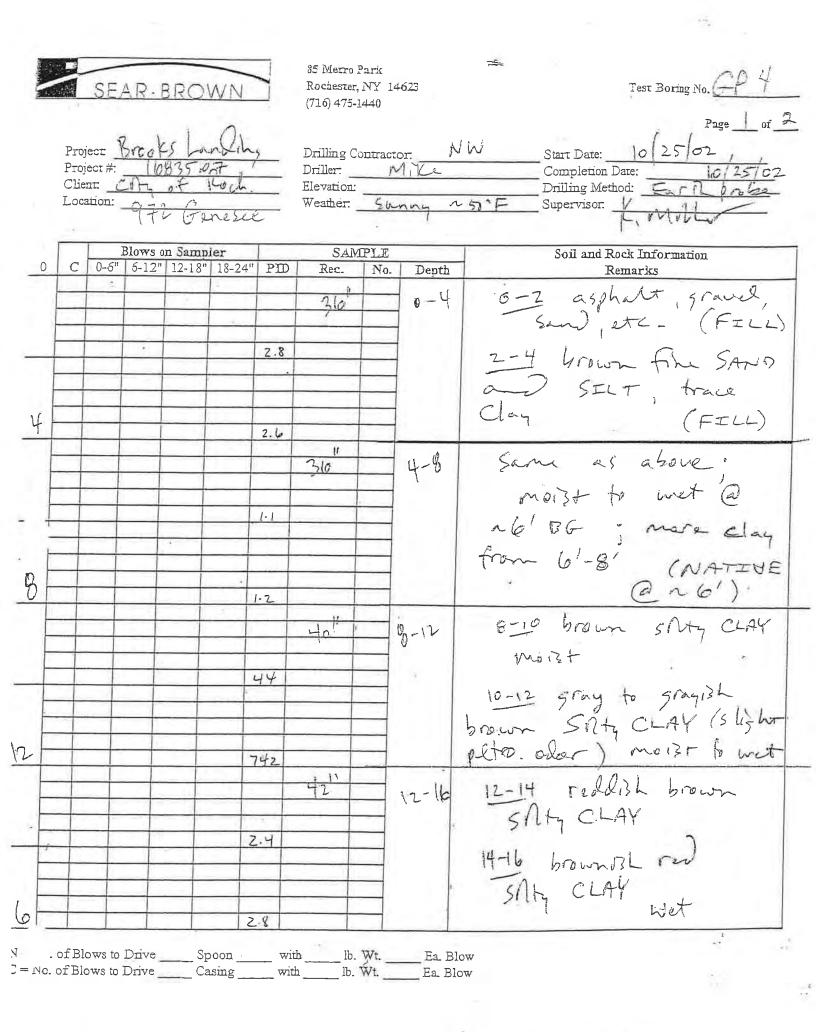
SEA	AR · BR		ARCHITECTURE ENGINEERING PLANNING CONSTRUCTION			Date:	ect No.: <u>16835</u> : <u>11/11/02</u> Pag	<u>S Landing</u> 07 ge 1 of 1
Test Hole]	No: -		PIT / TEST TR				ENT LOG Weather/Temp:	oucrast 255°F
Location/S	station:		N:	E:			Elev.:	
Equipment	: Used:	Backhoe	Contractor: R	loyal	-		Operator:	Cliht
Start Time:	-		Stop Time:				Agency Rep:	
Comments	ā •	1.15	~					
	Roci	%	.t Ft.				NET TR	PZ-7 PZ-7 Inter TA pope
DEPTH				PID	READ	INGS		
(ft. BGS)		CLASSIFI	CATION	Max	Sust	Bkgd	NOTES	/SAMPLES
			1				1	
0-1.5	De	whe brok	on loany	0.1	1.0	0.8	CEIW:	sih: 1)
	5	son) a	D'an'				(TP 7	ontains
	10	Hle -sr	zvel				a 2"	stel pipe
	(Theoson ()		/		(Vinno	L. E/W
			/	1			1)
+	10			-			The N	15 with
				-			1 -10	it contains
				-			lap	icce af ort
		1011	1.0	-			Stran	insu
		10 len	str of	-				
	2	211 Stee	1 pupping	-			S	
	/	Lot co	1)		(=)			
	1	D ang	In Jon D	-				
	(- DID.	is full					
201	1	TIA	Son longi	-	1			
			AL	0.		/		
		(at leas	it the en	XY		9		- 2

SEA	R.BR	OWN	ARCHITECTURE ENGINEERING PLANNING CONSTRUCTION			ct: <u>Brooks Landing</u> ct No.: <u>16835.07</u> 11/11/02_Pageof				
		TEST I	PIT / TEST TR	RENC	H SF	EGM	ENTLOG parthe cloude			
Test Hole N	No:	TPS	Inspected By:	K. Mille	21		Weather/Temp:			
Location/St	tation:		— N:	E:			Elev.:			
Equipment	Used:	Backhoe	Contractor: R	loyal			Operator: Cliber			
Start Time:			Stop Time:				Agency Rep:			
Comments:	и									
	Rock	/0	Ft.			TION	ISKETCH: TPS * N TPS * N TSN * N			
DEPTH				PID	READ	INGS				
(ft. BGS)		CLASSIFI	CATION	Max	Sust	Bkgd	NOTES/SAMPLES			
J-2.5	and drid bri	Brown Gra Jonne inner makeri ZICS Jon Yé	sand metallez rete foll rete foll rete			0.9	2,51 BG Was concrete and metal Fill material a concrete stab with metal edges was defended to the S Concrete Pipe 2" encased in concrete (fence post?)			
M:\WaterEnviron\Env	viron\FORM	1S\field forms\TESTPI	T2.doc		·w.	C	and an elec. conduct in/ no apparant lest ha ton / purpose			

SEAR·E	BROWN	ARCHITECTURE ENGINEERING PLANNING CONSTRUCTION	FNCT			t No.: <u>16835.07</u> <u>11/11/02</u> Page <u>1</u> of <u>1</u>	
Test Hole No:	TP9		ENCE K. Miller			Veather/Temp: Parth C	bud
Location/Station	a:		E:			Elev.:	
Equipment Used	d: Backhoe	Contractor: R	oyal		0	Operator: Cliht	
Start Time:		Stop Time:			A	gency Rep:	
	Vo Rock Encountered Rock Encountered At No Ground Water En Ground Water Encou Fill %	t Ft. countered.	L			SKETCH:	P8 'G
DEPTH			PID F	EADI	NGS		
(ft. BGS)	CLASSIFIC	CATION	Max	Sust	Bkgd	NOTES/SAMPLES	
<u> </u>	Brown So Sravel Metalli Br, zks a Clay	and and some and i Gill some hile				hear grown surface was metallic fil material - an affascant elec. condu - a piece A augli Hon (loose) - a 2" Dia piece A stee I end foun	11 11 11 11 11 11 11 11 11 11 11 11 11

.

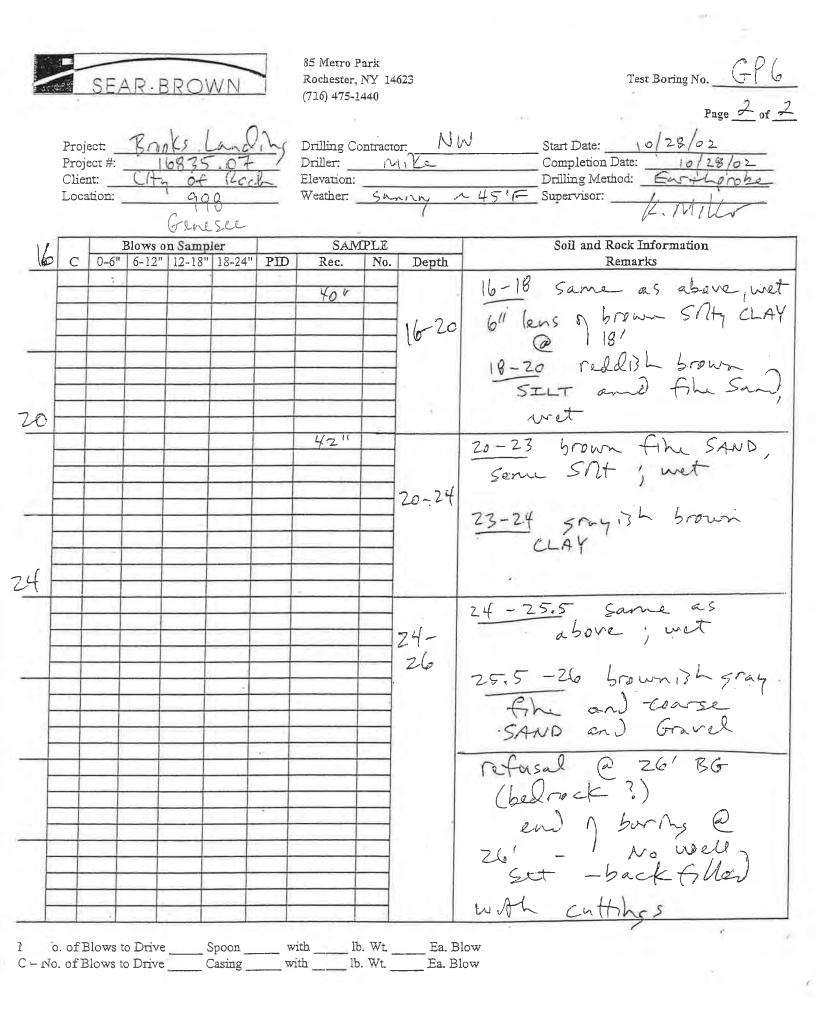
-85 Merro Park Test Boring No. <u>GP 1</u> SEAR BROWN Rochester, NY 14623 (716) 475-1440 Page ____ of ____ Project: Brooks Landin Start Date: 10/25/07 Drilling Contractor: NW Driller: Mike Project #: 16835.0 Completion Date: Client: Citof Elevation: Drilling Method: Earth probe Supervisor. 1 MAA Location: Q-Weather _ Sunna 45"F Blows on Sampler SAMPLE Soil and Rock Information 0 C 0-6" 6-12" 12-18" 18-24" PID Rec. No. Depth Remarks Brown and gray 32 GRAVEL, Sand, Brizk, 10-4 1.2 etc. (FILL) 1.1 Brown file SAND, some 32 4-8 Clay, 10the Silt and 1.4 course Gravel (FILL) moist to wat from 6'-8'. 2.1 11 Gray Silty CLAY trace 32 8-12 sand, petro.oder 342 Meist (NATIVE) 12 828 Grayish brown SRtly CLAY 40 trace Sand and coarse Gravel 12-16 848 Dark grag to black lense (petro eder) @ ~ 141 +15.5-16' redelich brown SILT Wot 6 499 1 o. of Blows to Drive _____ Spoon _____ with ____ lb. Wt. ____ Ea. Blow C = No. of Blows to Drive _____ Casing _____ with ____ lb. Wt. ____ Ea. Blow


----85 Metro Park Test Boring No. CP 1 SEAR BROWN Rochester, NY 14623 (716) 475-1440 Page 2 of 2 Project Brooks Landing Drilling Contractor. NW Start Date: 10/25/02 Project #: Driller: Completion Date: 10/25/02 Client City A Drilling Method: Easth pro be Elevation: Weather swn Location: 45 E Supervisor. 172 Vinesie Blows on Sampler SAMPLE Soil and Rock Information 16 0-6" 6-12" 12-18" 18-24" PID Rec. No. Depth Remarks brownish Red clayey 16-20 40 SILT, trace file sand 271 very wet petro. alar 10 1526 3211 20-24 20-22 Sam as above 22-24 reddish gray and 412 black SAND and Gracel with Silt, trace clay wet (petro - oder). 24 35 24" 24-25 same as above very wet (petro. olar) 305 refusal @ 25" BG 1" PVC well set @ 25' BG W/ 15 A .010" slot screen N . of Blows to Drive ____ Spoon ____ with ____ lb. Wt. ____ Ea. Blow C = No. of Blows to Drive ____ Casing ____ with ____ lb. Wt. ____ Ea. Blow

85 Merro Park SEAR BROWN Test Boring No. <u>GP</u>2 Rochester, NY 14623 (716) 475-1440 Page _ of _2 Project: Breeks Lund. NW_____Start Date: _____0/ Drilling Contractor: Project #: Driller: Mile · Completion Date: Client: CH, J Elevation: Drilling Method: Ear Weather: Cunny 145°F Supervisor. / Location: Blows on Sampler SAMPLE Soil and Rock Information 0 0-6" 6-12" 12-18" 18-24" PID C Rec. No. Depth Remarks Gray and brown GRAVEL and Sand (FILL) 30 0-4 2.0 2.7 Reddish brown Silty CLAY trace fine gravel 36 4-8 4-6 (NATIVE) B 4.1 Light brown file SAND and Silt 26 8-12 2.2 2 7.5 Reddisher brown Silty 40 CLAY ~15.5-16' ruddish brown SILT 12-16 4.5 8" thick dark gray to black lens @ ~ 14' BG (petro 6 odor) wet 91 of Blows to Drive _____ Spoon _____ with _____ lb. Wt. _____ Ea. Blow ₹= := 1,0. of Blows to Drive ____ Casing ____ with ____ lb. Wt. ____ Ea. Blow

		SE)	A.R · I	BRO	WN		85 Metro Rochester (716) 475-	, NY 14	4623	Test Boring No. $\frac{GP}{Page} = \frac{2}{2}$ or $\frac{GP}{2}$
	Proi	ect #	11	1425	ne S.	/	Driller _	Ý		
6	С	0-6"		n Samı 12-18	oler 18-24	" PID	SAN Rec.	PLE No.	Depth	Soil and Rock Information Remarks
				4			32		16	16-17 brown SILT, little Fine Sand
_			+			11			19.5	17-19.5 Feldet brownin brownish red clayer SELT
E						28.5		-		wet
										refusal @ 19.5'BG (bedrock?) slight oder from sons @ 19.5' end form, @ 19.5' Set 1' will w/ 101. Screen @ 19.5'BG

85 Merro Park SEAR BROWN Test Boring No. GP 3 Rochester, NY 14623 (716) 475-1440 Page _ of Project Greaks Lan Drilling Contractor: NW Start Date: 10/25/07 Driller: M.N. Completion Date: 10/25 16835.00 Project #: Completion Date: 10/-15/02 Drilling Method: Earth-proba Client: CVty J Elevation: Weather Sunny ~ 50 F Location: GI7 Supervisor: Blows on Sampler SAMPLE Soil and Rock Information 0 С 0-6" 6-12" 12-18" 18-24" PID Rec. No. Depth Remarks 11 0-4 Asphalt, gravel ; thin 30 brown SILT and Sand, 11He file gravel (FILE) 8.5 3.4 4-6 32 Same as above but slightly more 1.2 File gravel (FILL) C 1.6 11/11 brown Clayey SILT, trace fike Sand 8-12 moist to wet 2.2 @ ~12' (NATEVE) 2 2:4 <u>42</u> 12-16 brownizh new Silty clay 2.6 maist to wit 2.2 born, formation @ of Blows to Drive ____ Spoon ____ with ____ lb. Wt. ____ Ea Blow = No. of Blows to Drive _____ Casing _____ with _____ lb. Wt. _____ Ea. Blow 16 BG Backfille w/ chttphs!


35 Merro Paric Test Boring No. <u>CP</u> 4 SEAR.BROWN Rochester, NY 14623 (716) 475-1440 Page 2 of 2 Project: Brooks Land Project #: 10835007 Drilling Contractor: NW Driller: Mike Start Date: 10 25/02 10/25/02 Completion Date: Client City of Kach Drilling Method: Earth 10 52 Elevation: Location: 1972 Weather: Cloulin 145 F Supervisor Jere Ste St Blows on Sampler Soil and Rock Information SAMPLE 10 C 0-6" 6-12" 12-18" 18-24" PID Rec. No. Depth Remarks brownish read sitty CLAY 16-20 40 Wat 1.7 10 1.0 same as above 2024 very wit 1.0 light gray ~ 24' BE-slight petro adar dark gray silty CLAY Then dark gray SAND and file growel 24 2.1 24-61 152 3.0 Fefusal C 25.5' B.G Set I well w/ 15' screen @ ~ 25.5' BG N: . of Blows to Drive _____ Spoon _____ with ____ lb. Wt _____ Ea. Blow 2 = No. of Blows to Drive ____ Casing ____ with ____ lb. Wt. Ea. Blow

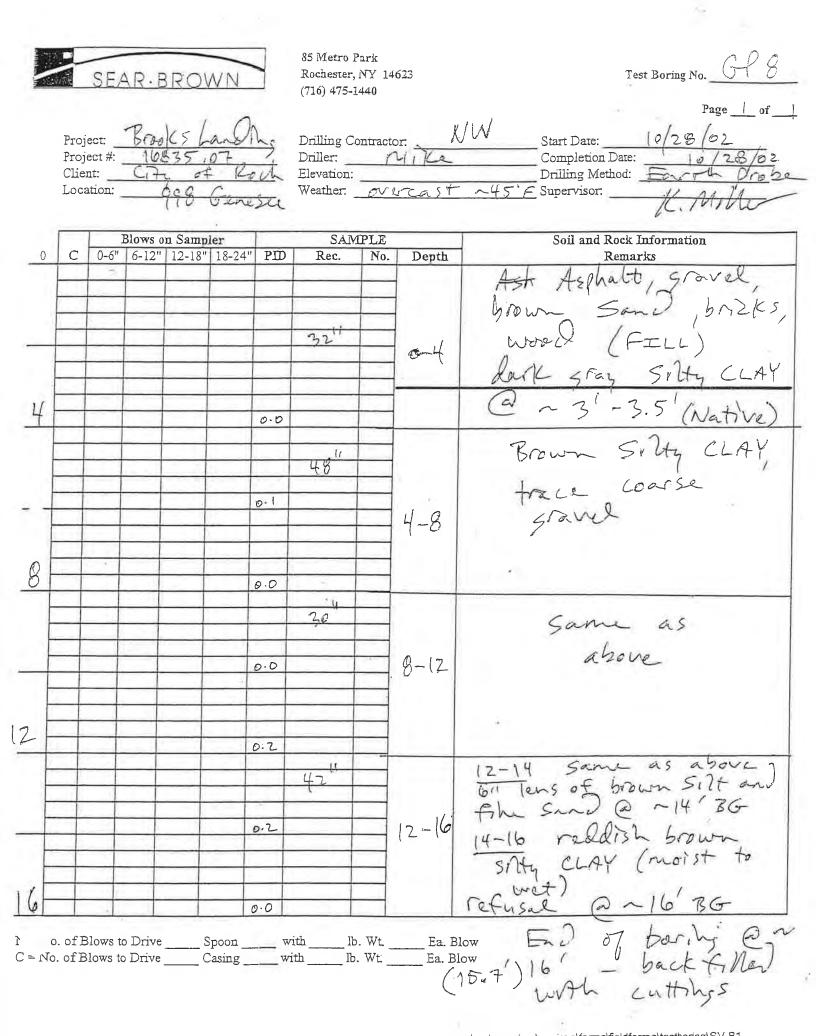
85 Merro Park Test Boring No. 995 SEAR-BROWN Rochester, NY 14623 (716) 475-1440 Page ____ of ____ Project Books Lan Drilling Contractor: NW Driller: <u>M.7(e</u> Start Date: 10 25 02 Project #: 16975.0 Client CV+ A, Co Completion Date: 10/25/02 Drilling Method: Earth probe Elevation: Supervisor. Weather: Sonda Location: 150 F The tranifice Blows on Sampler SAMPLE Soil and Rock Information С 0 0-6" 6-12" 12-18" 18-24" Rec. PID No. Depth Remarks asphalt ground; then 0-4 2011 brownish red file SAND, trace SAL 0.3 (FILL) 4 0.5 som as above 32 4-8 0.5 6 0.7 3-12 8-9 same as above plus. Black gravel 36 9-11 gray Clayer SILT, 1174 File Same (FILL) 370 11-12' gravel, concrete 12-16 12-19 Darte Braver gray to black sty day to CLAY 14-16 light brown and brownish red spity CLAY (wet) 12 4.9 5.5 29.8 N ... of Blows to Drive _____ Spoon _____ with _____ lb. Wt. _____ Ea. Blow C = No. of Blows to Drive ____ Casing ____ with ___ lb. Wt. Ea. Blow

					WN Andr		85 Merro ; Rochester (716) 475-;	NY 1440		<u> </u>	Test] Start Date: 10/	Boring No. $GP 5$ Page 2 of 2
	Proj	ect #: 11: tion:	47	1108735 201 201	hes.	1	Driller: Elevation:	-	NANCE	ف(Start Date: Completion Dare: Drilling Method: Supervisor:	10/25/02
8	С			on Sam ' 12-18	pler " 18-24	" PID	SAN Rec. 40	IPLE No.	Depth 16-20	brawn Gray	Soil and Rock Inf Remarks	
			-			2.8				SIL	slight	petro ala
						2.1				en 20	D D bo BG	rhy Q
				2						<u>I</u> " h	n 19' BG	- @
									-		lo' scre	-en
				-						ŝ.		
									Ea. Blo Ea. Blo			

.1

		SE	AR	BRO	NN		35 Metro Rochester (716) 475-	,NY	14623	Test Boring No. $GP - G$ Page 1 of 2
	Pro	ject #:	_16	ks L 935,0 98 G	7	-	Driller: Elevation:			NW Start Date: 10/28/02 Completion Date: 10/28/02 Drilling Method: Ex-TLOWER
0		0-6"		n Samp				APLE		Soil and Rock Information
		0-0"	0-1.2"	12-18"	18-24"	PID	Rec.	No		Remarks
	-						21		- 6-4	A Gravel, Brown SAND and Gravel, son trace asphalt (FILL), trace
									1	acchatt (This trace
-								1	1	conserve (FILL), Marke
							1	-		Conserve
. 11		-								1 m m m m m m m m m m m m m m m m m m m
-7-						0.5	36	-	1	FRLL FLA ICLU
-] 4-8	FBlack fike-grained material; cinders, slaspte. (FILL)
į									- 4-0	Cinders slagete.
-	-					0.8				
F									1	Z-O similar to above but wish brown silty chay
n	1								1	
8			-			0.1	32'	-	-	(moi)+)
F							32		8-12	10-12 brewn file SAND,
ŀ	-									19-12 brains Fr. SAND
	-		-			1.0		-		The strength (The Stripp)
E										GEN INHLE SIZE (NATIVE)
	-		-							
2						0.3				
E							36		12-16	Same as above, but
-	-				-	3				Same as above, but slightly more Silt
-					E	0.0				
-	-									wet C ~ 14'
						-				
6-					0	.3			1	
{= }= No.	ofB ofB	lows to	Drive Drive	Sp Ca	ooon asing	W	rith lb. ith lb.	. Wt. . Wt	Ea B Ea B	low low

	Ρτοί	ect: ect #:	Brod to	335	and 07 Roch	1	Driller:	NY 14 440 ontract	or:X	Test Boring No. GPT Page 1 of 2
			Blows o	n Samp	ler		SAM	PLE		Soil and Rock Information
0	C	0-6"	6-12"	12-18"	18-24"	PDD	Rec.	No.	Depth	Remarks
_		**				+	36		0-4	tapsen, gravel, brewn Sand, gravel, br.2k, concrete, cinders, etc. (FILE)
4						10.2			}	
						21.3	~~* ~		4-3	Black granular fill material - brown SAty clay O & BG
12						1.6	. 32		8-12	8-10 brown file SAND and SAL prace Clay (NATEVE) 10-12 brown file SAND and Silty Clay, trace
						0.6		**************************************	12-16	and Silty Clay, trace <u>coarse</u> sraved <u>12-15</u> reddish brown SAty CLAY <u>15-16</u> light reddish brown Clayey SILT
16-						0.7				


ž.

a.

