2020 Drinking Water Consumer Confidence Report (Supplemental Data) Comprehensive Table of All Detected and Non-Detected Contaminants CITY OF ROCHESTER NEW YORK

Introduction

The Rochester Water Bureau has prepared the following report to provide information to you, the consumer, on the quality of our drinking water. Included within this report is general health information, water quality test results, and water system contacts.

This year, as in years past, your tap water met all USEPA and state drinking water health standards. Our system vigilantly safeguards its surface water supply, and we are able to report that the department had no violation of a contaminant level or of any other water quality standard in the previous year. This report summarizes the quality of water that we provided last year, including details about where your water comes from, what it contains, and how it compares to standards set by regulatory agencies. We are committed to providing you with this information because informed customers are our best allies.

Source Water Information.

The City of Rochester Distribution System receives its drinking water from the Hemlock Water Treatment Plant (HWTP) located in Livingston County and Shoremont Water Treatment Plant (SWTP) located in Monroe County.

What are sources of contamination to drinking water?

The sources of drinking water for Rochester are Hemlock Lake, Canadice Lake and Lake Ontario. The City also maintains three storage reservoirs. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals, and in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- (A) Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations
- (B) Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- (C) Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses.
- (D) Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban Storm water runoff, and septic systems
- (E) Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities

In order to ensure that tap water is safe to drink, USEPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. The presence of some contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline at 1-800-426-4791.

About your drinking water and the data in this report.

The EPA requires regular sampling to ensure drinking water safety. The City of Rochester Water Bureau conducts sampling for bacteriological; inorganic; radiological; synthetic organic and volatile organic contaminants. Samples were collected in 2020 for almost 200 different contaminants most of which were not detected in the City of Rochester water supply. The EPA requires us to monitor for some contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of our data, though accurate, is more than one year old.

Lead and Copper Survey.

Micrograms per Liter (µg/L):

The lead and copper rule is one of the many federal and state regulations that exist to ensure the quality and safety of everyone's drinking water. The City of Rochester Public Water Supply is in compliance with these regulations. The City of Rochester is required by the EPA and the State of New York to sample for lead and copper every three years. This involved sampling 63 locations within the distribution system. Samples were collected from locations where the highest levels of these contaminants were likely to be found. The most recent survey was completed in 2018, and the next survey is scheduled to begin in June 2021. Six out of 63 locations exceeded the lead action level of 15 ug/L and 0 out of 63 locations exceeded the copper action level of 1300 ug/L in the 2018 survey. The next survey begins in 2021.

Unregulated Contaminant Monitoring Rule 4 (UCMR4).

The 1996 Safe Drinking Water Act (SDWA) amendments require that once every five years EPA issue a new list of no more than 30 unregulated contaminants to be monitored by public water systems. UCMR4 was published on December 20,2016 and required public water systems to participate in monitoring between 2018 and 2020. The monitoring results will provide the basis for future regulatory actions to protect public health. The City of Rochester participated in UCMR4 in 2018 and 2019. The proposed fifth Unregulated Contaminant Monitoring Rule (UCMR 5) was published on March 11, 2021. UCMR 5, as proposed, would require sample collection for 30 chemical contaminants between 2023 and 2025.

The City of Rochester Water Quality Laboratory (New York State Department of Health Lab ID#10239) is approved as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (NELAC; 2003) for the Category ENVIRONMENTAL ANALYSIS POTABLE WATER. All tests results generated for this report were performed in accordance with approved methods by the City of Rochester Water Quality Laboratory or by a NELAC contract laboratory certified for drinking water analysis. Monroe County Water Authority data was provided courtesy of the MCWA Water Quality Laboratory.

Samples analyzed for this report were collected at the Entry Point (Water leaving the filtration plant) or within the Distribution System (Network of pipes and storage facilities

For more information on your drinking water contact:

Hemlock Water Quality Laboratory at 585-428-6680 Ext 1 or by email at: watertest@cityofrochester.gov New York State Department of Health at 1-800-458-1158 (within New York State)

EPA Safe Drinking Water Hotline at 1-800-426-4791

gallons of water.

gallons of water.

Definitions of some terms contained within this report.

downstream of the filtration plant that are used to deliver potable water to the consumer).

Maximum Contaminant Level Goal (MCLG):	The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety. MCLG's are not enforceable.
Maximum Contaminant level (MCL):	The highest level of contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology. MCLs are enforceable.
Secondary MCL:	A secondary standard is a non-enforceable guidline that may cause aesthetic effects such as changes to the taste, odor or color of drinking water.
Action Level (AL):	The concentrations of a contaminant, which, when exceeded triggers additional treatment, or other requirements, that a water system must follow.
LRAA:	The annual average contaminant concentration at a monitoring site. A.k.a. Locational Running Annual Average.
Maximum Residual Disinfectant Level (MRDL):	The highest level of disinfectant that is allowed in drinking water.
MFL:	Millions of fibers per liter. A units of measure for absestos fibers longer than 10 micrometers.
Milligrams per Liter (mg/L):	A unit of measure for concentration of a contaminant that is also referred to as parts per million Anology: 8.34 pounds per million

A unit of measure for concentration of a contaminant that is also referred to as parts per billion. Anology: One pound per 120 million

Nanograms per Liter (ng/L): A unit of measure for concentration of a contaminant that is also referred to as parts per trillion. Anology: One ounce per 7.5 billion

gallons of water.

NTU: Nephelometric turbidity units. A measure of water clarity. Turbidity in excess of 5 NTU is just noticeable to the average person.

Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.

The "<"symbol: A symbol which means less than. A result of < 5, for example, means that the result is below the lowest concentration that can be

detected by the analytical method for a given contaminant. Essentially means the same thing as not detected "ND".

NA or N/A not applicable

ND not detected.

Monitoring Results

The City of Rochester had no reporting violations in 2020

Information on health effects is provided for detected contaminants only.

