2021 Drinking Water Consumer Confidence Report (Supplemental Data)

CITY OF ROCHESTER, NEW YORK

Introduction

The Rochester Water Bureau has prepared the following report to provide information to you, the consumer, on the quality of our drinking water. Included within this report is general health information, water quality test results, and water system contacts.

This year, as in years past, your tap water met all USEPA and state drinking water health standards. Our system vigilantly safeguards its surface water supply, and we are able to report that the department had no violation of a contaminant level or of any other water quality standard in the previous year. This report summarizes the quality of water that we provided last year, including details about where your water comes from, what it contains, and how it compares to standards set by regulatory agencies. We are committed to providing you with this information because informed customers are our best allies.

Source Water Information.

The City of Rochester Distribution System receives its drinking water from the Hemlock and Shoremont Water Filtration Plants located in Livingston and Monroe Counties.

What are sources of contamination to drinking water?

The sources of drinking water for Rochester are Hemlock Lake, Canadice Lake and Lake Ontario. The City also maintains three storage reservoirs. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals, and in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- (A) Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations
- (B) Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- (C) Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses.
- (D) Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban Storm water runoff, and septic systems
- (E) Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities

In order to ensure that tap water is safe to drink, USEPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. The presence of some contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline at 1-800-426-4791.

About your drinking water and the data in this report.

The EPA requires regular sampling to ensure drinking water safety. The City of Rochester Water Bureau conducts sampling for bacteriological; inorganic; radiological; synthetic organic and volatile organic contaminants. Samples were collected in 2021 for almost 200 different contaminants most of which were not detected in the City of Rochester water supply. The EPA requires us to monitor for some contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of our data, though accurate, is more than one year old.

2021 Lead and Copper Survey.

The lead and copper rule is one of the many federal and state regulations that exist to ensure the quality and safety of everyone's drinking water. The City of Rochester Public Water Supply is in compliance with these regulations. The City of Rochester is required by the EPA and the State of New York to sample for lead and copper every three years. This involved analysis of 105 samples collected from the distribution system. Samples were collected from locations where the highest levels of these contaminants were likely to be found. The most recent survey was completed in 2021 with the collection of 105 tap water samples from homes throughout the Clty. The 90th percentile for lead was 9 ug/L with a range from <1 ug/L to a maximum of 33 ug/L. The 90th percentiles are below the current action levels for lead and copper (90th percentile: 90% of samples were at, or below, the value reported).

Unregulated Contaminant Monitoring Rule 4 (UCMR4).

The 1996 Safe Drinking Water Act (SDWA) amendments require that once every five years EPA issue a new list of no more than 30 unregulated contaminants to be monitored by public water systems. UCMR4 was published on December 20,2016 and required public water systems to participate in monitoring between 2018 and 2020. The monitoring results provided the basis for future regulatory actions to protect public health. The City of Rochester participated in UCMR4 in 2018 and 2019.

Quality Assurance - Reliability and Accuracy of Reported Data

A quality assurance program is necessary for all drinking water laboratories to document analytical uncertainty and to promote confidence in analytical results. Our Quality Assurance Program consists of two parts: Quality Control and Quality Assessment. Our Quality Control program consists of laboratory practices that are undertaken to insure accuracy and reliability in analytical results. Our Quality Assessment program consists of activities to monitor and document the effectiveness of our Quality Control Program. Assessment activities include quarterly data integrity audits, annual quality system audits, participation in proficiency test programs twice per year and biannual audits conducted by a New York State DOH ELAP auditor.

The City of Rochester Water Quality Laboratory (New York State Department of Health Lab ID#10239) is approved as an Environmental Laboratory in conformance with the National Environmental Laboratory Accreditation Conference Standards (NELAC; 2003) for the Category ENVIRONMENTAL ANALYSIS POTABLE AND NON-POTABLE WATER. All tests results generated for this report were performed in accordance with approved methods by the City of Rochester Water Quality Laboratory or by a NELAC contract laboratories certified for the analysis of potable and non-potable water. Monroe County Water Authority data is provided courtesy of the MCWA Water Quality Laboratory.

For more information on your drinking water contact:

Hemlock Filtration Plant Water Quality Laboratory at 585-428-6680 ext 1

Laboratory Director/Water Quality Chemist at 585-428-6011

New York State Department of Health at 1-800-458-1158 (within New York State)

EPA Safe Drinking Water Hotline at 1-800-426-4791 Monroe County Water Authority at 585-442-2000

Definitions of some terms contained within this report.

Samples analyzed for this report were collected at the Entry Point (Water leaving the filtration plant), from the source (Hemlock Lake), or within the Distribution System (Network of pipes and storage facilities downstream of the filtration plant that are used to deliver potable water to the consumer). Entry Point and Distribution System = Potable Water; Source Water = Non-potable Water.

Maximum Contaminant Level Goal (MCLG):

The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety. MCLG's are not enforceable.

Maximum Contaminant level (MCL):

The highest level of contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology. MCLs are enforceable.

Secondary MCL: A secondary standard is a non-enforceable guidline that may cause aesthetic effects such as changes to the taste, odor or color of drinking water.

Action Level (AL):

The concentrations of a contaminant, which, when exceeded triggers additional treatment, or other requirements, that a water system

LRAA: The annual average contaminant concentration at a monitoring site. A.k.a. Locational Running Annual Average.

Maximum Residual Disinfectant Level (MRDL): The highest level of disinfectant that is allowed in drinking water.

MFL: Millions of fibers per liter. A units of measure for absestos fibers longer than 10 micrometers.

Milligrams per Liter (mg/L): A unit of measure for concentration of a contaminant that is also referred to as parts per million. Anology: 8.34 pounds per million

gallons.