F	Proje	ect #:	1	835	6/ A ch	- See	Driller:	1		W Start Date: 0/28/02 Completion Date: 10/28/02 Drilling Method: Errup Probe ^57'F Supervisor: U.Mill
	C			n Sam	oler 18-24"			PLE	Durth	Soil and Rock Information
+	C	0-6**	6-12"	12-18	18-24"	PID	Rec.	No.	Depth	Remarks
E					1	1				16-17 same as above but moist to wet
	-									but moist to wet
F	-	-				1.0		-	16-20	
									10 20	17-20 Veddish gray
-	-		-	1.4-2				-		17-20 reddish gray SILT, little Clay; very wet
-	-								1	very wet
		- 1				0.3				
-										o o france
-	-									en) of borns @ 20' BG Set wel
						1				pr RG Kit wel
_	-							-		
1	-									@ 20' BG w/ ·10' Screen
-					1					(LU)
-	-									10 Screen
-	-					-				
-	-							-		
								-		
-										
	-									
						-				
	-									
-	+	-				-				
-	-	-						_		
-	-		-					-		
-										

1.4

200

m:\waterenviron\environ\forms\fieldforms\testboring\SV-81

85 Metro Park Test Boring No. 099 SEAR.BROWN Rochester, NY 14623 (716) 475-1440 Page of Drilling Contractor: NW Start Date: to 28/02 Driller: <u>Mirke</u> Completion Date: 10/28/02 Elevation: <u>Drilling Method</u>: <u>Earth</u> Project: Brooks Land Project #: 16835.0 Client: City of Kach Weather: OVercast ~45 FSupervisor. Location: acu Genesce Blows on Sampler SAMPLE Soil and Rock Information С 0 0-6" 6-12" 12-18" 18-24" PID Rec. No. Depth Remarks 0-4 <u>C-2</u> topson, gravel 6" lens of black granular material; clark brown <u>Clayey</u> <u>SELT</u> (FILL) <u>2-4</u> H. brown <u>SILT</u> and 0.0 File Sand (NATEVE) 0.1 4-7 Same as above 7-8 Grown SILT and FM Sand 4-8 0.0 8-10 brown Clayey SILT 0.1 8-12 0.0 10-12 reldish brown 5,7ty CLAY, little fre Gravel 0.0 Reddish brown SAty CLAY 12-16 0.1 moist to wet refusal @ 16' BG Hard til / very tisho 9 0.0 o. of Blows to Drive _____ Spoon _____ with _____ lb. Wt. ____ Ea. Blow 1 No will Set -C. No. of Blows to Drive ____ Casing ____ with ____ lb. Wt. ___ Ea. Blow backfiller with Cu Hohys

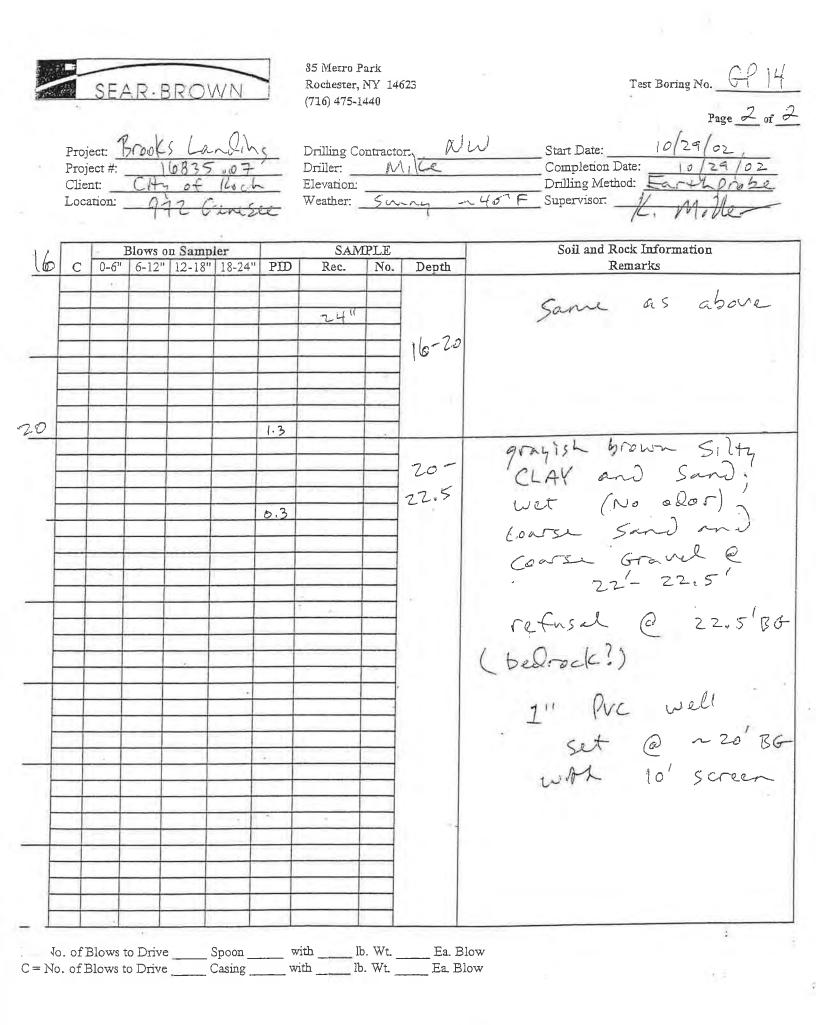
m:\waterenviron\environ\forms\fieldforms\testboring\SV-B1

85 Metro Park Test Boring No. $(\mathcal{P} / \mathcal{O})$ SEAR BROWN Rochester, NY 14623 (716) 475-1440 Page ____ of ____ Drilling Contractor: NW Start Date: 10/28/02 Driller: Mill: Completion Date: 10/28/02 Elevation: Drilling Method: Earth Probe Project: Grocks Project #: ____ | Client: ______ Location: Blows on Sampler Soil and Rock Information SAMPLE 0 C 0-6" | 6-12" | 12-18" | 18-24" | PID Rec. No. Depth Remarks 0-3 brownish gray SAND and SMt wAL Gravel (FELL) 0-4 3-4 H. brown fike SAND and SAT. 0.0 4-7 grayish brown file SAND and Gravel (FILL) 11746 SALT Trace Clay (Fill) 7-8 H. Grown File 4-8 SAND and SALT (NATEVE) B 0.0 It. brown SELT and fike sand 8-12 wet @ 11.5.1. 12 0.0 12-16 Grown and grayith brown file SAND and SAND i wet C 16' gray coarse Sand (near bedrock?) 16 0.0 End of borngile 16'BG - backfilled

 o. of Blows to Drive
 Spoon
 with
 lb. Wt.
 Ea. Blow

 C - No. of Blows to Drive
 Casing
 with
 lb. Wt.
 Ea. Blow

 with cuttings


m:\waterenviron\environ\forms\fieldforms\testboring\SV-B1

----35 Merro Park Test Boring No. _____ SEAR BROWN Rochester, NY 14623 (716) 475-1440 Page of Drilling Contractor: NW Start Date: 10/25/02 Driller: M/Le Completion Date: 10/28/02 Elevation: Drilling Method: Earth proble Project ISDOCS Lan Project #: 10835 Elevation: _____ Drilling Method: Earth Weather: ________ NH5'F Supervisor: ______ MAL Client City of Location: Blows on Sampler SAMPLE Soil and Rock Information C 0-6" 6-12" 12-18" 18-24" Rec. No. PID Depth Remarks 0-4 0-3 Dark grayish brown SAND and Grand Star trace clay, trace SAT. -3-4-light-brown-file (FILL Stan SAND and Gravil 0.1 light brown SILT a 4-8 For Sand (NATIVE) 5 0.0 SAND and SAT. 8-12 wet @ ~ 11.5 36 0.5 en A borty @ 12' DG backfilled w/ caltings; Stalled = . of Blows to Drive ____ Spoon ____ with ____ lb. Wt. ____ Ea. Blow = No. of Blows to Drive ____ Casing ____ with ___ lb. Wt. ___ Ea. Blow

-85 Merro Park Test Boring No. GP 12 SEAR.BROWN Rochester, NY 14623 (716) 475-1440 Page / of / Project Brocks L Drilling Contractor: NW Start Date: Project #: Driller: Completion Date: Client: Elevation: Drilling Method: Weather: AVUCAST ~45°C Supervisor. Location: Blows on Sampler SAMPLE Soil and Rock Information 0 C 0-6" 6-12" 12-18" 18-24" PID Rec. No. Depth Remarks Darthe brownish grag SAND and Gravel (FILL) 0-4 0.0 Light brown file SAND and Silt, 1174 CENTRE Granel 4-B (NATIVE) 0.1 en porizy CEB'BE Backfilled of cattings; Staken) N- .. of Blows to Drive _____ Spoon _____ with ____ lb. Wt. ____ Ea. Blow C = No. of Blows to Drive ____ Casing ____ with ____ lb. Wt. ____ Ea. Blow

35 Metro Paris Test Boring No. CP 13 SEAR.BROWN Rochester, NY 14623 (716).475-1440 Page | or Project BACKI Len Drilling Contractor: NW Start Date: 10/24/02 10 29/02 Project #: 16835.67 Driller: MALE Completion Date: Client _ C. Fa of Roch Elevanon: Drilling Method: Earthophe Location: 977 Weather Swany 40'F Supervisor 11- Umerce Blows on Sampler SAMPLE Soil and Rock Information C 0-6" 6-12" 12-18" 18-24" PID Rec. No. Depth Remarks 0-2 Asphalt gravel brownish gray CLAY and San), some Gravel. 40 0-4 0.1 2-4 brown SAtz CLAY and Gravel (FILL) concrete and asphalt 12 3.5' 0.3 40 /1 4-6 brewn fine Situs and 4-8 SEET SAT (NATIVE) 6-7 brown Silty CLAY 0-1 7-8 brown SILT and Fine SAND 8 0-1 & brown and 32 8-12 raddish brown Fine SAND and SAH 0.1 wet @ ~11.5' 2 0.2 14 brown Clayer SAND; 12-14 brownish gray course 0.1 STND m'Grand @~14'BG refusal & 14'BE Bedrock? No will set -backfiller with cuttings of Blows to Drive ____ Spoon ____ with ____ lb. Wt ____ Ea. Blow = No. of Blows to Drive ____ Casing ____ with ____ lb. Wt ____ Ea. Blow

	SE	AR	ero	WN	1	85 Metro Rochester (716) 475-	NY 1	14623	Test Boring No Pa) [4 age or2
Pr Cl	Project Project #: Client Location:	 	25 LA 2835 72 C	in of the second	1-	Drilling C Driller: Elevation: Weather:	ontrac	Sunny)W Start Date: 10/29/= :	2/29/02
0 0	C 0-5"		on Samp 12-18"		" PID		PLE No.		Soil and Rock Information Remarks	
					0.8	40 ^{//}		0-4	gray and Grand (F	HAD HAD
¢					1.0				2-3 Partic stay to blac SAND and Gram 3-4 Brown to Gray Sa CLAY and Granel	
					0.4	32"		4-8	4-6 Brown and black and sand, trace clac trace shells (FILL	GRAME!
									6-8 Federith brown SM	ity l
					1.0	32		8-12	CNATE	VE)
					0.6				10-12 brown fine Site	۵L ۵L
					0.7	2411		12-16	12-14 brown to brown Stay File SAND.	25
					0.4			K	12-14 brown to brown Sray File SAND SAT 14-15 Black File SAND a Floo abor SAT we 15-16 gray File SAND SAT wet	
of:	Blows to	Drive_	S [.]	рооп	2.1			Ea, Blo	low	and

The state Test Boring No. CP 15 35 Merro Paris SEAR BROWN Rochester, NY 14623 (716) 475-1440 Page of Project Brooks Land.1 Start Date: 10/24/02 Drilling Contractor. NW Project #: 16835. Completion Date: 10 29 Driller Mr.Ke Drilling Method: Ext Prohe Client Cut on Elevation: Weather: JVL-Carst ~45'F Supervisor. _______ Location: 972 Gane see Blows on Sampler SAMPLE Soil and Rock Information C 0-6" 6-12" 12-18" 18-24" PID Rec. No. Depth Remarks Sampler Jammed-PACT 8-4 " 0-2 + dark gray shy CLAY and Ean? 0.8 2-4 ± rablich brown Fru SAND and Clay 4-6 relation brown SELT and Clay Inthe course grand (NATEVE) 0.4 32 4-8 0.6 6-8 relation Grown CLAY and Shit, Inthe Free Grand B 0.9 8-116 brown fine SAND 1.1 40 8-12 and silt, brick at 81 10-12 brown sty CLAY D.8 0.6 Fladil brown to Fuldosh brown Fuldosh gray SAty Clay Noodor 30 12-16 0.8 and of having @ 16 - . of Blows to Drive ____ Spoon ____ with ____ lb. Wt ____ Ea. Blow = No. of Blows to Drive _____ Casing _____ with ____ lb. Wt. ____ Ea. Blow backford w/cn Hhgr No well set

85 Merro Parie Test Boring No. GP - 16 SEAR BROWN Rochester, NY 14623 (716) 475-1440 Page____of Project Brooks Land Drilling Contractor: NW Start Date: 10/24/02 Project #: _____ 16535.67 Driller. M.V.g Completion Date: 10/29/02 Drilling Method: Earth prose Client Cring and Loch Elevation: Location: 0, 7 Weather ______ NUSCAST 40'E Supervisor _____ Blows on Sampler SAMPLE Soil and Rock Information C 0-6" 6-12" 12-18" 18-24" PID 0 Rec. | No. | Remarks Depth poor recove Gravel, redeligh brown 0-4 4-8 Gravel, wood Gravel, Star 11 22 1.9 20 Clay (FILL) 5.5 E-10 grayish brown SAL CLAY and film Sand (NATIVE) 46 8-12 3.3 10-12 gray sitty clay (slight petro odar) 59 12-13 same as above 11 12-16 13-16 rullist boun sitz chay 46 17.9 Whe file Gravel (No oder) \mathcal{O} 10-1 En A born; C of Blows to Drive _____ Spoon _____ with ____ lb. Wt_ ____ Ea. Blow í == = No. of Blows to Drive ____ Casing ____ with ____ lb. Wt. ____ Ea. Blow 16' BG set well .. 2 16' BG W/ Siraen

GP IT 85 Metro Paris SEAR BROWN Rochester, NY 14623 Test Boring No. (716) 475-1440 Page ____ of ____ NW Project Brook L Start Date: 10/29/02/ Completion Date: 10/29/02 Drilling Contractor Driller M.Ye 11653 Project #: Elevation: Client CA Drilling Method, Easth Insta Weather Owwerst 45 F Supervisor 17 m Location: TINELLE Soil and Rock Information Blows on Sampler SAMPLE C 0-6" 6-12" 12-18" 18-24" PID Rec. No. Depth Remarks topica darte gran and black gran ar material with file grand 24/ 0-4 (611) 8.6 4-6 raddigh brown SANT (NATIVE) 24 4-8 0.3 6-8 brown fre Stud with Clay - Dirtle 1.) 8-10 Feddill gray 11 36 Sty CLAY (odor) 8-12 464 10-12 dark stay SAty CLAY, little Fine grand 12 20 12-16 SILT, little freslight Saw (met) (olar) 40 58 14-16 brown sAty CLAY (No odar) 10.4 borny @ 16'136 I = . of Blows to Drive _____ Spoon _____ with _____ lb. Wt. _____ Ea. Blow = No. of Blows to Drive ____ Casing ____ with ____ lb. Wt. ____ Ea. Blow set will @ 16 W/ 5' scilen

85 Metro Park Test Boring No. GP 18 SEAR BROWN Rochester, NY 14623 (716) 475-1440 Page of Drilling Contractor, NW Driller: Mike Start Date: 16/24/02 Completion Date: 10/29/02 Drilling Method: 5-1 2robe Project Brooks Landin Project #: 16825, 07 Client: CAy of Luch Elevation: Location: G.7.7 Weather. OVICER ET 45 F Supervisor. 1 TIMESCE Blows on Sampler SAMPLE Soil and Rock Information C 0-5" 6-12" 12-18" 18-24" PID 0 Rec. No. Remarks Depth brownish row file SAND 24 0 - 4(FILL) 11 0.5 Brownish row file SAND and Silt, 4-8 IAte Clay (FILL) 7.4 8 0.5 reddish brown fine SAND and gravel Jittle clay po odor 11 8-12 24 (FILL) Maist 12 1.2 refusal @ 12' BG end of hornig R No well set "RG buckfille with

 N-__o. of Blows to Drive
 Spoon
 with
 Ib. Wt.
 Ea. Blow

 C = No. of Blows to Drive
 Casing
 with
 Ib. Wt.
 Ea. Blow

 cn Hillys

Test Boring No. DZIZ

Page / of <u>2</u>

Project: Brooks Landing	Drilling Co
Project #: 16835.07	Driller:
Client: City of Rochester	Elevation:
Location: East of PZ216 fr	Weather:
V	

Start Date: <u>11/21/02</u> Completion Date: <u>11/5</u> Drilling Method: Geroprobe Contractor: Natures Way 2 Supervisor: D. Gnage

I		J	Blows o	n Samp	1/.8 ler		SAN	PLE		Soil and Rock Information
	С	0-6"		12-18"		PID	Rec.	No.	Depth	Remarks
1		1	1		0,0	0,4	3.3	17	0-4	aspha/t
Ī									1 '	F-C G-revel, budding for aughors
Ī			iλ	1	1				1	Lt. Brown Bilty Sand little f
			L							Gravel, by ro most (F."11)
	4					-				Black Einders, biss of brich
	1							1		
	-		2						1	Ht. Brown /Brown S. Ity Sund I. I. f-c Gravel, Slag, Lindan, moist
					0.0	0,4	2.0	2	4-8	Siq. 4 No slag or citado (F
						1.00		1		ang of criteria
		- 1								F. Brown S. Hy Sund, little F. Gravel rust lenses, trace la
								-		F. Grunel, Must leases, frace 10
	_					i i				- Williams
	-							-		(Nati
	- 2				· 14	57. 				đ
					0.0	0.4	2,0	3	8-12	Red Brown - Elty Ciay, mound
								2		LA, Brown F-m SAND, some
				1						to 1.1. HLe Silty moved in st
	_				1	(1			
	-							-		Spotting Vlanges
	-				1			-		
	-									
	-				0.0	1.9	2.0	4	11-16*	S.a. a. moest + U wet
					0.0	111		1	rat rp	- Clarge - C - F
					1				1 C 14	14
			1.1		1			-		
	-							1		S.q.a. Cod/Brown W/Black
	-									1enjer
	-				D= 1 1	5.2	0.6	5	11 20	sia. 6. Oder (petrol _ 16
	-				1311	213	20	, ,	0-00	The a min him the strick
	-	-			-					J.a.a. volTBrown W/Black Ienter s.a.a. oder (petrof
							1			increase in sitt, little cla
						1. A. I.				
								1.		
	-11							1		
								-		
					U.				_	
)	. of I	∃lows i	to Drive	·	Spoon _	7	withl	b. Wt.	Ea. I	Slow
•	ot E	slows t	o Drive			V	vith 1	b. Wt	Ea. E	low

	-
SEAR.BR	OWN

Test Boring No. <u>P215</u> Page <u>2</u> of <u>2</u>

_					11.5		0.171					
C				n Sam	pler " 18-24"	PID	Rec.	PLE No.	Depth		Soil and Rock Informat Remarks	1011
	. 0-	-0	0-12"	12-18	0.0	11	1,9	0	20-225	i a	a ca troce yro	7.28
1.					1	1.a	1			0, 4		
		_		-	1							
-	-	-										2
											E. O. S Referred	
		_										
-	-	-		-	-			-			Referred	
	1										1 0	
					1				81 - 34 -			
_	1.40	-	19		-							
-	-	-						-				
-	1	-			1							
_	-			_		(
-	-	-				-						÷
	-	-			-					• •		
							+					
-	-	-	-	-								
11	1	-	-									
	1											
-	-		-		-	-						
	-	-										
	-	_				11						
-	-	-	-					-				
		1	ILD									

Test Boring No. PZ-19

Page 1 of 2

Project: Brooks Landing
Project #: 16835.07
Client: City of Rochester
Location:

Drilling Contractor: Natures Way Driller: _____. (1) Elevation: ±40 Weather: 11 12-CC

02 Start Date: 11/21 Completion Date: Drilling Method: Geroprobe Supervisor: D. Gnage ê

				12-18"	0:5	PID 0/4	Rec.	No. [Depth O-4	Remarks
					0/3	0/9	<i>d</i> : \$		0-4	Brown SFLT, VENe to m Signal
									1	
										Gravel brick, in dry (till be
			H							Gray F-C Grand), concrete 1.
								-	1	Brown /Biech Stit some for Sond & g. Wrel, bluck vinder, (
			-	- 1				-	1	Sond & gravel, bluck vin der, C
	*						Sec. 1			\$-y 41,
		_			3.8	kil.	1.3	2	HF	Le. Brown F-m SHND, 1/5" 580
-	1									1 100 ++1-2 (4
		-	-	-			-			Black grandle- "carbon"
								1		
_	1	_	-						A	(FILL)
-	-	-	-					-	·	f.
-	and the second s	-		- 19:-	2.8	13	2.5	3	3-12	Brown Silty SAND, Mittle +3 So (Native) 9
				K = 1				1		Red Bedan Clay, try tomoch.
-	111	-	1							Red Bedan chap , by romour
+	11 E	+		<u>64</u>		-				Brown / Red Brown & / Ky dans,
										Brown Thed Brown Cilty Sand, little to Norme Elley mars 100
	12	-								Silr, more + swith and, 1.17
-	-	-	-		0.0	0.8	27	7	12-11.	5. 9.19
1	1		1		0.0	610	-11		10 10	
										@13.3 Fust Strinkions
-	-	-				-				
10		-	-			211	-			
	-									5
1944 -	-	-			6.7	10 10	2	-	11. 20	C C C Lizzt
N.,	-	-	+		();()	0,6	······································	2	16-20	s.a.a. wet
1						-				
	-	-								
		-	+							
				-						
	C 121				~		Buch	4.00	Ea.]	5,4