			Hemlock Wa	ter Filtration Pla	nt				Monroe County Water Authority -SWTP				
Contaminant (units)	Sample Year	No. Tests	Minimum	Avg	Maximum	MCLG	MCL	Violation	No. Tests	Minimum	Avg	Maximum	
Alpha emitters (pCi/L)	2018	1		ND		0	15	N	1 (2012)		ND		
Uranium, Total (pCi/L)	2018	1		ND		0	30	N	1 (2012)		ND		
Combined Radium 226+228 (pCi/L)	2018	1		1.11± 0.54		0	5	N	1 (2012)		ND		

Microbiological Contaminants (E	ntry Poin	t)										
			Hemlock Wa	ter Filtration Pla	nt				Monro	e County Wa	ter Authority	-SWTP
Contaminant (units)	Sample Year	No. Tests		Total No. Positive	% Positive	MCLG	MCL	Violation	No. Tests	Minimum	Total No. Positive	% Positive
Finished Water Coliform, Total (P/A)	2020	363		0	0.0	N/A	TT	N	366		0	0.0
E.Coli (P/A)	2020	363		0	0.0		0	N	366		0	0.0

Contaminant (units)	Sample	No. Tests	Minimum	Avg	Maximum	MCLG	MCL	Violation	No. Tests	Minimum	Avg	Maximum
	Year											
Raw Water Cryptosporidium (Oocysts/L)	2020	2	0.00	0.00	0.00	0	TT	N	4		ND	
Raw Water Giardia (Oocysts/L)	2020	2	0.00	0.00	0.00	0	TT	N	4		ND	
Finished Water Turbidity (NTU)	2020	2,190	0.04	0.06	0.10		TT (mo. avg <0.3NTU for 95% of samples)	N (100%)	2,196	0.02	0.04	0.08

Health Effect: Turbidity has no health effects. However, turbidity can interfere with disinfection and provide a medium for microbial growth. Turbidity may indicate the presence of disease-causing organisms. These organisms include bacteria, viruses, and parasites that can cause symptoms such as nausea, cramps, diarrhea and associated headaches.

Contaminant (units)	Sample Year	No. Tests	Total No. Positive	Highest Month % Positive	% Positive Annual Avg	MCLG	MCL	Violation
Coliform, Total (P/A)	2020	1,931	7	3.6 (11/2020)	0.4	N/A	TT	N
Health Effect:				y present in the er forms were NOT fo				r, potentially-
E. Coli (P/A)	2020	1,931	0	NA	0.0			N
Cyptospo	oridium and (Giardia samp	les collected	from reservoir	effluent PRIOR	to chlorination	า	
Contaminant (units)	Sample Year	No. Tests	Minimum	Avg	Maximum	MCLG	MCL	Violation
lighland Reservoir Cryptosporidium Docysts/L)	2020	25	0.00	<0.01	0.02	0	TT	N
Health Effect:	Gastrointes	tinal Illness.						
lighland Reservoir Giardia (Oocysts/L)	2020	25	0.00	<0.01	0.02	0	TT	N
Health Effect:	Gastrointes	tinal Illness.				<u> </u>		
Cobbs Hill Reservoir Cryptosporidium	2020	23	0.00	0.00	0.00	0	TT	N

0.00

0.03

23

1,924

0.00

0.11

2020

2020

Cobbs Hill Reservoir Giardia (Oocysts/L)

Turbidity (NTU)

			Hemlock Wa	ter Filtration Pla	nt				Monro	e County Wa	ter Authority	/- SWTP
Contaminant (units)	Sample Year	No. Tests	Minimum	Avg	Maximum	MCLG	MCL	Violation	No. Tests	Minimum	Avg	Maximur
Alkalinity (CaCO3) (mg/L)	2020	11	65	72	77		NA	N	4	87	90	93
Health Effect	: Alkalinity ha	as no health ei	fect. It is a m	easure of a water	rs ability to neu	ralize acid.						
Calcium (mg/L)	2020	9	25	26	27		NA		4	33	34	34
Health Effect				n potable water. bute to scale form			entration by 2.5 converts t	he result to a	a value expres	ssed as mg/L	of calcium ha	irdness (as
Chloride (mg/L)	2020	7	34	36	39		250	N	4	22	25	25
Health Effect				oride add palatabi ay taste salty.	lity to water. Ti	ne EPA Seco	ndary Drinking Water Reg	ulations reco	ommend a ma	ximum conce	ntration of 25	0 mg/L for
Sulfate (mg/L)	2020	9	12	12	13		250	N	4	25	26	28

0.02

0.87

TT

TT (mo. avg <5NTU)