Micrograms per Liter (µg/L): A unit of measure for concentration of a contaminant that is also referred to as parts per billion. Anology: 1 pound per 120 million gallons.

Nanograms per Liter (ng/L): A unit of measure for concentration of a contaminant that is also referred to as parts per trillion. Anology: 1 ounce per 7.5 billion gallons.

NTU: Nephelometric turbidity units. A measure of water clarity. Turbidity in excess of 5 NTU is just noticeable to the average person.

Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.

The "<"symbol and ND A symbol which means less than. A result of < 5, for example, means that the result is below the reporting limit for the analytical method.

Essentially means the same thing as not detected "ND".

NA or N/A not applicable

Monitoring Results

The City of Rochester had no reporting violations in 2021

This summary contains results for both detected and non-detected contaminants. Information on health effects is provided for detected contaminants only.

			Hemlock Wa	ter Filtration Pla	ınt				Мо	nroe County	Water Author	rity
Contaminant (units)	Sample Year	No. Tests	Minimum	Avg	Maximum	MCLG	MCL	Violation	No. Tests	Minimum	Avg	Maximum
Alpha emitters (pCi/L)	2019	1		ND		0	15	N	1 (2012)		ND	
Beta emitters (pCi/L)	2019	1		ND		0		N	1 (2012)		ND	
Uranium, Total (pCi/L)	2019	1		ND		0	30	N	1 (2012)		ND	
Combined Radium 226+228 (pCi/L)	2019	1		1.11 ± 0.54		0	5	N	1 (2012)		ND	
Health Effe							r many years may have an porting level is the lowest					

			Hemlock Wa	ter Filtration Pla	ant				Мо	nroe County	Water Auth	ority	
Contaminant (units)	Sample Year	No. Tests		Total No. Positive	% Positive	MCLG	MCL	Violation	No. Tests		Total No. Positive	% Positive	
Finished Water Coliform, Total (P/A)	2021	365		0	0.0	N/A	TT	N		http://www.	.mcwa.com/		
E.Coli (P/A)	2021	365		0	0.0	0	0	N		http://www.	.mcwa.com/		
Contaminant (units)	Sample Year	No. Tests	Minimum	Avg	Maximum	MCLG	MCL	Violation	No. Tests	Minimum	Minimum Avg		
Raw Water Cryptosporidium (Oocysts/L)	2021	1		0.00		0	TT	N	4		ND		
Raw Water Giardia (Oocysts/L)	2021	1		0.00		0	TT	N	4		ND		
Heterotrophic Plate Count/HPC (mpn/mL)	2021	364	<2	<2	62.00	N/A	TT	N		http://www.	.mcwa.com/	<u> </u>	
Finished Water Turbidity (NTU)	2021	2,182	0.02	0.05	0.10		TT (mo. avg <0.3NTU for 95% of samples)	N	2,190	0.02	0.04	0.09	

Contaminant (units)	Sample Year	No. Tests	Total No. Positive	Highest Month % Positive	% Positive Annual Avg	MCLG	MCL	Violation
Coliform, Total (P/A)	2021	1,880	4	1.2 (10/2021)	0.2	N/A	TT	N
Health Effect				y present in the er re NOT found in n			n indicator that other, pote	entially-harmfu
E. Coli (P/A)	2021	1,880	0	0	0.0			N
Cyptos	poridium and	d Giardia san	ples collecte	ed from reservoi	ir effluent PRIO	R to chlorina	ation	
Contaminant (units)	Sample Year	No. Tests	Minimum	Avg	Maximum	MCLG	MCL	Violation
Highland Reservoir Cryptosporidium (Oocysts/L)	2021	26	0.00	0.00	0.02	0	П	N
Health Effect	per month (concentration	Uncovered op on in one sam	ple collected	ervoir exposed to	the environment servoir in Januar). Cryptospor	ervoir effluent PRIOR to che dium was deteteced at a v pling was conducted week	ery low
Highland Reservoir Giardia (Oocysts/L)	2021	26	0.00	0.00	0.00	0	TT	N
Cobbs Hill Reservoir Cryptosporidium (Oocysts/L)	2021	24	0.00	0.00	0.00	0	TT	N
Cobbs Hill Reservoir Giardia (Oocysts/L)	2021	24	0.00	0.00	0.00	0	TT	N
Turbidity (NTU)	2021	1,935	<0.1	0.10	0.85		TT (mo. avg <5NTU)	N