Test Boring No. P=-19

Page _ of <

		it: Cit tion:	y of Roo	chester		_	Elevation: Weather:	D is	12-1 0	Way Start Date: $11/21/02$ Completion Date: $11/21/02$ Drilling Method: Geroprobe 27 + 40 Supervisor: D. Gnage
					11.8			a		
I	С			n Samp	bler 18-24"	DID	SAM Rec.	PLE	Death	Soil and Rock Information
				12-10	2.8		$\lambda_i(J)$	No.	→()-23	Remarks Lt. Brunn f-m JAND, 1: SIIL, 11Hhe f-c brand, satur
					1.7	D.8	2,0	2	23-252	Sr. a. 9
										EaP
				340 	• • •					Refund
1 1										·
-			_			-				
					+					
	-									
-										

	Proje	ect #: 1 nt: City	ooks La 16835.0 y of Roc <u>S. J.</u>	7 chester	5 E C 4		Drilling Co Driller: Elevation: Weather:	Ster		Way Start Date: <u>11/20/02</u> Completion Date: <u>11/20/03</u> Drilling Method: Geroprobe Supervisor: D. Gnage
1				n Samp		1	SAN	PLE		Soil and Rock Information
l	С				18-24"	PID	Rec.	No.	Depth	Remarks
Ì						0.7	3.5	1	0-4	usphalt C
								-	-	Gray F-C Gravely de Dittle F Sund & Silt, by Carphett ber
				-				-	-	Nurt + + Still + Copreted Sty
			1			UIES		2		trans for brand mart boks
					•					Brown F-m Silty SAND trace F. Gravel moist. Dits of metod (Fin) 2
					-			-		5 G. G. Oranges Brown 111H/2
ł						0.5	7,4	2	1-1-8	S. a. a. Oranges & Brown 1.1Hla Silt NU granel (Native) 4
t		+							1 ' '	S. a. a. It. Brown S.
I							_	-	1. IN .	
ł			32			0.8		-		S. a. a. little to some silt. Trais Clay, moint Red Brown IBrown Silty Clay 1: His to truce F. Sands main
ł						010				and clay, moist o
ţ						<u>, 1</u>				Hed Brown 1910 an Sitty Clay
i			-	H		17-	3.0	X	6.17	NU WE & (AUX, 1, P)
+	-					0.7	کی رکی	10	5-12	so wet (Nakive?) So a. a. Frace Fre Graves
t				2		19.1				titt im dist
I								-		
ł	-		-					1000		
ł	12								1 ÷	
L			1	E E						-
+				4	4		2.7	X	12-16	
ł						0.7				Red Brown yo Brown; Clay, mos
t	1		1							Red Brown to Brown; Clay, Mor To Ny Brown From Silty SAND, mois TO net
F			1	(10-21	0.5				yourst
+										
ł								1.1	-	
L			1 1			0.7	310	20	16-14	S. 4 4. little clay, smaint 1 wet -
F		•	-	011 #				A		
+		-								017.0 wet 1
t						0,9		-		Ned Brown Silty Cluty, Truie t-c Sund & Crurel month 19
F						0.1	D 11		19-72	+- c Sund + Gravel months 1:
1	- 110	·	1	1		0,6	3.0	-	11-0-	Red Brown Fim Silty SHALL

m:\waterenviron\environ\forms\fieldforms\testboring\SV-B1

Proj	ect #: nt: Cit	Blows o	07	ler		Drilling Co Driller: Elevation: Weather: SAM Rec.	PLE	Depth	Way Start Date: $11/20/02$ Completion Date: $11/20/02$ Drilling Method: Geroprobe Supervisor: D. Gnage Soil and Rock Information Remarks Read Brown from Sifty SAMD fruit to Clay, het 1/20/02 Soil And Rock Information Remarks Remarks Soil And Rock Information Remarks Soil And Rock Information Completion Date: $11/20/02$ Soil And Rock Information Remarks Soil And Rock Information Remarks Soil And Rock Information Remarks Soil And Rock Information Remarks Remarks
_		Blows o	on Sampi	ler	PID	SAM Rec.	PLE	Depth	Supervisor: D. Gnage Soil and Rock Information Remarks Red Brunn fim Silty SAMD truiting Clay, het
С						Rec.			Remarks Red Brunn from Silky SAND truiting Clay, het littig
C	0-6"	6-12"	12-18"	18-24"			No.		Red Brunn F-m S!AC SAND truite to Clay, het
					0,5	A=57,2		22-25	Red Brunn them Sitty SAND truited Clay, het little
					0,5	f====7,2		22-25	truien Clay, het
					0.5	£===7,2		22-25	little St. 4. Cal
					0,5	2-5-7,2		22-25	Se Gr an
					0,5	En lid		· · · · · · · · · · · · · · · · · · ·	
									and the second se
									a start and a start a s
						1			bruy, silty SAND, WHIE Grand wet S.a. G., Titt
					019				bruy, silky Struck, White
									Gravel wet
					0.4	1.0		25-27	J. q. 4, 11 11
				0			_		
-		_		41 R		6			C
			1		1.0	1.5		27-265	- 1 1 bround little
		-			1-0	1		of the	F-ESAND + S.112, wet
				1 - 1					. 7. 6
-				1					-25
-									E. O. B. refunal
-									relinnel
-	-								queral
				1				101	
	-								
_					-				
-									
-		-						0.11	
1				4					
								8	
_			_						
-							-		
-									
-	-				-		-		
		-							

		SEA	AR · B	ROV	WN	-	85 Metro P Rochester, (716) 475-1	NY 14	623	Test Boring No. <u>P=-</u> A Page <u>/</u> of _
	Proje	ct #:]	ooks La 16835.0	7			Drilling Co Driller:	ontract	or: Natures	Way Start Date: <u>1/2//02</u> Completion Date: <u>11/2//02</u> Drilling Method: Geroprobe
	Loca	it: City tion:	y of Roc Wast	hester	1 611	'ς	Elevation: Weather:		1-24.52	
	201	5	and in	~ alj.	Alwi	11				
	-			n Samp	11.t	1	SAN	PLE		Soil and Rock Information
0	С	0-6"			18-24"	PID	Rec.	No.	Depth	Remarks
		-		1	0.0	0.3	3.0	1	0-4	HUPSAIL Brown JELT, some fm Sund & Gravel, brick, black gradular gravit (Fill)
		_			-			-	1955 Eigen	Brown ILL, some f m Sund
										+ Urava , brick, bloor grunular
									1	gravit Paula Sila Cu
				<u> </u>					-	Brown /Ait Brown Silty Su. Trace F. Grand I, mant (Native
-	100.0							-		(Nicture
ł					0.0	0:3	HIU	5	4-6	S. a. a It. Brown, w/rust
				1						· · ·
ļ	-									12-12es
+	-							1	1	
t										
Ţ						1				· ·
	-				O.C	0.3	317	3.	5-12	
t					0.0	45	SIL	10.		
L						in the second second			1	@ 10:0 mout 1 d'ar et
1						-		-		
ł	-	-								Red Brown Silty CLAY, Fraile
t								1		A. Gruvel a f. I and , ty + Jono
F					01	(1.6.2				
+					0.0	0.4	4.0	-4	12-16	s, a. a. softer, mucht is
F	-					10				
E		11							· · ·	S. a. a. day Vary Srith
+		-			-				1.	and Brown Silty SAND,
+			-						- a t Mala	Brown to Red Brown Silty CAND, Moust HOTY strace Clay
L			1						Er	
F	1				0,0	0.4	3.0	T	16-19	S. a. a. Red Brown wet
-		-								
t									and the second	
L									- Pr.	1.2-
F	-	-			0.0	O.LI	2.5	6	19-22	J. G. G
F					11.11	1-1	410	0	11 0	
							Bo(with]	Har	Junel	

Ŷ

		SE/	AR · E	BROV	NN		Rochester, (716) 475-1		623	Test Boring No Page of
	Proi	ect #:	16835.0	anding 07 0chester, 14/10/14	- al h	1 Ella	Drilling Co Driller: Elevation: Weather:	S.	c unt	Way Start Date: <u>11/21/02</u> Completion Date: <u>11/21/02</u> Drilling Method: Geroprobe 240 Supervisor: D. Gnage
					11.8			PLE		Soil and Rock Information
)	C	0-6"		on Samp		PID	Rec.	No.	Depth	Remarks
	-	-	0-12	12-10	10-21		100.	6	19-22	Grow Silk. CLAY I mount 2
			1		1000	1		1	idnt	Gray Silky SAND, little Clau
							1			moest tured à
ß		have			1.1.1.1					Gray Fic Gravel, mant 2
-		-	-		0.0	0:4	123	1	22-25	Gray Silly CLAY I mount ? Gray Silly SAND, little Clau moest & Unrel Gray F- c Gravel, mant 2 Gray Silvy SAND, Some F- c Gravel wet
-			-							E-ovel wet
1				-				-		
		2.51								
-										
					0.0	0:4	0.8	8	25-28	5. 01. 61
									8	
+	-							100		
ł	-			-						
L										@27.5 brown 25.
	-		5				1			E.O.B.
T		1.72		-						
									D11 - 1	refund
-										
ł										
ł	-							-		
ł	-	-								
t					V.					
1							1.			
L					1					
L		_		1		1				
F										
+	-									
F	-	-		-		-			2	
F				1	- 16 - C					
E							1.	1		
ſ							-	_		
F	-									
F										
1										
F	-		-			-				
	-			1						

Test Boring No. 6-10-22

Page _____ of _____

Project: Brooks Landing
Project #: 16835.07
Client: City of Rochester
Location: 10' Sof PZ7

85 Metro Park	
Rochester, NY 1462	3
(716) 475-1440	

Drilling Contra Driller:	ctor: Natures Way	Start Date: <u>11/20/02</u> Completion Date: <u>11/20/07</u>
Elevation:	1 - J	Drilling Method: Geroprobe
Weather:	Δ.	Supervisor: D. Gnage

11				n Samp			SAM		47	Soil and Rock Information
	С	0-6"	6-12"	12-18"	18-24"	PID	Rec.	No.	Depth	Remarks
		1				2.7	B.2		0-4	Remarks Rown SFLT, 11Htle F. Sand & Grand prize as of Bluch materia Cyber - little) (F.101) White substance bilts of br 2 blach "glass"
[-									Brown Strip for to Sand t
Ī	1	100			1				1	Grand precess of Black on stars
t								-	1	Lydow - little) (Fill)
t	-								1	Tudate Prototion of the
+						10.00			1	white substraint, bits of on
-	-	-			1	-		-	1	1 black gland
ł					-					
F		·				165			4-8	Black "Larbon"
+						24	Diarbun			DIVER COPSES
L	_	C				314	(wh/22)			
L			1.000					1		
							16		1 2	
ſ								1		
Γ										2.
T					1.8.8.2					
Γ						3,5	3,2		8-12	CFILL) J.
T					10					Brown, tom Silty SAND, tour f. Gruvel, moist to wet (Native?) (Native)
F				-		1				f and and to recent
F	-				2 - 1		1	1	2	fauture)
t	-	- 4					1		2	(Natue)
F	-					-			9. I I I	
⊢	- 2-									2 · · · · · · · · · · · · · · · · · · ·
H	-		-			-				
F	-	-				12 12	4.0	-	12 11	13
-	-					0:4	110		12-16	
-			-						1.1	Red Brown, very Stiff, Silly CLAY, dry to mand
-	-								s	CIAU No A
-	-								a - 0	child and to make a
_		-	1	1	1.00					- /3
						-		_		
										Brown Silty from Starts,
			1					4.	to and	1 mag
	-					11				E. O. B
1										
	0									
					1			1.1		
-								-		
-	-									
	-									
-				-				71	6 1	and I a me
т		1			a			D .	ach g	ound : 0.5
10). OI J		to Drive to Drive	°	Spoon _ Casing			o. Wt. o. Wt.		Blow

Test Boring No. (-P-23

Page ____ of ____

Drilling Contractor: Natures Way Driller: ______ Elevation: ______ Weather: ______

11/20/02 Start Date: Completion Date: 11120 Drilling Method: Geroprobe Supervisor: D. Gnage

	S 10. U			n Samp		-	-	PLE		Soil and Rock Information		
0	С	0-6"	6-12"	12-18"	18-24"		Rec.	No.	Depth	Remarks		
		2				0:5	03		0-4	Aroch "slam" (Fill)		
-									æ			
					-					4 A		
						3,5	3.0	2	4-8	Lr. Brown t-m SAND, little - S. 4, mout to dry Enative ?]		
1						3.0	2.2	E.	8-12	C S. 3 1' layer of possible ash		
							4			\$O.5		
	_									Brown ENATILE) trace f. growl		
						2:5	4.0	4	12-16	1.4		
	-			,						@13.8 dry to mount, very Sistef		
-										16-0		
F										E. U.B.		
									1 2 - 10 -			
L	-		-									

Test Boring No. C-D-24

Page _____ of _____

Project: Brooks Landing
Project #: 16835.07
Client: City of Rochester,
Location: 10 W of PZZ

Drilling Contractor: Natures Way	Start Date: N/20102
Driller:	Completion Date: 1/120/02
Elevation:	Drilling Method: Geroprobe
Weather:	Supervisor: D. Gnage

		I	Blows o	n Samp	ller ller		SAN	IPLE		Soil and Rock Information
0	C	0-6"			18-24"	PID	Rec.	No.	Depth	Remarks
		•			10:8	\$.7	2.5		0-4	Brown Red Brown Silly from SAND dry to must (FAM) 1:412 Grand 6 (17 Blue Thron rowder tince
-					2.4	ə. 4	7: L	2	4-8	Harrace ro NU gravel, day to mailst (Nature)
		•			1,6	3.7	2 r/	(J)	8-12	i.
)							4		V - 4 2-	S. a. a. little clay 1007 Red Brown Silty CLAY, trave F gravel & Sand, Amount
					7,6	1.4	4.0	4	12-16	S. a. a.
										16.
										E. O,B
Ę		_								

Test Boring No. 6-10-25

Page ____ of ____

Project: Brooks Landing	0 · · · · · · · · · · · · · · · · · · ·	Start Date: 11/20/02
Project #: 16835.07	Driller: S, G-1- Grich	Completion Date: 1/120/02
Client: City of Rochester	Elevation:	Drilling Method: Geroprobe
Location: 10 W + 10 w st PZ7	Weather: <u>Clear t SOUF</u>	Supervisor: D. Gnage

0	C	0-6"	6-12"	10 101	1					
			10 12	12-18"	18-24"	PID	Rec.	No.	Depth	Remarks
	_				4.6	S,U	1,6		0-4	Cinders, white material (fill)
										Brown from Silty SAND, 1.14/2 traje f. brand, brich, the bilds if cinder + why te master will, d
					11.8	61]	2,2.	2	4-5	B. G. 2 brief preces
				1 4	3.9	1.7	4.0	7	8-1)	- Frank
* 1/2										Black cinder swhite material of brink (PIII) Brunn Silry SHAP, Frome F. Yrune I, muist so wet (Nafive)
					0.5	0.9	4.0	4	12-16	Red Brown Silty CLAY, 11ADE TO Frue F-Growella Sand 13
										Red Brown Silty SAND, suturnitedy Red Brown Silty CIAY, little + truce F. grovel & sand
										F.U.B
-	-	-		_		-		2		

1.4

)			ROV	VN		85 Metro P Rochester, (716) 475-1	NY 14 4 40		Test Boring No. $(-P-2)$ Page $/$ of
	-		ooks La 1683 <i>5</i> .0	-			Drilling Co Driller:	\int	or: Natures	Way Start Date: $\frac{11/20/02}{Completion Date: 01/20102}$
			and the second se		4		Elevation:		1	Drilling Method: Geroprobe
	Loca	tion:	10 .	whester way	12	2	Weather:			Supervisor: D. Gnage
					11.8					
]	Blows o	n Samp		1	SAM	PLE		Soil and Rock Information
0	С	0-6"		12-18"			Rec.	No.	Depth	Remarks
					\$4	2.7	2.6	1	0-4	topsidil 0.
		V						-		Hopsids' O. Brown SELT, Mittle f. Sanda Granel, borich " (ancrete, black "stary moist (F.11)
									1	MONT (FIII)
									1	
		NI ES								
, 1		1			63.1	29.7	2.7	2	ig-5	Brown mount. 11H1= F. SANDS Block Carbon, mount
-					4011	- 11 -				Brown the little
]	Block Carbon, most
4					1			-		
+						1		-		
ł	-		-							
-	-				1					
Ĺ			1.00		8.4	37	4.0	3.	5-12	(Fill) 9.(
-						1				7.(
F		-								Brown Silty F-m SAND, little Cluy, moist rowert (Natrie
										Cluy, moist to with I wante
E								1		11.3
F			1						·	
H	-		-		16	0.9	3.0	4		Red Brown Silty CLAY 1. HIL F-Gravel & Gade, moist
-		-		-	1.6	0, -1	-1.C		12-16	
F										14
E										Biven tom SAND mour 14.
+	-	-				-		-		Di Ballo CILL CIALI L'AND
+						-		1		Red Brown Silly CLAY Little A. Grovel & Sund, moith 15. T. G. W. G. NO Send or Grovel 10
F								1	-	The W.G. NO Send or Group/ 10
L		1.1				6				F. U.B
L								-		1- , U, JS
+	-									
F										
F										
				1				_		
							L	S at C P	14/Jun	Blow $O. J$

SEAR · BROWN	

Test Boring No. 6-12-2

of Page_

Project: Brooks Landing	Drilling Contractor: Natures Way	Start Date:
Project #: 16835.07	Driller: J. 6-1991.6	Completion Date: 11/20/02
Client: City of Rochester,	Elevation:	Drilling Method: Geroprobe
Location: 17'N of PZT	Weather:	Supervisor: D. Gnage

18	1		Blows o	n Samp	ler		SAM	PLE		Soil and Rock Information
	C			12-18"		PID	Rec.	No.	Depth	Remarks
		•			8.4		217		0-4	Brun Silty Sand, isthe L- Brun Silty Sand, isthe L- Grund, slag, Black "stass" woud, Eng Kumerst (fill)
					1.1				1 '	Brown, sitty sand, withe 2-
	121				S			1		brunel, slag, Black "stuss pygligh
		1.4								wood, they roand so (Fill)
4			1		1.0	-				
ł			-					-	1.00	
ł	-				-			-		
ł	-			-	26,1	1. 7	2.1	2	- l	4.
ł	-		-		11	0.5	241	12	1-5-	Black granular "carbon"
+		-					1.1	-		
t			-	1				1	6 - FC	
t										
T				1						
L			-							(Fill) fd
								1		Red Brown silly sand, mode. The wet, truce Clay
L				- All	1,6	0:9	2.6	3	8-11	Red Brown wing auto most.
L									1	The wet, truce clay
F	-				1					
+										(Native)
H		-				-		-		11
F			-		-			-		11.
F								1		E. O. B refusal (+up of seure-?)
Γ								4		refunal
L										Para d paras 21
L										Citup of sentre !!
L										
L	_							_		
-		-				-				
-	-									
F	-									
F								-		
-	11				-			-		
				_					4	
						52.21	5.2071			
	_				1.1.1					

85 Metro Park Rochester, NY 14623 (716) 475-1440

Test Boring No. U-P-25 Page ____ of ____

Project: Brooks Landing Project #: 16835.07	Drilling Contractor: Natures Way Driller:	Start Date: <u>11/20/02</u> Completion Date:
Client: City of Rochester	Elevation:	Drilling Method: Geroprobe
Location: 20'S of PZ7	Weather:	Supervisor: D. Gnage

		ł	Blows o	n Samp	11.8 oler		SAN	PLE		Soil and Rock Information
0 0	cſ	0-6"			18-24"	PID	Rec.	No.	Depth	Remarks
		- 0			2.9	1.8	3.3		0-9	Horsell From SILT, withe Read gravel, bits of brick file (Fil) ASIH (white Matterial), black "g
					5.4	2,7	2,0	2	4-5	Bluch grunn lar "surboy
• •										Red Brown Silty CLAY, 11. L. Gravel, 5:40 of wood (Fill) (Native)
					2.8	1,3	3.3	J	8-12	Brown / Orangish Brown F. m S. SAND, MOIST to wet
		_					A			e 11' 2" lines of Bridson
					1,6	0.6	4, ()	4	12-16	-
				•				<u>(</u>		Red Brown Silty Clay, 1:1+1- f. Grovel, dry to maint S. Chi G. NO Sund or Grove
										E.O.B

Test Boring No. <u>GPD-29</u> Page <u>1</u> of <u>1</u>

				PZ- Ble 11.5	-			-	
С			n Samp		PID	SAM			Soil and Rock Information
C	0-0	0-12"	12-18	18-24	-	Rec.	No.	Depth 0-4	Remarks
				<i>Q::</i> @					Brun, Silly SAND, bits of t charcoal house Charp
				J. F	0,5	3.0	2		(FILL) (Et. Brow Form SAND, 1.99) to some sitt, misur rd a
									to some soit, publier rola (Native)
				020	0.5	3.8	.?	ş-12	S. a.a. moist At 20
									Brown Sitty Clay, Nry tom Brown - Thy for stand, surs to well 12
				0:0	0,5	3.F	4	J2-16	And Brown Silty CLAY & F. Grovel & Vand, moint to de 14
1					-				S.a.a. Gruy Purpil 13 Bruy Purpia SULAY SUND, MO
									Ē. O. B
-									

	Proje	ect #:	ct: Brooks Landing ct #: 16835.07 t: City of Rochester fion: $5 \times + 15 = 4$ $P \ge 7$ 1/.8 Drilling Contractor: Natures Wa Driller: $5 \cdot 6 - ingentic 4$ Elevation: 0 - 2 - i out = 2						Vay Start Date: <u>11/24/02</u> Completion Date: <u>11/24/02</u> Drilling Method: Geroprobe Supervisor: D. Gnage		
1	1 1]	Blows o	n Samp			SAM	PLE		Soil and Rock Information	
	С	0-6"	6-12"	12" 12-18'	18-24"	PID	Rec.	No.	Depth	Remarks	
					7.2	4, 0	3.0		0'-4	topsoil	
					16.3	6.3	2,9	2	4-5-	4.	
					4	s				Bluck grandlar "carbors"	
	-				7,8	2.1	4.0	3.	5-12	(Fill)	
								•		Red Brown Sandy SIET, 11+1/2 clay more (Native)10. "Red Brown Silty Clay more Enable?) At. Brown From SAND, WHILE Silt,	
					7,2	1.5	37	4	· · · · · · · · · · · · · · · · · · ·	At. B. Jun From JANRS, WHA SIT.	
				•						16-	
										E.O. B.	
		-	-								