Ν

			Hemlock Wa	ter Filtration Pla	nt				Monro	e County Wa	ter Authority	- SWTP
Contaminant (units)	Sample Year	No. Tests	Minimum	Avg	Maximum	MCLG	MCL	Violation	No. Tests	Minimum	Avg	Maximum
Fluoride (mg/L)	2020	1,087	0.08	0.69	0.78	2.2	2.2	N	2,194	0.50	0.70	0.93
Health Effect:	treatment cl	nemical. The	average fluor		within our water	er supply is 3	tribution system. Fluoriditimes lower than the NYS the bones.					
Nitrate(mg/L)- Internal Testing (HWFP Only)		11	0.01	0.08	0.16	10	10	N		N		
Health Effect:	Infants belo of breath an	w the age of s d blue baby s	six months wh yndrome.	o drink water con	taining nitrate i		ne MCL could become se	riously ill and,	if untreated,	may die. Sym	ptoms includ	e shortness
Nitrate (mg/L)	2020	1		<0.10		10	10	N	4	0.21	0.28	0.35
Health Effect:		w the age of s d blue baby s		o drink water con	taining nitrate i	n excess of th	ne MCL could become se	riously ill and,	if untreated,	may die. Sym	ptoms includ	e shortness
Nitrite (mg/L)	2020	1		<0.01		1	1	N	4		ND	
pH (SU)	2020	366	7.02	7.87	8.13		6.5-8.5 SU	N	366	7.25	7.48	8.24
Health Effect:				PA Secondary Dri			commend a range of 6.5- nation.	8.5 SU for pH	. Low pH car	results in a b	itter metallic	taste and
Total Hardness (mg/L)	2020	1		95			NA	N	4	120	120	120
Health Effect:				I hardness. Total lon (gpg). The gr			calcium and magnesiumer is 5 gpg.	hardness an	d is expresse	d in mg/L. To	otal hardness	is
Finished Water Specific Conductivity (umhos/cm)	2020	362	266	290	312		NA	N	50	280	297	320
	source water system The	er quality and in the conductivity	is used by the	water quality laborater sourced from	oratory to differ	entiate betwe	orrelated with the amount en drinking water source ley 20 umhos/cm higher t	d from Hemlo than potable v	ck Lake and l	_ake Ontario v	vithin the dist	
Total Dissolved solids (mg/L)	2020	1		160								
Health Effect:							500	N	4	160	170	180
	Contributes	to the hardne	ess, color and	taste of the water	The EPA has	s established a	500 a secondary maximum co		4 vel concentrat		-	180
Iron (mg/L)	Contributes 2020	to the hardne	ess, color and	taste of the water	The EPA has	s established a			4 vel concentrat 4		-	180
Iron (mg/L) Magnesium (mg/L)			ess, color and		The EPA has	s established a		ontaminant le			/L for TDS.	180
Magnesium (mg/L)	2020 2020 Magnesium	1 1 is a beneficia	I nutrient four	<0.020 6.7 nd in potable wate	er. Multiplying t	the magnesiu	a secondary maximum co NA m concentration by 2.5 co	ontaminant le N	1	tion of 500 mg	/L for TDS. ND 8.5	
Magnesium (mg/L)	2020 2020 Magnesium	1 1 is a beneficia	I nutrient four	<0.020	er. Multiplying t	the magnesiu	a secondary maximum co NA m concentration by 2.5 co	ontaminant le N	1	tion of 500 mg	/L for TDS. ND 8.5	
Magnesium (mg/L) Health Effect: Potassium (mg/L)	2020 2020 Magnesium hardness (a 2020	1 1 is a beneficia s MgCO3). M	I nutrient four	<0.020 6.7 and in potable wate	er. Multiplying to	the magnesiu	NA m concentration by 2.5 columbing fixtures.	N N N onverts the re	1	tion of 500 mg	/L for TDS. ND 8.5 s mg/L of ma	
Magnesium (mg/L) Health Effect: Potassium (mg/L)	2020 2020 Magnesium hardness (a 2020	1 1 is a beneficia s MgCO3). M	I nutrient four	<0.020 6.7 and in potable wate urdness can contri	er. Multiplying to	the magnesiu	NA m concentration by 2.5 columbing fixtures.	N N N onverts the re	1	tion of 500 mg	/L for TDS. ND 8.5 s mg/L of ma	
Magnesium (mg/L) Health Effect: Potassium (mg/L) Health Effect: Sodium (mg/L)	2020 2020 Magnesium hardness (a 2020 Potassium i 2020 Sodium is a	1 1 is a beneficia s MgCO3). M 1 s an essentia 1 n essential nu	I nutrient four lagnesium ha I nutrient and utrient in smal	<0.020 6.7 and in potable water archess can contri 1.4 is present in very 20 I levels. People of	er. Multiplying to bute to scale for low levels in drawn severely rest	the magnesiu ormation on pl inking water. ricted sodium	NA m concentration by 2.5 clumbing fixtures. NA	N N Onverts the re N N N onverts the re N N N N N N N N N N N N N N N N N N N	4 1 sult to a value 1	e expressed a	/L for TDS. ND 8.5 s mg/L of ma 1.1	gnesium 16
Magnesium (mg/L) Health Effect: Potassium (mg/L) Health Effect: Sodium (mg/L) Health Effect:	2020 2020 Magnesium hardness (a 2020 Potassium i 2020 Sodium is a	1 1 is a beneficia s MgCO3). M 1 s an essentia 1 n essential nu	I nutrient four lagnesium ha I nutrient and utrient in smal	<0.020 6.7 and in potable water archess can contri 1.4 is present in very 20 I levels. People of	er. Multiplying to bute to scale for low levels in drawn severely rest	the magnesiu ormation on pl inking water. ricted sodium	NA m concentration by 2.5 coumbing fixtures. NA 50 n diets should avoid drink	N N Onverts the re N N N onverts the re N N N N N N N N N N N N N N N N N N N	4 1 sult to a value 1	e expressed a	/L for TDS. ND 8.5 s mg/L of ma 1.1	gnesium 16
Magnesium (mg/L) Health Effect: Potassium (mg/L) Health Effect: Sodium (mg/L) Health Effect: Aluminum (ug/L)	2020 2020 Magnesium hardness (a 2020 Potassium i 2020 Sodium is a more than 2 2020	1 1 is a beneficia s MgCO3). M 1 s an essentia 1 n essential nu 70 mg/L of so	I nutrient four Magnesium ha I nutrient and utrient in smal odium should	<0.020 6.7 and in potable water ardness can contribute 1.4 is present in very 20 I levels. People contribute used for driving 8.7	er. Multiplying to bute to scale for low levels in drawn severely restrinking by peop	the magnesiun ormation on pl inking water. ricted sodium le on moderat	NA m concentration by 2.5 columbing fixtures. NA 50 n diets should avoid drink tely restricted sodium die	N N Onverts the re N N N N N N N N N N N N N N N N N N N	4 1 sult to a value 1 4 staining more 4	e expressed a 14 than 20 mg/L	ND 8.5 s mg/L of ma 1.1 15 sodium. Wat	gnesium 16 er containing
Magnesium (mg/L) Health Effect: Potassium (mg/L) Health Effect: Sodium (mg/L) Health Effect: Aluminum (ug/L) Health Effect:	2020 2020 Magnesium hardness (a 2020 Potassium i 2020 Sodium is a more than 2 2020	1 1 is a beneficia s MgCO3). M 1 s an essentia 1 n essential nu 70 mg/L of so	I nutrient four Magnesium ha I nutrient and utrient in smal odium should	<0.020 6.7 and in potable water ardness can contribute 1.4 is present in very 20 I levels. People contribute used for driving 8.7	er. Multiplying to bute to scale for low levels in drawn severely restrinking by peop	the magnesiun ormation on pl inking water. ricted sodium le on moderat	NA MA m concentration by 2.5 columbing fixtures. NA 50 n diets should avoid drink tely restricted sodium dietely 200	N N Onverts the re N N N N N N N N N N N N N N N N N N N	4 1 sult to a value 1 4 staining more 4	e expressed a 14 than 20 mg/L	ND 8.5 s mg/L of ma 1.1 15 sodium. Wat	gnesium 16 er containing
Magnesium (mg/L) Health Effect: Potassium (mg/L) Health Effect: Sodium (mg/L) Health Effect: Aluminum (ug/L)	2020 2020 Magnesium hardness (a 2020 Potassium i 2020 Sodium is a more than 2 2020 High levels	1 1 is a beneficia s MgCO3). M 1 s an essentia 1 n essential nu 70 mg/L of so 1 of aluminum of	I nutrient four Magnesium ha I nutrient and utrient in smal odium should	<0.020 6.7 Ind in potable water archess can contribute in very 20 I levels. People contribute used for drawn to be used for drawn to be used for drawn to be used water. The leavest services and the services archester	er. Multiplying to bute to scale for low levels in drawn severely restrinking by peop	the magnesiun ormation on place inking water. ricted sodium le on moderate y Drinking Wa	NA m concentration by 2.5 columbing fixtures. NA 50 n diets should avoid drink tely restricted sodium die 200 atter Regulations recomme	N N Onverts the re N N N Sing water conts. N end a maximu	4 1 sult to a value 1 4 staining more 4 um concentrat	e expressed a 14 than 20 mg/L	/L for TDS. ND 8.5 s mg/L of ma 1.1 15 sodium. Wat 85 /L (=200 ug/L	gnesium 16 er containing
Magnesium (mg/L) Health Effect: Potassium (mg/L) Health Effect: Sodium (mg/L) Health Effect: Aluminum (ug/L) Health Effect: Antimony (ug/L)	2020 2020 Magnesium hardness (a 2020 Potassium i 2020 Sodium is a more than 2 2020 High levels aluminum 2020 2020 2020 2020	1 1 1 is a beneficia s MgCO3). M 1 s an essentia 1 n essential nu 270 mg/L of so 1 of aluminum of aluminum of 1	I nutrient four Magnesium ha I nutrient and utrient in smal odium should can lead to co	<0.020 6.7 Ind in potable water ranges can contribute in very 20 I levels. People contribute used for dribute used for dribut	bute to scale for low levels in drawn severely restrinking by people	the magnesius ormation on place inking water. ricted sodium le on moderate or Drinking Water. 6 0 2000	NA Ma concentration by 2.5 columbing fixtures. NA 50 In diets should avoid drink tely restricted sodium dieter Regulations recommended.	N N Onverts the re N N N Sing water corts. N end a maximu N N	4 1 sult to a value 1 4 staining more 4 um concentrat 4 4 4	tion of 500 mg e expressed a 14 than 20 mg/L 28 tion of 0.2 mg/	/L for TDS. ND 8.5 s mg/L of ma 1.1 15 sodium. Wat 85 L (=200 ug/L	gnesium 16 er containing
Magnesium (mg/L) Health Effect: Potassium (mg/L) Health Effect: Sodium (mg/L) Health Effect: Aluminum (ug/L) Health Effect: Antimony (ug/L) Arsenic (ug/L) Barium (ug/L)	2020 2020 Magnesium hardness (a 2020 Potassium i 2020 Sodium is a more than 2 2020 High levels aluminum 2020 2020 2020 2020	1 1 1 is a beneficia s MgCO3). M 1 s an essentia 1 n essential nu 270 mg/L of so 1 of aluminum of aluminum of 1	I nutrient four Magnesium ha I nutrient and utrient in smal odium should can lead to co	<0.020 6.7 Ind in potable water ranges can contribute in very 20 I levels. People contribute used for dribute used for dribut	bute to scale for low levels in drawn severely restrinking by people	the magnesius ormation on place inking water. ricted sodium le on moderate or Drinking Water. 6 0 2000	NA Ma concentration by 2.5 columbing fixtures. NA 50 In diets should avoid drink tely restricted sodium dieter Regulations recommended to the columbination of the columbinat	N N Onverts the re N N N Sing water corts. N end a maximu N N	4 1 sult to a value 1 4 staining more 4 um concentrat 4 4 4	tion of 500 mg e expressed a 14 than 20 mg/L 28 tion of 0.2 mg/	ND 8.5 s mg/L of ma 1.1 15 sodium. Wat 85 L (=200 ug/L ND ND	gnesium 16 er containing 200) for
Magnesium (mg/L) Health Effect: Potassium (mg/L) Health Effect: Sodium (mg/L) Health Effect: Aluminum (ug/L) Health Effect: Antimony (ug/L) Arsenic (ug/L) Barium (ug/L) Health Effect:	2020 2020 Magnesium hardness (a 2020 Potassium i 2020 Sodium is a more than 2 2020 High levels aluminum 2020 2020 2020 Some peop	1 1 1 is a beneficial s MgCO3). M 1 s an essential nu (70 mg/L of so 1 of aluminum of 1 1 te who drink v	I nutrient four Magnesium ha I nutrient and utrient in smal odium should can lead to co	<0.020 6.7 Ind in potable water and in potable water and contribute in the second contribute in	bute to scale for low levels in drawn severely restrinking by people	the magnesius or mation on place inking water. ricted sodium is on moderate o	NA m concentration by 2.5 columbing fixtures. NA 50 n diets should avoid drink tely restricted sodium die 200 ater Regulations recommended 10 2000 ars could experience an i	N N Onverts the re N N N Sing water conts. N end a maximum N N N ncrease in the	4 1 sult to a value 1 4 staining more 4 um concentrat 4 4 4 eir blood press	tion of 500 mg e expressed a 14 than 20 mg/L 28 tion of 0.2 mg/	ND 8.5 s mg/L of ma 1.1 15 sodium. Wat 85 L (=200 ug/L ND ND 21	gnesium 16 er containing 200) for