		L		ater Filtration Pl						nroe County		
Contaminant (units)	Sample Year	No. Tests	Minimum	Avg	Maximum	MCLG	MCL	Violation	No. Tests	Minimum	Avg	Maximum
Alkalinity (mg/L)	2021	5	68	71	75		15	N	4	90	90	91
				neasure of a wate		alize acid.						
Calcium (mg/L)	2021	5	25	26	27		15	N	4	33	34	34
Health Effe				n potable water. ibute to scale for			entration by 2.5 converts th	e result to a val	ue expressed	as mg/L of ca	lcium hardne	ess (as
Chloride (mg/L)	2021	5	34	38	41		15	N	4	26	29	37
Health Effe				oride add palatab nay taste salty.	ility to water. The	e EPA Secon	ndary Drinking Water Regu	lations recomm	end a maximu	ım concentrati	on of 250 mg	g/L for
Sulfate (mg/L)	2021	5	12	13	13		15	N	4	26	27	27
Health Effe		derate concent centration water		•	ity to water. The	EPA Second	dary Drinking Water Regul	ations recomme	nd a maximur	n concentratio	n of 250 mg/	L for sulfate.
Color (True) (Color Unit)	2021	1		<5			15	N	4		ND	
Fluoride (mg/L)	2021	1,086	0.09	0.69	0.77	2.2	2.2	N	2,184	0.34	0.73	0.90
Health Effer	treatment c mg/L over r	themical. The many years co	average fluor		n within our water	r supply is 3 to	tribution system. Fluoride imes lower than the NYS Noones.					
			Hemlock W	ater Filtration Pl	ant				Мо	nroe County	Water Auth	ority
Contaminant (units)	Sample Year	No. Tests	Minimum	Avg	Maximum	MCLG	MCL	Violation	No. Tests	Minimum	Avg	Maximum
ortho-Phosphate (mg/L)	2021	1		<0.05				N			NA	
Nitrate (mg/L)	2021	10	<0.01	0.07	0.15	10	10	N	4	0.21	0.28	0.35
		ow the age of s blue baby syr		no drink water cor	ntaining nitrate in	excess of the	e MCL could become serio	ously ill and, if ur	ntreated, may	die. Sympton	ns include sh	ortness of
Nitrite (mg/L)	2021	4	<0.01	<0.01	<0.01			N	4		ND	
pH (SU)	2021	365	7.37	7.82	8.10		6.5-8.5 SU	N	365	7.1	7.5	7.8
Health Effe							ommend a range of 6.5-8.	SU for pH. Lo	w pH can res	ults in a bitter	metallic taste	e and
Total Hardagas (mg/l)			gh pH can res ■	ults in a soda tas	te and contribute	to scale form	nation. NA	N	1 4	120	120	120
Total Hardness (mg/L)	2021	1						N	4	120	120	
Health Effe							calcium and magnesium h	ardness and is	expressed in I	mg/L. Total h	ardness is s	ometimes
Finished Water Specific Conductivity (umhos/cm)	2021	363	227	The grains of hare 296	350	ler is 5 gpg.	NA	N	49	290	301	310
Health Effe	source wate The conduc	er quality and	is used by the	e water quality lab	oratory to differe	entiate betwee	orrelated with the amount or en drinking water sourced nos/cm higher than potable	from Hemlock L	ake and Lake	Ontario within		
Total Dissolved solids (mg/L)	2021	1		180			500	N	4	160	170	190
	ct: Contributes	s to the hardne	ess, color and	taste of the water	r. The EPA has	established a	a secondary maximum con	taminant level c	oncentration (of 500 mg/L fo	r IDS.	
Iron (mg/L)	2021	1		<0.020				N	4		ND	
Magnesium (mg/L)	2021	1		6.3			NA	N	1		9.0	
Health Effe							n concentration by 2.5 con	verts the result	to a value exp	oressed as mo	J/L of magne	sium
Detection (mg/L)	_	as MgCO3). I	vlagnesium ha	ardness can cont	ribute to scale for	rmation on pl	umbing fixtures.	N	1		1.2	1
Potassium (mg/L)	2021	ic on cocontin	I nutriont on -	1.6	low lovels in stair	nking water		N	1	<u> </u>	1.3	
Health Effe		is an essentia	i riuulerit and	is present in very	iow ieveis in drii	nking water.					10	46
Sodium (mg/L) Health Effer							50 diets should avoid drinkin	N g water containi	4 ng more than	15 20 mg/L sodiu	16 um. Water co	16 ontaining more
		g/L of sodium	should not be		g by people on m	oderately res	stricted sodium diets.					
Aluminum (ug/L)	2021	1		7.6	<u> </u>		200	N	4	30	66	140
Health Effe	t: High levels	of aluminum	can lead to co	lored water. The	EPA Secondary	Drinking Wat	er Regulations recommen	d a maximum co	ncentration o	f 0.2 mg/L (=2	:00 ug/L) for	aluminum.
Health Effer Antimony (ug/L)	High levels 2021	of aluminum of	can lead to co	olored water. The	EPA Secondary	Drinking Wat	er Regulations recommen	d a maximum co	oncentration o	f 0.2 mg/L (=2	00 ug/L) for a	aiuminum.