Test Boring No._ 1-1 Page 11/2

Project: Brooks Landing Project #: 16835.07 Client: City of Rochester Location:

Drilling Cor	tractor: Natures Way	
	6 inderig 6	
Elevation:	2	
Weather:		

Start Date: <u>11/2-1202</u> Completion Date: <u>11/2-176</u> Drilling Method: Geroprobe Supervisor: D. Gnage

<u><u><u></u></u></u>		6-12"	on Samp 12-18"		1.6	Rec.	No.	Depth U- 4	Soil and Rock Information Remarks * 000 - aid Brown SELT, Witthe +0 - 50000 Sand and browel, wood, 2000 Lighten, Emunt, (Fill)
4.						2.7	1	0-4	* 00 said Brown SELT, little to some Sand and brokel, wood, con Signdary, Emust, (Fill)
140				24,1					Brown SELT, little to some Sand and brack wood, con Sandard, Emerst, (F.11)
1				24,1					Sand and brack wood, con Spinders, Emerst, (Fill)
1				22,1	5.6				Light dans, & must, (F.11)
40				22,1	56				
ti la				34,1	2 6		. :		
ti				22,1	26		1		à
20				22,1	20				
141				37:1	1 1 1 1				Sauch granular "carbor"
20					3.8	2.7	2	4-5	J. 47, 4 47 0 7 1
20	i i				1				Bluch granular "carber"
120	i i			11					maeria
21	1			()					
2i	1			1					
E.	12				-		-		
-	-								
	-			12 0	1 :	20			(FILL)
-				8,2	115	2.8	3	5-12	Signi Silt. Silt.
-			1				-		Mad Brown (waters 2)
-							-		Red Brown Sandy STAF, Som Clay, meister (States)
-	-								
-	-					-			S. a. c. Ree Brown
-				-					H. Brunn from Jand, 11H
-	-		-				-		It. Brunn Pom Sand, 11H Silt, made (Nature)
-				1,6	1.6	2.0	4	12-11	S. G. G must to a st
-			-	110	114	J r w		12 - P	V. G. C. Muliev , o car 2 ,
	1								
	1200								
				-		2			
								-	
								1	E. O. B
									E. U. 1
			1		·				
1				· · · · · ·					
		2.11		10 m l					
1	1.1.1								
-						1.1.1			
1			1						and the second

85 Metro Park Test Boring No. GP-32 SEAR · BROWN Rochester, NY 14623 (716) 475-1440 Page _/ of _/ Start Date: 11/21/02 Project: Brooks Landing Drilling Contractor: Natures Way Project #: 16835.07 Driller: $\underline{3}, \underline{6}, \underline{7}, \underline{7},$ Completion Date: _______ Drilling Method: Geroprobe Supervisor: D. Gnage SAMPLE Blows on Sampler Soil and Rock Information C 0-6" 6-12" 12-18" 18-24" PID Rec. 0 No. Depth Remarks # To but 0,01 0.6 218 1 1-4 Brown Sitty some to fitthe f. Sund, & little f. Growel, brick glass, cinder (, dry romanni (f.11) H-8 Block, granula "curbon" 2.3 0,0 2.5 2 (FILL) 6.5 8-12 Ard Brown SELT, some F. Some Vare F. Gravel, most (2) Straine F. Gravel, most (2) Straine F. Gravel, most (2) Straine F. Chayey 0.0 019 2.4 Brunn stilty Sand, trace clay Û E. O. B .o. of Blows to Drive _____ Spoon _____ with ____ lb. Wt. ____ Ea. Blow N C = No. of Blows to Drive ____ Casing ____ with ____ lb. Wt. Ea. Blow

Test Boring No. <u>6-P-3 ?</u> Page <u>_____</u> of <u>____</u>

-slaw

Project: Brooks Landing Project #: 16835.07	Drilling Contractor: Natures Way Driller: M. He	Start Date: <u>11/25/02</u> Completion Date: <u>11/25/02</u>
Client: City of Rochester	Elevation:	Drilling Method: Geroprobe
Location: 7 Nd 2'W al NECA	- Weather: nort = 40	Supervisor: D. Gnage

				n Samp			SAM			Soil and Rock Information
0	С	0-6"	6-12"	12-18"	18-24"	PID	Rec.	No.	Depth	Remarks
		-	1			0.6	2.1	11	0-4	Brunn Sandy SILT, 114 Se Fee Grusel bits of and & share churce
Ī						1883.1				Orusto- runy OI
t						0.5	1	N	1	Brown roney SILT, 1174/8 has
t			1		7					Gruse bits all and a block charge
t					-		11-1-1-1			(Ann)
+		-	-				1			
F					-			1	6	
F								1	G	
ł						1.0	3.5	2	H-C	5. a. u. w/sr. c. 4
ł						1.0	<u> </u>	5	1 8	
+								-		S
H								-		Del E AND 11410
F	-			·						Brunn tom (AMD, 11412
L			1							SIIX, mois
L						-				
1					1					
		1	1		1					sheen pero origina
_						2911	7.0	3	5-12	V. a. 4 9r4y 16lool
L										cheen nera il
		4			1					A CALL AND ONCA
Γ										- anost remet
						1	Sec. 1			
Г										
Г					1					1
F										f.m.
F						3,9	2:0	4	12-16	Brown Sittyn Sond, 1, The of-C
T									10	Brown Siltyn Sond, little if-c
F					1.00					
Г		-						1.		
T			-							
F										and a second sec
1						A		-		16.0
F		1								
F									1	E.U.B
F									145	
F				1.00						
T	-									
F						1				
F				_				1		
F	-									
F	-		-							
-		-								4
				8	_	35	with I		Ea.	

Test Boring No. <u>6234</u> Page / of _____

Project: Brooks Landing Project #: 16835.07	Drilling Contractor: Natures Way Driller:	Start Date: <u>11/25/02</u> Completion Date: <u>11/25/02</u>
Client: City of Rochester	Elevation: Weather: <u>fun (Smong I 40</u>	_ Drilling Method: Geroprobe Supervisor: D. Gnage
Location:	Weather The And The And	_ Dupor abor. D. Onugo

	-			n Samp		nm		IPLE	D	Soil and Rock Information
	С	0-6"	6-12"	12-18"	18-24"	PID	Rec.	No.	Depth	Remarks
		-			1	116	116	L	0-4	asonalt / crusher run Brown Silty Sand, little F-C Gravel, ment runy, cinter, Vrich (Fill)
ł										Brown Silky Sand, little F-C
							-	-		bravel, more runy, ciner,
ł										VINA (till)
ł	-				-	-		-		
ŀ				1	1					chin
t					5					Diaa. w/ 11/12 a "carbon" mix in possible states
ſ					5	2.4	0.6	2	4-5	J. 9 9. W/ 1. HILA Carbon
Γ					1					min is additionally statles
			<u>,</u>							which in provide the terminate
L										
Ļ										
										£
-	-									
-	-							17	8-12	E.U.B
-	-								0	
1	-		-					1		
-			1	1221						more to a neg
										sewar, very soft
										mode to w new sewar very soft mogbe in French
						1.2.1				for an time
_	-				-	-				
_			-			-		-		
-	-	-								
-		-		-						
ī					-					
Ī			1.00							
_								-		
_								-		_
-			-					-		
-	-	-						-		
-		-+								
-	-	-	-			-				
1										
,	o of]	Blows	to Drive	-	Spoon	VA VA	rith	lb. Wt.	Ea. 1 Ea. 1	Blow

6P-3J Test Boring No. Page _/ of _

Project: Brooks Landing	Drilling Contractor: Natures Way	Start Date: 11/25/02
Project #: 16835.07	Driller: M, KR	Completion Date: <u>1175/07</u>
Client: City of Rochester	Elevation:	Drilling Method: Geroprobe
Location: 4 Waln of GD-70	Weather:	Supervisor: D. Gnage

			Blows o	n Samp	oler SAMPLE					Soil and Rock Information
0	C	0-6"	6-12"	12-18"	18-24"	PID	Rec.	No.	Depth	Remarks
						15	7,0	1	0-4	unphult innih in rug 0
										Brown SILT, some Ten N. HIHIO
	100		17.00		1.1.1.1					f. c Growel Out, cindres (Kill
	1	1						1.00		
	1			1				1-11		
		-						1		6
1		1					1000			<i>y</i>
t										E.
1						1,2	310	2	4-f	Red Brung tom Sand, 1. Hit
Ì									, 0	Red Biung tom 2474, 1. Me
1		1	1							Sille, mois L
t				-						6.
t										
ł	-						-			6-ay Silty Clay, WH le F- 6-ovel, mart F,
t		1			-					6-ovel mont
1	-								·	
	-							3	8-12	E. 0, 3
Ĵ	-		-					24	5Z	た。 し、 し
F	-									1 11 11
F	-									hole collapsoc.
t	-									hole collapsoc
F	-	-	-					-		EUX 100 1170171.00
F	-	-								Bass 41.5
F	-					-				pt-
t		-								
t	1	-								
F	-									
F								-		
F	-	-					-			
F	-					311				
t										
F									. 1	
-										
F	-							-		
1		-						-		
-	-	-								
1	-	-								
-	-									
F			-			*				
F									1	
-								- 1		

Test Boring No. $\underline{CP.3C}$ Page \underline{I} of \underline{I}

Project: Brooks Landing	Drilling Contractor: Natures Way	Start Date: 11/25/02
Project #: 16835.07	Driller: 16. 70	Completion Date:
Client: City of Rochester	Elevation:	Drilling Method: Geroprobe
Location:	Weather:	Supervisor: D. Gnage

+	C	0 (11	1 4							Soil and Rock Information		
+		0-6"	6-12"	12-18"	18-24"	PID	Rec.	No.	Depth	Remarks		
						Li?	3.5	1	6-4	Griphalt, growt		
Ŀ] ' '	Reducion SILT 124the tom Some							
Γ						7	Browin SELT BATHE From Sond # Feb Browel, brick, and Pt: 11)					
Γ												
Γ						1			1	Al & contraction Start 1. A.		
T				í í					7			
F			1			200	S			Block Cinder		
F									1	Hex prove Silt, truce so little		
Г						O.R	218	2	4-8-	: www 4		
F							1		1 0	Black grander "comber 1		
			1	-	1	1			1	State Prateries Contract		
1		1							1			
i.						-	1		1			
1	- 1							1				
-	-	-										
-	1	-		-			6			(FILL)		
1	-	-	7			2.2	3,4	3.	8-12	(FILL) g.(
-												
i.		-+		-				- 1		Brown Vity Chay, truck		
-		-				-	a contraction of the second			F. Grand (Native) 10.		
-	·	-				-				Contra Contraction		
			-				-		Brown F-m and little V.14			
	-			- 1			-	9 C Q	Brown Vitty Chay, truck F: 6 rould (Native) 10. Brown F-m Sand little Silt and Kgrug milling Ilisma			
		-			-		1	1	1 Breaking St. 1			
1	-					-				12.0		
2	24.5	-						-		E. C. B		
-	4			-					5			
-	1		1		-	,		1000				
-	-								2			
	1					4.0						
-							7					
-									10 m			
-												
-	-					1						
1	-											
-								-				
	-		-									
-					1	1				743		
	1		-					-		*		
-	-		-				+					
-	-									64 ¹⁰		
	ofP	lowe t	o Drive		Snoon .	TX.	vith 11	n Wt	Ea. B	Jow Market Ma		
	ofB	lows t	o Drive	(Deina	W	ith It	, TX7+	Ea. B			
σ.		10 449 1		`	Jan 1116		····· ···· ···					

う

1. 1

m:\waterenviron\environ\forms\fieldforms\testboring\SV-B1

Test Boring No. 6437 Page_

Project: Brooks Landing Project #: 16835.07 Client: City of Rochester Location:

Drilling Contractor: Natures Way	Start Date: 11/25/02
Driller:	Completion Date:
Elevation:	Drilling Method: Geroprobe
Weather:	Supervisor: D. Gnage

		BIOWS	on Samp	ler	1	SAM	PLE		Soil and Rock Information		
0	: 0-0	" 6-12	12-18"	18-24"	PID	Rec.	No.	Depth	, Remarks		
1	100				14	2.2	1	6-4	asphyle ground d.		
-					1		1		Bed BINN SILT INMI. CL.		
-									& for South trust to it		
				12.					A A RUIT		
				1					Front or il i munt int		
1							1		Renal U. Renal U. Rend Brown SILT In Hile Clay 4 f-m Sandy trock Groud trove Brich mul (R'11) 2. River cin line Renal Renal 2. Renal Child R		
					1.00				RUN BEUMA Sitky SUNE HIP/2 F		
									grouel,		
		30			214	2,5	7	4-5	Rloch gronular carbon		
			1.1.2.2				2	10			
		1 A	1						(Fill) 6.		
									6.		
		1							Red Brunn Althe Clay, + rock Ednor & &. grovel (Native,		
									Evinder & Simuel (Native.		
	1	1			1.4	2.4	7	4-12			
						1			- 15 A		
			I			1			STOUR From SAND, IN MA SILX, suist mysthing & Ion hus moust (Natural)		
	1								with, suit mysthing & lan hand		
				<i>h</i>					mount (Weberall		
									(10 00000)		
							-	6 10 16			
_	-	1							141		
-					-				- 11 4		
-	-	1000						1 a 1	E. 0, 3		
-	-	-									
	-	1									
	-							4. B			
	-						-				
-		-					-				
	-	-					-				
-	-				-		-				
-											
					-						
	1										
1											
					-	ithIb	nu	end	0.9		
	f Blow	s to Driv	e	Spoon _	w	ith 16	Wt.	Ea. H			

Test Boring No. $\underline{CP.3F}$ Page \underline{I} of $\underline{/}$

Project: Brooks Landing Project #: 16835.07 Client: City of Rochester Location:

7\$*	
Drilling Contractor:	Natures Way
Driller:	
Elevation:	
Weather:	

11/25/02 Start Date: Completion Date: Drilling Method: Geroprobe Supervisor: D. Gnage

	1111]]	Blows o	n Samp	ler		SAM	PLE		Soil and Rock Information		
0	C	0-6"			18-24"	PID	Rec.	No.	Depth	Remarks		
					1	2.18	3,1		0-4	a somethe article Or Red Brown Silling with he find Sa brown, moest 21		
										Red Brough Silk inthe france		
	1				1.					line arient		
1					0			1		2. 7		
										Alade citeda- 27		
										Di 0 217		
	1									Black grunder sarbon		
					•					-		
		-				6.0	21	2	4-5	0.5		
1										Mod Brown Sty F.m Part, AH, Blur, moer Si		
İ										Elay, most 51		
								-		KIN PINK I T		
+		-	4							Brown SPLT, little for Sand F-Growel, ernou-F (FILL) Fil Red Brown Silty Clay, race P. Growel, mount (Native) 9,1		
+	-			-			1			F-Gravel, ender (FILL) Fil		
2						24	2.5	. 7	8-12	Red Brown Silty Clay the		
F	1	1								P. 6-over mount (auto)		
1		- 1						-		(PATIVE) q, f		
-		1								Brown from Sund Wittle SA		
+		-								Brown f. m Sand Wittle SA		
+	-			10000				-				
ł										2,0		
F	-			-					1	E. U. B		
+			-							L. V. O		
F												
1												
1	-	-										
F		-				4						
1												
F									- · · ·			
F	-		-		-14							
F												
F	-	1			1.5			1	7.1			
									0.00			
L												
-												
F	-		-									
1	-							1. A.				

85 Metro Park Rochester, NY 14623 (716) 475-1440

Test Boring No. 6P39

Page _____ of ____

Project: Brooks Landing	Drilling Contractor: Natures Way	Start Date: 11/75/02
Project #: 16835.07	Driller: Mr. 1 AP	Completion Date:
Client: City of Rochester	Elevation:	Drilling Method: Geroprobe
Location:	Weather:	Supervisor: D. Gnage

				n Samp				PLE		Soil and Rock Information
	С	0-6"	6-12"	12-18"	18-24"		Rec.	No.	Depth	Remarks
						3H	15	1	0-4	Brun Silty Sand, hittle free browely bills of brick, ash, cin dog
1	1.000	10-						1		Brunn Silty Sand, Withe F-C
1									1	have bies of bouch ash 11 dore
ł					-			1	1	around and of and and and are of
ł	-							-		Bluch clade- 2
4	-	-	-	1				-		Bluch clade 2. Pour silky sund, little A. gov prick, curb on
ļ	_	1000								Rown Silky Sund, little & gou
l		1			1			1.1		prich, curs in
I				1						
Ī					•	7.3	2.0	2	4-5	
t				1	1.				J. J	T
t					1		-			
ł	-	-								Black Cindre (FILL) 6.2
ŀ		-								
+	-	-								Ard Brown silky Sand, 1111
Ļ	_		5							Ard Brown silky Sand, 11111, Elky, truck ti growth (Native)
		3.11	1. 2							(Native)
1	_		·							
						3.3	1,4	3	8-17-	Reach grunder carbon g Act Brown SUlsy Clay, trace f. Sund most
			2000		1		1		10	Rlan yrunular 201500
			-	-					· · · · · ·	
F										Met Brown withy Clay, Frank
t										F. Jun N most
-	-		-							
⊢	-						-			
-	-	-						-		12,
-	-									Enip
_	-							-		E.O.B
			÷.	-						
						-				
									-	
					-					- /
Ì						100				
									- 1	
	-	-				-				
f		-								
-	-		-	-						
_	-	-		-						
_										
_										
Ì	1	-						-		
									1	
										·*
		210770	to Drive		SDOOT	W	ith lt	. Wt	Fa B	1011

19

0-21

85 Metro Park Rochester, NY 14623 (716) 475-1440

Test Boring No. TR-40

Page ____ of

Project: Brooks Landing	Drilling Contractor: Natures Way	Start Date: 1/25/02
Project #: 16835.07	Driller:	Completion Date:
Client: City of Rochester	Elevation:	Drilling Method: Geroprobe
Location:	Weather:	Supervisor: D. Gnage

				n Samp				PLE		Soil and Rock Information		
)	C	0-6"	6-12"	12-18"	18-24"		Rec.	No.	Depth	Remarks		
		19.19				3.1	3.4	- 1	11	topsoid Red Brown With little Fee San + Grund, brick, cinders (AIII)		
ſ									• •	Red Brown with little Fee Sa		
T								1.		+ brunst, brick, cinders (Fill)		
T			1	1								
T		1.00		1				1		2		
T				1						Biach Cin der white Fill, wood		
F		1		(a) (a)						Black Cin den, white AHI, wood		
F			1771	1					-			
				-		22	2,1	3	H-F	5. 9. 4		
F		1000							10	wit Red Bound Sitt		
1					1					S. Gai My Har Stora (Eur) C		
F				41		-				and the t		
F		·3).		uto di	1				8	aroun tim sant Silly san		
F	-	2.9		1 4						march tower		
F				3						S. G. U. S. G. U. S. G. U. S. G. U. MERTRY Grown From South Stry San Maist to wet (Native)		
1	-1	-										
						2.1	2.0	3	8-12	5. 9.91		
2	-											
F												
1	1	-0	1	1.0								
1	感	5							1.1			
F	111.14											
F										17		
					· · · ·					/2		
Γ			1									
					-							
					-							
L										+		
		- 12			_							
_												
-	_											
-	-											
_	-											
-			-	-		100			- 10 M			
-												
							ith I					

Test Boring No. 6A41

Page ____ of ____

Project: Brooks Landing Project #: 16835.07 Client: City of Rochester Location:

Drilling Contractor: Natures Way	Start Date: // チェノロニ
Driller:	Completion Date:
Elevation:	Drilling Method: Geroprobe
Weather:	Supervisor: D. Gnage

0-6" 6-12"	12-18" 18-24	4" PD 3,2 9,9 9,9	Rec. 2.2 2.5	No.		Brown SILF, some t-c & mel cinde- wlash (f.)) Bruch grander carson C 7.5 stag mix w/carson
		89	3.5		1 1-5	Bruch granular carson 2 3.5 stag mit w/carson
						Bruch granular carson 2 3.5 stag mit w/carson
						Bruch granular carson 2 3.5 stag mit w/carson
						Bruch grander carson @ 7.5 stag mit w/carson
						Bruch grander carson @ 7.5 stag mit w/carson
						Bruch grander carson @ 7.5 stag mit w/carson
						Bruch grander carson @ 7.5 stag mit w/carson
						Bruch grander carson @ 7.5 stag mit w/carson
		6.4	£7. [)			@ 7.5 slag mit w/carbon
		6,4	£7, [)			@ 7.5 slag mix w/carbon
		6.4	£7. [)	3	-	
		6.4	<i>5.()</i>	3		
		6.4	4.1)	13		
		6.4	4.()	M		
		6,4	7.1)	3	· · · · ·	
					8-12	J, G G; (FILL) 8.
						Red Brown Silty Clay, troc f- Son & & brouel moist 9.) Reduce Silty Sen 8, maist
						f. Son & & brough maist 9.
						Ridgia Still Sen &, annist.
					- 1	+owet (11)
	5.000					towet (Native) 12
						F. U. B
		-				E. 0, 13
				-		
					1 1 1	
		0				
		1				
					- 11	
				-		
2:				1	N.	
				ws to Drive Spoon with lk		

GR 42 Test Boring No.