			Hemlock Wa	ter Filtration Pla	nt				Monro	e County Wa	ter Authority	- SWTP
Contaminant (units)	Sample	No. Tests	Minimum	Avg	Maximum	MCLG	MCL	Violation	No. Tests	Minimum	Avg	Maximum
	Year											
Copper (ug/L)	2020	1		4		1300	1300	N	4		ND	
Health Effect:	Copper is an	n essential nu	trient, but son	ne people who dri	nk water conta	ining copper i	n excess of the action leve	el over a rela	itively short a	mount of time	could experie	ence
	gastrointesti	nal distress. S	Some people	who drink water o	ontaining copp	er in excess o	of the action level over ma	ny years cou	ıld suffer liver	or kidney dan	nage. People	with
	Wilsons Dis	ease should o	consult their p	ersonal doctor.								
Cyanide (mg/L)	2020	1		<0.020		0.2	0.2	N	4		ND	
Lead (ug/L)	2020	1		<1		0	15	N	4		ND	
Manganese (ug/L)	2020	1		<2.0			50	N	4		ND	
Nickel (ug/L)	2020	1		<1.0			100	N	4		ND	
Selenium (ug/L)	2020	1		<2.0		50	50	N	4		ND	
Silver (ug/L)	2020	1		<2.0			100	N	4		ND	
Thallium (ug/L)	2020	1		<0.30		0.5	2	N	4		ND	
Zinc (ug/L)	2020	1		<5.0			5000	N	4		ND	
Mercury (ug/L)	2020	1		<0.1		2	2	N	4		ND	

Inorganic Contaminants and/or A	nalytes (Distributio	n System					
Contaminant (units)	Sample Year	No. Tests	Minimum	Avg	Maximum	MCLG	MCL	Violation
Fluoride-Distribution System (mg/L)	2020	323	0.55	0.68	0.73	4	4	N
1776 Dewey Ave Asbestos (MFL)	2014	1		ND		7	7	N