			Hemlock Wa	ter Filtration Pl	ant				Mo	nroe County	Water Auth	ority
Contaminant (units)	Sample Year	No. Tests	Minimum	Avg	Maximum	MCLG	MCL	Violation	No. Tests	Minimum	Avg	Maximum
Barium (ug/L)	2021	1		16		2000	2000	N	4	19	20	23
Health Effect	t: Some peop	le who drink w	ater containin	ig barium in exce	ss of the MCL ov	er many years	could experience an	ncrease in their b	ood pressure			
Beryllium (ug/L)	2021	1		<0.3		4	4	N	4		ND	
Cadmium (ug/L)	2021	1		<0.5		5	5	N	4		ND	
Chromium, Total (ug/L)	2021	1		<0.9		100	100	N	4		ND	
Copper (ug/L)	2021	1		6		1300	1300	N	4		ND	
, , ,	2021			<0.020		0.2	0.2	N	4		ND	
ead (ug/L)		1			-				·			+
Manganese (ug/L)	2021 2021	1 2		<1 <2.0		0.2	15 50	N N	4 4 4		ND ND	
/langanese (ug/L)	2021 2021			<1			15	N	4		ND	
/langanese (ug/L)	2021 2021		Hemlock Wa	<1	ant		15	N	4	nroe County	ND ND	ority
/langanese (ug/L)	2021 2021		Hemlock Wa	<1 <2.0	ant Maximum		15	N	4	nroe County Minimum	ND ND	ority Maximun
Manganese (ug/L) Entry Point Inorganic Contamin Contaminant (units)	2021 2021 ants (IOCs) Sample			<1 <2.0 ater Filtration Pl	-	0	15 50	N N	4 4 Mo		ND ND Water Auth	
Manganese (ug/L) Entry Point Inorganic Contamin Contaminant (units) Vickel (ug/L)	2021 2021 ants (IOCs) Sample Year			<1 <2.0 ater Filtration Pl	-	0	15 50 MCL	N N Violation	4 4 Mo		ND ND Water Auth	
Manganese (ug/L) Entry Point Inorganic Contamin Contaminant (units) Mickel (ug/L) Selenium (ug/L)	2021 2021 ants (IOCs) Sample Year 2021			<1 <2.0 ater Filtration Pl Avg <1.0	-	0 MCLG	15 50 MCL 100	N N N Violation	4 4 No. Tests		ND ND Water Auth	
Manganese (ug/L) Entry Point Inorganic Contamin Contaminant (units) Mickel (ug/L) Selenium (ug/L) Silver (ug/L)	2021 2021 ants (IOCs) Sample Year 2021 2021	No. Tests		<1 <2.0 ater Filtration Pl Avg <1.0 <2.0	-	0 MCLG	15 50 MCL 100 50	Violation N N	4 4 Mo No. Tests 4 4		ND ND Water Auth Avg ND ND	
Manganese (ug/L) Entry Point Inorganic Contamin Contaminant (units) Nickel (ug/L) Selenium (ug/L) Silver (ug/L) Thallium (ug/L)	2021 2021 ants (IOCs) Sample Year 2021 2021 2021	No. Tests		<1 <2.0 ater Filtration Plane Avg <1.0 <2.0 <0.5	-	0 MCLG	15 50 MCL 100 50 100	Violation N N N N N N N	4 4 No. Tests 4 4 4		ND ND Water Auth Avg ND ND ND ND	
Lead (ug/L) Manganese (ug/L) Entry Point Inorganic Contamin Contaminant (units) Nickel (ug/L) Selenium (ug/L) Silver (ug/L) Thallium (ug/L) Zinc (ug/L) Mercury (ug/L)	2021 2021 ants (IOCs) Sample Year 2021 2021 2021 2021	No. Tests		<1 <2.0 ater Filtration Pl Avg <1.0 <2.0 <0.5 <0.30	-	0 MCLG	15 50 MCL 100 50 100 2	Violation N N N N N N N N	4 4 No. Tests 4 4 4		ND ND Water Auth Avg ND ND ND ND ND ND	

Distribution System Inorganic Con	ntaminant	ts						
Contaminant (units)	Sample Year	No. Tests	Minimum	Avg	Maximum	MCLG	MCL	Violation
Distribution System Fluoride (mg/L)	2021	330	0.48	0.67	0.77	2.2	2.2	N
1776 Dewey Ave Asbestos (MFL)	2014	1		ND		7	7	N

Lead and Copper Survey (Distribu	ition Syst	em)						
Contaminant (units)	Sample Year	No. Samples	Minimum	90th %	Maximum	MCLG	AL	Violation
Copper (ug/L)	2021	105	8	268	660	1300	1300	N
neam Enect.	relatively sh	ort amount of ne action level	time could ex	cperience gastroir	ntestinal distress	. Some people	excess of the action leve e who drink water contain le with Wilsons Disease s	ing copper in
Lead (ug/L)	2021	105	<1	9.0	33	0	15	N
Health Effect:	could show	slight deficits		pan and learning			hysical or mental develor water over many years co	

Contaminant (units)	Sample	No. Tests	Minimum	Avg	Maximum	MCLG	MCL	Violation
	Year						(MRDL for Chlorine)	i
Total Organic Carbon (TOC) (mg/L)	2021	6	2.27	2.55	2.70	N/A	Π	N
Health Effect:							des a medium for the form cetic acids (HAAs).	nation of
JV254 (abs/cm)	2021	1		0.038			NA	N
Health Effect:	There is no	health hazard	associated w	ith UV-254.				
Free Chlorine Residual (mg/L)	2021	2,171	0.46	0.91	1.67	4	4	N
Health Effect:				•			erience irritating effects to ould experience stomach	•
Bromodichloromethane (ug/L)	2021			2.7			NA	N

Contaminant (units)	Sample	No. Tests	Minimum	Avg	Maximum	MCLG	MCL	Violation
	Year						(MRDL for Chlorine)	
Bromoform (ug/L)	2021	1		<0.5			NA	N
Chloroform (ug/L)	2021	1		6.9			NA	N
Dibromochloromethane (ug/L)	2021	1		0.5			NA	N
Total Trihalomethanes (ug/L)	2021	1		10			80	N
Health Effe	ect: Increased r	isk of cancer a	associated with	n long-term exp	osure above the N	ИCL.		
Dibromoacetic Acid (ug/L)	2021	1		<1.0			NA	N
Dichloroacetic Acid (ug/L)	2021	1		5.4			NA	N
Monobromoacetic Acid (ug/L)	2021	1		<1.0			NA	N
Monochloroacetic Acid (ug/L)	2021	1		<2.0			NA	N
Trichloroacetic Acid (ug/L)	2021	1		4.2			NA	N
Haloacetic Acids (5) (ug/L)	2021	1		10	1		60	N
Health Effe	ect: Increased r	sk of cancer a	associated with	long-term exp	osure above the N	MCL	-	