Page ____ of ____

Project: Brooks Landing Project #: 16835.07 Client: City of Rochester Location:

Drilling Contractor: Natures Way	Start Date: 11125/02
Driller:	Completion Date:
Elevation:	Drilling Method: Geroprobe
Weather:	Supervisor: D. Gnage

			Blows o	n Samp	ler		SAM	PLE		Soil and Rock Information
0	С	0-6"			18-24"	PID	Rec.	No.	Depth	Remarks
						2.10	1.5	-1	0-4	Horived SILT, inthe to Sand a gravel black cinde card, b. Lill
	-	3	-			-				Brown SELT, fible F, Vant a
					-	-		-		gravel black cind & ava, s
							1	1		
					1.0		1			
1										
+						05	21	-		· .
-				-		9.5	2,6	2	st	
-	-									J.
t										Black granulor Carbon
										66.5 mirs du /slag
F										
-	-									E
1	-		-	-		36	215	2	8-12 -	f,
				3		and the second	· · · · · · · · · · · ·		a i L	Slub & grunel bricks 1639 5
										Red Brown Sitting Chay, much of
						1				Brown Silly Sundalittle Clay
+	-			1				-		truck (indees 4 to bound more
t	-									Slug & gravel, brights jast for Red Brown Sitter Chay, much of Brown Sitter Sund, little Chap trock Cindens 4 to brown mines To net (File) 9. Brown Sitty Sand, troce to Marine 1
T				-						Brown silly vand, trace to
						-			V	"Ir. group most you sh
+	-			-		-			-	(Native) 12
+	-		-			-				
, F							-			
5-						1.1		1		÷ .*
L	-17									
-						-				
-	-			18				-		
- 1	-	-								2
				1					-	
L							1			
L	-									
1		-								

Test Boring No. 6P-47

Page ____ of ____

Project: Brooks Landing Project #: 16835.07 Client: City of Rochester Location:

Drilling Contractor: Natures Way	Start Date:
Driller:	Completion Date
Elevation:	Drilling Method:
Weather:	Supervisor: D. G

Start Date: <u>11/25/02</u> Completion Date: <u>11/25/02</u> Drilling Method: Geroprobe Supervisor: D. Gnage

				n Sampi			SAM			Soil and Rock Information		
	С	0-6"	6-12"	12-18"	18-24"	PID	Rec.	No.	Depth	Remarks		
						23	2,9		<i>v</i> -4	Brown SILL, Some F-1 Group 1.1 Hle F-C Sand, brich, chi He (Fin)		
						118	<u>)</u> ,(y	2	4-J-	Black Carbon 5.1		
										Eurson, chde-, ash Of		
	_									Barbun Sal		
H	_							.2	5-12	*E. 0,B		
			_					<u> </u>				
									-			
ALC: NOT THE REAL OF THE REAL									X			
4). of 0. of	Blows Blows	to Driv to Driv	e	Spoon _ Casing _	ਯ	vith l rith l	b. Wt	Ea. 1 Ea. 1	Blow Blow		

Project: Brooks Landing Project #: 16835.07 Client: City of Rochester Location: 85 Metro Parix Rochester, NY 14623 (716) 475-1440

Test Boring No. CAM

.

Page _ / _ of ____

Drilling Contractor: Natures Way	Start Date: 11/2-5/02				
Driller:	Completion Date:				
Elevation:	Drilling Method: Geroprobe				
 Weather:	Supervisor: D. Gnage				

				n Samp		1		PLE		Soil and Rock Information
	С	0-6"	6-12"	12-18"	18-24"	PID	Rec.	No:	Depth	Remarks
-						23	2.0	1	0-4	Crusher run grayel
İ					-					Brown SELT Muther Fichon Conster brok the (2011) Shurs
ł					S.					Sturt j
ŀ				22	7					
-										ay,
	_			-		33	2,0	2	21-5	yallow brick 5.0 T Cod polich 5.5 (3)
								4 15		Curson mixed w/ ving 5 avg, ch dr-, curbon
[QUG, CM dr-, 191507
	-							-		Ð
	-					1,4	22	2	8-12	Curson 5,1
1		-				1			-	Bud Brinn Biltier Elan 1.1418
				-					-	Red Brown Billing Clay, 1.14/2 chider & J. Sund (Fill) 9. Brown From Sound, 1.1 Mile SO, mount RU Chy (Native) 200
	-					-				Brown From Sound, 1.1 17/2 Jul,
	-									(Native) 1200
	1								1	E. U, 13
	-				+				. t	
									1	
	_					14				
					-					
,										
Î										
	-	-								
-	+							-		

1000

.

Test Boring No.

Page of - 1123 12 4.4

Project: Brooks Landing								
Project #: 16835.07								
Client: City of Rochester								
Location:								

Drilling Contractor: Natures Way	Start Date:				
Driller:	Completion Date:				
Elevation:	Drilling Method: Geroprobe				
Weather:	Supervisor: D. Gnage				

				n Samp				AMPLE		Soil and Rock Information
)	С	0-6"	6-12"	12-18"	18-24"		Rec.	No.	Depth	Remarks
						116	2:4	1	0-4	TUP Sait Brown SILTY SAND, 11 Hte F-C Grovel, Chdors, brich CR Wood
							1	, ,		Brun SILTY SAND, little
I	0.00			76						F-C Govel Endows, brich (F
t		1.2.1					1	1		arrand
t		6								
1		-								
ł				-						
ł	1									
ł						1.4	24	2	4-8	-a. G. G.
ł	-			-		117	93.4	<u>.</u>	0-0	
+	-									S.(
+	-									Black Carbon, missed w/ Silty Sun
F	_									Berganon Dette 6
L										Eroun SHAT From SAND, 15H1. S! 17, trece t. Crouel 6. F. a. a. LI. Brown (Nature) F. E. O. B
L	1									Sitt priere to Grovel 6.
			1							- A. O. LI. Brown
te,			1			1.2.3				(Nature) P
							10 m m 1 m			EUR
1						1.5.1			1	
Γ				1.1						
Γ										
T										
F									1 - 1	
F										
F	-		-						1	
H	-	-						-		
-	-									
-		-								
-		-						-		
-										
-	-						26-22-2	-		
_	_	-			1.1.1			-		
			-							
	_									
				-						Y
									er - 11	
										1.8
-										
1								-		
-	-	-			-					
1		-								
-	_							-		- 2
			o Drive		Spoon _		th lb	. Wt.	Ea. B	

 $\leq c$

Test Boring No.

o. <u>GP-46</u> Page <u>f</u> of <u>f</u>

Project: Brooks Landing	Drilling Contractor: Natures Way	Start Date:
Project #: 16835.07	Driller:	Completion Date:
Client: City of Rochester	Elevation:	Drilling Method: Geroprobe
Location:	Weather:	Supervisor: D. Gnage

	_	Blows on Sampler 0-6" 6-12" 12-18" 18-24"				nm	SAM			Soil and Rock Information		
	С	0-6"	6-12"	12-18"	18-24"	PID	Rec.	No.	Depth	, Remarks		
	-	-				1.P	3.2		0-4	Bodyn to On Grown Silty Sand, 11th le f-c 6 rouel, most, c.M. aug (f:11)		
			1							Brown to Marium Silty Sand.		
Γ		- 1	1181							11HIR F-CGround marked		
t										auto (f:11)		
t		-					A CONTRACTOR					
+	-											
F												
-	-											
L							<u> </u>	-	F	-		
L						21	1.2	7.	4-8			
1												
Γ												
F					21 A							
-	-	-										
1	-									fil		
+												
-	-+	-	-									
-	-				-					E. O. B		
	_							1				
									3			
-					-		-					
1	-											
-		-						-				
-	-	-						-	()			
-	-			-				-				
-	-											
-												
1												
-					-			1		141		
-	-							-				
-												
-	-											
_	_			-								
_	_		1.1.1									
										and the second sec		
									· · · · · · · ·			
-	-											

Test Boring No. 67-47

Page /____ of _____

Project: Brooks Landing	Drilling Contractor: Natures Way	Start Date: ,1/1 5/0 -
Project #: 16835.07	Driller:	Completion Date:
Client: City of Rochester	Elevation:	Drilling Method: Geroprobe
Location:	Weather:	Supervisor: D. Gnage

]]	Blows o	n Samp	ler		SAM	PLE		Soil and Rock Information
0	С	0-6"	6-12"	12-18"	18-24"	PID	Rec.	No.	Depth	() Remarks
					12.3	12	3.2	11	0-7	For soil Jane, 1.14 F- 6 (- evel, moet, under brich (A:17)
1									'	Brunn Silty Jane, Litt
t		/ i	1103				1.000			F. G. Grand most unde
t		1	a					1		1 - C , Date /
ł			1		-					brich (trin)
+	-							-	6	
H	-				-			-		
ł	-		-							
4										
)		1	2.4	213	2	4-8	
-		1								(Fill) Brown F-m Sand li Hle Silt, trace growel (Native) Se
								2		(Eu)
ſ		1000				1	1. Contract of the second second second second second second second second second second second second second s			
T						1				Brown from Sand ali HIR
F	-		1.1.1.1		1				50	Sill trong around
F	-			-						and the grade
+	-			-					1.1.1	(Native) 8
-	-							-		
-	-									3
L										
L										2.2
				12 T T T						
T										
F										
F	-				-				1.1	
F	-	-				-		-		
H	-									
-		-								
L										
L	-			-						
L										
		1								
						S - S - L				
										₽~~
									r	5
-										
-	-									
-										
-	-				-			-		
-	-									
_	_		-					-		
L										
		_				1				
										44

Test Boring No.PZ-100

Page 1 of 1

Project:	Brooks Landing	Drill Contractor:	Nature's Way	Start Date:	1/13/2003
Project #:	16835.08	Driller:	Eric	Completion Date:	1/13/2003
Client:	City of Rochester	Elevation:	518.20	Drilling Method:	Earthprobe
Location:	see figure	Weather:	Snow +/- 20 deg.	Supervisor:	D. Gnage

	Soil Information		MPLE			
	Remarks	Depth	No.	Rec.	PID	0
1.	Brown SILT, trace sand (topsoil)	0-4	1	2.3	0.8/0.8	
al (£11)	De la service de la complemente de					
	Brown fine to medium SAND and Silt, trace fine Gravel, moist, trace Cinder, brick (fil	4				
		·				
						-
		1		1		
4.		1				
to wet	Brown/light Brown Silty fine to medium SAND, little to trace fine Gravel, moist to we	4-8	2	3.2	0.8/0.6	
	(Native)					5
		-				
		1				t
					1.20	
	s.a.a., wet	8-12	3	3.0	0.8/1.1	-
						ł
						10
		1				
]		-		
						1
		10.12	4	0.0	0.0/0.0	ł
13.0	s.a.a., gray	12-13	4	0.8	0.8/0.8	-
	Refusal E.O.B.					ł
						t
		1				
						15
						ł
						ł
						t
						Ē
						-
						h
						20

Notes:

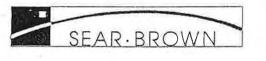
Test Boring No.PZ-101

Page 1 of 1

Project:	Brooks Landing	Drill Contractor:	Nature's Way	Start Date:	1/14/2003
Project #:	16835.08	Driller:	Eric	Completion Date:	1/14/2003
Client:	City of Rochester	Elevation:	518.26	Drilling Method:	Earthprobe
Location:	see figure	Weather:	Overcast +/- 20 deg.	Supervisor:	D. Gnage

	2	SAI	MPLE		Soil Information
0	PID	Rec.	No.	Depth	Remarks
	0.5/0.5	3.4	1	0-4	Brown Silty fine to medium SAND, trace fine Gravel, organics and brick 1
					Brown/Orange Brown, Silty fine to medium SAND, little fine Gravel, trace brick, moist (fil
				1	
-				1	
				1	
	0.5/5.2	3.1	2	4-8	
5	0.0/0.2	5.1		-	
	1			-	Light Brown/Orange fine to medium SAND, little Silt, trace fine Gravel, trace brick, wet
				-	(fill)
				-	
				-	s.a.a., Red/brown with fine to coarse Gravel, little Clay
				-	
-				-	
	0.510 (26	3	8-12	
	0.5/2.6	2.6	5	- 0-12	
				-	Gray fine to medium SAND, some Silt and little fine to coarse Gravel, wet
1.0				-	Gray fille to filedidili SARD, some sint and fittle file to course of their, wet
10				-	
				_	
				-	
				-	
	0.510.5			10.14	
-	0.5/0.5	2.0	4	12-14	
				-	
	1.00			_	
13					
				_	Refusal E.O.B.
15				_	
				_	
10	1.000	_	Constanting of the second	4	
	-			_	
				_	
	S				
3		C			
20				1	
ote				-	

Notes:

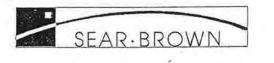

Test Boring No.PZ-102

Page 1 of 1

Project: Broo	oks Landing	Drill Contractor:	Nature's Way	Start Date:	1/14/2003
Project #: 1683	35.08	Driller:	Eric	Completion Date:	1/14/2003
Client: City	of Rochester	Elevation:	518.23	Drilling Method:	Earthprobe
Location: see 1	figure	Weather:	Snow +/- 20 deg.	Supervisor:	D. Gnage

		SAL	MPLE		Soil Information	
0	PID	Rec.	No.	Depth	Remarks	
	0.6/0.6	3.5	1	0-4	Dark Brown Silty fine to medium SAND, little roots, trace fine Gravel, moist (topsoil)	
		1				
				_		2
				_	s.a.a. Light brown with oxidation	
				-		
	0.2/1.0	2.0	0	1.0	a suith hits of C'adams ad doub Descent langes mosts (fill)	
~	0.3/1.0	3.0	2	4-8	s.a.a. with bits of Cinder and dark Brown lenses, roots (fill)	
S				-		
				-	Light brown Silty, fine SAND, some to little Clay, little fine Gravel, wet	
				-	Light brown Shty, fille SAND, some to fittle Clay, fittle fille Gravel, wet	
				-	Brown/Gray Silty fine to medium SAND, little fine Gravel, wet (Native)	-
				-	Diowinoray Sinty fille to medium SATAD, fille fille Oraver, wet (rative)	
-	0.0/0.5	2.3	3	8-12		
	0.0/0.5	2.5		- 0-12		
				÷ -		
			-			
0				-		
				-		
		-				
1				1		
			_			
_	0.0/0.0	0.5	4	12-13		1
					weathered rock	1
					Refusal E.O.B.	
5						
				-		
-				-		
-				-		
+				-		
+				-		
+				-		
				-		
0						-

Notes:

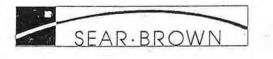


Test Boring No.PZ-103

Page 1 of 1

Project:	Brooks Landing	Drill Contractor:	Nature's Way	Start Date:	1/14/2003
Project #:	16835.08	Driller:	Eric	Completion Date:	1/14/2003
Client:	City of Rochester	Elevation:	517.76	Drilling Method:	Earthprobe
Location:	see figure	Weather:	Snow +/- 15 deg.	Supervisor:	D. Gnage

			1PLE		Soil Information					
0	PID	Rec.	No.	Depth						
	0.8/0.8	3.3		1 0-4	Dark brown SILT, some very fine Sand, trace fine Gravel, roots					
			-							
					Light Brown Silty fine to medium SAND, trace fine Gravel, brick and cinder (fill) moist	t				
			1 - 1 -							
					@ 3'-0 moist to wet					
	-	i	-							
				1						
	0.5/4.7	3.5	2	2 4-8	s.a.a., little Clay	_				
5	·				Light Brown Sand and Gravel, some Silty, wet					
						_				
					Red/Brown Silty Clay, some fine Sand, little fine Gravel, moist					
	1		1							
_										
	0.5/1.7	1.8	3	8-12						
					Gray/Brown fine to medium SAND, some to little Silt, little fine Gravel, wet (Native)					
				-						
10										
+				4						
ł				-						
+										
ł	0.0/0.0	0.2	1	12 12 2	Weathered rock at tip	1				
+	0.0/0.0	0.2		12-12.2	Refusal E.O.B.	-				
ł				1						
ł				1						
t										
5				1	; ***					
				1						
t				1						
T				1						
T				1	X					
T				1						
1										
ł										



Test Boring No.B-104

Page 1 of 1

Project:	Brooks Landing	Drill Contractor:	Nature's Way	Start Date:	1/14/2003
Project #:	16835.08	Driller:	Eric	Completion Date:	1/14/2003
Client:	City of Rochester	Elevation:	517.83	Drilling Method:	Earthprobe
Location:	see figure	Weather:	Clear +/- 15 deg.	Supervisor:	D. Gnage

			MPLE _	1	Soil Information	
- 1	PID	Rec.	No.	Depth	Remarks	
	0.5/0.6	2.25	1	0-4	Dark Brown Silty fine to medium SAND, trace fine Gravel, roots, topsoil, moist	0
					Light Brown/Orangish Silty fine to medium SAND, trace fine Gravel, moist to wet	
					3	
				-		
	0.5/0.7	4.0	2	4-8		
5	0.01017					
-	1			-	Brown/gray Silty Clay, hard, moist	
				-	Light Brown Orangish, Silty fine to medium SAND, trace to little fine Gravel, wet (Na	ative
				-		
				-		
				-		
-				-		
+	0.5/0.7	1.3	3	8-11.9		
}	0.3/0.7	1.5	3	- 0-11.9		
				-	· · · · · · · · · · · · · · · · · · ·	
				-		
0	-			-		
ł				. v		
ł				-		
ł		-	+	-		1
ł					Refusal E.O.B.	-
+		-		-	Keitusai E. O.D.	
+			-			
ł				-		
ł				-		
_				-		
5				-		
+				-		
+				-		
+				-		
ļ			4	-		
-				-		
L					*	
0						

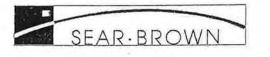
Test Boring No.B-105

Page 1 of 1

Project:	Brooks Landing	Drill Contractor	: Nature's Way	Start Date:	1/14/2003
Project #:	16835.08	Driller:	Eric	Completion Date:	1/14//03
Client:	City of Rochester	Elevation:		Drilling Method:	Earthprobe
Location:	see figure	Weather:	Clear +/- 15 deg.	Supervisor:	D. Gnage

		SAI	MPLE		Soil Information				
)	PID	Rec.	No.	Depth	Remarks				
	0.7/0.7	3.2	1	0-4	Dark Brown Silty fine to medium SAND, some to little fine Gravel, trace Cinder, moist				
					(fill)	1			
				1	Light Brown Silty fine to medium SAND, little to trace fine Gravel, moist to wet				
				1					
				1					
				-					
	0.4/0.5	3.8	2	4-8	s.a.a., wet				
5	0.4/0.5	5.0	2						
-				-					
		-		-					
				-					
-				-					
ļ				-					
-				-					
			_						
1	0.4/0.4	2	3	8-12	s.a.a., fine to coarse Gravel				
1									
10				1					
			Same and						
			1			1			
					Weathered Rock	12			
					Refusal E.O.B.				
L									
5									
				1					
ł									
-									
-				-					

Notes:

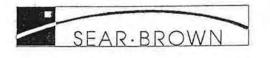

Test Boring No.B-106

Page 1 of 1

Project #: 16835.08 Driller: Eric Completion Date: 1/15/2003	
Project #: 16835.08 Driller: Eric Completion Date: 1/15/2003	
Client: City of Rochester Elevation: 515.99 Drilling Method: Earthprobe	
Location: see figure Weather: Claer +/- 15 deg. Supervisor: D. Gnage	

		SA	MPLE		Soil Information		
0	PID	Rec.	No.	Depth	Remarks		
	0.7/0.7	2.1	1	0-4	Dark Brown Silty fine to medium SAND, little fine Gravel and organics, trace cinders		
		1220	Sir .		(fill) topsoil	0	
	-				Light Brown/Orange Silty fine to medium SAND, trace fine Gravel, moist		
				-			
-	-			-			
				-			
				-			
		1000					
	0.7/0.7	2.8	2	4-8	s.a.a. wet		
5							
					@ 6' gray dust mottling (Native)		
		1					
				1			
				1			
				-			
		-		-			
	0.7/0.7		2	8-12	4		
	0.7/0.7	2	3	0-12		9	
		1			s.a.a. Light Brown fine to medium SAND, little Silt, little fine to coarse Gravel, wet	9	
		1			Lease Light Brown tipe to medium NANLE HILE NUL DILLE LUE TO COULSE VIAVEL WEL		
				-	S.a.a. Eight Brown fine to medium BATAD, here but, here fine to could extract, we		
10					s.a.a. Eight Brown fille to medium BAT(E), fithe Ent, fithe fills to could brave, wet		
10				-	s.a.a. Eight Brown fille to medium BAT(E), fithe Ent, fithe fait to course or every, wet		
10				-	S.a.a. Eight Brown fille to medium BAT(E), fithe Ent, fithe fait to course or every, wet		
10				-	S.a.a. Eight Brown fille to medium BAT(E), fittle Ent, fittle fait to course or every, wet		
10				-	S.a.a. Eight Brown fille to medium BAT(E), fithe Ent, fithe fait to course or ever, wet	12	
10				-		12.	
10				- - - - -	Refusal E.O.B.	12.	
10						12.	
10						12.	
10						12.	
						12.	
10						12.	
						12.	
						12.	
						12	
						12	
						12.	
					Refusal E.O.B.	12.	
						12.	
					Refusal E.O.B.	12.	
					Refusal E.O.B.	12.	
					Refusal E.O.B.	12	
					Refusal E.O.B.	12	

Notes:


Test Boring No.B-107

Page 1 of 1

Project:	Brooks Landing	Drill Contractor:	Nature's Way	Start Date:	1/15/2003
Project #:	16835.08	Driller:	Eric	Completion Date:	1/15/2003
Client:	City of Rochester	Elevation:	518.09	Drilling Method:	Earthprobe
Location:	see figure	Weather:	Clear +/- 15 deg.	Supervisor:	D. Gnage

		SAI	MPLE		Soil Information	
0	PID	Rec.	No.	Depth	Remarks	
	0.9/0.9	2.5	1	0-4	Dark Brown Silty fine to medium SAND, trace fine to coarse Gravel and organics	
						1
					Light Brown Silty fine to medium SAND, moist to wet, organics and mottling (Native?)	
				1		
	0.9/0.9	3.0	2	4-8	s.a.a. wet	
5						
	-					
	0.9/0.9	3.0	3	8-12		
						9
				-		
10					Red Brown CLAY, trace fine to coarse Gravel, moist (Native)	
10]	Red Brown CLAY, trace fine to coarse Gravel, moist (Native)	
10					Red Brown CLAY, trace fine to coarse Gravel, moist (Native)	
10					Red Brown CLAY, trace fine to coarse Gravel, moist (Native)	10
10				-		12
10				-	Red Brown CLAY, trace fine to coarse Gravel, moist (Native) Refusal E.O.B.	12
10						12
10		4				12
10						12
		41				12
10					Refusal E.O.B.	12
					Refusal E.O.B.	12
		4			Refusal E.O.B.	12
		41			Refusal E.O.B.	12
					Refusal E.O.B.	12
					Refusal E.O.B.	12
		41			Refusal E.O.B.	12
					Refusal E.O.B.	12
					Refusal E.O.B.	12
					Refusal E.O.B.	12

Notes:

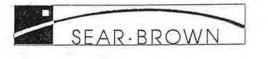
Test Boring No.B-108

Page 1 of 1

Project:	Brooks Landing	Drill Contractor:	Nature's Way	Start Date:	1/15/2003
Project #:	16835.08	Driller:	Eric	Completion Date:	1/15/2003
Client:	City of Rochester	Elevation:	517.3	Drilling Method:	Earthprobe
Location:	see figure	Weather:	Snow +/- 20 deg.	Supervisor:	D. Gnage

		SA	MPLE		Soil Information	
0	PID	Rec.	No.	Depth	Remarks	
	0.9/1.0	2.7	1	0-4	Dark Brown Silty fine to medium SAND, little fine to coarse Gravel, trace organics,	
					moist topsoil	1.
					Light Brown Silty fine to medium SAND, trace organics, gray and rust mottling,	
				-	moist to wet	
				-		
-				-		
				-		
				-		
	0.0/1.0	1.0	2	4-8	s.a.a., wet	
_	0.9/1.0	1.0	2	4-0	@ 4.5 2" layer of topsoil (original?)	
2				-		
			a	-		
				-		
				1		
	0.9/0.9	2.8	3	8-11.9	s.a.a., wet, little fine to coarse Gravel	
10						
						11
				-		11
				-	Red/Brown Silty CLAY, little fine to coarse gravel, moist (fill)	
				-		
				-	Red/Brown Silty CLAY, little fine to coarse gravel, moist (fill) Refusal E.O.B.	
				-		
						11
				-		
15						
15						
15						
15						
15			1			
15						
15						
15			7			
15						
15						
20						