Lead and Copper Survey (Distrib	ution Sys	tem)													
Contaminant (units)	Sample Year	No. Locations	Minimum	Avg	Maximum	90th Percentile	MCLG	AL	Violation						
Copper (ug/L)	2018	63	<1	1.40	630	217	1300	1300	N						
	Health Effect: Copper is an essential nutrient, but some people who drink water containing copper in excess of the action level over a relatively short amount of time could experience gastrointestinal distress. Some people who drink water containing copper in excess of the action level over many years could suffer liver or kidney damage. People with Wilson's Disease should consult their personal doctor.														
Lead (ug/L)	2018	63	<1	6.58	63	11.7	0	15	N						
		deficits in atte					physical or mental develor over many years could c								

Disinfectants and Disinfection By	y-Product	s (Entry P	oint)					
Contaminant (units)	Sample	No. Tests	Minimum	Avg	Maximum	MCLG	MCL (MRDL for Chlorine)	Violation
Total Organic Carbon (TOC) (mg/L)	2020	1	2.26	2.26	2.26	N/A	TT	N
Health Effect:	disinfection containing the	byproducts. T nese byprodu	hese byproducts in excess	icts include trihalo	methanes (THead to adverse	Ms) and halo health effects	vides a medium for the for acetic acids (HAAs). Drink s, liver, or kidney problems	ing water
UV254 (abs/cm)	2020	1	0.028				NA	N
Health Effect:				vith UV-254. There		•	osorbance and total organ	ic carbon
Free Chlorine Residual (mg/L)	2020	2,182	0.71	0.84	1.10	4	4	N
Health Effect:							sperience irritating effects RDL could experience stor	
Bromodichloromethane (ug/L)	2020	1		2.2			NA	N

Contaminant (units)	Sample	No. Tests	Minimum	Avg	Maximum	MCLG	MCL	Violation
							(MRDL for Chlorine)	
Bromoform (ug/L)	2020	1		<0.5			NA	N
Chloroform (ug/L)	2020	1		4.1			NA	N
Dibromochloromethane (ug/L)	2020	1		0.6			NA	N
Total Trihalomethanes (ug/L)	2020	1		7			80	N
Health Effect:	Increased ri	sk of cancer a	associated with	long-term exp	osure above the	MCL.		
Dibromoacetic Acid (ug/L)	2020	1		<1.0			NA	N
Dichloroacetic Acid (ug/L)	2020	1		3.2			NA	N
Monobromoacetic Acid (ug/L)	2020	1		<1.0			NA	N
Monochloroacetic Acid (ug/L)	2020	1		<2.0			NA	N
Trichloroacetic Acid (ug/L)	2020	1		1.9			NA	N
Haloacetic Acids (5) (ug/L)	2020	1		5			60	N
Health Effect:	Increased ri	sk of cancer a	associated with	long-term exp	osure above the	MCL		<u></u>

Contaminant (units)	Sample	No. Tests	Minimum	Avg	Maximum	MCLG	MCL (MRDL for Chlorine)	Violation	Maximum LRAA
Free Chlorine Residual (mg/L)	2020	2,975	0.11	0.80	2.00	4	4	N	
Health E			Ū				xperience irritating effects experience stomach disco	•	and nose.
Bromodichloromethane (ug/L)	2020	32	7	9	12		NA	N	
Bromoform (ug/L)	2020	32	0	0	1		NA	N	
Chloroform (ug/L)	2020	32	10	29	46		NA	N	
Dibromochloromethane (ug/L)	2020	32	1	3	6		NA	N	
Total Trihalomethanes (ug/L)	2020	32	20	41	60		80	N	50
Health E	ffect: Increased ri	sk of cancer a	ssociated with	n long-term exp	osure above the	MCL.			
Dibromoacetic Acid (ug/L)	2020	32	0	0	0		NA	N	
Dichloroacetic Acid (ug/L)	2020	32	4	11	18		NA	N	
Monobromoacetic Acid (ug/L)	2020	32	0	0	0		NA	N	
Monochloroacetic Acid (ug/L)	2020	32	0	0	3		NA	N	
Trichloroacetic Acid (ug/L)	2020	32	4	12	18		NA	N	
Haloacetic Acids (5) (ug/L)	2020	32	9	23	32		60	N	34

Semi-Volatile Organic Contamina	ants (Entr	y Point)										
_			Hemlock Wa	ter Filtration Pla	nt				Monroe County Water Authority-SWTP			
Contaminant (units)	Sample Year	No. Tests	Minimum	Avg	Maximum	MCLG	MCL***	Violation	No. Tests	Minimum	Avg	Maximum
1,2-Dibromo-3-Chloropropane (DBCP) (ug/L)	2020	1		<0.01		0	0.2	N	1		ND	
1,2-Dibromoethane (EDB) (ug/L)	2020	1		<0.01		0	0.05	N	1		ND	
1,4-Dioxane (ug/L)	2020	4	< 0.07	<0.07	< 0.07	NA	1	N	2		ND	
Aroclor 1016 (PCB) (ug/L)	2020	1		<0.08			NA	N	0			
Aroclor 1221 (PCB) (ug/L)	2020	1		<0.19			NA	N	0			
Aroclor 1232 (PCB) (ug/L)	2020	1		<0.23			NA	N	0			
Aroclor 1242 (PCB) (ug/L)	2020	1		<0.26			NA	N	0			
Aroclor 1248 (PCB) (ug/L)	2020	1		<0.1			NA	N	0			