Distribution System Disinfectants	and Disi	nfection B	y-Product	S					
Contaminant (units)	Sample	No. Tests	Minimum	Avg	Maximum	MCLG	MCL	Violation	Maximum
	Year						(MRDL for Chlorine)		LRAA
Free Chlorine Residual (mg/L)	2021	2,949	<0.10	0.81	1.88	4	4	N	
Health Effect:			•	•			perience irritating effects to ace stomach discomfort.	their eyes and	nose. Some
Bromodichloromethane (ug/L)	2021	32	7	10	14		NA	N	
Bromoform (ug/L)	2021	32	0	0	1		NA	N	
Chloroform (ug/L)	2021	32	9	33	52		NA	N	
Dibromochloromethane (ug/L)	2021	32	2	3	5		NA	N	
Total Trihalomethanes (ug/L)	2021	32	20	46	69		80	N	50
Health Effect:	Increased ri	sk of cancer a	associated wit	th long-term expo	sure above the N	MCL.			
Dibromoacetic Acid (ug/L)	2021	32	0	0	0		NA	N	
Dichloroacetic Acid (ug/L)	2021	32	3	13	24		NA	N	
Monobromoacetic Acid (ug/L)	2021	32	0	0	0		NA	N	
Monochloroacetic Acid (ug/L)	2021	32	0	0	5		NA	N	
Trichloroacetic Acid (ug/L)	2021	32	3	14	25		NA	N	
Haloacetic Acids (5) (ug/L)	2021	32	6	27	47		60	N	34
Health Effect:	Increased ri	sk of cancer a	associated wit	th long-term expo	sure above the N	MCL	·		

Entry Point Semi-Volatile Organic	- Comanin	ianis (SVC		File	4	1					18/-1 A11-	
				ter Filtration Pla				_		nroe County		
Contaminant (units)	Sample	No. Tests	Minimum	Avg	Maximum	MCLG	MCL***	Violation	No. Tests	Minimum	Avg	Maximum
	Year											ــــــــــــــــــــــــــــــــــــــ
1,2-Dibromo-3-Chloropropane (DBCP) (ug/L)	2021	1		<0.01		0	0.2	N	4		ND	
1,2-Dibromoethane (EDB) (ug/L)	2021	1		<0.01		0	0.05	N	4		ND	
Aroclor 1016 (PCB's) (ug/L)	2021	1		<0.08			NA	N	0			
Aroclor 1221 (PCB's) (ug/L)	2021	1		<0.19			NA	N	0			
Aroclor 1232 (PCB's) (ug/L)	2021	1		<0.23			NA	N	0			
Aroclor 1242 (PCB's) (ug/L)	2021	1		<0.26			NA	N	0			
Aroclor 1248 (PCB's) (ug/L)	2021	1		<0.1			NA	N	0			
Aroclor 1254 (PCB's) (ug/L)	2021	1		<0.1			NA	N	0			
Aroclor 1260 (PCB's) (ug/L)	2021	1		<0.2			NA	N	0			T
Total PCB's (ug/L)	2021	1		ND		0	0.5	N	4		ND	1
Chlordane (ug/L)	2021	1		<0.1		0	2	N	4		ND	T
Toxaphene (ug/L)	2021	1		<1.0		0	3	N	4		ND	T
2,4-D (ug/L)	2021	1		<0.1			50	N	4		ND	Ί
Dalapon (ug/L)	2021	1		<1.0		200	200	N	4		ND	T
Dacthal, mono & di acid, DCPA (ug/L)	2021	1		<0.5			50	N	4		ND	1
Dicamba (ug/L)	2021	1		<0.1			50	N	4		ND	1
Dinoseb (ug/L)	2021	1		<1.0		7	7	N	4		ND	T
Pentachlorophenol (ug/L)	2021	1		<0.04		0	1	N	4		ND	Ί
Picloram (ug/L)	2021	1		<0.1		500	500	N	4		ND	
2,4,5-TP (Silvex) (ug/L)	2021	1	·	<0.1		50	50	N	4		ND	
Alachlor (ug/L)	2021	1		<0.1		0	2	N	4		ND	
Aldrin (ug/L)	2021	1		<0.1			50	N	4		ND	

			Hemlock Wa	ter Filtration P	lant				Mo	nroe County	Water Auth	ority
Contaminant (units)	Sample Year	No. Tests	Minimum	Avg	Maximum	MCLG	MCL***	Violation	No. Tests	Minimum	Avg	Maximum
Atrazine (ug/L)	2021	1		<0.1		3	3	N	4		ND	
Benzo(a)pyrene (ug/L)	2021	1		< 0.02		0	0.2	N	4		ND	1
gama-BHC (Lindane) (ug/L)	2021	1		< 0.02		0.2	0.2	N	4		ND	1
Butachlor (ug/L)	2021	1		<0.1			50	N	4		ND	T
Dieldrin (ug/L)	2021	1		<0.1			50	N	4		ND	1
Di(2-ethylhexyl) adipate (ug/L)	2021	1		<0.6		400	400	N	4		ND	1
Di(2-ethylhexyl) phthalate (ug/L)	2021	1		<0.6		0	6	N	4		ND	1
Endrin (ug/L)	2021	1		<0.01		2	2	N	4		ND	1
Heptachlor (ug/L)	2021	1		< 0.04		0	0.4	N	4		ND	1
Heptachlor epoxide (ug/L)	2021	1		< 0.02		0	0.2	N	4		ND	1
Hexachlorobenzene (ug/L)	2021	1		<0.1		0	1	N	4		ND	1
Hexachlorocyclopentadiene (ug/L)	2021	1		<0.1		50	50	N	4		ND	1
Methoxychlor (ug/L)	2021	1		<0.1		40	40	N	4		ND	1
Metolachlor (ug/L)	2021	1		<0.1			50	N	4		ND	
Metribuzin (ug/L)	2021	1		<0.1			50	N	4		ND	1
Propachlor (ug/L)	2021	1		<0.1			50	N	4		ND	1
Simazine (ug/L)	2021	1		<0.10		4	4	N	4		ND	1
Aldicarb (ug/L)	2021	1		<0.5			50	N	4		ND	1
Aldicarb sulfone (ug/L)	2021	1		<0.7			50	N	4		ND	1
Aldicarb sulfoxide (ug/L)	2021	1		<0.5			50	N	4		ND	1
Carbaryl (ug/L)	2021	1		<0.5			50	N	4		ND	1
Carbofuran (ug/L)	2021	1		< 0.9		40	40	N	4		ND	1
3-Hydroxycarbofuran (ug/L)	2021	1		<0.5			50	N	4		ND	1
Methomyl (ug/L)	2021	1		<0.5			50	N	4		ND	1
1-Naphthol (ug/L)	2021	1		<1.0			50	N	4		ND	1
Oxamyl (ug/L)	2021	1		<1.0		200	200	N	4		ND	1
Glyphosate (ug/L)	2021	1		<6.0		700	700	N	4		ND	1
Endothall (ug/L)	2021	1		<9.0		100	100	N	4		ND	1
Diquat (ug/L)	2021	1		<0.4		20	20	N	4		ND	1
2,3,7,8-TCDD (Dioxin) (pg/L)	2021	1	i	ND		0	30	N	4		ND	
1,4-Dioxane (ug/L)	2021	1	İ	< 0.07			1.0	N	4		ND	T
Perfluorooctane sulfonate (PFOS) (ng/L)	2021	2	İ	<1.80			10.0	N	4	2.4	2.7	2.8
Perfluorooctanoic acid (PFOA) (ng/L)	2021	2	i	<1.80	i		10.0	N	4	2.1	2.2	2.3
Health Effect for Perfluorinated Alkyl Acids:	PFOA and levels, and	PFOS are link immune syste	m toxicity. The	s health effects se chemicals a		cancer and de	10.0 tion, liver and kidney velopmental harm. 1	damage, develop		productive ha	rm, changes	in serur