Notes:

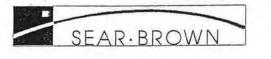

Test Boring No.B-109

Page 1 of 1

Project:	Brooks Landing	Drill Contractor:	Nature's Way	Start Date:	1/15/2003
Project #:	16835.08	Driller:	Eric	Completion Date:	1/15/2003
Client:	City of Rochester	Elevation:	517.2	Drilling Method:	Earthprobe
Location:	see figure	Weather:	Snow +/- 20 deg.	Supervisor:	D. Gnage

		SAI	APLE		Soil Information		
)	PID	Rec.	No.	Depth	Remarks	0.0	
1	0.8/0.8	1.1	1	0-4	Dark Brown Silty fine to medium SAND, little fine Gravel, trace Cinders, moist	0.9	
					Light Brown Silty fine to medium SAND, wet to moist		
		1		1			
						Ť.	
				1			
				1			
1		-		1			
			1				
	0.8/0.8	3.0	2	4-8	s.a.a. wet (Native?)		
5				1			
Ť				1			
				1	@ 6.5 gray/brown w/rust mottling		
				1			
				-			
		-			+		
-		.a					
	0.8/0.8	3.1	3	8-12			
	0.0/0.0	5.1					
				-			
.0			-		brick pieces @ 10.5 (sluff?)		
				-			
				1			
						11	
1	-	-		1	Gray fine to coarse Gravel, little Silt, Sand, wet	12	
					Refusal E.O.B.		
				1			
Ì							
5				1			
				1			
				1			
				1			
				-			
-							
				1			
1			_	-			
1							

Notes:


Test Boring No.B-110

Page 1 of 1

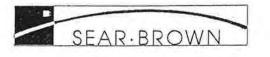
Project:	Brooks Landing	Drill Contractor:	Nature's Way	Start Date:	1/15/2003
Project #:	16835.08	Driller:	Eric	Completion Date:	1/15/2003
Client:	City of Rochester	Elevation:	517.46	Drilling Method:	Earthprobe
Location:	see figure	Weather:	Snow +/- 20 deg.	Supervisor:	D. Gnage

		SAN	IPLE		Soil Information				
0	PID	Rec.	No.	Depth	n Remarks				
	0.8/0.8	2.5	1	0-4	Dark Brown Silty fine to medium SAND, moist to dry, topsoil	0			
					Light Brown/Orangish Silty fine to medium SAND, little fine to coarse Gravel, moist	1.5 2.			
3		1.1		1	s.a.a. gray/brown, rust mottling and organics	2.			
1					Red Brown CLAY, little fine gravel, moist				
_				1					
			1			4.			
	0.8/0./	3.5	2	4-8	Gray, Silty fine to medium SAND, wet				
.5				-					
	-	-		1					
				1		-			
				-		7			
-		-		1	s.a.a. with rust striations				
	0.8/0.8	2.1	3	8-12					
	-								
10									
		-	_	1					
				-		12			
					E.O.B.				
				-					
I									
15				-					
				1					
1									
	_								
-									
				1					
ļ									
20		-							

Notes:

4-

85 Metro Park Rochester, NY 14623 (716) 475-1440


Test Boring No.B-111

Page 1 of 1

Project:	Brooks Landing	Drill Contractor:	Nature's Way	Start Date:	1/15/2003
Project #:	16835.08	Driller:	Eric	Completion Date:	1/15/2003
Client:	City of Rochester	Elevation:	517.56	Drilling Method:	Earthprobe
Location:	see figure	Weather:	Snow +/- 20 deg.	Supervisor:	D. Gnage

		SAN	1PLE	S	Soil Information				
0	PID	Rec.	No.	Depth		Remarks			
	0.9/1.0	3.0		1 0-4	Dark Brown/Black fine to m	edium Silty SAND, little fi	ine Gravel, trace Cinders	0	
				-					
				-					
					Red Brown/Brown Silty fine	e to medium SAND, little fi	ine Gravel, moist, rust striations	2.	
					Brown/Gray Brown fine to a	medium Silty SAND, trace	fine Gravel, moist to wet,		
		1		_	rust striations				
	0.0/1.0	0.0		0 4 9	a a a mot				
5	0.9/1.0	2.0		2 4-8	s.a.a. wet	11			
	-		-	-					
				1					
1									
			-						
	0.0/0.0	1.0		2 0 10					
1	0.9/0.9	1.0		3 8-12	s.a.a. gray				
Q.	-			-			÷		
0									
	1								
3				-				12	
						Refusal E.O.B.			
						1010001 210121			
5				-					
				-					
1				-					
1						- •			
1									
				-					
				-		- 6.1			
0				-					
0				-					

Notes:

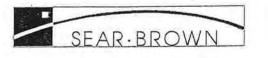
Test Boring No.B-112

Page 1 of 1

Project:	Brooks Landing	Drill Contractor:	Nature's Way	Start Date:	1/15/2003
Project #:	16835.08	Driller:	Eric	Completion Date:	1/15/2003
Client:	City of Rochester	Elevation:	518.38	Drilling Method:	Earthprobe
Location:	see figure	Weather:	Snow +/- 20 deg.	Supervisor:	D. Gnage

		SAN	APLE		Soil Information	
0	PID	Rec.	No.	Depth	Remarks	
	1.0/1.0	3.5		1 0-4	Dark Brown/Black Silty SAND, trace fine Gravel and Cinders	1.
					Red Brown Silty fine SAND, little Clay, moist	
						2.
					s.a.a., Brown, with lenses of fine to medium Dark Brown Sand (fill)	
-				1		
				-		
	1.0/1.1	3.0		2 4-8	Light Brown fine to medium Silty SAND, rust striations, wet	
5	1.0/1.1	5.0				
				-		
				-		
				-		
				-		
				-		
	1.0/1.0	2.0		3 8-12		
10					@ 10' rust color	
				1		
		C- C				
				1		11.
	· · · · ·				Gray Silty fine to medium SAND, wet	12.
					Refusal E.O.B.	
]		
- 3						
15				1		
			14	1		
				1		
- 1				1		
1				1		
-3				1		
-				1		
				-		
				1		
				1		
20				-		
20						

Notes:

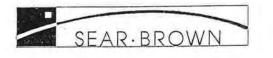

Test Boring No B-113

Page 1 of 1

Project:	Brooks Landing	Drill Contractor:	Nature's Way	Start Date:	1/15/2003
Project #:	16835.08	Driller:	Eric	Completion Date:	1/15/2003
Client:	City of Rochester	Elevation:	518.92	Drilling Method:	Earthprobe
Location:	see figure	Weather:	Snow +/- 20 deg.	Supervisor:	D. Gnage

		SAN	APLE		Soil Information	
0	PID	Rec.	No.	Depth	Remarks	
	0.7/0.7	2.9		1 0-4	Dark Brown/Black Silty fine to medium SAND, little fine Gravel, trace Cinders and	
					Glass dry to moist (fill)	1
				-	Brown to Light Brown fine to medium Silty SAND, little fine Gravel, moist	
				-		2
				-		
-			-	-	s.a.a. no Gravel, rust striations	
				-	S.a.a. no Graver, rust surations	
				-		
			100			
	0.7/0.7	3.0		2 4-8		
5						
			•			
				1		(
					Red Brown CLAY, moist	
					Brown fine to medium SAND, some fine to coarse Gravel, wet	
-				-		
	0.7/0.8	2.4		3 8-12	s.a.a. Brown/Gray	
	0.770.0	2.4			S.a.a. Diowin Oray	
				4		
				_		
10						
						12
					Refusal E.O.B.	
				1		
10				1		
				-		
5	-			-		
5				-		
				-		
				-		
				-		
				-		
			-			
				-		
				-		
20				-		

Notes:

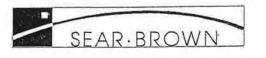

Test Boring No.B-114

Page 1 of 1

Project:	Brooks Landing	Drill Contractor:	Nature's Way	Start Date:	1/15/2003
Project #:	16835.08	Driller:	Eric	Completion Date:	1/15/2003
Client:	City of Rochester	Elevation:	520.35	Drilling Method:	Earthprobe
Location:	see figure	Weather:	Snow +/- 20 deg.	Supervisor:	D. Gnage

		SAIV	IPLE		Soil Information Remarks					
0	PID	Rec.	No.	Depth	Remarks					
	0.9/0.9	2.4		0-4	Dark Brown Silty fine to medium SAND, trace fine Gravel, moist, topsoil	0				
					Brown Silty fine to medium SAND, little fine Gravel, trace Cinders and Brick, moist					
T				7						
t						1				
F		1			Light Brown fine to medium SAND, some Silt, moist					
-				1						
ł				1						
ł				-						
ł	0.0/1.4	2.0	,	2 4-8						
	0.9/1.4	3.0		4-8						
5				-						
					s.a.a. Brown, wet to moist					
T										
T				1						
t	0.9/1.4	1.5		8 8-12	wet					
ŀ	0.711.1	1.0								
ł				1						
10				-						
10										
÷	-			-		11				
4					D ID Character	11				
4					Red Brown Clay, moist	12.				
L			_		Gray fine to medium SAND, little Silt and fine to coarse Gravel, moist (till)	12				
			-							
T				7						
T										
15			-							
				1						
ŀ				-						
ł										
ł				-						
ł				-						
-										
L				-						
ſ										
E	1			1						

Notes:


Test Boring No.B-115

Page 1 of 1

Project:	Brooks Landing	Drill Contractor:	Nature's Way	Start Date:	1/15/2003
Project #:	16835.08	Driller:	Eric	Completion Date:	1/15/2003
Client:	City of Rochester	Elevation:		Drilling Method:	Earthprobe
Location:	see figure	Weather:	Snow +/- 20 deg.	Supervisor:	D. Gnage

		SAN	APLE		Soil Information
	PID	Rec.	No.	Depth	Remarks
	0.9/0.9	2.0]	0-4	Topsoil
ľ				1	Brown fine to medium SAND, some Silt, little fine to coarse Gravel, moist, trace
1				1	Cinder, Ash and Brick
				1	Light Brown/Orangish Silty SAND, moist
				-	
-				-	
ŋ				-	
				-	
	0.9/0.9	3.5	2	2 4-8	
5					
	1.0				Gray/Brown Silty fine to medium SAND, rust striations, moist to wet
				1	
				1	
				1	
-			-	-	
	0.0/0.0	11		0 11 0	
	0.9/0.9	1.1		8 8-11.9	
				-	
1	1				
0					
				1	
]	
				1	Gray/Brown fine to medium SAND, some fine to coarse Gravel, moist to wet (till) 11
					Refusal E.O.B.
				1	
				1	
				1	
-	-			-	
_				-	
5				-	
				-	
				-	
1					
1		1.1		1	
1				1	
	-			1	
				-	
				-	
20		1.1.1			

Notes:

Test Boring No.B-116

Page 1 of 1

Project:	Brooks Landing	Drill Contractor:	Nature's Way	Start Date:	1/16/2003
Project #:	16835.08	Driller:	Eric	Completion Date:	1/16/2003
Client:	City of Rochester	Elevation:	522.63	Drilling Method:	Earthprobe
Location:	see figure	Weather:	Clear +/- 20 deg.	Supervisor:	D. Gnage

		SAN	IPLE		Soil Information	
0	PID	Rec.	No.	Depth	Remarks	
	0.6/0.6	2.9]	0-4	Topsoil	0.
		1			Brown, fine to medium SAND, little to some Silt, little fine to coarse Gravel,	
					trace Cinder, Ash, Brick, Glass (fill)	
						2.
					The second secon	Ζ.
				-	Brown\Dark Brown Silty fine to medium SAND, trace fine Gravel, moist, organics	
		-		-		4.
					Light Brown, fine to medium Silty SAND, moist ot wet	
	0.6/0.6	3.8	2	4-8	Light Brown, time to medium Silty SAIND, moist of wet	
5				-		
				-		
				4		
	-			-		
					2	
-				-	@ 7.7 wet	
	0.6/0.6	3.2		8-12		
	0.0/0.0	5.2		0-12		
				-		
10						
10		-		1		
				-		
						12
				-	Refusal E.O.B.	
				1		
10						
				1		
				1		
15	-			1		
				1		
1						
		1				
0						
20				1		

Notes:

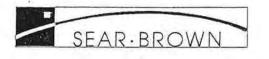
Test Boring No.B-117

Page 1 of 1

Project:	Brooks Landing	Drill Contractor:	Nature's Way	Start Date:	1/16/2003
Project #:	16835.08	Driller:	Eric	Completion Date:	1/16/2003
Client:	City of Rochester	Elevation:	519.59	Drilling Method:	Earthprobe
Location:	see figure	Weather:	Clear +/- 20 deg.	Supervisor:	D. Gnage

	-	SAN	IPLE		Soil Information	
	PID	Rec.	No.	Depth	Remarks	
	0.9/1.0	3.0]	0-4	Topsoil	(
					Brown fine to medium SAND, some Silt, trace Cinder and Brick (fill)	
1	-			1	Light Brown/Brown fine to medium SAND, some Silt, trace organics, rust spotting	
1	1			1	· · · · · · · · · · · · · · · · · · ·	
1				1		
1				1		
			-	1		
				1		
	0.9/0.9	3.0		2 4-8		
5	0.510.5	5.0				
				-		
ł			- 10 L	1	s.a.a. Brown/gray, wet	
+				-	binner and the grad to the second sec	
ł				1		
ł				-		
+			_			
ł	0.0/0.0	3.1		8-12	Red Brown CLAY, moist	
ł	0.9/0.9	5.1		0-12	Brown/Gray Brown fine to medium SAND, some Silt, little fine to coarse Gravel,	
ł				-	wet (till?)	
				-	wet (III:)	
2				-		
}				-		
ł				-		
ł				-		1
+					Refusal E.O.B.	
+				-	Refusal E.O.D.	
ł				1		
ł				-		
+				-		
-				-		
5				-		
+				-		
-		-		-	*	
-			-	-		
				-		
	200			-		
				-		
				-		
					THE REPORT OF TH	
ſ						
0[

Notes:

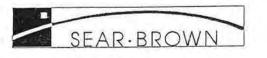

Test Boring No.B-118

Page 1 of 1

Project:	Brooks Landing	Drill Contracto	r: Nature's Way	Start Date:	1/16/2003
Project #:	16835.08	Driller:	Eric	Completion Date:	1/16/2003
Client:	City of Rochester	Elevation:	528.53	Drilling Method:	Earthprobe
Location:	see figure	Weather:	Clear +/- 20 deg.	Supervisor:	D. Gnage

	SAMPLE			S	Soil Information	
0	PID	Rec.	No.	Depth		
	0.0/0.5	3.5		0-4	Topsoil	0
				1	Orangish Brown Silty SAND, little fine to coarse Gravel, dry, trace Cinder	
				1		2
				-	Brown Silty SAND, moist, trace Black Carbon	2
					Black Carbon	
-						
				-		
				-		
	0.010.0				-	
	0.0/0.8	2.1		2 4-8		
5			4			
						5
					Red Brown Silty CLAY, moist	
				1		
				1		
17				1		
-				-		
17	0.0/0.0	2.5		8-12		- 8
	0.0/0.0	2.5			Brown SILT, some fine to medium Sand, moist	
				-	@ 9.6 black wood	1(
10				-	W 9.0 black wood	
10					Den Cille Contractions Stability moint	
				-	Brown Silty fine to medium SAND, moist	
1			_	-		
			_			
			-			
	0.0/0.0	2.2	4	12-16	@ 12.7 s.a.a. Red Brown, moist to wet	
						13
					Red Brown Silty Clay, moist to wet	
				1		
5						
	-			1		
				1		
			12 2000		E.O.B.	
				-		
				1		
_					· · · · · · · · · · · · · · · · · · ·	
				-		
	1					
20				-		

Notes:



Test Boring No.B-118R

Page 1 of 1

Project:	Brooks Landing	Drill Contractor:	Nature's Way	Start Date:	1/29/2003
Project #:	16835.08	Driller:	Eric	Completion Date:	1/29/2003
Client:	City of Rochester	Elevation:	528.34	Drilling Method:	Earthprobe
Location:	see figure	Weather:	Clear +/- 20 deg.	Supervisor:	D. Gnage

			1PLE	1	Soil Information				
)	PID	Rec.	No.	Depth					
	0.2/0.9	3.4	1	0-4	Topsoil (frozen)	C			
		-			Light Brown to Brown fine to medium SAND, some Silt, little to trace fine Gravel,				
				1	trace Cinder and Brick, moist	2			
				1	Black Carbon				
-				1					
	0.2/0.4	2.8		4-8	-				
11	0.2/0.4	2.8	2	4-8					
_									
5									
				1					
				1					
				1	14	'			
				1	Brown/Red Brown fine to medium SAND, some Silt, trace Gravel, moist to wet	8			
					E.O.B.				
ł									
ł				1000					
			-						
0									
1		S							
T									
t									
t									
5									
+									
H									
ł									
1				4					
F	1								
1									
Γ									
T									
F									
0									
			Construction of the	1		_			

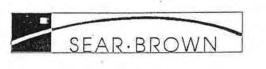
Test Boring No.B-119

Page 1 of 1

Project:	Brooks Landing	Drill Contractor:	Nature's Way	Start Date:	1/16/2003
Project #:	16835.08	Driller:	Eric	Completion Date:	1/16/2003
Client:	City of Rochester	Elevation:	527.05	Drilling Method:	Earthprobe
Location:	see figure	Weather:	Clear +/- 20 deg.	Supervisor:	D. Gnage
	- U			-	

SAMPLE			IPLE		Soil Information				
	PID	Rec. No. Depth Remarks							
	0.0/0.0	2.6	1	0-4	I just Brown fine SAND some Silt dry	C			
1				1	Dark Brown fine to medium SAND, some Silt, trace fine Gravel, Brick, Carbon, Moist	1			
				1	Black Carbon	2			
1				-	Gray/Gray Brown Silty Clay, Moist	2			
-					Brown fine to Medium SAND, trace fine Gravel, Brick, dry				
	-								
	0.0/0.8	2.3	2	2 4-8	s.a.a. with Cinders	4			
5					Black Carbon	4			
					Brown/Light Brown fine to medium SAND, some Silt, moist				
	0.0/0.0	2.9	3	8-12					
				-		1			
10			-	-	04 1	10			
1				1	Rock	11.			
					Brown Orangish, fine to mediatin of http, come and ready	11.			
					Red Brown Silty Clay, moist	1.			
					E.O.B.				
				-					
				-					
5			_	1					
				-					
-	-								
				-					
- 1		12							

Notes:


Test Boring No.B-120

Page 1 of 1

Project:	Brooks Landing	Drill Contractor	Nature's Way	Start Date:	1/16/2003
Project #:	16835.08	Driller:	Eric	Completion Date:	1/16/2003
Client:	City of Rochester	Elevation:	526.57	Drilling Method:	Earthprobe
Location:	see figure	Weather:	Clear +/- 20 deg.	Supervisor:	D. Gnage

		SAI	MPLE		Soil Information			
0	PID	Rec.	No.	Depth	Remarks	(
	0.0/0.3	3.2		1 0-4	Topsoil, Brown, Silt, little Clay, moist			
				-	Brown/Orangish Brown fine to medium SAND, some to little Silt, little fine Gravel,			
				-	trace moded and briefs moist (fill)	_		
1.1			-1	-	Dark Brown/Black fine to medium SAND, some Silt, little fine to coarse Gravel, trace			
				-	Brick, Cinder, Conrete, moist			
				-	Direk, Childer, Contere, mont			
				-				
	0.0/2.2	1.5		2 4-8				
					Cinders	-		
5					Light Brown Silty SAND, moist to wet			
		-						
				-				
		-						
				-				
-				-				
				10.10				
	0.0/0.0	3.0		3 8-12	The second end fine to coarse Gravel moist	-		
					Red Brown Silty CLAY, trace fine Sand and fine to coarse Gravel, moist			
10								
	1				1			
1				-				
				1]		
				-	E.O.B.			
-				-				
Į.				-				
				-				
	-			-				
				_				
15								
	-							
1				-				
				-				
	1			-				
1								
				1				
20				1				

Notes:

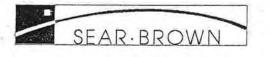
Test Boring No.B-121

Page 1 of 1

Project:	Brooks Landing	Drill Contractor:	Nature's Way	Start Date:	1/16/2003
Project #:	16835.08	Driller:	Eric	Completion Date:	1/16/2003
Client:	City of Rochester	Elevation:	527.66	Drilling Method:	Earthprobe
Location:	see figure	Weather:	Clear +/- 20 deg.	Supervisor:	D. Gnage

		SAN	IPLE		Soil Information			
0 P	PID	Rec.	No.	Depth	Remarks			
0.0	0/0.3	3.1	1	0-4	Topsoil	0		
					Brown fine to medium SAND, some Silt, little to trace fine Gravel, trace Cinder,			
					Brick, moist			
-				-				
						3		
-	-			-	s.a.a. No Cinder or Brick			
-				-	s.a.a. No Childer of Brick			
	0/0.3	1.8	2	4-8	s.a.a. Brick, trace "carbon"	5		
5	510.5	1.0		10	Light Brown fine to medium SAND, some Silt, trace organics, moist			
				1				
-				1				
-				1				
				1				
		1						
1								
0.0)/0.0	3.0	3	8-12				
	-							
-					@ 9' s.a.a. w/rust striations, moist to wet (Native)			
0								
-				1				
-				1				
-	-			1		12		
-					E.O.B.			
]				
5				1				
-				-				
-								
-	-			1				
-	-							
-	-			1	2			
-	-			1				
				1				
				1				
0								
tes:								

Notes:

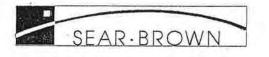


Test Boring No.B-122

Project:	Brooks Landing	Drill Contractor:	Nature's Way	Start Date:	1/16/2003
Project #:	16835.08	Driller:	Eric	Completion Date:	1/16/2003
Client:	City of Rochester	Elevation:	527.04	Drilling Method:	Earthprobe
Location:	see figure	Weather:	Clear +/- 20 deg.	Supervisor:	D. Gnage