Semi-Volatile Organic Contamin	,		Hemlock Wa	ter Filtration Pla	nt				Monro	e County Wa	ter Authorit	y-SWTP
Contaminant (units)	Sample Year	No. Tests	Minimum	Avg	Maximum	MCLG	MCL***	Violation	No. Tests		Avg	Maximum
Aroclor 1254 (PCB) (ug/L)	2020	1		<0.1			NA	N	0			
Aroclor 1260 (PCB) (ug/L)	2020	1		<0.2			NA	N	0			
Total PCB's (ug/L)	2020	0				0	0.5	N	4		ND	
Chlordane (ug/L)	2020	1		<0.1		0	2	N	1		ND	
Toxaphene (ug/L)	2020	1		<1.0		0	3	N	4		ND	
2,4-D (ug/L)	2020	1		<0.1			50	N	1		ND	
Dalapon (ug/L)	2020	1		<1.0		200	200	N	1		ND	
Dacthal, mono & di acid, DCPA (ug/L)	2020	1		<0.5			50	N	1		ND	
Dicamba (ug/L)	2020	1		<0.1			50	N	1		ND	
Dinoseb (ug/L)	2020	1		<0.1		7	7	N	1		ND	
Pentachlorophenol (ug/L)	2020	1		<0.04		0	1	N	1		ND	
Picloram (ug/L)	2020	1		<0.1		500	500	N	1		ND	
Perfluorooctane sulfonate (PFOS) (ng/L)	2020	5	<2.00	<2.00	<2.00	0	10	N	2	2.50	2.55	2.60
	impaired fer humans. Th levels of PF	tal growth and ne United Stat OS in animals	l developmen es Environme s.	t. Studies of high- ental Protection Aç	level exposures gency considers	s to PFOS in p s PFOS as ha	rels. The most consistent people provide evidence t aving suggestive evidence	that some of e for causing	the health effe cancer based	ects seen in a I on studies of	nimals may a lifetime expo	lso occur in sure to high
Perfluorooctanoic acid (PFOA) (ng/L)	2020	5	<2.00	<2.00	<2.00	0	10 yels. The most consistent	N	2	2.10	2.10	2.10
2,4,5-TP (Silvex) (ug/L)	levels of PF 2020	OA in animal:	S.	<0.1		50	50	N	11		ND	
Alachlor (ug/L)	2020	1		<0.1		0	2	N	4		ND	
Aldrin (ug/L)	2020	1		<0.1			50	N	4		ND	
Atrazine (ug/L)	2020	1		<0.1		3	3	N	4		ND	
Benzo(a)pyrene (ug/L)	2020	1		<0.02		0	0.2	N	4		ND	
gama-BHC (Lindane) (ug/L)	2020	1		<0.02		0.2	0.2	N	4		ND	
Butachlor (ug/L)	2020	1		<0.1			50	N	4		ND	
Dieldrin (ug/L)	2020	1		<0.1			50	N	4		ND	
Di(2-ethylhexyl) adipate (ug/L)	2020	1		<0.6		400	400	N	4		ND	
Di(2-ethylhexyl) phthalate (ug/L)	2020	1		<0.6		0	6	N	4		ND	
Endrin (ug/L)	2020	1		<0.01		2	2	N	4		ND	
Heptachlor (ug/L)	2020	1		<0.04		0	0.4	N	4		ND	
Heptachlor epoxide (ug/L)	2020	1		<0.02		0	0.2	N	4		ND	
Hexachlorobenzene (ug/L)	2020	1		<0.1		0	1	N	4		ND	
Hexachlorocyclopentadiene (ug/L)	2020	1		<0.1		50	50	N	4		ND	
Methoxychlor (ug/L)	2020	1		<0.1		40	40	N	4		ND	
Metolachlor (ug/L)	2020	1		<0.1			50	N	4		ND	
Metribuzin (ug/L)	2020	1		<0.1			50	N	4		ND	
Propachlor (ug/L)	2020	1		<0.1			50	N	4		ND	
Simazine (ug/L)	2020	1		<0.07		4	4	N	4		ND	
Aldicarb (ug/L)	2020	1		<0.5			50	N	4		ND	
Aldicarb sulfone (ug/L)	2020	1		<0.7			50	N	4		ND	
Aldicarb sulfoxide (ug/L)	2020	1		<0.5			50	N	4		ND	
Carbaryl (ug/L) Carbofuran (ug/L)	2020 2020	1		<0.5 <0.9		40	50 40	N	4		ND ND	

Semi-Volatile Organic Contamir	Semi-Volatile Organic Contaminants (Entry Point)											
			Hemlock Water Filtration Plant					Monro	Monroe County Water Authority-SWTP			
Contaminant (units)	Sample Year	No. Tests	Minimum	Avg	Maximum	MCLG	MCL***	Violation	No. Tests	Minimum	Avg	Maximum
	i c ai											
Glyphosate (ug/L)	2020	1		<6.0		700	700	N	1		ND	
Endothall (ug/L)	2020	1		<9.0		100	100	N	4		ND	
Diquat (ug/L)	2020	1		<0.4		20	20	N	4		ND	
2,3,7,8-TCDD (Dioxin) (pg/L)	2020	1		<5.00		0	30	N	4		ND	

Volatile Organic Contaminants (Entry Poil											
				er Filtration Pl						nroe County		
Contaminant (units)	Sample Year	No. Tests	Minimum	Avg	Maximum	MCLG	MCL***	Violation	No. Tests	Minimum	Avg	Maximum
Benzene (ug/L)	2020	1		<0.5		0	5	N	4		ND	
Bromobenzene (ug/L)	2020	1		<0.5			5	N	4		ND	
Bromochloromethane (ug/L)	2020	1		<0.5			5	N	4		ND	
Bromomethane (ug/L)	2020	1		<0.5			5	N	4		ND	
n-Butylbenzene (ug/L)	2020	1		<0.5			5	N	4		ND	
sec-Butylbenzene (ug/L)	2020	1		<0.5			5	N	4		ND	
tert-Butylbenzene (ug/L)	2020	1		<0.5			5	N	4		ND	
Carbon tetrachloride (ug/L)	2020	1		<0.5		0	5	N	4		ND	
Chlorobenzene (ug/L)	2020	1		<0.5			5	N	4		ND	
Chloroethane (ug/L)	2020	1		<0.5			5	N	4		ND	
Chloromethane (ug/L)	2020	1		<0.5			5	N	4		ND	
2-Chlorotoluene (ug/L)	2020	1		<0.5			5	N	4		ND	
4-Chlorotoluene (ug/L)	2020	1		<0.5			5	N	4		ND	
Dibromomethane (ug/L)	2020	1		<0.5			5	N	4		ND	
1,2-Dichlorobenzene (ug/L)	2020	1		<0.5			5	N	4		ND	1
1,3-Dichlorobenzene (ug/L)	2020	1		<0.5			5	N	4		ND	1
1,4-Dichlorobenzene (ug/L)	2020	1		<0.5			5	N	4		ND	1
Dichlorodifluoromethane (ug/L)	2020	1		<0.5			5	N	4		ND	
1,1-Dichloroethane (ug/L)	2020	1		<0.5		0	5	N	4		ND	1
1,2-Dichloroethane (ug/L)	2020	1		<0.5		0	5	N	4		ND	1
1,1-Dichloroethylene (ug/L)	2020	1		<0.5		5	5	N	4		ND	1
cis-1,2-Dichloroethylene (ug/L)	2020	1		<0.5		5	5	N	4		ND	
trans-1,2-Dichloroethylene (ug/L)	2020	1		<0.5		5	5	N	4		ND	
Dichloromethane (ug/L)	2020	1		<0.5		0	5	N	4		ND	
1,2-Dichloropropane (ug/L)	2020	1		<0.5		0	5	N	4		ND	
1,3-Dichloropropane (ug/L)	2020	1		<0.5			5	N	4		ND	
2,2-Dichloropropane (ug/L)	2020	1		<0.5			5	N	4		ND	
1,1-Dichloropropylene (ug/L)	2020	1		<0.5			5	N	4		ND	
cis-1,3-Dichloropropylene (ug/L)	2020	1		<0.5			5	N	4		ND	
trans-1,3-Dichloropropylene (ug/L)	2020	1		<0.5			5	N	4		ND	
1,3-Dichloropropylene, cis & trans (ug/L)	2020	1		<0.5			5	N	4		ND	
Ethyl benzene (ug/L)	2020	1		<0.5		5	5	N	4		ND	
Hexachlorobutadiene (ug/L)	2020	1		<0.5			5	N	4		ND	
Isopropylbenzene (ug/L)	2020	1		<0.5			5	N	4		ND	
4-Isopropyltoluene (ug/L)	2020	1		<0.5			5	N	4		ND	
Methyl-t-butyl ether (MTBE) (ug/L)	2020	1		<0.5			10	N	4		ND	
Naphthalene (ug/L)	2020	1		<0.5			5	N	4		ND	
n-Propylbenzene (ug/L)	2020	1		<0.5			5	N	4		ND	