			Hemlock Wa	ter Filtration Pla	ant				Monroe County Water Authority			
Contaminant (units)	Sample Year	No. Tests	Minimum	Avg	Maximum	MCLG	MCL***	Violation	No. Tests	Minimum	Avg	Maximum
Benzene (ug/L)	2021	1		<0.5		0	5	N	4		ND	
Bromobenzene (ug/L)	2021	1		<0.5			5	N	4		ND	
Bromochloromethane (ug/L)	2021	1		<0.5			5	N	4		ND	
Bromomethane (ug/L)	2021	1		<0.5			5	N	4		ND	
n-Butylbenzene (ug/L)	2021	1		<0.5			5	N	4		ND	
sec-Butylbenzene (ug/L)	2021	1		<0.5			5	N	4		ND	
tert-Butylbenzene (ug/L)	2021	1		<0.5			5	N	4		ND	
Carbon tetrachloride (ug/L)	2021	1		<0.5		0	5	N	4		ND	
Chlorobenzene (ug/L)	2021	1		<0.5			5	N	4		ND	
Chloroethane (ug/L)	2021	1		<0.5			5	N	4		ND	
Chloromethane (ug/L)	2021	1		<0.5			5	N	4		ND	
2-Chlorotoluene (ug/L)	2021	1		<0.5			5	N	4		ND	
4-Chlorotoluene (ug/L)	2021	1		<0.5			5	N	4		ND	
Dibromomethane (ug/L)	2021	1		<0.5			5	N	4		ND	
1,2-Dichlorobenzene (ug/L)	2021	1		<0.5			5	N	4		ND	
1,3-Dichlorobenzene (ug/L)	2021	1		<0.5			5	N	4		ND	
1,4-Dichlorobenzene (ug/L)	2021	1		<0.5			5	N	4		ND	

			Hemlock Wa	ter Filtration Pla	ant				Monroe County Water Authority			
Contaminant (units)	Sample Year	No. Tests	Minimum	Avg	Maximum	MCLG	MCL***	Violation	No. Tests	Minimum	Avg	Maximum
Dichlorodifluoromethane (ug/L)	2021	1		<0.5			5	N	4		ND	
1,1-Dichloroethane (ug/L)	2021	1		<0.5		0	5	N	4		ND	Î
1,2-Dichloroethane (ug/L)	2021	1		<0.5		0	5	N	4		ND	†
1,1-Dichloroethylene (ug/L)	2021	1		<0.5		5	5	N	4		ND	†
cis-1,2-Dichloroethylene (ug/L)	2021	1		<0.5		5	5	N	4		ND	
rans-1,2-Dichloroethylene (ug/L)	2021	1		<0.5		5	5	N	4		ND	
Dichloromethane (ug/L)	2021	1		<0.5		0	5	N	4		ND	†
I,2-Dichloropropane (ug/L)	2021	1		<0.5		0	5	N	4		ND	
1,3-Dichloropropane (ug/L)	2021	1		<0.5			5	N	4		ND	
2,2-Dichloropropane (ug/L)	2021	1		<0.5	†		5	N	4	1	ND	
1,1-Dichloropropylene (ug/L)	2021	1		<0.5			5	N	4		ND	
cis-1,3-Dichloropropylene (ug/L)	2021	1		<0.5	 		5	N	4	 	ND ND	
rans-1,3-Dichloropropylene (ug/L)	2021	1		<0.5			5	N	4		ND ND	
1,3-Dichloropropylene, cis & trans (ug/L)	2021	1		<0.5			5	N	4		ND ND	+
Ethyl benzene (ug/L)	2021	1		<0.5		5	5	N	4			
		1				5			4		ND	
Hexachlorobutadiene (ug/L)	2021	1		<0.5			5	N			ND	
sopropylbenzene (ug/L)	2021	1		<0.5			5	N	4		ND	
1-Isopropyltoluene (ug/L)	2021	1		<0.5			5	N	4	ļ	ND	
Methyl-t-butyl ether (MTBE) (ug/L)	2021	1		<0.5			10	N	4		ND	
Naphthalene (ug/L)	2021	1		<0.5			5	N	4		ND	
n-Propylbenzene (ug/L)	2021	1		<0.5			5	N	4		ND	
Styrene (ug/L)	2021	1		<0.5			5	N	4		ND	
1,1,1,2-Tetrachloroethane (ug/L)	2021	1		<0.5			5	N	4		ND	
1,1,2,2-Tetrachloroethane (ug/L)	2021	1		<0.5			5	N	4		ND	
Tetrachloroethylene (ug/L)	2021	1		<0.5		0	5	N	4		ND	
Toluene (ug/L)	2021	1		<0.5			5	N	4		ND	
1,2,3-Trichlorobenzene (ug/L)	2021	1		<0.5			5	N	4		ND	
1,2,4-Trichlorobenzene (ug/L)	2021	1		<0.5	1	5	5	N	4	1	ND	
1,1,1-Trichloroethane (ug/L)	2021	1		<0.5		5	5	N	4		ND	
1,1,2-Trichloroethane (ug/L)	2021	1		<0.5		3	3	N	4		ND	1
Γrichloroethylene (ug/L)	2021	1		<0.5		0	5	N	4		ND	t
Entry Point Volatile Organic Cont		(VOCs)								•	IND	
Entry i onit volatile organic com	T	(1003)	Hemlock Wa	ter Filtration Pla	ant				Mo	nroe County	Water Auth	ority
Contaminant (units)	Sample	No. Tests	Minimum		Maximum	MCLG	MCL***	Violation	No. Tests			Maximum
, ,	Year	No. Tests	Willimum	Avg	Maximum	MCLG			No. Tests	Willilliam	Avg	Waxiiiiuii
richlorofluoromethane (ug/L)	2021	1		<0.5			5	N	4		ND	<u> </u>
,2,3-Trichloropropane (ug/L)	2021	1		<0.5			5	N	4		ND	
1,2,4-Trimethylbenzene (ug/L)	2021	1		<0.5			5	N				
,3,5-Trimethylbenzene (ug/L)	2021	1		<0.5			5	N				
/inyl chloride (ug/L)	2021	1		<0.2		0	2	N				
I,2-Xylene (ug/L)	2021	1		<0.5			5	N				
,3 + 1,4-Xylene (ug/L)	2021	1		<0.5			5	N				T
Kylenes, Total (ug/L)	2021	1		<0.5			15	N	Î	Ī	Ī	1