	SAMPLE			-	Soil Information				
)	PID Rec. No. Depth				Remarks				
	0.0/0.3	2.7]	0-4	Topsoil	C			
	*				Brown fine to medium SAND, some Silt, little fine to coarse Gravel, trace Ash and	d Cinder,			
] .	Carbon	1			
					Black Carbon	2			
-	_]	Brown/Black fine to medium SAND, some Silt, little Cinder, Brick, Wood, Slag				
						4			
	0.0/0.9	2.3	2	4-8	Black Carbon				
5				-					
+									
1									
						6			
					Brown/Red Brown Silty Clay, moist				
_			_						
	0.0/0.0	3.2	3	8-12					
Ļ									
4	-	-	1.1			9			
0					Brown fine to medium SAND, some Silt, little to trace Cinder and Ash	9			
-					Light Brown/Gray fine to medium SAND, some Silt, moist to wet	10.			
					s.a.a. red brown, trace to little clay				
						12			
				1					
E		-							
Γ									
5									
F									
F				(
F									
T									
T									
1									
-					12				
-									
+									

Notes:



Test Boring No.B-123

Project:	Brooks Landing	Drill Contractor:	Nature's Way	Start Date:	1/16/2003
Project #:	16835.08	Driller:	Eric	Completion Date:	1/16/2003
Client:	City of Rochester	Elevation:	526.91	Drilling Method:	Earthprobe
Location:	see figure	Weather:	Clear +/- 20 deg.	Supervisor:	D. Gnage

			APLE		Soil Information	
0	PID	Rec.	No.	Depth	Remarks	
	0.0/0.3	3.2]	0-4	Topsoil	(
					Brown fine to medium SAND, some Silt, little to trace fine Gravel, trace Cinder	
					@ 2' s.a.a., increase in Cinder, Brick	-
(4)				1	Black Carbon	
5	0.0/0.1	2.7	2	4-8		
	0.0/0.0	2.0	3	8-12	trace Brick	8
		i			Brown/Red Brown Silty CLAY, little fine to coarse Gravel, moist	
10						
				1		4
				1		12
					E.O.B.	
	6.000					
				1		
				1		
15						
1						
[
1						
Ī	You want					
h						
ł						
ŀ						
20						
otes						

Notes:

Test Boring No. B-124


Page 1 of 1

Project:	Brooks Landing	Drill Contractor:	Nature's Way	Start Date:	1/16/2003
Project #:	16835.08	Driller:	Eric	Completion Date:	1/16/2003
Client:	City of Rochester	Elevation:	526.81	Drilling Method:	Earthprobe
Location:	see figure	Weather:	Clear +/- 20 deg.	Supervisor:	D. Gnage

SAMPLE					Soil Information			
0	PID	Rec.	No.	Depth	Remarks			
	0.0/1.1	3.3]	0-4	Topsoil, Brown Silty SAND, trace Root	0		
				1	Brown fine to medium SAND, some Silt, little fine to coarse Gravel,			
				1	trace cinder and brick, moist to dry fill	1		
1				1	s.a.a., Dark Brown, with Wood	1		
	1.			1	s.a.a., Ash, increase in Cinder and Brick			
-				1	@ 3.0' trace Carbon			
t				1				
t				1				
ł	0.0/0.2	2.7	2	4-8		4		
5					Pulverized Brick with Cinder and Ash	5		
-					Black Carbon			
ł				1				
ł								
ł				1				
ł				1				
-	-			1				
h	0.0/0.4	4.0	3	8-12		8		
F	3.0/0.4	4.0	2	0-12	Red Brown SILT, some fine Sand, little fine Gravel, trace Brick, moist	0		
H					Red Brown Silli, some mie Sand, nide mie Graver, nace Brick, moist			
o								
.0	-			-		10.		
H					Red Brown Silty CLAY, little to trace fine Gravel, moist	10.		
H			-	1	Red Brown Sinty CLAT, inthe to trace the Gravel, moist			
F						12.		
+					E.O.B.	12.		
+					E.∪.B.			
F								
H								
F								
c -								
5								
1								
F		- 11						
1			_					
H								
-	in the							
L								
1								
L								

2

Notes:

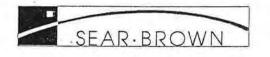
Test Boring No.B-124R

Page 1 of 1

Project:	Brooks Landing	Drill Contractor:	Nature's Way	Start Date:	1/29/2003
Project #:	16835.08	Driller:	Eric	Completion Date:	1/29/2003
Client:	City of Rochester	Elevation:	526.72	Drilling Method:	Earthprobe
Location:	see figure	Weather:	Clear +/- 20 deg.	Supervisor:	D. Gnage

		SAN	APLE		Soil Information	
)	PID	Rec.	No:	Depth	Remarks	
	0.3/0.8	3.1		1 0-4	Topsoil	С
					Brown to Dark Brown fine to medium SAND, some to little Silt, little fine Gravel,	
				1	little Cinder and Slag, trace Brick	
	-			-	,,,	
				1		
1				-		
1				-		
ł	0.1/1.4	2.8		2 4-8		
3	U. 1/ 1.4	2.0	-		Black Carbon	-
5				-		
5				-		
13				-	1	
	-			-		
				-		
				-		7
-				4	Red Brown Silty CLAY, tract to little fine Sand, moist	
					E.O.B.	
				-	E.O.D.	
				-		
				-		
0				-		
1		-		-		
ł				-		
			-	-		
				-		
-			2.57	-		
		-		-		
1				-		
				-		
-				-		
5				-		
+				-		
ł				-		
ł				-		
+				-		
-						
ł	-		142-1-1	-		
+				-		
+				-		
				-		
0 tes						

Notes:


Test Boring No. PZ-124R-R

Page 1 of 1

Project:	Brooks Landing	Drill Contracto	or: Nature's Way	Start Date:	3/7/2003	*
Project #:	16835.08	Driller:	Eric	Completion Date	: 3/7/2003	
Client:	City of Rochester	Elevation:		Drilling Method:	Earthprobe	
Location:	1.5' West of B-124	Weather:	Clear +/- 20 deg.	Supervisor:	D. Gnage	

		SAN	IPLE		Soil Information		
0	PID	Rec.	No.	Depth	Remarks		
	1.2/1.6	3.2	1	0-4	Red/brown Silty CLAY, trace fine Sand, dry	0.1	
- 9					Red/brown Silty CLAY, trace fine Sand, dry Cinder, ash, brick, slag (fill)		
				3			
				7			
- 1				1			
				1			
	Sec. 1			1		4.(
					E.O.B.		
5				1			
	1			1			
1							
Ì				1			
ł			-				
ł							
-				1 1			
ł				1 1			
ł				- 1			
ł				1			
10				4			
10				1. 1			
ł							
H				- 1			
H	-	-		4			
ł							
-							
F				0.1			
-			_				
H							
+							
15						3	
H							
F				- 1			
L							
1							
-							
L							
L							
20							

Notes:

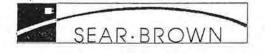
Test Boring No.B-125

Page 1 of 1

Project:	Brooks Landing	Drill Contractor:	Nature's Way	Start Date:	1/16/2003
Project #:	16835.08	Driller:	Eric	Completion Date:	1/16/2003
Client:	City of Rochester	Elevation:	526.87	Drilling Method:	Earthprobe
Location:	see figure	Weather:	Clear +/- 20 deg.	Supervisor:	D. Gnage

			APLE		Soil Information	
0	PID	Rec.	No.	Depth		
	0.0/0.3	3.5]	0-4	Brown SILT, little fine Sand and Gravel, moist	(
].	Orange/Brown fine to medium SAND, some to little Silt, dry to moist	
					s.a.a., Dark Brown with Brick and Cinder, Ash, Slag	
				1		
5	0.0/0.5	2.0	2	4-8	Orange/Rust fine to medium SAND, some to little Silt, little Brick, Wood, Cinder, Ash	1
					@ 5.8 increase in Cinder	
_						
	NM	0.5	3	8-12	Brick in shoe	
0						
-						1:
-			1		E.O.B.	
5			2			
+						
-						
-						
		*				
0	-					
es.						

Notes:


Test Boring No.B-126

Page 1 of 1

Project:	Brooks Landing	Drill Contractor:	Nature's Way	Start Date:	1/17/2003
Project #:	16835.08	Driller:	Eric	Completion Date:	1/17/2003
Client:	City of Rochester	Elevation:	527.56	Drilling Method:	Earthprobe
Location:	see figure	Weather:	Clear +/- 20 deg.	Supervisor:	D. Gnage

	SAMPLE				Soil Information	
0	PID	Rec.	No.	Depth		
	0.7/0.8	3.2]	1 0-4	Topsoil (frozen)	0
[Drum/Rust Silty fine to medium SAND, little fine to coarse Gravel, trace Cinder and	
1		-			Brick	1
1				1	Black Carbon	
1				-	@ 2.1 rust striation	
ł				1		
ł				1		
ł	0.7/0.1	2.9	-	2 4-8		
5	0.770.1	2.9		0		
-				-		
+						
ŀ				-		
F						-
					1-10	6.
					Red Brown Silty Clay, moist	
	0.7/0.7	3.2	3	8-12		8
					Gray/Brown fine to medium SAND, some Silt, moist to wet, rust striation	
T		-				
10	1					
T				1		
T				1		
F						12.
T					E.O.B.	
-				1		
F				1		
F				1		
		-	No. Carrier			
5				1		
5				{		
H				4		
+				-		
-			-	4		
+						
_						
		100				
				1 1		
t						
-						

Notes:

Test Boring No.B-126R

Page 1 of 1

Project:	Brooks Landing	Drill Contractor:	Nature's Way	Start Date:	1/29/2003
Project #:	16835.08	Driller:	Eric	Completion Date:	1/29/2003
Client:	City of Rochester	Elevation:	527.56	Drilling Method:	Earthprobe
Location:	see figure	Weather:	Clear +/- 20 deg.	Supervisor:	D. Gnage

		SAN	1PLE		Soil Information	
0	PID	Rec.	No.	Depth	Remarks	
	0.3/0.6	3.3		1 0-4	Topsoil	(
				1	Light Brown to Brown fine to medium SAND, some Silt, little to trace fine Grave,	
				1	trace Cinder and Brick, dry to moist	
				1]
				1	Black Carbon	
				1 1		
				-		
	0.3/0.5	2.9		2 4-8		
	0.5/0.5	2.9				
-				-		
5				-		
			-	-		
]		
				-	E.O.B.	
				1	1	
				1		
0				1		
			1	1		
				-		
				1 1 1		
				-		
				4		
-			10000	1		
				4		
	1			-		
5						
1						
1				1		
t				1		
ł				1		
1			11	1		
ł						
ł				1		
+						
H				1		
0	3:					

Test Boring No.B-127

Page 1 of 1

Project:	Brooks Landing	Drill Contractor	: Nature's Way	Start Date:	1/17/2003
Project #:	16835.08	Driller:	Eric	Completion Date:	1/17/2003
Client:	City of Rochester	Elevation:	526.59	Drilling Method:	Earthprobe
Location:	see figure	Weather:	Clear +/- 20 deg.	Supervisor:	D. Gnage

			APLE		Soil Information	
0	PID	Rec.	No.	Depth		
	0.5/0.7	3.0	1	0-4	Topsoil	0
					Orangish Brown fine to medium SAND, some Silt, little fine to coarse Gravel, moist	
				1. C		
				1.5		
						4
	0.5/0.8	3.0	2	4-8	s.a.a. none to trace fine GRAVEL	
5					@ 6.0 moist to wet	
	(
]		
				- 20		
	0.5/0.5	3.3	3	8-12	s.a.a. trace fine to coarse GRAVEL	
						9.
10					Dark Brown fine to medium SAND, some Silt, little to trace fine Gravel	
						11.
					Gray Green fine SAND, some Silt, moist	
						10
						12.
_			à		E.O.B.	
ł						
1						
ł						
_ł						
15						
+						
ł						
ł		-				
ł						
-						
H						
ŀ						
ł						
ł				6		
20						_

Notes:

Test Boring No.B-128

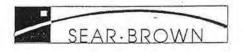
Page 1 of 1

Project:	Brooks Landing	Drill Contractor:	Nature's Way	Start Date:	1/17/2003
Project #:	16835.08	Driller:	Eric	Completion Date:	1/17/2003
Client:	City of Rochester	Elevation:	526.43	Drilling Method:	Earthprobe
Location:	see figure	Weather:	Clear +/- 20 deg.	Supervisor:	D. Gnage

			1PLE		Soil Information	
	PID	Rec.	No.	Depth		
	0.8/1.3	3.3		0-4	Topsoil	0
					Dark Brown fine to med. SAND, little Silt, and fine to coarse Gravel, trace Cinders, dry	0.0
1	_				Orange Brown, fine to medium SAND, some Silt, little fine to coarse Gravel, moist	
				1		
				1		
				1		
	0.8/0.9	3.0		4-8	s.a.a., No Gravel, dry to moist	
5	0.0/0.2	5.0	4	1		
				-		6
					s.a.a. trace fine to coarse Gravel	
				-	s.a.a. have the to coarse Graver	
	-			-		
				-		
+						
						8
	0.0/0.8	2.9	3	8-12	Gray fine to medium SAND, some Silt, trace fine Gravel and Cinders, moist	9
ļ						
ļ						
)	1					
				1 1	Light Brown fine to medium SAND, some Silt, moist to wet	
ļ					*. (a)	
						12
1					E.O.B.	
1						
L						
T						
T				1	a construction of the second se	
ľ						
F						
-						
-						
-						
			-			

Notes:

Test Boring No. PZ-152


Page 1 of 1

Project:	Brooks Landing	Drill Contractor:	Nature's Way	Start Date:	3/7/2003
Project #:	16835.08	Driller:	Eric	Completion Date:	3/7/2003
Client:	City of Rochester	Elevation:	518.78	Drilling Method:	Earthprobe
Location:	see figure	Weather:	Clear +/- 15 deg.	Supervisor:	D. Gnage

	1-1-1-1	SAN	APLE		Soil Information	
0	PID	Rec.	No.	Depth	Remarks	
	1.0/1.2	2.8	1	0-4	Brown/Black fine to medium SAND and Gravel, little Silt and Cinder, dry (fill)	0.7
1		1.000			Dark Brown very fine to fine SAND, some Silt, trace roots, moist	1.2
T			1000		Brown to light brown very fine to fine SAND, some Silt, rust and gray mottling, mot	st
t						
ł						
				1		
t						
t				-		
ł	1.0/1.2	2.9	2	4-8	s.a.a. with trace CLAY	
5	1.0/1.2	2.7	4			
-				-	@ 5.8 moist to wet	
ŀ				-		
ł				-		
ł			-			
ł		- General	- sector	-		
-				-		
ł	1.0/1.4		2	0.10	@ 7.8' s.a.a. gray	
ł	1.0/1.4	2.0	3	8-12	s.a.a. brown/gray, saturated	
ł			-	-		
-						
10						
4						10.
4		-		4 5	The second states of the second states where the second states of the se	10.
+					Brown/gray fine to course GRAVEL, some fine to coarse Sand, little Silt, saturated	
ł	1.0/1.5	0.6		10.10		
+	1.0/1.5	0.6	4	12-13		13.
-	and and		-		NAN	15.
H				- 1	E.O.B.	
L					E.O.B.	
					E.O.B.	
15					E.O.B.	
15					E.O.B.	
15					Е.О.В.	
15					E.O.B.	
15					E.O.B.	
15					E.O.B.	
15					E.O.B.	
15					E.O.B.	
15					E.O.B.	
.5					E.O.B.	

Notes: 1. PID Model Mini-Rae 2000 with 10.6 lamp.

.

Test Boring No. PZ-153

Page 1 of 1

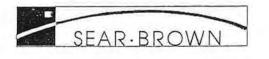
Project:	Brooks Landing	Drill Contractor	r: Nature's Way	Start Date:	3/7/2003
Project #:	16835.08	Driller:	Eric	Completion Date	3/7/2003
Client:	City of Rochester	Elevation:		Drilling Method:	Earthprobe
Location:	see figure	Weather:	Clear +/- 20 deg.	Supervisor:	D. Gnage

		SAN	IPLE		Soil Information	
0	PID	Rec.	No.	Depth	Remarks	-
	1.2/1.4	3.2	1	0-4	Brown fine SAND, some Silt, little Gravel, trace brick and cinder, dry to moist (fill)	
	-			-		2.5
				-	Red brown Clayey SILT, little fine Sand, trace fine Gravel	3.0
2	1.2/1.8	2.7	2	4-8	Black cinder, ash and slag s.a.a. mixed with pulverized brick, concrete, trace to little fine SAND and Silt,	
5				-	moist to dry (fill) wood	
				-		7.8
	1.2/1.2	3.1	3	8-12	Gray/brown very fine to fine SAND, some Silt, little brick, cinder, ash, moist	
	1.2/1.2	5.1	3	- 0-12		
10	-			1		10.1
				-	Light brown/tan fine SAND, little Silt, dry to moist (Native?)	
						12.0
-					E.O.B.	
		-				
1.5						
15						
				1		
				-		
				-		
20						

Notes:					14	
	R·BROWN	85 Metro Park Rochester, NY 14 (716) 475-1440	4623		Test Bor	ing No. PZ-154
						Page 1 of 1
Project:	Brooks Landing	Drill Contractor:	Nature's Way	Start Date:	3/7/2003	
Project #:	16835.08	Driller:	Eric	Completion Date		
Client:	City of Rochester	Elevation:		Drilling Method:	Earthprobe	
Location:	see figure	Weather:	Clear +/- 20 deg.	Supervisor:	D. Gnage	

			APLE		Soil Information	
0	PID	Rec.	No.	Depth	Remarks	_
	1.2/1.4	2.4	1	0-4	Brown, fine to medium SAND, some Silt, little to some fine to coarse Grave, moist (f	111)
5	1.2/1.6	2.7	2	4-8	Black CINDER, some brick and ash, little Slag, dry, possible trace Carbon	
	1.2/1.4	3.0	3	8-12		(
					Brown/light brown fine SAND, little Silt, moist (Native)	
+		-		-		12
T		-			E.O.B.	
5						
oF						

1. PID Model Mini-Rae 2000 with 10.6 lamp.

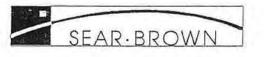

Test Boring No. B-155

Page 1 of 1

Project:	Brooks Landing	Drill Contractor:	Nature's Way	Start Date:	4/1/2003
Project #:	16835.08	Driller:	Jim	Completion Date:	4/1/2003
Client:	City of Rochester	Elevation:		Drilling Method:	Earthprobe
Location:	see figure	Weather:	Overcast +/- 25 de	Supervisor:	D. Gnage

		SAN	IPLE		Soil Information	
0	PID	Rec.	No.	Depth	Remarks	
	0.0/0.0	2.0	1	0-4	topsoil, Brown SILT, trace fine Gravel, moist	0.
					Brown SILT, some to little fine Sand, little to trace fine Gravel, trace brick	
				1	and Cinder and Ash, oxidation/rust coloring	
	1	1		1		
				1		
				1		
				1		
	0.0/0.0	2.0	2	4-8	s,a,a, increase in cinder, trace slag	
5				1		
-			-		A.	
				1		6.
				1	Red Brown Clayey SILT, moist	6.
				1	Brown fine to medium SAND, little to some Silt, moist to wet	
				1		
-				1		8.
1					E.O.B.	
3						
1	(*)					
10						
10						
			-			
-						
15						
15						
ł						
						3
			-0-0			
-						
ł						
ł						
ł		1				
20						
otes						

Notes:



Test Boring No. B-156

Page 1 of 1

Brooks Landing	Drill Contr	actor: Nature's Way	Start Date:	4/1/2003
16835.08	Driller:	Jim	Completion Date:	4/1/2003
City of Rochester	Elevation:	-	Drilling Method:	Earthprobe
see figure	Weather:	Overcast +/- 20 deg.	Supervisor:	D. Gnage
	16835.08 City of Rochester	16835.08Driller:City of RochesterElevation:	16835.08Driller:JimCity of RochesterElevation:	16835.08Driller:JimCompletion Date:City of RochesterElevation:Drilling Method:

- 6		SAN	IPLE		Soil Information	
C	PID	Rec.	No.	Depth	Remarks	
	0.0/0.0	1.4	1	0-4	Brown SILT, trace fine Sand, Topsoil	0
			-	1	Brown Silty fine SAND, little to trace fine Gravel, trace slag and cinder	
1			1000	1		
				1		
				-		
-				- 1		
_						
			-	1		4
	0.0/0.0	4.0	2	4-8	Red Brown Silty CLAY, rust mottling	5
5	1			1	Brown fine to medium SAND, some Silt, moist	6
-					s.a.a. increase in Silty, little Clay	
				1		
		-		-		
_			-			(
			1.00			8
					E.O.B.	
1				1		
10						
-						
ł						
ł				1		
ł				-		
ł						
-						
ſ				1		
t				1		
15						
-				1		
1						
ł				-		
1						
		-				
			_			
T		-		1		
ł				1		
				-		
H				-		
20						

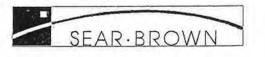
Test Boring No.B-157

Page 1 of 1

Project:	Brooks Landing	Drill Contractor:	Nature's Way	Start Date:	4/1/2003
Project #:	16835.08	Driller:	Jim	Completion Date:	4/1/2003
Client:	City of Rochester	Elevation:		Drilling Method:	Earthprobe
Location:	see figure	Weather:	Snow +/- 30 deg.	Supervisor:	D. Gnage

	1	SAN	IPLE		Soil Information			
0	PID	Rec.	No.	Depth	Remarks			
	0.0/106	2.2	1	0-4	Topsoil	0.2		
			2.05.2		Brown fine to medium SAND, some Silt, little to trace Cinder, Slag and Brick	1.5		
			-		Brick	1.		
					S.a.a.	1.9		
					Light Brown Clayey SILT, little fine to medium SAND, trace fine Gravel, moist			
			-			4.		
	· · ·				E.O.B.			
5								
				-				
-			8	-				
				-				
10								
10								
		-						
				-				
		-		S				
				5				
15								
15								
	-							
	-							
ł								
20								
Jotor					12			

Notes:


Test Boring No. B-157R

Page 1 of 1

Project:	Brooks Landing	Drill Contractor:	Nature's Way	Start Date:	4/1/2003
Project #:	16835.08	Driller:	Jim	Completion Date:	4/1/2003
Client:	City of Rochester	Elevation:		Drilling Method:	Earthprobe
Location:	see figure	Weather:	Snow +/- 30 deg.	Supervisor:	D. Gnage

	-	SAN	IPLE		Soil Information	
0	PID	Rec.	No.	Depth	Remarks	
	0.0/6.1	2.6	1	0-4	Topsoil	0.4
	-		2.5		Brown fine to medium SAND, some Silt, little fine Gravel, moist	
			E	1	trace Cinder and Brick	1.:
		0.000		1	s.a.a. increase in cinder and brick, ash, slag	
				1		2.
				1.	Red/brown Silty fine SAND	
				1		
				1		
	0.0/8.4	3.5	2	4-8		
5				1		5.
				1	Brown to light brown fine to medium SAND, some Silt, moist to wet	
				1		
18		2				
				-		
	0.0/4.8	3	3	8-12		
				1		
1				1		
10				1		
		1		1		
				1		11.
	0.0/1.7			1	Red/Brown CLAY	11.3
					Red/Brown fine to medium SAND, some Silt, moist to wet @ 11.5 oxidation lense	12.0
				1	E.O.B.	
				1		
15				1	n l	
				1		
				1		
1						
Ì						
				1		
Ì		-	1			
- 1						
ł				1		