Volatile Organic Contaminant	s (Entry Poir	nt)										
			Hemlock Wat	er Filtration Pla	ınt				Мо	nroe County	Water Auth	ority
Contaminant (units)	Sample Year	No. Tests	Minimum	Avg	Maximum	MCLG	MCL***	Violation	No. Tests	Minimum	Avg	Maximum
Styrene (ug/L)	2020	1		<0.5			5	N	4		ND	
1,1,1,2-Tetrachloroethane (ug/L)	2020	1		<0.5			5	N	4		ND	
1,1,2,2-Tetrachloroethane (ug/L)	2020	1		<0.5			5	N	4		ND	
Tetrachloroethylene (ug/L)	2020	1		<0.5		0	5	N	4		ND	
Toluene (ug/L)	2020	1		<0.5			5	N	4		ND	
1,2,3-Trichlorobenzene (ug/L)	2020	1		<0.5			5	N	4		ND	
1,2,4-Trichlorobenzene (ug/L)	2020	1		<0.5		5	5	N	4		ND	
1,1,1-Trichloroethane (ug/L)	2020	1		<0.5		5	5	N	4		ND	
1,1,2-Trichloroethane (ug/L)	2020	1		<0.5		3	3	N	4		ND	
Trichloroethylene (ug/L)	2020	1		<0.5		0	5	N	4		ND	
Trichlorofluoromethane (ug/L)	2020	1		<0.5			5	N	4		ND	
1,2,3-Trichloropropane (ug/L)	2020	1		<0.5			5	N	4		ND	
1,2,4-Trimethylbenzene (ug/L)	2020	1		<0.5			5	N	4		ND	
1,3,5-Trimethylbenzene (ug/L)	2020	1		<0.5			5	N	4		ND	
Vinyl chloride (ug/L)	2020	1		<0.5		0	2	N	4		ND	
1,2-Xylene (ug/L)	2020	1		<0.5			5	N	4		ND	
1,3 + 1,4-Xylene (ug/L)	2020	1		<0.5			5	N	4		ND	
Xylenes, Total (ug/L)	2020	1		<0.5			15	N	4		ND	

Contaminant (units)	Sample	No. Tests	Minimum	Avg	Maximum	MCLG	MCL	Violation
	Year							
Geosmin (ng/L)	2020	1		<2.0			NA	N
IBMP (ng/L)	2020	1		<2.0				N
IPMP (ng/L)	2020	1		<2.0				N
MIB (ng/L)	2020	1		<2.0			NA	N
2,4,6-Trichloroanisole (TCA) (ng/L)	2020	1		<2.0				N

Surfactants (Entry Point)								
Contaminant (units)	Sample Year	No. Tests	Minimum	Avg	Maximum	MCLG	MCL	Violation
Foaming Agents (MBAS) (mg/L)	2020	1		ND				N

Contaminant (units)	Sample			oint)- MCL Noter Filtration Pla			roe County Water Autho	rity Shoro	mont		
Containmant (units)											
	Year	No. Tests	Minimum	Avg	Maximum	No. Tests	Minimum	Avg	Maximum		
Chromium, Hexavalent (ug/L)	2020	1	< 0.02	<0.02	<0.02	0					
Perfluorohexanesulfonic acid (ng/L) PFHxS	2020	1	< 0.02	<0.02	< 0.02	2	ND	1	2		
Health Effect:	PFHxS caus	sed a range o	f health effect	s when studied in	animals at hig	h exposure lev	vels. The most consistent	findings we	re effects on		
	the liver and	d immune syst	tem and impa	ired fetal growth a	and developme	nt. Studies of	high-level exposures to P	FHxS in pec	ple provide		
	and dames and	- (())				and the following in the con-	The United Ctates Facilies		i c		

the liver and immune system and impaired fetal growth and development. Studies of high-level exposures to PFHxS in people provide evidence that some of the health effects seen in animals may also occur in humans. The United States Environmental Protection Agency considers PFHxS as having suggestive evidence for causing cancer based on studies of lifetime exposure to high levels of PFHxS in animals.