Entry Point Taste and Odor Causing Chemicals											
Contaminant (units)	Sample Year	No. Tests	Minimum	Avg	Maximum	MCLG	MCL	Violation			
Geosmin (ng/L)	2021	1		<2.0			NA	N			
IBMP (ng/L)	2021	1		<2.0				N			
IPMP (ng/L)	2021	1		<2.0				N			
MIB (ng/L)	2021	1		<2.0			NA	N			
2,4,6-Trichloroanisole (TCA) (ng/L)	2021	1		<2.0				N			

Entry Point Surfactants								
Contaminant (units)	Sample Year	No. Tests	Minimum	Avg	Maximum	MCLG	MCL	Violation
Foaming Agents (MBAS) (mg/L)	2021	1		ND				N

Emerging	Unregula	ted Conta	minants (E	ntry Point)						
Contaminant (units)	Sample	No. Tests	Minimum	Avg	Maximum	MCL				
	Year									
Chromium, Hexavalent (ug/L)	2021	1		0.022		NA				
Health Effect: A maximum contaminant level has not been established for this contaminant. Studies are still being conducted to determine an MCL for hexavalent chromium. Chromium exists in water in two forms (trivalent and hexavalent). Total chromium, which is reported in the IOC Table, is regulated and has an MCL of 100 ug/L. Total chromium is a measure of both forms and was not detected at the entry point.										
Perfluoroundecanoic acid (PFUnA) (ng/L)	2021	1		<1.80		NA				
Perfluorohexanoic acid (PFHxA) (ng/L)	2021	1		<1.80		NA				
Perfluorododecanoic acid (PFDoA) (ng/L)	2021	1		<1.80		NA				
Perfluorodecanoic acid (PFDA) (ng/L)	2021	1		<1.80		NA				
Perfluorohexanesulfonic acid (PFHxS) (ng/L)	2021	1		<1.80		NA				
Perfluorobutanesulfonic acid (PFBS) (ng/L)	2021	1		<1.80		NA				
Perfluoroheptanoic acid (PFHpA) (ng/L)	2021	1		<1.80		NA				
Perfluorononanoic acid (PFNA) (ng/L)	2021	1		<1.80		NA				
Perfluorotetradecanoic acid (PFTeDA) (ng/L)	2021	1		<1.80		NA				
Perfluorotridecanoic acid (PFTrDA) (ng/L)	2021	1		<1.80		NA				

Algal Tox	Algal Toxins - Total Microcystins for Entry Point											
Contaminant (units)	Sample Year	No. Tests	Minimum	Avg	Maximum	Health Advisory Level						
Entry Point- Plant (ug/L)	2021	15	< 0.30	<0.30	< 0.30	0.30						
Entry Point- Big Tree (ug/L)	2021	9	< 0.30	<0.30	< 0.30	0.30						