Notes:

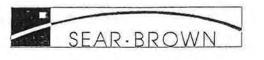
Test Boring No. B-158

Page 1 of 1

Project:	Brooks Landing	Drill Contractor:	Nature's Way	Start Date:	4/1/2003
Project #:	16835.08	Driller:	Jim	Completion Date:	4/1/2003
Client:	City of Rochester	Elevation:		Drilling Method:	Earthprobe
Location:	see figure	Weather:	Snow +/- 30 deg.	Supervisor:	D. Gnage

	SAMPLE		PLE		Soil Information				
	PID	Rec.	No.	Depth	Remarks				
	0.0/0.0	4.0	1	0-5	Topsoil		0		
İ				1	Brown Silty fine SAND, trace Clay				
ł				1					
ł				1					
t									
1				1					
ł				1					
1				1					
ł				-					
c -				1	The paper of the State Market				
5	0.010.0		-	5.0					
	0.0/0.0	3.5	2	5-9	s.a.a. trace brick and cinder		-		
			_		Brown fine to medium SAND, some Silt, moist				
L									
L									
T					s.a.a. little to trace CLAY				
ſ									
Ī				-					
T					E.O.B.				
				1					
1				1					
t				1					
t		-		1					
t									
ŀ		-	-	1					
+									
ł				1					
ł			-						
ł				-					
5									
4									
H	*			-					
ł									
F			Sec. 1						
F									
			-						
L									
T									
T	-			1		- 21			
oľ			-	1					

Notes:


Test Boring No. B-159

Page 1 of 1

Project:	Brooks Landing	Drill Contractor:	Nature's Way	Start Date:	4/1/2003
Project #:	16835.08	Driller:	Jim	Completion Date:	4/1/2003
Client:	City of Rochester	Elevation:		Drilling Method:	Earthprobe
Location:	see figure	Weather:	Snow +/- 30 deg.	Supervisor:	D. Gnage

	SAMPLE			Soil Information				
0	PID	Rec.	No.	Depth	Remarks	_		
	0.0/0.0	3.1	1	0-4	Topsoil	0.		
				1	Light Brown fine to medium GRAVEL, little Silt	0.		
				1	Dark Brown/Black, SILT, some fine Sand, little wood, trace slag, cinder,			
	_				concrete (peat-like)	2.		
					Brick	2.		
		-			Cinder, Brick, Slag			
				1				
		4.0	2	4-8		4.		
5	0.0/535			4.2-4.5	Black, plastic-like substance, petro -odor	4.		
					Brown/Gray SILT, fine Sand, little to some brick and cinder, moist to wet			
	0.0/13.6			4.5-5.5		5.		
				1	Red Brown Silty CLAY, moist			
				1				
1				1				
					4	8.		
0					E.O.B.			
				1				
				1				
10				1				
				1				
1				1				
				1				
				1				
1				1				
	1			1	·			
Ī				1				
1		- 1						
Ī								
5								
				1				
1								
ſ				1				
T			1.000	1				
T				1				
1				1				
T				1				
t		_		1				
t				1				
20								
tes				I				

Notes:

Test Boring No. B-160

Page 1 of 1

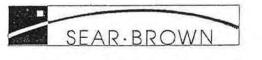
Project:	Brooks Landing	Drill Contractor:	Nature's Way	Start Date:	4/1/2003
Project #:	16835.08	Driller:	Jim	Completion Date:	4/1/2003
Client:	City of Rochester	Elevation:		Drilling Method:	Earthprobe
Location:	see figure	Weather:	Clear +/- 30 deg.	Supervisor:	D. Gnage

0 PID Rec. No. Depth Remarks 0.0/2.8 4.0 1 0.4 Topsoil Light brown fine to medium SAND, with pockets of Red Brown Clay 1	F		SAN	APLE		Soil Information				
Light brown fine to medium SAND, with pockets of Red Brown Clay Light brown fine to medium SAND, with pockets of Red Brown Clay Dark Brown/Black, Silty fine to medium SAND, little fine Gravel, little slag, ash, cinder, brick S O.0/48.1 1.5 2 4-8 s.a.a., with wood, glass, rust coloring, ash O.0/7.2 1.6 3 8-12 Gray Silty fine to medium SAND, moist to wet E.O.B. E.O.B.		PID			Depth					
0.0/48.1 1.5 2 4-8 s.a.a., with wood, glass, rust coloring, ash 0 0.0/7.2 1.6 3 8-12 Gray Silty fine to medium SAND, moist to wet 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10	0.0	.0/2.8	4.0	1	0-4	Topsoil	0.			
ash, cinder, brick 0.0/48.1 1.5 2 4-8 s.a.a., with wood, glass, rust coloring, ash 5 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 10 - - - - - - - 10 - - - - - - - - - 10 - - - - - - - - - -						Light brown fine to medium SAND, with pockets of Red Brown Clay				
ash, cinder, brick 0.0/48.1 1.5 2 4-8 s.a.a., with wood, glass, rust coloring, ash 5 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 0.0/7.2 1.6 3 8-12 Gray Silty fine to medium SAND, moist to wet 10 - - - - - - - - - - - 10 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 10 - - - - - - - - - -<										
ash, cinder, brick 0.0/48.1 1.5 2 4-8 s.a.a., with wood, glass, rust coloring, ash 5 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 0.0/7.2 1.6 3 8-12 Gray Silty fine to medium SAND, moist to wet 10 - - - - - - - - - - - 10 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 10 - - - - - - - - - -<							2.			
0.0/48.1 1.5 2 4-8 s.a.a., with wood, glass, rust coloring, ash 5 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 0.0/7.2 1.6 3 8-12 Gray Silty fine to medium SAND, moist to wet 10 - - - - - 10 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -										
5			in the second			ash, cinder, brick				
5			1							
5				L						
0.0/7.2 1.6 3 8-12 Gray Silty fine to medium SAND, moist to wet 10	-	.0/48.1	1.5	2	4-8	s.a.a., with wood, glass, rust coloring, ash				
10 E.O.B.										
10 E.O.B.	-									
10 E.O.B.	-				-					
10 E.O.B.	-				-					
10 E.O.B.	-				-					
10 E.O.B.	-			-	-		8.			
10 E.O.B.	0	0/7 2	16	2	012	Gray Silty fine to medium SAND moist to wet	0.			
E.O.B.	0.0	0/1.2	1.0	5	0-12	Gray Shry fine to medium SAND, moist to wet				
E.O.B.	-									
E.O.B.	-									
	-									
	-				1					
	-									
	-						12.			
	1					E.O.B.				
	1]					
					1					
	-									
		-								
	-									
	-									
	-									
	-									
	-									
	-									
	-	-								
20	-			-						

Notes:

Test Boring No. B-161

Page 1 of 1


Project:	Brooks Landing	Drill Contractor:	Nature's Way	Start Date:	4/1/2003
Project #:	16835.08	Driller:	Jim	Completion Date:	4/1/2003
Client:	City of Rochester	Elevation:		Drilling Method:	Earthprobe
Location:	see figure	Weather:	Snow +/- 30 deg.	Supervisor:	D. Gnage

		SAM	IPLE		Soil Information	
0	PID	Rec.	No.	Depth		
	0.0/3.1	3.8	1	0-4	Topsoil	0.2
			1	1	Brown to light Brown Silty SAND, little fine Gravel, little to trace Cinder and Brick	
				1		2.2
					increase in Cinder and Brick, trace Carbon	$-\frac{2.2}{3.0}$
				1	Brick	3.2
				1	Black Carbon	4.0
				1	E.O.B.	
			-	1		
				1		
5						
				1		
				-		
				-		
				-		
			a frank i			
		(7) - S				
			_			
10						
				<u></u>		
]		1.1
				1		
				1		
	-			1		
				1		
				1		
				1		
15						
10						
	the second second			1		
				1		
-						
		· · · · ·				
			1			
20	(1		

Notes:

1. PID Model: Mini- Rae 2000 with 10.6 lamp.

Ċ

Test Boring No. B-162

Page 1 of 1

Project:	Brooks Landing	Drill Contractor:	Nature's Way	Start Date:	4/1/2003
Project #:	16835.08	Driller:	Jim	Completion Date:	4/1/2003
Client:	City of Rochester	Elevation:		Drilling Method:	Earthprobe
Location:	see figure	Weather:	Snow +/- 30 deg.	Supervisor:	D. Gnage

		SAN	IPLE		Soil Information	
0	PID	Rec.	No.	Depth	Remarks	
	0.0/7.8	4.0	1	0-4	Topsoil	0.4
				-	Brown, Silty SAND, little fine Gravel, trace to little Cinder, A	2.1 2.5
				1	Black Cinder	2.5
-				1	Black Carbon	2.3
				1	Pulverized Brick and Ash	2.3
					Black Carbon	4.0
5				-		
1				-		
	-		×.			
				-		
				1		
10						
				-		
a Ì				1		
				1		
			_]		
15						
				1		
			(*)	-		
				1		
20				-		
ote		-				

Notes:

Test Boring No. B-163

Page 1 of 1

Project:	Brooks Landing	Drill Contractor:	Nature's Way	Start Date:	4/1/2003
Project #:	16835.08	Driller:	Jim	Completion Date:	4/1/2003
Client:	City of Rochester	Elevation:		Drilling Method:	Earthprobe
Location:	see figure	Weather:	Snow +/- 30 deg.	Supervisor:	D. Gnage

		SAM	IPLE		Soil Information	
0	PID	Rec.	No.	Depth	Remarks	
	0.0/4.0	3.6	1	0-4	Topsoil	0
				1	Brown/Dark Brown Silty find SAND, little fine Gravel, trace glass and ash	
				1		2
				1	s.a.a. some Black Carbon, trace Cinder	
					Brown/Black fine SAND and Silt, some cinder, ash, slag, brick	
-				1		3
				1	Brick	3
					Black Carbon	4
- 7					E.O.B.	
5				-	2.012	
-						
				-		
				-		
				-		
	-		-	-		
_	-			-		
	<u></u>					
			Service State			
10						
]		
Ī						
t				1		
t				1		
5	~			1		
1						
ł						
ł						
ł			-10			
ł						
-						
ł						
ł						
ŀ						
			-			
0					1	

Notes:

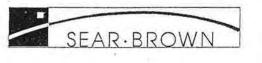
Test Boring No. B-164

Page 1 of 1

Project:	Brooks Landing	Drill Contractor:	Nature's Way	Start Date:	4/1/2003
Project #:	16835.08	Driller:	Jim	Completion Date:	4/1/2003
Client:	City of Rochester	Elevation:		Drilling Method:	Earthprobe
Location:	see figure	Weather:	Snow +/- 30 deg.	Supervisor:	D. Gnage

		SAN	IPLE		Soil Information	
0	PID	Rec.	No.	Depth	Remarks	_
	0.0/8.6	1.1	1	0-4	Topsoil	0.
					Brown fine to medium SAND, some Silt, little fine Gravel	1.
					s.a.a. Gray/Brown, trace Cinder	1.
		1		1	Black Carbon	2.
	1			1	Tan Silty Clay	3.
-	· · · · · · · · ·			1	Cinder, ash and Brick, slight odor	
	1.00			1		
						4.
	NM	2.2	2	4-8	Carbon	
5						
-						
		1				
				1		
				1.70		
				1		
-				1		8
				1		
				-		
10				-		
10						
				-		
	1			-		
				-		
				-	1	
-				-		
				-		
				-		
				-		
1.5						
15				-		
				4		
				4		
					1	
		6		-		
20						

Notes:



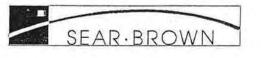
Test Boring No. B-165

Page 1 of 1

Project:	Brooks Landing	Drill Contractor:	Nature's Way	Start Date:	4/1/2003
Project #:	16835.08	Driller:	Jim	Completion Date:	4/1/2003
Client:	City of Rochester	Elevation:		Drilling Method:	Earthprobe
Location:	see figure	Weather:	Snow +/- 30 deg.	Supervisor:	D. Gnage

	1		PLE		Soil Information				
0	PID	Rec.	No.	Depth	Remarks				
	0.0/5.7	3.1	1	0-4	Topsoil	(
					Brown fine to medium SAND, some to little Silt, trace fine Gravel, trace to no cinder				
				1		1			
					Cobble	1			
			-	1	Black Carbon	2			
- 7				1	Brown CLAY, little Silt	2			
				1	Black Cinder and ash				
				1					
- 3	0.0/29.9	2.2	2	4-8	Slight coal, tan, odor	4			
5	0.0129.9	4.4	L		Black carbon				
2				-	Diack carbon				
				-					
. 4									
		- 4		x					
						8			
					E.O.B.				
I									
Ī				1					
10				1					
-				1					
ł					ic last				
ł				1					
ł									
ł									
-			-		1				
ł									
Ļ									
L									
5									
Γ				1					
T				1					
h									
h									
+									
+									
F									
F									
L									
0									

Test Boring No. B-166

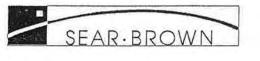

Ϋ́

Page 1 of 1

Project:	Brooks Landing	Drill Contractor:	Nature's Way	Start Date:	4/1/2003	
Project #:	16835.08	Driller:	Jim	Completion Date:	4/1/2003	
Client:	City of Rochester	Elevation:		Drilling Method:	Earthprobe	
Location:	see figure	Weather:	Snow +/- 30 deg.	Supervisor:	D. Gnage	9 ·

		SAMPLE			Soil Information	
0	PID	Rec.	No.	Depth	Remarks	
	0.0/8.7	3.3	1	0-4	Topsoil	0.
					Brown fine to medium SAND, some Silt, trace cinder, ash, brick	1.1
1	-				s.a.a. increase in cinder, trace carbon	2.
					Black Carbon	2.
					Gray/Tan Silty CLAY, some cinder and ash	3.
					No cinder and ash	4
	0.0/1.9	2.8	2	4-8	Black carbon	4.
5	0.0/1.9	2.0	2	4-0		
	4			1		
1				1		
2			_			
				-		
-						8.
				8-12	E.O.B.	
				-		
.0				1		
				1		
]		
	S					
-						
						¥.
ł						
İ		-		1		
5	-	1]		
				1		
ł			-			
ł						
ł				1	-	
						1
0 tes						

Notes:

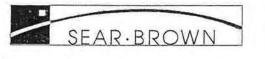

Test Boring No. B-167

Page 1 of 1

Project:	Brooks Landing	Drill Contractor:	Nature's Way	Start Date:	4/1/2003
Project #:	16835.08	Driller:	Jim	Completion Date:	4/1/2003
Client:	City of Rochester	Elevation:		Drilling Method:	Earthprobe .
Location:	see figure	Weather:	Snow +/- 30 deg.	Supervisor:	D. Gnage

- 1	SAMPLE				Soil Information			
0	PID	Rec.	No.	Depth	Remarks			
	0.0/3.2 3.6 1 0-4				Topsoil	0		
1]	Brown fine to medium SAND, some Silt, little to trace fine gravel			
1	1. A. A. A. A. A. A. A. A. A. A. A. A. A.			1	little cinder, ash, slag, glass	2		
				1	Black carbon			
	2.2.2.0							
				1				
- 1				1				
1				1		4		
					E.O.B.			
5								
				1				
ł				1				
ł								
-								
ŀ								
+								
H								
-				5				
10								
L								
			Sec. 14					
Γ								
15								
T								
h								
F								
+				1.1				
+								
+								
H						1		
h								
tes				(

Notes:


Test Boring No. B-168

Page 1 of 1

Project:	Brooks Landing	Drill Contractor:	Nature's Way	Start Date:	4/1/2003
Project #:	16835.08	Driller:	Jim	Completion Date:	4/1/2003
Client:	City of Rochester	Elevation:		Drilling Method:	Earthprobe
Location:	see figure	Weather:	Snow +/- 30 deg.	Supervisor:	D. Gnage
				7	

	1	SAN	PLE		Soil Information	
)	PID	Rec.	No.	Depth	Remarks	
	0.0/5.2	3.3	1	0-4	Topsoil	(
					Brown to light brown fine to medium SAND, some Silt, little to trace	
				1	fine Gravel, trace cinder, ash, slag	
					Black carbon	
				1		
				1		
1	1000			1		4
1					E.O.B.	
5				1		
				1		
1				1		
t						
t						
t				1		
1				1		
t				1		
t				1		
Ì				1		
0				1		
1		-		1		
T				1		
T				1		
T				1		
T			-			
T				1		
				1		
				1		
5				1		
			_			
	_					
0						

Notes:

Test Boring No. B-169

Page 1 of 1

Project:	Brooks Landing	Drill Contractor:	Nature's Way	Start Date:	4/1/2003
Project #:	16835.08	Driller:	Jim	Completion Date:	4/1/2003
Client:	City of Rochester	Elevation:		Drilling Method:	Earthprobe
Location:	see figure	Weather:	Snow +/- 30 deg.	Supervisor:	D. Gnage

		SAN	IPLE		Soil Information				
0	PID	Rec.	No.	Depth	Remarks				
	0.0/1.1	4.0	1	0-4	Topsoil	0			
					Brown fine to medium SAND, some Silt, little Gravel, tract to little Cinders	1.(
					Brown fine to medium SAND, some Silt, little Gravel, tract to little Cinders Light Brown/Orange fine to medium SAND, little Silt				
						4			
					E.O.B.				
5									
1									
]					
				1					
10				1					
				1					
1				1					
				1					
1									
				1					
				1					
1				1					
1				1					
				1					
15			1						
				1					
T				1					
T									
T				1					
F				1					
T									
F		~							
F	-	-							
20		-123							
otes									

APPENDIX B

SEWER USE PERMIT INFORMATION

PETROLEUM IMPACTED WATER RULES AND REGULATIONS

- An Initial Sewer Use Permit or Initial Industrial User Permit is required for discharges to the Monroe County Sewer System or Wastewater Treatment Plant respectively. The permit fee is \$40.00 (payable to the Director of Finance, County of Monroe).
- 2) The following conditions shall apply to this permit:
 - a) Required analytical testing of wastewater (Exhibit "C") shall be submitted to this office for review prior to discharge.
 - b) The Monroe County limit for the summation of all purgeable halocarbons, aromatics, and polynuclear aromatic hydrocarbons (with a detection level greater than 10 ug/l) is 2.13 mg/l.
 - c) Required testing includes, but is not limited to:
 - Gasoline impacted water method 602 or equivalent 40 CFR 136 method; and

Methyl Tertiary Butyl Ether (MTBE) - monitoring only. Limit not applicable at this time.

- (2) Diesel or Fuel Oil impacted water method610 or equivalent 40 CFR 136 method.
- d) The applicant must identify a suitable sanitary sewer discharge point. Monroe County will confirm the discharge point in the City of Rochester and the Towns of Gates, Chili and Ogden. Should the applicant be working in a location NOT described above, it will be the applicant's responsibility to contact the applicable Town and/or Village for similar service. The Towns/Villages of Webster, Scottsville, Churchville, Honeoye Falls, and Spencerport are NOT part of the Monroe County Sewer System.
- e) A maximum of 10 gpm discharge rate is permitted. Approval must be received from the appropriate agency (noted above) to exceed this rate.
- f) Monroe County will conduct a field inspection of the site and issue a permit pending the completion and/or submission of all required information.

H:\IW\Forms\Sewer Use Permit Petroleum Procedures

APPLICATION PROCEDURE

- The applicant must submit a letter requesting permission to discharge and a completed permit application. The letter must contain the information listed in item #2 below.
- 2) The following information is required before considering a request for discharge:
 - a) Contractor or environmental representative name
 - b) Contact person name, phone #, pager #, fax #
 - c) Site name, address
 - d) Description of site work
 - e) Former/current contents of underground storage tanks and/or material spilled
 - f) Quantity of wastewater to be discharged
 - g) Method of treatment (if applicable)
 - h) Method to control solids discharge (if applicable)
 - i) Expected date of discharge
 - j) Project duration
- 3) Pure Waters, under Section 57 of the Worker's Compensation Law and Section 220 - Subdivision 8 of the Disability Benefits Law, is required to have on file proof that your company has worker's compensation and disability benefits for your employees. A form from your insurance carrier stating such coverage will thus be required before your permit can be processed.
- 4) A check, for the initial permit fee of \$40.00, should be made payable to the Director of Finance, County of Monroe. The request to discharge letter, the application, the insurance form and the check should be mailed to:

County of Monroe - Division of Pure Waters Industrial Waste Section 444 E. Henrietta Road Rochester, New York 14620

- As an alternative the request to discharge letter, the completed application and the insurance form may be faxed to (716) 324-1213. The check may be given to the inspector at time of field inspection.
- 5) Monroe County will schedule an inspection of the site upon receipt of the above listed material.
- 6) Please call the Industrial Waste Control Section at 760-7600, Option #4, for additional information.

SEWER USE PERMIT

l

l

ŝ

Cou	nty of Monroe Pure Waters District No	Permit N	10:
		Expires:	
		Fee:	\$40.00
Fir	m Name		
Add	ress		
Тур	e of Business or Service		
the app the con A B	The above-named applicant is permitted to disch Pure Waters Sewer system or Tributary thereto lication dated and verified by t Director of Pure Waters requires the following ditions to govern the permitted discharge:	as applie he applic	d for by an ant except
II.	The applicant further agrees to: Accept and abide by all provisions of the Sewe County and of all pertinent rules or regulatic shall be adopted in the future.		
2.	Notify the Director of Pure Waters in writing the plant sewer system or any change in indust discharge to the public sewers listed in Exhib encompasses either (1) an increase or decrease volume or strength of wastes listed in Exhibit wastes that were not listed in Exhibit "B".	rial wast it "B". in avera	es The latter ge daily
3.	Furnish the Director of Pure Waters upon reque information related to the installation or use for which this permit is sought.		
4.	Operate and maintain any waste pretreatment fa required as a condition of the acceptance into the industrial wastes involved, in an efficien times, and at no expense to the County.	the publ.	ic sewer of
5.	Cooperate with the Director of Pure Waters or in their inspecting, sampling, and study of wa facilities provided for pretreatment.		

.

6. Notify the Director of Pure Waters immediately of any accident, negligence, breakdown of pretreating equipment, or other occurrence that occasions discharge to the public sewers of any wastes or process waters not covered by this permit.

Applicant's Signature	Date
Applicant's Title	
Emergency Contact	Phone
Permit Approved by	Date
Director	of Pure Waters