Eme	erging Co	ntaminant	s (Entry P	oint)- MCL N	lot Establisl	ned- Not Reg	julated		
Contaminant (units)	Sample		Hemlock Wa	ter Filtration Pl	ant	Monro	e County Water Aut	thority- Shore	emont
	Year	No. Tests	Minimum	Avg	Maximum	No. Tests	Minimum	Avg	Maximum
Perfluorobutanesulfonic acid, PFBS (ng/L)	2020	1	<0.02	<0.02	<0.02	2		ND	
Perfluoroheptanoic acid, PFHpA (ng/L)	2020	1	<0.02	<0.02	<0.02	2		ND	
Perfluorononanoic acid, PFNA (ng/L)	2020	1	< 0.02	<0.02	<0.02	2		ND	
Perfluorodecanoic acid, PFDA (ng/L)	2020	1	< 0.02	<0.02	< 0.02	2		ND	
Perfluorohexanoic acid, PFHxA (ng/L)	2020	1	< 0.02	<0.02	< 0.02	2		ND	
Perfluorododecanoic acid, PFDoA (ng/L)	2020	1	< 0.02	<0.02	< 0.02	2		ND	
Perfluorotridecanoic acid, PFTrDA (ng/L)	2020	1	< 0.02	<0.02	< 0.02	2		ND	
Perfluoroundecanoic acid, PFUnA (ng/L)	2020	1	< 0.02	<0.02	< 0.02	2		ND	
N-ethyl Perfluorooctanesulfonamidoacetic acid (ng/L)	2020	1	<0.02	<0.02	<0.02	2		ND	
N-methyl Perfluorooctanesulfonamidoacetic acid (ng/L)	2020	1	<0.02	<0.02	<0.02	2		ND	
HFPO-DA/GenX (ng/L)	2020	1	< 0.02	<0.02	< 0.02	2		ND	
ADONA (ng/L)	2020	1	< 0.02	<0.02	< 0.02	2		ND	
9CI-PF3ONS/F-53B Major (ng/L)	2020	1	< 0.02	<0.02	< 0.02	2		ND	
11CI-PF3OUdS/F-53B Minor (ng/L)	2020	1	< 0.02	< 0.02	< 0.02	2		ND	
Perfluorotetradecanoic acid, PFTeDA (ng/L)	2020	1	< 0.02	< 0.02	< 0.02	2		ND	

UCMR4 E	ntry Points - A	Alcohols, Met	als, Pesticide	s, SVOCs and C	yanototoxins	*- 2019	
Contaminant	Units	Hemlo	ck Water Filtr	ation Plant	MCWA	- Mt. Read Blv	/d. Booster Pump
		No. Tests	Minimum	Maximum	No. Tests	Minimum	Maximum
Germanium	ug/L	3	< 0.300	<0.300	3	< 0.300	<0.300
Manganese	ug/L	3	< 0.400	<0.400	3	< 0.400	0.776
alpha-Hexachlorocyclohexane	ug/L	3	< 0.010	<0.010	3	<0.010	<0.010
Chlorpyrfos	ug/L	3	< 0.030	<0.030	3	<0.030	<0.030
Dimethipin	ug/L	3	< 0.200	<0.200	3	<0.200	<0.200
Ethoprop	ug/L	3	< 0.030	<0.030	3	< 0.030	<0.030
Oxyfluoren	ug/L	3	< 0.050	<0.050	3	<0.050	<0.050
Profenofos	ug/L	3	< 0.300	<0.300	3	<0.300	<0.300
Tebuconazole	ug/L	3	<0.200	<0.200	3	<0.200	<0.200
Permethrin, cis & trans	ug/L	3	<0.040	<0.040	3	<0.040	<0.040
Tribufos	ug/L	3	< 0.070	<0.070	3	<0.070	<0.070
Butylated hydroxyanisole	ug/L	3	< 0.030	<0.030	3	<0.030	<0.030
o-Toluidene	ug/L	3	< 0.007	<0.007	3	<0.007	<0.007
Quinoline	ug/L	3	<0.020	<0.020	3	<0.020	<0.020
1-Butanol	ug/L	3	<2.000	<2.000	3	<2.000	<2.000
2-Methoxyethanol	ug/L	3	< 0.400	<0.400	3	<0.400	<0.400
2-Propen-1-ol	ug/L	3	< 0.500	<0.500	3	< 0.500	<0.500
Total Microcystin/Nodularin	ug/L	8	< 0.300	<0.300	8	<0.300	<0.300
Anatoxin-A	ug/L	8	<0.030	<0.030	8	<0.030	< 0.030
Cylindrospermopsin	ug/L	8	< 0.090	<0.090	8	< 0.090	<0.090

UCMR4 Indicators - So	UCMR4 Indicators - Source Water (Hemlock Lake)- 2019										
Contaminant Units Hemlock Water Filtration Plant											
		No. Tests	Minimum	Maximum							
Bromide	ug/L	3	<20	22							
Total Organic Carbon	ug/L	3	2,480	2,680							

UCMR4 Haloacetic Acids - Disinfection Byproducts- 8 Sample Sites- 2019				
Contaminant	Units	No. Tests	Minimum	Maximum
Total HAA (5)*	ug/L	24	14	39
Total HAA (6) Br**	ug/L	24	6	10
Total HAA (9)***	ug/L	24	22	48
Bromochloroacetic acid	ug/L	24	1.490	4.340
Bromodichloroacetic acid	ug/L	24	1.940	4.240
Chlorodibromoacetic acid	ug/L	24	< 0.300	0.760
Dibromoacetic acid	ug/L	24	< 0.300	0.510
Dichloroacetic acid	ug/L	24	4.300	20.700
Monobromoacetic acid	ug/L	24	< 0.300	0.348
Monochloroacetic acid	ug/L	24	<2.000	<2.000
Tribromoacetic acid	ug/L	24	<2.000	<2.000
Trichloroacetic acid	ug/L	24	7.500	18.800

^{*} Sum of dibromoacetic acid+dichloroacetic acid+monobromoacetic acid+monochloroacetic acid+Trichloroacetic acid. Currently regulated by the EPA with an MCL of 60 ug/L.

Footnotes:

- *** In Part 5, Subpart 5-1 of the New York State Sanitary Code general organic chemicals are catagorized as Principle Organic Contaminants (POCs) or Unspecified Organic Contaminants (UOCs). A POC is defined as any organic compound belonging to the following classes, except for chloroform, dibromochloromethane, bromodichloromethane, bromoform and any other chemical contaminant with a specific MCL listed in Subpart 5-1.52:
 - (1) Halogenated Alkane.
 - (2) Halogenated Ether.
 - (3) Halobenzenes and Substituted Halobenzenes.
 - (4) Benzene and Alkyl- or Nitrogen-Substituted Benzenes.
 - (5) Substituted, Unsaturated Hydrocarbons.
 - (6) Halogenated Nonaromatic Cyclic Hydrocarbons.

A UOC is defined as any organic compound not otherwise specified in this Subpart.

Per Table 3 of Subpart 5-1.52 a POC is assigned an MCL of 0.005 mg/L (5 ug/L) and a UOC has an MCL of 0.05 mg/L (50 ug/L). The Total POCs+UOCs MCL is 0.1 mg/L (100 ug/L).

^{**}Sum of the 6 haloacetic acids in the above table that contain bromide. No MCL established.

^{***}Sum of all 9 haloacetic acids in the above table. No MCL established.