UCMR4 Entry	/ Points - Alc	ohols, Metals	, Pesticides,	SVOCs and Cya	nototoxins**- 2	019/2020	
Contaminant	Units	Hemlo	ck Water Filtr	ation Plant	MCWA -	Mt. Read Blv	d. Booster Pump
		No. Tests	Minimum	Maximum	No. Tests	Minimum	Maximum
Germanium	ug/L	3	< 0.300	< 0.300	3	< 0.300	< 0.300
Manganese	ug/L	3	< 0.400	< 0.400	3	< 0.400	0.776
alpha-Hexachlorocyclohexane	ug/L	3	<0.010	<0.010	3	<0.010	<0.010
Chlorpyrfos	ug/L	3	< 0.030	< 0.030	3	< 0.030	< 0.030
Dimethipin	ug/L	3	<0.200	< 0.200	3	<0.200	<0.200
Ethoprop	ug/L	3	< 0.030	< 0.030	3	< 0.030	< 0.030
Oxyfluoren	ug/L	3	< 0.050	< 0.050	3	< 0.050	< 0.050
Profenofos	ug/L	3	< 0.300	< 0.300	3	<0.300	<0.300
Tebuconazole	ug/L	3	<0.200	<0.200	3	<0.200	<0.200
Permethrin, cis & trans	ug/L	3	< 0.040	< 0.040	3	<0.040	<0.040
Tribufos	ug/L	3	< 0.070	< 0.070	3	< 0.070	<0.070
Butylated hydroxyanisole	ug/L	3	< 0.030	< 0.030	3	< 0.030	< 0.030
o-Toluidene	ug/L	3	< 0.007	< 0.007	3	< 0.007	< 0.007
Quinoline	ug/L	3	<0.020	<0.020	3	<0.020	<0.020
1-Butanol	ug/L	3	<2.000	<2.000	3	<2.000	<2.000
2-Methoxyethanol	ug/L	3	< 0.400	< 0.400	3	< 0.400	< 0.400
2-Propen-1-ol	ug/L	3	< 0.500	< 0.500	3	<0.500	< 0.500
Total Microcystin/Nodularin	ug/L	8	< 0.300	< 0.300	8	< 0.300	< 0.300
Anatoxin-A	ug/L	8	< 0.030	< 0.030	8	< 0.030	< 0.030
Cylindrospermopsin	ug/L	8	< 0.090	< 0.090	8	< 0.090	< 0.090

UCMR4 Indicators - Source Water (Hemlock Lake)- 2019									
Contaminant	Units	Hemlock Water Filtration Plant							
		No. Tests	Minimum	Maximum					
Bromide	ug/L	3	<20	22					
Total Organic Carbon	ug/L	3	2,480	2,680					

UCMR4 Distribution System Haloacetic Acids - Disinfection Byproducts- 8 Sample Sites 2019									
Contaminant	Units	No. Tests	Minimum	Maximum					
Total HAA (5)*	ug/L	24	14	39					
Total HAA (6) Br**	ug/L	24	6	10					
Total HAA (9)***	ug/L	24	22	48					

UCMR4 Distribution System Haloacetic Acids - Disinfection Byproducts- 8 Sample Sites 2019										
Contaminant	Units	No. Tests	Minimum	Maximum						
Bromochloroacetic acid	ug/L	24	1.490	4.340						
Bromodichloroacetic acid	ug/L	24	1.940	4.240						
Chlorodibromoacetic acid	ug/L	24	< 0.300	0.760						
Dibromoacetic acid	ug/L	24	< 0.300	0.510						
Dichloroacetic acid	ug/L	24	4.300	20.700						
Monobromoacetic acid	ug/L	24	<0.300	0.348						
Monochloroacetic acid	ug/L	24	<2.000	<2.000						
Tribromoacetic acid	ug/L	24	<2.000	<2.000						
Trichloroacetic acid	ua/l	24	7.500	18.800						

^{*} Sum of dibromoacetic acid+dichloroacetic

2021 Lead and Copper Rule Water Quality Parameter (WQP) Data - Distribution System

Water Quality Parameters (WQPs) are used to determine the corrosivity of drinking water, and were collected to comply with the lead and copper rule in 2021. Samples were collected quarterly from 24 representative locations within the City (Approved coliform sampling sites).

Locations	Statistic	рН	Free CI2	Conductivity	Temperature	Turbidity	Alkalinity	HPC
		(su)	(mg/L)	(uS)	(Deg C)	(NTU)	(mg/L)	mpn/ml
WQP Samples were collected at the entry	Min	7.03	0.04	292	5	0.05	57	<2
point and at representative taps throughout	Avg	7.81	0.74	305	16	0.09	77	<2
the distribution system. The data in this table includes results from 24 sample sites located	IVIAX	8.33	1.44	321	25	0.21	101	2
within the distribution system.	Statistic	Calcium	Chloride	Sulfate	TOC	Aluminum	Iron	Manganese
within the distribution system.		(mg/L)	(mg/L)	(mg/L)	(mg/L)	(ug/L)	(mg/L)	(ug/L)
	Min	25	23	8	2.16	9	<0.02	<2
	Avg	27	37	12	2.34	16	<0.02	<2
	Max	34	45	22	2.58	46	0.02	<2

Footnotes: *** In Part 5, Subpart 5-1 of the New York State Sanitary Code general organic chemicals are catagorized as Principle Organic Contaminants (POCs) or Unspecified Organic Contaminants (UOCs). A POC is defined as any organic compound belonging to the following classes, except for chloroform, dibromochloromethane, bromodichloromethane, bromoform and any other chemical contaminant with a specific

MCL listed in Subpart 5-1.52:

- (1) Halogenated Alkane.
- (2) Halogenated Ether.
- (3) Halobenzenes and Substituted Halobenzenes.
- (4) Benzene and Alkyl- or Nitrogen-Substituted Benzenes.
- (5) Substituted, Unsaturated Hydrocarbons.
- (6) Halogenated Nonaromatic Cyclic Hydrocarbons.

A UOC is defined as any organic compound not otherwise specified in this Subpart. Per Table 3 of Subpart 5-1.52 a POC is assigned an MCL of 0.005 mg/L (5 ug/L) and a UOC has an MCL of 0.05 mg/L (50 ug/L). The Total POCs+UOCs MCL is 0.1 mg/L (100 ug/L).

^{**}Sum of the 6 haloacetic acids in the above table that contain bromide. No MCL established.

^{***}Sum of all 9 haloacetic acids in the above table. No MCL established.